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DUAL LOCAL COMPLETENESS

STEPHEN A. SAXON AND L. M. SÁNCHEZ RUIZ

(Communicated by Dale Alspach)

Abstract. The 1971 articles in which Saxon-Levin and Valdivia indepen-
dently proved their Theorem feature two conditions equivalent to dual local
completeness. One became Ruess’ property (LC). The other is among new
characterizations previously known only as necessary conditions.

1. Introduction

A sequence σ = {An : n ∈ N} of absolutely convex subsets of a locally convex
space E (T ) is absorbing in E if it is increasing and each x ∈ E is absorbed by
some An; then we denote by Tσ the finest locally convex topology on E that induces
the same topology as T on each An. (Cf. [1], [8].) The topology Tσ is defined by
the family of those seminorms whose restrictions to the sets An are continuous for
the topology induced on An by T . In Valdivia’s development of the Saxon-Levin-
Valdivia Theorem, he showed that T = Tσ always holds when E (T ) is barrelled
([16], Theorem 5). Ruess [9] defined a space E (T ) to have property (L) if T = Tσ
holds for each absorbing sequence σ, and to have the weaker property (LC) if each
Tσ is compatible with the dual pair (E,E′). Thus

barrelled ⇒ property (L) ⇒ property (LC).

Furthermore, every barrelled space has its Mackey topology, and for any Mackey
space E, it is clearly true that E has property (L) if and only if E has property (LC).
Valdivia explicitly pointed out that [ barrelled ⇒ property (LC)], and the latter
property, according to Ruess (see below), is equivalent to dual local completeness.

The crux of the Saxon-Levin proof was to show that every barrelled space E
has the property that any countable-codimensional subspace spanned by a closed
absolutely convex subset of E is, itself, closed ([15], §3, Lemma). We will show
this property, also, is equivalent to dual local completeness, which thus provides
an unexpected common footing for both papers. This and other new equivalences
unify vital ideas already in book form (e.g., [5], [6], [7], [19], [22]).

Every space will be assumed a Hausdorff locally convex space over the scalar
field of real or complex numbers; “countable” means “finite or denumerable”.
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1064 STEPHEN A. SAXON AND L. M. SÁNCHEZ RUIZ

2. Dual local completeness

When σ = {A}, we will denote Tσ as TA. Ruess ([11], Propositions 2.2, 2.3)
asserts without proof that a space E (T ) has property (L) (respectively, (LC)) if
and only if, given any absorbing absolutely convex set A (respectively, any f ∈ E∗

such that f |A is continuous), then T = TA (respectively, f ∈ E′). We prove Ruess’
characterizations with new ones involving `1.

Recall that a space E is locally complete if and only if every bounded closed
absolutely convex subset of E is a Banach disk [7]. E is `1-complete if, for each
{λn}n ∈ `1 and bounded sequence {xn}n ⊂ E, the series

∑
n λnxn converges in E.

Theorem 2.1. A space E is locally complete if and only if it is `1-complete.

Proof. Suppose E is locally complete and we are given {λn}n ∈ `1 and a bounded
sequence {xn}n in E. The closed absolutely convex hull A of {xn}n is a Banach
disk. Now q > p implies∑

n≤q
λnxn −

∑
n<p

λnxn ∈ (|λp|+ . . .+ |λq|)A.

Thus
∑

n λnxn converges in the Banach space EA, and so must also converge in
the relatively coarser topology of E.

Conversely, suppose E is `1-complete and A is a closed disk in E, with {yn}n a
Cauchy sequence in the normed space EA. There is an increasing sequence {nk}k ⊂
N such that ‖yq − yp‖ ≤ 2−k whenever p, q, k ∈ N with p, q ≥ nk. If λk = 2−k and
xk = 2k

(
ynk+1

− ynk
)
, then {xk}k ⊂ A is bounded and

∑
n λnxn converges to some

x in E. Given j > k, we have∑
n≤j

λnxn −
∑
n<k

λnxn ∈
(
2−k + . . .+ 2−j

)
A ⊂ 2−k+1A.

For k fixed, 2−k+1A is closed in E, and

x−
∑
n<k

λnxn = lim
j

∑
n≤j

λnxn −
∑
n<k

λnxn

 ∈ 2−k+1A.

Therefore as k increases, ynk = yn1 +
∑

n<k λnxn tends to yn1 + x in EA, as does,
then, {yn}n. We conclude that A is a Banach disk and E is locally complete.

Obviously, every sequentially complete space is locally complete (cf. [7]).

Theorem 2.2. Given a space E (T ), the following assertions are equivalent:

(1) (Ruess) E has property (L).
(2) (Ruess) T = TA for any absorbing absolutely convex subset A of E.
(3) If {λn}n ∈ `1 and {pn : n ∈ N} is a pointwise bounded sequence of continu-

ous seminorms on E, then
∑

n |λn| pn, pointwisely defined, is a continuous
seminorm on E.

Proof. [(1) ⇒ (2)] is clear.
[(2) ⇒ (3)]. Let A =

⋂
n {x ∈ E : pn (x) ≤ 1}. To see that p =

∑
n |λn| pn

is continuous, we need only see that p|A is continuous because of (2), and for
this we just check that p|A is continuous at the origin (Garling; cf. [9], Lemma
3.3(1)). Given ε > 0, choose k such that

∑
n>k |λn| < ε/2. Continuity supplies a

0-neighborhood W in E with
∑

n≤k |λn| pn (x) < ε/2 for x ∈ W . Hence for each
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DUAL LOCAL COMPLETENESS 1065

x ∈ W ∩A we have p (x) ≤
∑

n≤k |λn| pn (x) +
∑

n>k |λn| < ε/2 + ε/2 = ε; i.e., p|A
is continuous at the origin.

[(3) ⇒ (1)]. Let σ = {An : n ∈ N} be an absorbing sequence of E (T ); then
σ∗ = {2nAn : n ∈ N} is an absorbing sequence of E, also, and Tσ = Tσ∗ . A base of
0-neighborhoods for Tσ∗ is given by all the sets W = U0∩

(⋂{
2nAn + Un : n ∈ N

})
,

where {Un : n = 0, 1, 2, . . .} runs through all the sequences of absolutely convex
neighborhoods of the origin in E (T ). (See Lemma 1 of [8], or 8.1.12 of [7].) We need
show that any such W is a T -neighborhood of the origin. If pn is the gauge of 2nAn+
Un, then {2npn : n ∈ N} is a family of continuous seminorms defined on E, and is
pointwise bounded since σ is absorbing. By (3), we have p =

∑∞
n=1

1
2n 2npn is a

continuous seminorm on E. Therefore p−1 ([0, 1]) is a T -neighborhood contained in⋂{
p−1
n ([0, 1]) : n ∈ N

}
⊂
⋂{

2nAn + Un : n ∈ N
}
, so that W is a T -neighborhood

of the origin.

Recall that a space E is dual locally complete [17] if E′ (σ (E′, E)) is locally
complete. E is dual `1-complete if E′ (σ (E′, E)) is `1-complete.

Ruess’ Final Remarks [10] imply that ([7], 8.1.29(i)) dual local completeness is
equivalent to property (LC). And [E is barrelled] ⇒ [E has property (S); i.e., E′ is
σ (E′, E)-sequentially complete] ⇒

[
E is dual `1-complete

]
. De Wilde proved that

every metrizable space with property (S) is barrelled. Saxon’s proof ([13], Theorem
2.7) actually used dual `1-completeness instead of property (S).

Theorem 2.3. For any space E (T ) the following assertions are equivalent:

(1) (Ruess) E is dual locally complete.
(2) E is dual `1-complete.
(3) (Ruess) E has property (LC).
(4) (Ruess) If A is an absorbing absolutely convex set and f ∈ E∗ with f |A

continuous, then f ∈ E′.

Proof. [(1) ⇔ (2)]. By Theorem 2.1.
[(2) ⇒ (3)]. Let {Bn : n ∈ N} be an increasing sequence of closed absolutely

convex sets covering E (cf. 8.1.17(i) of [7]) and suppose that f ∈ E∗ has a con-
tinuous restriction on each Bn. We must show that f ∈ E′. If f = 0, this is
trivial; otherwise, choose x ∈ E such that f (x) = 1. Then, for each n ∈ N, we
have Cn = Bn ∩ f−1 ({0}) is closed and absolutely convex and misses 2−nx; the
bipolar theorem yields fn ∈ E′ with fn (x) = 1 and |fn (y)| < 2−n for every y ∈ Cn.
Since {Bn : n ∈ N} increases and covers E, the sequence {2n (fn+1 − fn) : n ∈ N}
is σ (E′, E)-bounded, so that by (2) we have f = f1 +

∑
n 2−n [2n (fn+1 − fn)] is in

E′.
[(3) ⇒ (4)]. The sequence {An = A}n is absorbing since A is.
[(4) ⇒ (2)]. Given {λn}n ∈ `1 and a σ (E′, E)-bounded sequence {fn}n, let

f ∈ E∗ be the pointwise limit of
∑

n λnfn. To show that f ∈ E′, it suffices to show
that the restriction of f to A = {fn : n ∈ N}◦ is continuous at the origin, using (4).
For ε > 0, choose k such that

∑
n>k |λn| < ε/2, and choose a 0-neighborhood U

in E such that
∣∣∣(∑n≤k λnfn

)
(x)
∣∣∣ < ε/2 for all x ∈ U . Thus x ∈ U ∩ A implies

|f (x)| ≤
∣∣∣(∑n≤k λnfn

)
(x)
∣∣∣+∑

n>k |λn| < ε, as required.

Let us mention a property weaker than dual locally complete. Valdivia showed
([16], Theorem 6) that in a barrelled space, if each member of an absorbing sequence
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1066 STEPHEN A. SAXON AND L. M. SÁNCHEZ RUIZ

{An : n ∈ N} is closed, then any bounded set is absorbed by some An. This was
extended in ([1], Corollary 1) to `∞-barrelled spaces, further in ([9], Lemma 6.3)
to spaces with property (LC). Ruess’ [10], Lemma 1.2 justifies substituting the
italicized statement for the definition of his property (B). On the other hand, a
space E has the Banach-Mackey property if every σ (E′, E)-bounded subset of E′ is
β (E′, E)-bounded (cf. [2], p.3). Webb ([20], Proposition 4.1(1)) proved that every
c0-barrelled space has the Banach-Mackey property (c0-barrelled ⇒ dual locally
complete [7], 8.2.23(b)), and Pérez Carreras/Bonet [7], 5.1.34, states that every
barrel in a dual locally complete space is bornivorous. All are corollaries to the
Banach-Mackey Theorem, as we now show. ([(2) ⇔ (3)] is [22], Theorem 10-4-7.)

Theorem 2.4. The following assertions about a space E are equivalent:

(1) E has property (B).
(2) (Wilansky) Each barrel U of E is bornivorous.
(3) (Wilansky) E has the Banach-Mackey property.

Proof. [(1) ⇒ (2)]. Obvious.
[(2) ⇒ (3)]. Let C be a σ (E′, E)-bounded subset of E′ and let B be a bounded

subset of E. By (2), there is some ε > 0 such that εB is contained in the barrel
C◦. Thus C ⊂ C◦◦ ⊂ (εB)

◦
= 1/ε (B◦), so that B◦ absorbs C; i.e., C is β (E′, E)-

bounded.
[(3) ⇒ (1)]. Let {An : n ∈ N} be an absorbing sequence of closed subsets of

E and let B be a bounded subset of E. Suppose (1/n)B * An for all n. The
bipolar theorem provides xn ∈ B and fn ∈ A◦n such that |fn (xn)| > n. Because
{An : n ∈ N} is absorbing, {fn : n ∈ N} is σ (E′, E)-bounded, but not β (E′, E)-
bounded since it is not absorbed by B◦ ({xn : n ∈ N} ⊂ B), contradicting (3).

Theorem 2.5 (Banach-Mackey). Dual locally complete spaces have the Banach-
Mackey property.

Proof. Let C be a σ (E′, E)-bounded subset of E′ with E′
C◦◦ a Banach space, and

let B be a bounded subset of E. The Banach-Steinhaus Theorem assures that B,
considered as a pointwise bounded subset of the dual of E′

C◦◦ , is uniformly bounded
on the unit ball C◦◦, thus on C, and so B◦ absorbs C.

Note. This is argument a) in Köthe’s book ([5], §20.11.3). The alternate argument
b) implicitly uses [dual locally complete ⇒ dual `1-complete]. The terminology
“dual locally complete” [17] is subsequent to Köthe’s book; we have modernized
the statement of the Banach-Mackey Theorem, not its proof. Trivially, every quasi-
barrelled space with the Banach-Mackey property is barrelled, and thus every metriz-
able dual locally complete space is barrelled, an important weak barrelledness fact
(re-)proved by Ruess ([9], Proposition 6.8).

Wilansky [22] defined a Mazur space to be one in which every sequentially con-
tinuous linear form is continuous.

Theorem 2.6. A Mazur space E is dual locally complete if (and only if) it has the
Banach-Mackey property.

Proof. We will show that E is dual `1-complete. Let (λn)n ∈ `1 and {fn : n ∈ N} a
σ (E′, E)-bounded sequence be given, and set f (x) =

∑
n λnfn (x) for each x ∈ E.

To show f ∈ E′, we need only show limn f (xn) = 0 for {xn} an arbitrary null
sequence in E. The Banach-Mackey property provides M > 0 such that |fn (xj)| ≤
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DUAL LOCAL COMPLETENESS 1067

M for all n, j. Given ε > 0, choose P ≥ 1 such that
∑

n>P |λn| < ε/ (2M).

Continuity yields Q such that j > Q implies
∣∣∣∑n≤P λnfn (xj)

∣∣∣ < ε/2. Thus j > Q

implies

|f (xj)| ≤

∣∣∣∣∣∣
∑
n≤P

λnfn (xj)

∣∣∣∣∣∣+
∑
n>P

|λn|M < ε/2 +Mε/ (2M) = ε

as desired.

A space E is c0-barrelled if each σ (E′, E)-null sequence is equicontinuous [7].

Theorem 2.7. Each c0-barrelled Mazur space E has property (S).

Proof. Suppose f ∈ E∗ satisfies f (x) = limn fn (x) (x ∈ E) for some sequence
{fn}n ⊂ E′. Assume f is not continuous, hence not sequentially continuous, so
that there exists a null sequence {xn}n in E for which {f (xn)}n does not converge
to the scalar 0. Thus there is a null sequence {yk}k in E of the form {yk}k =
{xnk/f (xnk)}k. Now each f (yk) = 1. For each n, continuity of fn yields kn ≥ n
such that |fn (ykn)| ≤ 1/4; choose pn ≥ n such that |fpn (ykn)| ≥ 3/4. Since {fn}n
is σ (E′, E)-Cauchy, {fn − fpn}n is σ (E′, E)-null, and thus equicontinuous. Let V
be a 0-neighborhood in E with |(fn − fpn) (y)| < 1/2 for all n and all y ∈ V . But
for all ykn ∈ V we have

|(fn − fpn) (ykn)| ≥ |fpn (ykn)| − |fn (ykn)| ≥ 3/4− 1/4 = 1/2,

a contradiction.

A Mackey space is dual locally complete if and only if it is c0-barrelled ([7],
5.1.33), so the two results above have the following corollary; equivalence of the
last three statements is due to Kalton [4].

Corollary 2.8. For a Mackey Mazur space E the following assertions are equiva-
lent:

(1) E is dual locally complete.
(2) (Kalton) E has the Banach-Mackey property.
(3) (Kalton) E has property (S).
(4) (Kalton) E is c0-barrelled.

New characterizations of dual local completeness influenced by Saxon-Levin con-
clude the section. In the preliminary result, we more easily write A = A◦◦ to
indicate that A is absolutely convex and closed.

Proposition 2.9. If A = A◦◦ ⊂ E and H is any finite-dimensional subspace of E,
then A +H = (A+H)

◦◦
.

Proof. By finite induction, it suffices to consider H the span of a single element
x ∈ E. Trivially, A+H is absolutely convex; we must show the set is closed. Two
cases may occur:

(i) H ⊂ A. Then for any u ∈ A and v ∈ H , each nv ∈ A, so that we have

u+ v = lim
n

[(1− 1/n)u+ 1/n (nv)] ∈ A

since A is convex and closed. That is, A + H ⊂ A. Hence A + H = A is
closed.
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1068 STEPHEN A. SAXON AND L. M. SÁNCHEZ RUIZ

(ii) There exists some z ∈ H \A. Then the bipolar theorem yields h ∈ A◦

such that h (z) > 1. If t ∈ A +H , then t ∈
(
t+ {h}◦

)
∩ (A +H) since

t + {h}◦ is a neighborhood of t. It suffices to prove
(
t+ {h}◦

)
∩ (A +H) ⊂

A+{λz : |λ| ≤ |h (t)|+ 2}, since the latter is a closed subset ofA+H . Suppose
s ∈

(
t+ {h}◦

)
∩(A+H). Then |h (s)| ≤ |h (t)|+1 and s = a+λz for some a ∈

A and some scalar λ. [H is spanned by z.] Hence |h (s)| = |h (a) + λh (z)| ≥
|λ| h (z)− 1 ≥ |λ| − 1. We conclude that |λ| ≤ |h (t)|+ 2.

Theorem 2.10. In addition to (1)–(4) of Theorem 2.3, dual locally completeness
of a space E (T ) is also equivalent to each of the following statements:

(5) If F =
⋃
nAn is a countable-codimensional subspace of E with each An =

A◦◦n ⊂ An+1 , then F is closed.
(6) If f ∈ E∗ and sp (A) is a countable-codimensional subspace of E with A = A◦◦

such that f (A) = {0}, then f ∈ E′.
(7) If F and H are transverse subspaces of E with F = sp (A), A = A◦◦ and

dim (E/F ) ≤ ℵ0, then both F + H and A +H are closed.
(8) If F = sp (A) ⊂ E with A = A◦◦ and dim (E/F ) ≤ ℵ0, then F is closed.

Proof. [(3) ⇒ (5)]. Suppose x ∈ E \F and let {xn : n ∈ N} span an algebraic com-
plement of F + sp ({x}) in E. Then Bn = An + {λx : |λ| ≤ 1}+ sp ({x1, . . . , xn})
defines an absorbing sequence {Bn}n in E. Let us define f ∈ E∗ such that
f (F + sp ({xn : n ∈ N})) = {0} and f (x) = 1. Given any closed subset S of
the scalar field and n ∈ N, we have

f−1 (S) ∩Bn = An + sp ({x1 . . . , xn}) + {λx : |λ| ≤ 1 and λ ∈ S}

is closed via Proposition 2.9, so that f |Bn is continuous. Therefore f ∈ E′, x /∈ F ,
and F is closed.

[(5) ⇒ (6)]. Let {Hn : n ∈ N} be an increasing sequence of finite-dimensional
subspaces of E whose union is an algebraic complement of sp (A) in f−1 ({0}).
Then f−1 ({0}) =

⋃
{nA +Hn : n ∈ N} is closed by (5), so that f ∈ E′.

[(6) ⇒ (7)]. F +H is closed since, by (6), every linear form vanishing on F +H
is continuous. To see that A+H is closed, we suppose x ∈ (F +H) \ (A+H) and
prove x /∈ (A+H)◦◦. Now x = u + v with u ∈ F \A and v ∈ H . Since u /∈ A◦◦,
there exists g ∈ A◦ with g (u) > 1. Choose h ∈ E∗ with h (F ) = {0} and h|H = g|H .
By (6), h is continuous, and so must f = g − h be, also. Hence f |F = g|F and
f (H) = {0} yield f ∈ (A +H)◦, while f (x) = g (u) > 1; i.e., x /∈ (A +H)◦◦.

[(7) ⇒ (8)]. Take H = {0}.
[(8) ⇒ (4)]. Let C be an absolutely convex absorbing set in E, and suppose

f ∈ E∗ with f |C continuous. We must show f ∈ E′. If B = C, then f |B
is also continuous ([7], 8.1.17(i)). Thus A = B ∩ f−1 ({0}) is closed, and so is
f−1 ({0}) = sp (A), from (8).

Note that Ruess’ Proposition 3.5(1) [10] just says (5) is a necessary condition for
property (LC), and Saxon-Levin (cf. [15], [21] or 8.2.17 of [7]) gives condition (8)
as necessary for property (S).
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3. Permanence properties, remarks

Consolidation of dual local completeness affords simple proofs of some results
in the Valdivia [16] and Saxon-Levin [15] papers: Every barrelled space is dual `1-
complete; Theorem 2.3 gives property (LC) which, in the presence of the Mackey
topology, is property (L), yielding Valdivia’s Theorem 5 and Corollary 2.5 in [16].
On the other hand, Saxon-Levin developed condition (8) of Theorem 2.10, which
immediately solves their dense countable-codimensional subspace case. (They had
solved closed subspaces by early 1968 and had the full result later that year [14];
Saxon gave a proof in his 1969 dissertation [12].)

Another immediate consequence of [(1) ⇔ (8)] is Theorem 13 in [18]:

Theorem 3.1 (Valdivia). Every countable-codimensional subspace F of a dual lo-
cally complete space E is dual locally complete.

Proof. If A is an absolutely convex closed subset of F that spans a countable-
codimensional subspace of F , its closure A plays a similar role in E, so that sp

(
A
)

is closed in E by [(1) ⇒ (8)]. Thus sp (A) = sp
(
A
)
∩ F is closed in F , and F is

dual locally complete by [(8) ⇒ (1)].

Valdivia’s proof only uses [(1) ⇒ (8)], his Theorem 8 in [18]. His book ([19], p.47)
presents the Saxon-Levin-Valdivia Theorem via condition (8), generally following
the Saxon-Levin dichotomy which requires a separate closed subspace argument.
Use of condition (7) permits a very quick, seamless proof:

Theorem 3.2 (Saxon-Levin-Valdivia). Every countable-codimensional subspace F
of a barrelled space E is barrelled.

Proof. Let B be a barrel in F with closure A in E. Let H be an algebraic com-
plement of sp (A) in E. Theorem 2.10(7) implies A + H is a barrel, hence a 0-
neighborhood in E, and thus so is B = (A +H) ∩ F in F .

Suppose that: uι is a continuous linear map from a dual locally complete space
Eι into a space E; {An}n is an absorbing sequence in E; and f ∈ E∗ with each

f |An continuous. Then
{
u−1
ι (An)

}
n

is an absorbing sequence in Eι and each

(f ◦ uι) |u−1
ι (An) is continuous, so that f ◦uι ∈ E′

ι. Therefore [(1) ⇔ (3)] of Theorem

2.3 yields:

Theorem 3.3. Dual local completeness is preserved by inductive limits.

Corollary 3.4. Dual local completeness is preserved by:

(1) (Valdivia [19], 1.3.2.7) Hausdorff quotients;
(2) direct sums.

Theorem 3.5. The product E =
∏
ι∈I Eι of dual locally complete spaces Eι (ι ∈ I)

is, itself, dual locally complete.

Proof. Let A be an absolutely convex σ (E′, E)-closed and bounded set in E′.
Boundedness implies a finite J ⊂ I such that all members of A vanish on

∏
ι∈I \J Eι

(canonically identified as a subspace of E). Thus if B is the set of restrictions to
F =

∏
ι∈J Eι, we can identify E′

A with F ′
B , a Banach space, since the finite product

F is dual locally complete by Theorem 3.3.

The three-space-problem for dual locally complete spaces has a negative solution
that we plan to publish later.
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