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ABSTRACT Glaucoma is a degenerative disease that affects vision, causing damage to the optic nerve that

ends in vision loss. The classic techniques to detect it have undergone a great change since the intrusion of

machine learning techniques into the processing of eye fundus images. Several works focus on training a

convolutional neural network (CNN) by brute force, while others use segmentation and feature extraction

techniques to detect glaucoma. In this work, a diagnostic aid tool to detect glaucoma using eye fundus images

is developed, trained and tested. It consists of two subsystems that are independently trained and tested,

combining their results to improve glaucoma detection. The first subsystem applies machine learning and

segmentation techniques to detect optic disc and cup independently, combine them and extract their physical

and positional features. The second one applies transfer learning techniques to a pre-trained CNN to detect

glaucoma through the analysis of the complete eye fundus images. The results of both systems are combined

to discriminate positive cases of glaucoma and improve final detection. The results show that this system

achieves a higher classification rate than previous works. The system also provides information on the basis

for the proposed diagnosis suggestion that can help the ophthalmologist to accept or modify it.

INDEX TERMS Glaucoma, ensemble networks, medical diagnostic aids, medical imaging, explainable AI.

I. INTRODUCTION

The term Glaucoma is used for a group of progressive

neuropathies that affects vision (mostly bilateral) and is char-

acterized by loss of retinal ganglion cells and damage to

the optic nerve head, causing loss of the visual field and,

finally, blindness [1].Moreover, it is one of themain causes of

irreversible visual damage and blindness worldwide (second

leading cause in Europe).

There are two main types of glaucoma whose causes are

well known:
• Open-angle glaucoma (OAG): the most common form

of glaucoma (at least 90% of all glaucoma cases). It is

caused by the slow clogging of the drainage canals,

resulting in increased eye pressure. ‘‘Open-angle’’

means that the angle where the iris meets the cornea is

as wide and open as it should be (also called primary or

chronic glaucoma).

• Angle-closure glaucoma (ACG): It is caused by blocked

drainage canals, resulting in a sudden rise in intraoc-

ular pressure. It is also called acute glaucoma or

narrow-angle glaucoma and, unlike OAG, ACG is a

The associate editor coordinating the review of this manuscript and
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result of the angle between the iris and the cornea

closing.
There are other glaucoma types like normal-tension

glaucoma (the optic nerve is damaged even though the eye

pressure is not very high, so it is not well known why this

damage is produced), congenital glaucoma (occurs in babies

when there is incorrect or incomplete development of the

eye’s drainage canals during the prenatal period), and several

variants of OAG and ACG. Most of them are not well studied

and their causes are not defined yet.

Both main types (OAG and ACG) are usually evaluated

separately, obtaining a mean prevalence worldwide of 1.96%

for OAG and 0.69% for ACG according to [2]. In any case,

the progression from diagnosis to at least unilateral blind-

ness is above 1% per year [3]. Figure 1 shows the dif-

ference between a healthy eye and an eye with glaucoma

in fundus images. The images come from the DRISHTI

dataset.

As the population continues to age, the number

of glaucoma patients worldwide is expected to reach

111.8 million in 2040 [4]. In addition, the global disease bur-

den of blindness and visual impairment due to glaucoma has

been shown to be significantly associated with a decrease in

quality of life, physical functioning andmental health [5]–[7].

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 127519

https://orcid.org/0000-0003-3306-3537
https://orcid.org/0000-0001-5669-9111
https://orcid.org/0000-0001-9466-485X
https://orcid.org/0000-0001-8733-1811
https://orcid.org/0000-0002-4870-1493


J. Civit-Masot et al.: Dual Machine-Learning System to Aid Glaucoma Diagnosis Using Disc and Cup Feature Extraction

FIGURE 1. Healthy eye (right) versus eye with glaucoma (left).

FIGURE 2. Patient vision with and without glaucoma. Images from
National Eye Institute.

Figure 2 shows how glaucoma affects the patient vision and

its clear disabling effects.

In order to determine if a patient has glaucoma or not,

many advances have appeared since the initial clinical tests.

The classic glaucoma detection mechanisms are based on the

verification of five key factors: tonometry, ophthalmoscopy,

perimetry, gonioscopy and pachymetry. Depending on the

results of each exam independently, the doctor may continue

performing the others or not.

• Tonometry [8]: measures the pressure within the eye.

The range for normal pressure is between 12 and

22 mmHg. Most glaucoma cases are diagnosed with

pressure exceeding 20 mmHg; however, some people

can have glaucoma at pressures between 12 -22mm Hg,

thus, other exams may be reqired.

• Ophthalmoscopy [9]: helps to examine the shape and

color of the optic nerve for glaucoma damage. If the

intraocular pressure (IOP) is not within the normal range

or if the optic nerve looks unusual, more exams are

needed.

• Perimetry [10]: visual field test that produces a map

of the complete field of vision. This test will help to

determine whether your vision has been affected by

glaucoma.

• Gonioscopy [11]: helps to determine whether the angle

where the iris meets the cornea is open and wide

(a possible sign of open-angle, chronic glaucoma) or

narrow and closed (a possible sign of angle-closure or

acute glaucoma).

• Pachymetry [12]: measures the thickness of the cornea.

Corneal thickness has the potential to influence eye

pressure readings; so, with this measurement, it is easier

to understand the IOP readings.

As detailed above, there is not a unique procedure to

diagnose glaucoma because of the different eye character-

istics of each patient. Moreover, those exams have to be

interpreted by the doctor before making a diagnosis.

Currently, glaucoma diagnosis techniques based on

medical image analysis are gaining popularity over more

classic tests. In these cases several features of the retinal

structure need to be observed: the optic nerve head (ONH),

cup, peripapillary atrophy, retinal nerve fiber layer, etc. In a

fundus image, the ONH is a bright and rounded area, and

there is a smaller, rounded area inside the ONH called a cup.

Peripapillary atrophy appears as a crescent which coincides

with the area outside the ONH. The retinal nerve fiber layer

is also located outside the ONH, which has white striated tex-

tures. In general, to identify the features needed to diagnose

a glaucoma using computer vision, two types of techniques

can be applied: segmentation and feature extraction.

Several of the most popular methods involve processes

of localization and segmentation, such as thresholding [13]

and active contours [14]. Additional methods have been

developed, such as fuzzy c-means [15]. These methods often

misclassify the ONH area; so, to overcome this inconvenient,

morphological operations usually need to be applied.

On the other hand, several methods for ONH texture

feature extraction have been developed as this is the main

feature used to detect glaucoma. Wavelet and higher-order

spectra (HOS) methods are the most popular methods for

feature extraction. Some works use the discrete wavelet

transform (DWT) and HOS applied with a support vector

machine (SVM) classifier like [16]. Others like [17] use

Principal Component Analysis (PCA) to reduce the features

obtained using DTW.

The works mentioned above were only some examples

of the evolution in glaucoma detection techniques. However,

the study of medical images in general has experienced

a great progress with the inclusion of Machine Learning

systems capable of automatically extracting the necessary

characteristics to make a correct diagnosis [18].

These systems require a dataset made up of several images

corresponding to glaucoma patients and healthy patients

(all of them previously labeled by a professional). Using this

knowledge, neural network-based systems are able to auto-

matically analyze those images and extract the characteristics

necessary to help diagnosing glaucoma.

These systems require other steps: a preprocessing stage,

the correct choice of the network architecture, a training stage

(that sometimes requires supervision), among others.

Despite all this, the results of using neural networks with

medical images in several works (not only for glaucoma diag-

nosis) are better that the ones obtained by classical diagnostic

systems [19], [20]. Thus, based on these premises, this work

consists of using Machine Learning techniques applied to

medical images of the fundus to obtain an aid system for

glaucoma diagnosis.

In a previous work, this research group started combining

multiple publicly available datasets (RIM-One V3, DRISHTI
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FIGURE 3. Eye fundus image: optical disc and optical cup are
distinguished.

and DRIONS) and, using segmentation techniques in a

cloud-based service, results demonstrated the feasibility of

applying these mechanisms to glaucoma detection [21].

Although the results obtained were promising, the system

was trained using disc and cup segmentation independently

(see Figure 3). So, in order to obtain better results and trying

to mainly reduce the false negative classification, a more

complex system is needed.

Some papers have used several deep learning networks

in parallel to improve the results that would be obtained by

using a single network implementation. As an example [22]

combines the results of five CNNs to improve the results

on the LSVRC-2010 ImageNet training set. This technique

has also been applied to glaucoma identification obtaining

interesting results [23]. However, all these approaches use a

set of CNNs to obtain the same type of results (e.g. the patient

has or does not have Glaucoma) and then obtain a combined

result by some sort of final voting.

A completely different approach is based on the

segmentation of the optic disc and cup. There are several

methods that can help predict glaucoma from the segmented

disc and cup data in fundus images. First, the ratio between

the diameters of the optic disc and cup, known as cup to

disc ratio (CDR), is a very useful predictor for Glaucoma.

Additionally the order of the widths of the different borders

(inferior, superior, temporal and nasal- ISTN) can be used too.

Several works have implemented deep learning approaches

to segment optic disc and cup in order to be able to estimate

the CDR or use the ISTN approach. An important problem

of these approaches is that, in a few cases, they produce

segmentation results with shapes that are not compatible with

the opthalmological knowledge that requires these shapes to

be similar to ellipsoids.

In this paper we use an ensemble approach to glaucoma

prediction but, instead of using several convolutional net-

works to directly predict glaucoma, we use the following

approach:
• We segment cup and disc using a generalized U-Net.

[24] to calculate the CDR as a glaucoma predictor.

• we use RANSAC [25] to find out if the predicted shapes

are similar enough to ellipses.

• We use transfer learning on a MobileNet V2, pretrained

with weight from the imageNet 1K challenge to directly

predict glaucoma.

• We combine all our result to provide the ophthalmologist

with a Glaucoma likehood score.
So, based on these previous approaches and the works

done by this research group, this work combines a dual con-

volutional neural network (CNN) to classify discs and cups

(see Figure 3) using data augmentation and feature extraction

(extracting physical and positional features), with a classi-

fication system based on a pre-trained CNN with transfer

learning techniques.

This feature extraction technique is combined with the eye

fundus classification CNN for glaucoma detection in a novel

work that obtains a diagnosis aid system with results better

than previous works.

The rest of the paper is divided in the following way:

first, the dataset and the system’s architecture are described

in the Materials and Methods section, including the differ-

ent implemented stages. Next, the results obtained after the

training process in Keras and their evaluation are detailed

and explained in the Results and Discussion section. Finally,

conclusions are presented.

II. MATERIALS AND METHODS

This section presents the dataset used for training the

Machine-Learning system in this work, as well as the global

architecture of the system implemented to diagnose glaucoma

based on the properties of the disc and the cup.

A. DATASET

The database used in this work combines two publicly

available datasets: RIM-One V3 and DRISHTI. This is the

one used in a previous work [21], and it is important to

continue with this combination in order to compare the results

obtained in this work with the ones obtained before.

Both datasets provide labels indicating if the images

correspond to a patient with glaucoma or not. The labeling

process includes the supervised evaluation of each of the

dataset samples by a professional in the field. Thus, this

professional certifies that each of the images from the datasets

corresponds to a patient with glaucoma or a healthy patient.

Works that perform cup and disc segmentation also need the

ophthalmologists to manually perform this segmentation and,

thus, provided also the labeled images indicating the ground

truth for the disc and cup areas.

The DRIONS dataset used in previous studies is not useful

in this case as it does not provide segmentation data for the

cup which is essential in our case. That is why, in this work,

it is not included.

DRISTI-GS dataset from Aravind Eye Hospital, Madurai

(India), is made up of 101 color fundus images labeled for

both disc and cup; and RIM-ONE dataset from the University

of La Laguna is composed of 151 images also labeled for disc

and cup.

Figure 4 shows an image from each dataset and makes

clear that, even though both provide good quality data for
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FIGURE 4. Images from RIM-ONE and DRISHTI datasets.

TABLE 1. Dataset summary.

segmentation the characteristics of images from both datasets

are significantly different.

In our workwe use 75%of the images from each dataset for

training and the remaining 25% of the images for validating

the results. However, static (offline) and dynamic (online)

data augmentation stages are included in the system’s archi-

tecture, so the total number of images used for training and

testing is much higher than in the original datasets. This can

be observed in Table 1.

The first column shows the number of images that are

provided in those public datasets, the second column indi-

cates the final amount of images used after data augmentation

processes and, finally, the other two columns present the

number of images used for training and testing purposes,

respectively.

B. SYSTEM ARCHITECTURE

Once the problem we want to solve in this work and

the datasets used to train the machine-learning system are

detailed, it is very important to describe the full system

architecture used for training and classification.

Our approach is based on two subsystemswhose results are

finally combined to produce a diagnosis assistance report for

the ophthalmologist. The first subsystem is a based on two

generalized U-Net based stages to segment the disc and cup

plus a feature extraction post-processing stage. The second

subsystem is based on a MobileNet V2 [26] network used for

direct fundus image classification. There is also a final fusion

stage to produce the blended results as a report to assist the

ophthalmologist in her or his diagnosis process.

The full system implemented and trained in this work is

presented as a graphical abstract in Figure 5 for the first

subsystem, and in Figure 6 for the second subsystem. Both

figures show all the steps implemented for training and testing

each subsystem.

Several stages can be appreciated in those figures for both

subsystems, from the preprocessing stages to the final eval-

uations. However, results obtained from both subsystems are

finnaly combined in the diagnosis aid tool, and this can be

observed in Figure 7.

FIGURE 5. First subsystem. Disc and Cup segmentation subsystem.

Next, both subsystem are detailed step by step.

1) SEGMENTATION SUBSYSTEM

The first subsystem has been named as ‘‘segmentation

subsystem’’ as it uses the segmentation process to train two

independent systems for disc and cup features’ extraction.

The different stages implemented for this subsystem are

detailed below.

a: PRE-PROCESSING

In order to be able to use the dataset images in the

segmentation subsystem we need to:
• Perform image trimming to remove borders

• Resize images to the subsystem input size. We use

128 × 128 images for the segmentation subsystem.

We use resampling using pixel area relation for image

size reduction.

• Perform contrast limited adaptive histogram equalization.

b: STATIC (OFFLINE) DATA AUGMENTATION

When we are training the system we perform static data

augmentation on the training fraction of the combined

dataset. This process consists in producing images withmodi-

fied brightness or contrast parameters. Our data augmentation

approach is loosely based on [27].
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FIGURE 6. Second subsystem. Eye fundus image classification.

FIGURE 7. Diagnosis tool architecture.

c: DYNAMIC (ONLINE) DATA AUGMENTATION

When training we use image generators to perform on the fly

data augmentation. This process performs moderate zooming

and rotations. It is important to understand that glaucoma

diagnosis is related to the orientation of the segmented image

and, thus rotations should be limited to small angle values

(below 15 degrees).

d: SEGMENTATION NETWORK

To segment the disc and the cup from fundus images we use a

generalized U-net architecture and train it using Google cloud

TPUs. U-net is widely used fully convolutional network that

has been widely used for medical image segmentation. This

part of the architecture is fully described in [28]. In our case

we are using a 6 level network with 64 channels in the first

descending stage and a layer channel increment ratio (IR)

of 1.1. This model has less than 2.5M trainable parame-

ters and produces good results for both segmentation cases.

FIGURE 8. Generalized U-Net architecture.

Although the model has one more stage than the original

U-net and the same number of channels in the first layer

the reduction of the IR from 2 to 1.1 has decreased the

number of parameters from 138M to less than 2.5M. The

proposed U-Net implementation block diagram is shown

in Figure 8.

e: TRAINING

Our network is implemented as a recursive function in Keras

2-3-0-tf under Tensorflow 2.2.0. We use 120 image samples

as this size is suitable for training using TPUs, GPUs or

even CPUs. We use Adam optimizer with dynamically vari-

able learning rates (between 1e-3 and 2e-4) and perform the

training process during 100 epochs.

f: POST-PROCESSING

It is quite common that some segmentation results are not

acceptable to ophthalmologists the main reasons for this are

the following:
• The cup and the disc should always be always a single

connected region.

• The shape of both regions should be approximately

elliptical.

• The size of the optical disc is similar in images captured

with the same instrument.

To solve the first problem, in the few cases where

segmentation produces multiple regions we select only the

one with the largest area. In these cases we decrease the

certainty score for the ophthalmologist.

Next we have to establish the similarity between the

segmented area and an ellipse. Initially we tried approaches

based on the ellipse Hough transform [29] obtaining poor

results for our scenario. An approach fitting an ellipse model

using Random sample consensus (RANSAC) produces much

better results an facilitates the calculation of an ellipse simi-

larity score. When this score is bellow a certain threshold we

also decrease the certainty score.

As a last post filtering stage we penalize those cases were

the size of the optic disc is outside a 4 standard deviation inter-

val centered on the disc size mean. This interval is specific for

each acquisition instrument. In our case all the image in each

dataset have been captured with the same instrument.
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2) DIRECT CLASSIFICATION SUBSYSTEM

The other subsystem implemented in this work has been

named ‘‘direct classification subsystem’’ as it trains a classi-

cal CNNwithout any segmentation process, so the full images

are used to train the system by ‘‘brute force’’. The different

stages implemented for this subsystem are detailed in order

below.

a: PRE-PROCESSING

In order to be able to use the dataset images in the

classification subsystem we apply process the images in

the same way as for the segmentation subsystem but resize

images to the 224 × 224 images for the classification

subsystem.

b: STATIC DATA AUGMENTATION

When we are training the system we perform static data

augmentation on the training fraction of the combined

dataset. This process consists in producing images with mod-

ified brightness or contrast parameters and is very similar to

the approach used for the segmentation subsystem.

c: DYNAMIC DATA AUGMENTATION

Static augmentation has proven sufficient in this case and

no further improvement was obtained when enabling the

dynamic augmentation component.

d: CLASSIFICATION NETWORK

Initially we implemented the classification network using

a vgg16 [30] pretrained with the ImageNet 1K challenge

[31] weights. This network has been successfully used by

other researchers [23] for fundus image classification. This

network is relatively large (about 15M parameters) and, thus

would make future embeded implementations of our pro-

posed system very difficult. There are, however, newer more

efficient alternatives that can lead to similar performance

figures. In our case we decided to base our implementation

in MobileNet v2. This network is much lighter (less than

2.5M parameters) thus making the embedded implementation

of our system feasible. The accuracy of this network on the

ImageNet challenge is very similar to that of VGG16, how-

ever, its accuracy density, i.e. the accuracy divided the number

of parameters is an order of magnitude higher [32]. For our

system we remove the top layers of the original MobileNet

V2 and add a final classifier based on an average polling layer

whose output is flattened and fetched to an 80 node dense

layer, a dropout stage and a final 2 node layer to distinguish

between the two required classes.

At the top of themodel we include an average polling layer,

a dense layer with 64 nodes and dropout and a final dense

layer with 2 nodes to classify our two classes. This can be

seen in Figure 9.

e: TRAINING

Our network is implemented as a recursive function in Keras

2-3-0-tf under Tensorflow 2.2.0. We use 64 image batches

as this size is suitable for training using TPUs, GPUs or even

CPUs.We use a RMSprop optimizer with initial 1e-3 learning

FIGURE 9. Classification subsystem.

rate with decay and perform training for 50 epochs. This has

proven suitable as we are just training the last stages of the

Mobilenet V2 network pretrained with ImageNet plus the

additional classifier network.

Once both systems obtains information independently,

these outputs may be fused in order to obtain the final output

of the diagnosis aid tool (as shown in Figure 7). This fusion

is detailed in the next subsection.

C. DATA FUSION AND REPORT GENERATION

The final objective of our system is to help the

ophthalmologist in his or her diagnosis. Most Machine learn-

ing assistance tool are ‘‘oracle based’’ in the sense that

they provide a diagnosis with, in the best case a probability

estimation on the reliability of the result.

To be widely accepted by the medical community it is

necessary to provide some explanation on the basis on which

the result is obtained [33]. Our system does not pretend to

be a full-flagged glaucoma diagnosis assistance tool but it

provides the physician with:
• The result of the classification subsystem with the

assigned probability.

• The result of the segmentation subsystem with the

associated calculated CDR.

• The accuracy of the ellipse formmatching post-processing

stage to let the physician know if the forms of the

obtained disc and cup are similar to what should be

expected.

• The likeness that the size of the disc is correct.

All these aspects are shown in simplified form in Figure 10.

III. RESULTS AND DISCUSSION

In this section we will use Figure 10 that shows all the

intermediate images and data produced by our system to

explain the obtained results and compare them with those

from other sources.

A. SEGMENTATION SUBSYSTEM

We compare our Disc and Cup segmentation results with

other works that use Deep learning based segmentation and

use the same fundus image data sets. We have to take into

account two important distinguishing features of our work:
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FIGURE 10. System diagram with intermediate data and reports.

TABLE 2. Disc and cup dice coefficients.

• We want to be independent from the specific

characteristics of the capture device and, thus, we train

with a combined dataset while the compared works train

and test independently with each specific dataset.

• We want our system to be very lightweight to be

able to implement it in an embedded system in the

future.
In Table 2 we show the Dice coefficient scores for disc and

cup segmentation from Sevastopolsky [34] who uses a very

light U-Net and provides results for RIM ONE. We also

include results Zilly et al. [35] who use a three-layer CNN

including sophisticated pre and postprocessing and apply it

independently to both data sets. Al-Bander [36] uses a heavily

modified, dense U-Net and provides results for both data sets.

Shankaranarayana [37] uses a residual U-Net and provides

results for RIM ONE.

We can see, that even though we train with a mixed dataset

and use very light segmentation networks our results are

fully in line with those obtained by other researchers with

heavier networks who train and test specifically with each

dataset.

After post-processing by preforming the ellipse conver-

sions we see that the mean values are practically identical

which shows that ellipse based approximation is a very good

option to codify the disc and cup shapes. Only in very few

cases the ellipse extracted from the segmented cup or disc

differs significantly from the segmentation provided by the

FIGURE 11. Case where ellipse feature extraction has low confidence.

U-net. The RANSAC fitter gives us enough information to

signal this cases very easily. When this happens we include

this information in the final report for the physician so that he

or she knows that the segmentation result has less confidence

in this case. An example where the extracted ellipse does

not fit well enough with the segmentation data is shown

in Figure 11. This specific case (image G8 from the RIM

ONE Dataset) is correctly identified as a glaucoma subject

both by segmentation and direct classification. It is clear that,

although the predicted ellipse is not as large as the correct

result the calculated CDR (0.6) is enough to classify the

image as coming from a Glaucoma patient.

Regarding the parameter calculation block we estimate the

CDR by the relation between the height of the cup bounding

box to the height if the cup image. As we cut the cup image

to the Disc bounding box, plus a 10% margin on each border

which we take into account, this corresponds to the vertical

CDR which is the most widely use CDR version. The typical
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TABLE 3. CDR based methods sensitivity and specificity.

values of this parameters are 0.65±0.13 for glaucoma patients

and 0.39±0.15 for healthy individuals [38]. Thus a value

between 0.52 and 0.54 seems the most adequate for discrim-

inating both cases. Experimentally we find that the value

0.52 produces the best results with our datasets.

Once we have calibrated our CDR based classifier we

can analyze the specificity (recall) and sensitivity of our

approach. There are many works that segment the optic disc

and cup using many different technologies, however, only

a few try to use the segmentation data to do real glaucoma

predictions. Reference [39] was one of the first researcher

to compute the sensitivity and specificity of their glaucoma

predictions using and approach that mixed a morphology

based CDR calculation with vessel segmentation in different

regions. They reported very good result but based their work

in only 15 test cases. On the other hand, [40] used a Stochastic

Watershed transformation approach to segmentation with a

much larger dataset and obtains a specificity value above

70% with a sensitivity over 60%. When we consider only

our segmentation subsystem we get a specificity over 90%

with a sensitivity over 75%. It should be clarified that, in a

diagnostic assistance tool, which tries to help in a diagnostic

but, not to completely carry out automatic diagnosis the main

problem are type II error (i.e. false negatives) where a patient

with glaucoma is identified as healthy. Sensitivity, the proba-

bility that a person with glaucoma is detected as such, is more

important than specificity which is the probability that a

healthy patient is detected as such.

Table 3 condenses the sensitivity and specificity data

for CDR based diagnosis tools. In the table Se stands for

sensitivity and Sp for specificity.

In Figure 12 we can see the normalized confusion matrix

for the U-Net based classifier. We can see that approximately

a quarter of the glaucoma cases are classified as healthy using

this approach.

The ROC curve for the U-Net classifier is shown in

figure 13. The area under the curve is 0.91which is better than

the results obtained for in [40] for the CDR based classifier.

B. CLASSIFICATION SUBSYSTEM

Our classification subsystem is based on the very lightweight

MobileNet V2. In table 4 we compare our systemwith several

classifiers implemented using different networks in [40]. The

comparison networks were VGG16 [30], ResNet50 [41] and

Xception [42].

We can see that our results are comparable, specially

regarding sensitivity, with those obtained by implementations

that require at least 20 times more computing performance

[32].

In Figure 12 we can see the normalized confusion matrix

for the MobileNet V2 based classifier. We can see that under

FIGURE 12. RIM-one confusion matrices.

FIGURE 13. ROC for glaucoma class.

TABLE 4. CNN based classifiers Specificity and sensitivity.

20% of the glaucoma cases are classified as healthy using this

approach.

The ROC curve for the MobileNet classifier is shown

in figure 13. The area under the curve is 0.93 which is

somewhat inferior to other possible alternatives. We have to

consider, however, that the implementation is much lighter

and that it is designed to be part of an ensemble that is planned

to deliver good results as a combined network.

C. ENSEMBLE NETWORK

In table 4 we have included also the specificity and sensitivity

of the network combining both the U-Net CDR based pat-

tern extraction classifier and the MobileNet direct classifier.

It should be clarified that, as our aim is to build a diagnostic
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assistance tool and, thus we want to avoid false negatives as

much as possible our voting scheme decides that a patient is a

glaucoma candidate whenever any of the two networks indi-

cates so. This option improves mainly the network sensitivity.

In our case we get a sensitivity of 0.91 which is fully in line

with the best available alternatives implemented with a much

higher computational cost.

In Figure 12 we can see the normalized confusion matrix

for the Ensemble based classifier. We can see that only about

10% of the glaucoma cases are classified as healthy using

this approach. This has improved the false negative rate very

significantly in comparison with the individual networks that

compose the ensemble.

The ROC curve for the Ensemble classifier is shown in

Figure 13. In a typical ROC curve construction wemodify the

threshold on the probability of the result belonging to the ana-

lyzed class. In our type of ensemble we have two thresholds

that can be chosen independently. Thus, to construct the curve

we can chose a strictly increasing function that establishes

the relation between the classifiers thresholds. In figure 13

we see and example where we use a linear relation to tie both

thresholds. Changing this function to a non-linear relation we

can obtain almost any curve that is under the union of the

curves for both classifiers. The AUC value provided in 4 is an

upper limit on the possible values of AUCs for ROC curves

that we could construct for the ens amble.

D. REPORTING TOOL

Medical image processing will experiment a breakthrough

when ML based diagnostic assistance tools became widely

available and accepted in medical daily practice. A prob-

lem regarding the adoption of systems is their lack of

understandability for the medical professional. This fact has

been highlighted by several recent articles, (e.g. [43], [44])

which emphasize the importance of visible (as opposed to

black-box) approaches to machine learning based diagnostic

assistance. We do not claim that our tool is a full flagged

explainable glaucoma diagnosis aid prototype. However we

have done an important effort to provide the ophthalmologist

with additional data to be able to judge the validity of the

proposed diagnosis. This data (see 10 includes information on

the adequacy of the size of the segmented disc, the adequacy

of the shapes of the disc and the cup, the calculated CDR and

the probability of the decision for the direct classification sub-

system. We also always provide the initial and the segmented

fundus images.

It is clear that understanding our report requires more

training than understanding an ‘Oracle based’ glaucoma

or healthy diagnosis but it also gives the physician, who

is responsible for the diagnostic decision, much more

information on which to base his or her decision.

IV. CONCLUSIONS

Deep learning based diagnosis aid tools are going to be part

of the physician daily life in the near future. In this paper

we show that a lightweight tool which can be implemented

in an embedded system can provide results at the same

level of other tools that require much higher computing

performance.

The describe tool is based on an ensemble based in two

subsystems using completely different technologies. One of

the subsystems is a segmentation based network plus a feature

extraction post processing stage. The second subsystem is

based on a very lightweight last generation classification net-

work which is able to provide the same level of performance

as other more traditional heavier networks.

A very important part of our system is the reporting tool

which combines the output of both networks and provides

the physician with enough data to understand the system’s

diagnosis proposal and, thus, be able to use it adequately in

his or her own final decision.

There are plenty of possibilities for expanding this work

and using it to build a useful medically acceptable diagnostic

assistance tool. First we would need to train the ensembles

with more data coming from public and private datasets.

Including a second lightweight classification subsystem

(possibly based on EfficientNet [45]. This would improve the

reliability and sensitivity of the results even further.
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