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Summary. The paper describes the dual method for solving a special problem of quadraﬁc
programming as a subproblem at nonlinear minimax approximation. Two cases are analyzed
in detail, differring in linear dependence of gradients of the active functions. The complete
algorithm of the dual method is presented and its finite step convergence is proved.
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I. INTRODUCTION

This papers concerns a special problem of quadratic programming which occurs
as a subproblem at nonlinear minimax approximation, where a point x* € R, is
sought such that
(L.1) ) F(x*) = min (max f{x))

xeR;,, ieM

where fx), ie M are real-valued functions defined in the n-dimensional vector
space R,, with continuous second-order derivatives, and M = {1, ..., m}. Recently
the problem (I.]) has been attracting considerable attention. To solve this problem,
several approaches have been developed, especially the least p-th approximation
methods [2], [3], steepest descent method [4], variable metric methods making use
of properties of the generalized differential [9], recursive linear programming methods
[10], [7], recursive quadratic programming methods [8].

The methods of recursive quadratic programming for solving the problems of
minimax approximation were developed by analogy with their original application
in the field of nonlinear programming. The problem (1.1} can be transformed into
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the equivalent problem of nonlinear programming, where we seek a pair (x*,z%) e
€ N, such that
(1.2) z¥ = min z,
. (x,2)eNn 41
where
Noiy ={(x,z)e R,y : f(x) S z, ie M} .

Applying the method of recursive quadratic programming [11] to the problem (1.2)
we obtain one of the methods described in [8] This method can be described roughly
in the following way.

Step 1. We choose an initial point x € R, and an initial symmetric positive definite
matrix G. We compute f; = f(x),ie M, a, = g{(x), ie M and F = F(x) = max f(x)
ieM

(9:{x) is the value of the gradient of fi(x) at the point x € R,).

Step 2. We find the pair (s, z)e R, .1 which is the solution of the quadratic
programming problem (1.3).

Step 3. If [|s| < & where ¢ is a small enough positive number, the computation

is terminated; else we find a steplength « satisfying
F{x + as) £ Fix) — nos"Gs,
where 0 < 2y < 1. Taking x* = x + as, we compute [ = f{x¥), ie M, a] =
=g/x%),ieM, and F* = F(x") = max f{x").
ieM

Step 4. We transform the matrix G to make it positive definite and an as good
approximation as possible to the Hessian matrix of the Lagrangian function for
{1.2). Usually this goal is attained by means of quasi-Newton updates determined
by using the differences x* — x, a;” — a;, i € M, and Lagrange multipliers for the
quadratic programming problem (1.3).

Step 5. We set x =x*, fi=f], ieM, a;=a;}, ieM, F=F" and go to
Step 2.

The most important step of this method is the solution of the quadratic programm-
ing subproblem, in which we seek a pair (s*, z*) € L, ,; such that

(1.3) o(s*, z*¥) = min ¢fs, z),

(s,z)€Ln+1

i

where
s, z) = 1s'Gs + z
and
‘ Ly, ={(s,2)eR: fi+ajs <z, ieM}.
The function ¢(s, z) can be rewritten in the form
pis, z) = 3[s", ] ‘ G, O][s]+10,1]{s
[0, 0}]= lz

where G is a symmetric positive definite matrix. Now it is apparent that (1.3) is
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a quadratic programming problem with a singular positive semidefinite matrix.
Usual methods solving this problem require nonsingularity. However, owing to the
very specific form of the matrix in our case, it is possible to develop methods over-
coming the singularity drawback. In this paper, we are going to present one of these
methods, which consists in the solution of the dual quadratic programming problem.

The fact that the matrix G is positive definite implies that the problem ( ].3) is
convex and therefore we may apply the duality theory to it [1]. Thus we obtain
a dual quadratic programming problem, where we seck a vector u* € R,, such that
(1.4) W(u*) = min y{u),

uely,

where

y(u) = 3u"A"HAu — fTu
and
L,={ueR,e'u=1u2=0}.

Here A = [ay, ..., a,] is 2 matrix the columns of which are vectors a;, ie M, f =
=[f1, - ful" e=[1,...,1]", H = G™'. The solution of the problem (1.3) can
be obtained from the solution of the problem (1.4) by means of
(1.5) s* = —HAu* ,
2% = flu* — (u*)" ATHAu*

which follows from the theory of duality. The vector u* which is the solution of
(1.4), is also the optimal vector of the Lagrange multipliers for (1.3).

The problem (1.4) is a convex one. Hence the vector u* € R,, is the solution of
(1.4) if and only if the Kuhn-Tucker conditions are valid [1], i.e. if and only if
(1.6) efu* =1,

u* 20,

Y

and there exists a number z* such that
(1.7) v* = ATHAu* — f + z%¢ 2 0,
(V)T u* =0.

The vector v* is the vector of Lagrange multipliers for (1.4). (1.6) and (1.7) together
" imply that z* in (1.7) coincides with the z* in (1.5). This in turn implies that v* is,
at the same time, the vector of the values of constraints of (1.3).

The dual method for solving (1.3) that is under examination in this paper is essenti-
ally the method of active constraints applied to (1.4). In each iteration of this method
we start with a feasible point of the problem (1.4), for which u; > 0, iel < M and
u; =0, ie M1, and we try to find the optimal point of the problem (1.4) in the
subspace defined by the constraints u; = 0, i € M \ 1. If we meet the boundary of the
feasible set, we delete a convenient index from the set I < M and the whole process is re-
peated. If we find the optimal point of the problem (1.4) in the subspace defined by
the constraints u; = 0, i e M \1, we test whether the conditions (1.7) are fulfilled.
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When this is the case, we terminate the computation, else we add a convenient
index to the set I < M and the whole process is repeated.

The convergence of the dual method can be guaranteed by choosing individual
feasible points of the problem (1.4) so as to make the function ¢(s, z) monotone
increasing. However, one problem appears, namely that of linear dependence of the
vectors a;, i € I. We must discern two cases. In Section 2 we analyse the nonsingular
case with linearly independent vectors a;, i € I and we generalize these considerations
in Section 3. Section 4 contains the complete algorithm of the dual method as well as
the proof of its convergence.

This paper was motivated by [6], which provides a description of the dual method
for solving the standard quadratic programming problem with a positive definite
matrix in the quadratic term.

2. ANALYSIS OF THE NONSINGULAR CASE

Let I = M. Let D{I) denote the problem which results if we substitute I for M
in the problem (1.4). Let P(I) have the similar meaning with respect to the problem
(1.3). The problem D{I) is dual to the problem P(I).

In this section, we are dealing with nonsingular case only, where the vectors a;,
i el are linearly independent. Let the Lagrange multipliers u;, i € I be the solution
of the problem D(I) and let the pair (s, z) € R, 4, be the solution of the problem P(I).
In order to simplify the notation, we introduce symbols u denoting the vector con-
taining all u,, i e I, f denoting the vector of f;, i € I, A denoting the matrix containing
a;, i €1 as its columns, and e denoting the vector containing only units, having the
same dimension as u and f. Furthermore, we write

(2.1) C = (A"HA)™ ',
Q =H — HACA™H ,
p = Ce,

where H = G, Clearly 04 = 0 and QGQ = Q.

Definition 1.1. We say that the Lagrange multipliers u;, i €I are a basic solution
of the problem D(I) and that the pair (s, z) € R, is a basic solution of the problem
P(I)if v, = aiHAu — f, + z = O for all indices i e1.

Lemma 2.1. Let the Lagrange multipliers u,;, i € I be a basic solution of the problem
D(I) and let the pair (s, z) € R,y be a basic solution of the problem P(I). Then

T
pf—1
2.2 z = L
() /o
u = C(f — ze),
s = —HAu .
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Proof. Since v; = 0 for all indices i € I, we have u = C(f — ze) by (1.7). Applying
(1.6) we obtain 1 = p'f — zpTe, which means z = (p'f — 1)/p’e. Mutual duality
of D{I) and P(I) brings s = — HAu (see (1.5)). O

The formulae (2.2) may be formally applied to an arbitrary subset I < M. However,
a situation can arise in which u; = 0 does not hold for all indices i € I. In this case
there is no basic solution of the problem D(I). Each problem D({k}), where {k} € M
is a single-element subset of M, has a basic solution, for u, = 1 holds of necessity
by (1.6).

Suppose the Lagrange multipliers u;, i €I are a basic solution of the problem
D(I) and the pair (s, z) € R, is a basic solution of the problem P(I). If v; = a] HAu—
— fi + z = 0 for all indices i € M \ I, then the vector u* = [u", 0]" is the solution
of the problem (1.4) {assuming a suitable ordering of indices) and the pair (5%, z*) =
= (s, 2) is the solution of the problem (1.3). In the other case there exists an index
ke M~I such that v, = ay HAu — f, + z < 0, which suggests that the index k
has to be added to I.

Letus set /™ = I U {k}. Since the problem D(I*) need not have any basic solution,
we want to find a subset I < I'*, ke I, such that the problem D(I) may have a basic
solution and, at the same time, (5. Z) > ¢(s, z), where (5, Z) is a basic solution
of the problem P{T) and ¢(s, z) is defined by (1.3).

Let D,(I') be the problem we obtain from D{I*) after substituting f{4) = f; +
4+ (1 = 2)v, iel” for f,, iel* and let P,(I'") have the analogous meaning with
respect to P(I*). Let us suppose 0 < A < 1. Let the Lagrange multipliers u(4),
iel™" be the solution of the problem D,(I*) and let (s(2), z(1)) € R, be the solu-
tion of the problem P,(I*). Let u(2) denote the vector containing u4), i e I.

The Lagrange multipliers u,(0) = u;, iel and u(0) = 0 are a basic solution
of the problem Dy(I*). We want to find the maximum value of the parameter A
such that the Lagrange multipliers ui(/l), iel" are a basic solution of the problem
D,(I*). ’

Lemma 2.2. Suppose the Lagrange multipliers u/0), u 4), ieI* and the pairs
(5(0), z(0)) € R,+1, (s(4), 2(2)) € R, 41 are basic solutions of the problems Do(I*),
© DI, Po(I*), P,(I"), respectively. Let us introduce

(2.3) g5 = CA'Ha,,
Br=1- €'y,
Ye = ﬁk/pTe >
O = ay Qa, = apH(a, — Ady)

assuming Piye + 0 0 Then

u(4)
(2.4) u(2)

il

u(O) - “(‘]k + b)) s
u,(0) + o,

i
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z(2) = z(0) + ay,,
where

(2.5) o= —A 2k

Bove + .

Proof. Using(1.7) we obtain
[ATHA, ATHakHu(/l) — u(0) ] = — [(z(/l) — z(0)) e ]
arHA, aiHa, || u2) — u,(0) Av, + (z(2) — z(0))
Hence, by (2.1) and (2.3)
(2.6) u(2) = u(0) = — (z(2) ~ 2(0) p — (w{4) — w(0)) a,
and
agHA(u(2) — u(0)) + ayHa,(u(2) — u(0)) = —Av, — (z(2) — z/0)).
This equality together with (2.6) gives
—qie(z(2) — z(0)) + ay Qa(w(2) — u(0)) = —Av, — (2(4) — z(0)),
and consequently,
(27) ) = (o) = = 2 FBED) = 20),

Considering (1.6} we get
e'(u(2) = w(0)) + (wf4) — uf0)) = 0,
which, by virtue of (2.6), yields
=(z(2) = 2(0) ep + (1 — €"q) (w2) — u(0)) = 0.
Hence we obtain
28) £(2) — (0) = () — u(0))
Finally, substituting (2.8) into (2.6) and (2.7), we get (2.4) and (2.5).
Lemma 2.3. Let the assumptions of Lemma 2.2 hold. Then
(2.9) o(s(2), 2(2)) = ¢(s(0), 2(0)) + Ja( By + &) (u(4) + w0)).
Proof. Using (1.5) and (2.4) we get
s(2) = 5{0) = — HA(u(4) — u(0)) — Ha,(u,(2) — u(0)) =
= aHA(q, + vp) — aHay, = oy HAp — Qay),
so that
(s(2) — s(0))" G 5(0) = — oy HAp — Qa,)" G{(HA u(0) + Hey u,(0)) =
= —ap(l — u(0)) — ayeTq, u,(0) + ad, u(0) =
= —ay, + alfyy + 5k) “k(o)
and

(5(4) = S(O) G(s(2) ~ s(0)) = e (sHAp — Qay)* GlyHAp — Qay) =
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= az(VieTP + alTQak) = “Z(ﬁka + 5k)
since Q4 = O0and QGQ = Q. Thus
o(s(4), 2(%)) = ¢(5(0), 2(0)) + (s(2) — 5{0))" G 5(0) +
+36(2) = SO) G(s(2) — $0) + (=(4) — =(0)) =
= (p{S(O), Z(O)) — ay, + Ay + &) “k(o) +
+ JeBvie + 8) (ui(A) — uf0)) + ay =
= ¢(5(0), 2(0)) + Ja(Bivc + ;) (u(2) + w(0))
and the proof is completed. O

The maximum value of the parameter A for which the problem D,(I*) has a basic
solution, is determined by the condition u/1) = 0. Let us write

v
(2.10) oy = — k|
Bivi + Ok
| 0
oy = uJ(O)i = minr‘u‘\o—)

Qi + VP iel i + ViPi

where [ = {iel: q;; + 7p; > 0}, gy is the i-th component of the vector g, and p;
is the i-th component of the vector p. Let us set & = min (2, ®,). Then the maximum
value A, of the parameter A is defined as g = ofa;.

When o = o, (i.e. 4y = 1), the Lagrange multipliers u(4,), i€I" are a basic
solution of the problem D(I") and we can set I = I'*. If the vectors a;, ieI™ are
linearly independent (i.e. if & # 0) we can construct the matrices 4 = [4, ;] and
C = (A"HA)™'. Then

T
(2.11) C=|c+3% _ %
O J
_ 4 !
s o

(for the derivation of this formula see for instance [5]). If the vectors a;, ieI* are
linearly dependent (i.e. &, = 0), the matrix C is not defined and we must proceed
" in the manner described in Section 3.

When o #+ o, (i.e. 4y < 1), we have u;{4,) = 0 by (2.10). Let us set I, = I\{j},
IT =I"\{j}, and " = (1 — Ao) v;, i el{. Let D,(I]) denote the problem result-
ing from the problem D{I") after substituting f(4) = f; + (1 — ) v{", i eI} (where
0 < A < 1)forf, iel/. The Lagrange multipliers u{'(0) = u,(4,), i € I{ are a basic
solution of the problem Dy(I7). Again we want to find the maximum value of the
parameter A, for which the Lagrange multipliers u{"’(1), i e I] are a basic solution
of the problem D,(I 7 ). For this purpose we can apply the preceding process (Lemma
2.2 and Lemma 2.3). except that instead of the values referring to the problem
D(I") we use the values referring to the problem D{I{). Especially, the matrices 4,
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C are to be replaced by the matrices 4,, C;, respectively, such that 4, = A9,
which is the matrix 4 with the j-th column removed, and

g&ﬁ(cﬁj))’r
c.,

JJ
where CU¥ results from C by removing the j-th row and the j-th column, C$” results
from the j-th column of C by removing the element C;;. (For the derivation of the
formula (2.12) see e.g. [5]).

Suppose A" = a¥o{" is the maximum value of the parameter 2, for which
the problem D,(I;) has a basic solution. If 45" = 1, we set [ = I}, else we repeat
the whole process. In this manner we obtain a sequence I}, ..., I;r of subsets of the
setI*. The cardinality of each of these subsets is by one element less than the cardina-
lity of its precursor. But the set I is finite and the problem D({k}) has a basic solution,
therefore we obtain, after a finite number of steps, a subset I = I, keI, such that
the problem D{I;) has a basic solution. Thus we can set [ = I, .

So far we have been treating the case f,7, + 6, + 0. Now let us suppose By, +
+ J, = 0. In this case, there exists no nonzero value of the parameter A such that the
problem D,(I*) has a basic solution. On the other hand, the problem Dy(I") has
more basic solutions that are defined by the equations.

(2.13) u(e) = u{0) — o(qi + vp)
u(o) = w(0) + o

The condition By, + J = 0 is valid only if B, = 0, y, = 0 and &, = O (this is
implied by the facts that C is positive definite, Q is positive semidefinite, and by
(2.3)). We have immediately z(a) = z(0) and s() = s(0). The problem Po(I") has
a unique solution (s{«), z()) = (s{0), z(0)) e R,,; so that ¢{s(x), z(x)) = ¢(s(0),
z{0)) for an arbitrary value of the parameter o.

The Lagrange multipliers u{o), i € I* are a basic solution of the problem D(I")
only if u{z) = 0.

(2.12) C, = CY¥ —

It

Lemma 2.4. There exists a finite maximum value of the parameter o in (2.13)
for which the Lagrange multipliers u{a), i eI* are a basic solution of the problem
Do(I7).

Proof. Using (2.3) we get

1 \
e'(qe + mb) = e'qu + 5 felp=elg +1—e'g =1.
Therefore there exists at least one index i € I such that g;; + y,p; > 0. Hence necessa-

rily o < «,, where a, is a finite value determined by (2.10), O

When we choose o = a5, then u;(a) = 0 holds for some index jel. Let us set
Iy = IN{j}, IT =T*\{j}, and v{" = v, iel{. Let D,(I{) denote the problem
D(I{) after substituting fi(4) = f; + (1 — Ao, i€l (where 0 £ 1< 1) for
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fi» i €1y . Then the Lagrange multipliers u{V(0) = ufa), i €I} are a basic solution
of the problem Do(I{). Thus we can proceed in the same way as we did in the case
where By, + 6, & 0 and « # o, only for By, + 6, = 0 we formally set a; = o0
in (2.10).

Let I be a set we have obtained by the process described in this section. It remains
to prove that ¢(5, Z) > ¢{s, z). where (5, Z) € R, is the solution of the problem
P(I).

Theorem 2.1. Suppose (s, z) € R,y is the solution of the problem P{I) and (5, Z) e
€ R,y is the solution of the problem PI). Then ¢(5,Z) > ¢{s, z).

Proof. The set I is obtained after a finite number of steps, in which we construct
subsets I = I, «— ... = I < I*. Since all steps are formally equivalent, it suffices
to analyse the first step. Let (s{0). z[0))e R,,,; be the solution of the problem
Po(I*) and (s{x), z(«)) € R, 4 the solution of the problem Po(I7). Two cases are
possible. If By, + J; = 0, then s(o) = 5{0) and z’x) = z(0), so that @{sx), z{a)) =
= ¢(s{0), z{0)). If B + & * O, we get, by (2.4) and (2.9),

o(s{a), z(@)) = @(s:0), z(0}) + Lol By + 6,) 2u(0) + ) .

But Sy, + &, > 0 (because By, + 6, =0 and By + 8 £ 0), 4,(0)=0 and
a2 0, so that ¢(s(x), z(x)) = ¢(s{0), z(0)) and ¢(s{x), z(«)) = ¢(s(0), z(0)) holds
if and only if « = 0. Combining both cases we obtain

(2.143) p{a) = 9(0),
(2.14b) of{a) = ¢(0) < s{a) = 5(0), z(a) = z{0),
where ¢(o) = ¢(s(«), z(«)) and @(0) = ¢(s{0), z{0)). Now we will prove that (5, Z) >
> s, z). The validity of (2.14a) in each step yields ¢(3, Z) = ¢(s, z). Now let us
suppose ¢(3, Z) = ¢(s, z). Since (2.14b) is valid in each step, we have § = s and
Z = z. Therefore

Gh=Z—a§—fr=z—ajs —f,=0,<0,

which is a contradiction, for k e I and (§, Z) € R, is a basic solution of the problem
P(I), and consequently, 7, = 0. O

3. ANALYSIS OF THE SINGULAR CASE

Supposing I < M, let J < I be the maximum subset of the set I such that the
vectors a;, i € J are linearly independent. In the singular case we have J & I. Let
the Lagrange multipliers u;, i eI be a basic solution of the problem D{I) and the
pair (s, z) € R, be the basic solution of the problem P(I). Let u denote the vector
containing u;, i € J, let f denote the vector containing elements f;, i€ J and let 4
denote the matrix containing vectors a;, i € J as its columns. Let e be the vector con-
taining only units and let C, Q be the matrices defined by (2.1)
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In the singular case, we proceed in the similar way as in the nonsingular one.
Again we seek a subset I < I'*, k e I such that the problem P{I) has a basic solution
(5,2) e R4 together with (5, Z) > (s, z) (I* =1 U {k}, where ke M\I and
v, =a,HA - f, +z < 0). However, different formulae are needed for the computa-
tion of the Lagrange multipliers.

Let us suppose that I = J u {/} (we are dealing with only those cases where the
subset I\ J has at most one element). Let D,(I*), P,{I") be the problems defined
in Section 2. The Lagrange multipliers u,(0) = u;, i € I and u,(0) are a basic solution
of the problem Dy(I*). We are seeking the maximum value of the parameter 1
for which the Lagrange multipliers u(2), i eI* are a basic solution of the problem
D,I*).

Lemma 3.1. Suppose u (0), i e I'*,(5{0), z(0)) € R, ;. ;, u{(A), i e I'", (s(A), z(A)) e R, ,,
are basic solutions of the problems Do(I"), Po(I*), D,(IT), P,{IT), respectively.
Let us introduce

(3.1) g, = CA"Ha, ,
q. = CA"Ha, ,
Bi=1-e¢q,
Bo=1~—¢eq,

O = a; Qa, = a;crH(ak - A‘hv‘)
and suppose B, + 0, 5, & 0. Then

(32) ud) = u(0) - a(qk _& q,>,
By
u(2) = u/0) — ocﬁl—‘ ,
1
(1) = u(0) + o,
(%) = =0),
where
v
33 = =12,
69 d
Proof. Using (1.7) we get
ATHA, A'Ha,, A"Ha, | [u(2) — u(0) | = — [(z(2) — z{0)) e
ajHA, aiHa,, aTHa,||uf2) — u/0) z(7) — z{0)
atHA, ajHa, a'Ha, u,(A) — u,(0) z(2) — 2(0) + Av,

so that, by (2.1) and (3.1),

u(dy — u{0) = ~(z(2) — 2(0)) p — (u,(2) — u0)) g, — (u(2) — w(0)) g,
and
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B{z(A) — z(0)) + a] Qa(u,(A) — w,(0)) + af Qa(u(A) — w(0)) = 0,

Biu(z(2) — z(0)) + a; Qa/ufA) — uf0)) + af Qa(u(2) — u,/0)) = — A, .
Since the vector «, is a linear combination of the vectors a;, i € J, we get Qa, = 0.
Thus

z(A) — z(0) =0,

, v
u*(A) — u{0) = —-AaTéa =0
k k

and
(3.4) u(2) — u(0) = —(u,(2) — u(0)) g; — (u (%) — w,(0)) g, .
Using (1.6) we get
e(u(2) — u(0)) = —(uf) — u0)) — (1) — u(0)),
which together with (3.4) yields
i) = uf0) = = Pe(uya) — ugo)) = ~Les
B B

1
When substituting the last formula into (3.4), we finally obtain u(l) — u0) =

—(Qk - %41) «. a
Lemma 3.2. Let us suppose that all suppositions of lemma 3.1 hold. Then
(33) o(s(2). (1) = p(s{0), 2(0)) + o 8w (7) — w(0)).
Proof. Using (1.5) and (3.2) we get
s(4) — s(0) = —HA(u(2) — u{0)) — Haju/2) — u(0)) — Ha,(u,{2) — u,(0)) =

= aHA( - ﬁ’%f,) — ocH(ak — &a,> = —oc(Qak - Eﬁ Qa,) = —aQa,,
B B B

so that
(s(2) — s0))" G 5(0) = aa; QG(HA u(0) + Ha, u{0) + Ha, u,{0)) =
= aa, Qa, w,{0) = oS, u,[0)

and

(s(2) = s(O))T G(s(2) — 5{0)) = «?a; QGQa, = o&*
for QA4 = 0, Qa, = 0, and QGQ = Q. Thus we obtain

@(s(2) — 2(2)) = o(s{0), 2(0)) + (s(2) — s(0))* G 5(0) +
+ %(5(7) = 5(0))" G(s(2) — 5(0)) + (=(4) — (0)) =
= ¢(s(0), z(0)) + ad, u(0) + Jad(u,/2) — u,(0)) =
= @(s(0), (0)) + 2ad,(u, (1) + 1, (0)) . O

The maximum value of the parameter A for which the problem D,(I¥) has a basic
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solution is defined by the condition u{1) = 0, u,{4) = 0. Let us write w; = ¢,; —
— (B/B)) a1, i € J and w, = (B,/B)) {qy s the i-th component of the vector g, and ¢y;
is the i-th component of the vector ¢;). Furthermore, let us write

U,
3.6 —
(6 -2
{
Oy = u—ﬁj(o) = min (ul0)> N
WJ ief w;

where [ = {iel:w, > 0}. Let us set o = min (o, @,). Then the maximum value
o of the parameter A is defined by 4, = afo;.

If o = o (ie. if 4y = 1), then the Lagrange multipliers u;{4,), i €I™ are a basic
solution, of the problem DI") and we can set I = I'*. Since by assumption 6, + 0,
the vector a, is not a linear combination of the vectors a;, i € J, so that we can set
J = J U {k} and construct the matrices 4 = [4, a,], C = (A"HA)™' (the matrix C
is computed according to (2.11)).

If o # o, (i.e. 4 < 1), then, by (3.6), u{d,) = 0. If we set J, = J\{j}, I, =
=I~{j}, IT =I1*\{j}, and o}" = (I — Ag) v, iel], then the Lagrange multi-
pliers u{"}0) = uf4,), i €I{ are a basic solution of the problem Dy(I) and we can
repeat the whole process (the matrices 4, C, are defined in the same way as in the
nonsingular case). However, two cases are possible.

Lemma 3.3. The elements q,;, icJ are the uniquely determined coefficients
of linear dependence of the vector a, on the vectors a;, i € J.

Proof. Qa; = H(a, — Aq;) = 0 implies

(3.7) a, = Aq;.

Since the vectors a;, i € J are linearly independent, the expression (3.7) is uniquely

determined. O
If q;; = 0, the vector a, is a linear combination of the vectors a;, i€ J;. In this

case we have the set J, as well as the matrices 4;, C; unchanged. If q;; # 0, the vector
a, is not a linear combination of the vectors a;, i € J,. In this case we add the index
I to the set J, and reconstruct the matrices 4; and C; (thus obtaining a nonsingular
case).

So far we have been treating the case with §, + 0. Now let us suppose 8§, = 0.
In this case there exists no nonzero value of the parameter A such that the problem
D,(I") has a basic solution. On the other hand, the problem Dy(I*) has more basic
solutions that are defined by the equations

(3.8) ula) = u{0) — oc(qk - %‘q:>,

. B
* ! = 10 — W,
u,(2) = u,(0) ocﬁl
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w o) = u,(0) + a,
and z(at) = z(0), s{o)) = 5(0) hold (for s{x) = s(0) — «Qa,, where Qa, = 0 because Q
is positive semidefinite and a; Qa, = J, = 0). Hence the problem P,(I*) has only
one solution (s{x), z(a)) = (s{0), z{0)) € R+, so that ¢(s(x), z(x)) = ¢{s{0), z(0))
for an arbitrary value of a.
The Lagrange multipliers u{a), i €I are a basic solution of the problem Dy(I™)
only if u{«) = O and u o) = 0.

Lemma 3.4. There exists a finite maximum value of the parameter o in (3.8)
for which the Lagrange multipliers u,(o), i €I* are a basic solution of the problem
Dy(I").

Proof. Denoting

w=qk—ﬁ—q, and w, ===

and using (3.1) we obtain

eTW+W1=€qu'g’keTf11+Ek=(1—ﬂk)—&(l—ﬁz)'F&:1.
ﬂl ﬂl ﬁl ﬂl
Since e'w + w; = 1, there exists at least one index i e[ such that w; > 0. Hence
of necessity @ < a,, where a, is a finite value defined by (3.6). |

If we choose « = a,, then u;(«) = 0 is valid for some jel. Setting J, = J\{j},
I, = IN{j}L 1T =T"\{j}, and o{" = v,, i eI, the Lagrange multipliers u{"(0) =
= ufa), i eI{ are a basic solution of the problem D,(I{ ). Therefore we can proceed
in the same manner as if §, # 0, o = o, except that for J, = 0 we formally set
oy = oo in (3.6).

We have shown that « 5 o provided J, = 0, and thereby we have demonstrated
the correctness of our assumption that the set I \ J has at most one element.

It remains to prove that ¢(3, Z) > ¢(s, z), where (§, Z) € R, is a solution of the
problem P(J).

Theorem 3.1. Let (s,z)eR,,q, (5, Z)€R,,, be the solutions of the problems
P(I), P{I), respectively. Then ¢{3, %) > (s, z).

Proof. The set T results after a finite number of steps in which we construct the
subsets I = 1 < ... = I = I*. We will prove that

(3.9a) o(o) = ¢(0),
(3.9 #(0) = 0(0) = 50) = 5(0), =(s) = 2(0),

where @(0) = ¢(s(0), z{0)) is the value of the function (1.3) at the beginning of
a current step and ¢() = @{s/a), z{x)) is the value of the function (1.3) at the end

391



of a current step. (3.9) has been already proved (Section 2, (2.14)) for those steps
in which the nonsingular case occurs. Since all steps that involve the singular case
are formally identical, it suffices to analyze the first one. Two cases are possible.
If 6, = 0, then s(a) = s{0) and z(x) = z(0) so that ¢(s'a), z(2)) = ¢(s[0), z(0)). If
8, + 0, we have, by (3.2) and (3.5), p{s(a), z{a)) = ¢/s(0), z(0)) + 425,(2u,(0) + a).
But §, > 0 (since 6, = 0 and §, * 0), u,(0) = 0, « = 0. Thus ¢{5,2), z{x)) = ¢{s(0),
z{0)) and the equality is valid if and only if & = 0. Combining the both cases we
obtain (3.9) and proceed in the same manner as in the proof of Theorem 2.1.  []

4. ALGORITHM OF THE DUAL METHOD

In Section 2 and Section 3, we have described the construction of the principal
step of the dual method for solving the problem (1.3). Now we will describe the
algorithm that contains these major steps.

Algorithm 4.1.
Step 1. Choose arbitrarily an index ke M.
Step 2. Set I := {k},J := {k}, u:=[1], e:=[1], A:=[a,], C:=[1]a;Ha,]

and calculate z := f, — a; Ha,.

Step 3. Calculate
si=—HY au,

ie]

and
v =2z — fi — ais = min (z — f; — a}s).

ieM\I
If v, = 0, terminate ((s, z) € R, , is the solution of the problem (1.3)). If v, < 0,
set u, := 0 and go to Step 4 provided J = I, else go to Step 8 provided J + 1.

Step 4. (Nonsingular case.) Calculate p := Ce, g, := CA"Hay, B, := | — €'q,,
Y= BiJe"p, and 8 := ajH(a, — Aqy). If By, + 6, = 0, set oy := oo, else set

U

Oy 1= - ——— .
By + 6

Calculate
u; . u;
o 1= ——4— = min <ﬁ~)
Qrj + wP; el \dii T Vel
where [ = {icl:q,; + yp; > 0}. Set o:= min (o, a,) and calculate u:=u —

- ofq, + y,sp),uk = u o, zi= 2+ oy = (1 — ofo) v If 2=y, go to
Step 5, else go to Step 6.
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Step 5. Set I:=Tu{k}. If §, =0, set]:= k and go to Step 3. If §, + 0 set
Ji=J Uk}, u:=[u"u]", e:=[e" 1], A:=[4,a] and

cooleL @l @
S o
4r 1
5, 5,

and go to Step 3.

Step 6. If the set J contains one element and J = I, then go to Step 2. If J contains
one element and J = I, set I := {I}, J:= {I},u:=[u],e:= [1], 4 :=[a]], C:=
= [1/a]Ha,] and go to Step 4. If J does not contain one element, set I := I\ {j},
Ji=JUN{j}, ui=uP, e:=eP and 4:= A, where u?, e¥ result from u, e
by deleting the elements u;, e;, respectively, and A’ results from A by deleting the
column q;. Then set

o CEY
i
where CU9 results from C by deleting both the j-th row and the j-th column, C%’
results from the j-th column of C by deleting the componeut C;;. If J = I go to Step
4, else go to Step 7.

Step 7. If g,; = 0, set q, : = ¢{”, where g}” results from g, by deleting the element
q;;, and go to Step 8. If g,; + 0, calculate q, := CA"Ha, and &, := a] H(a, — Aq,).
Set J:=Ju{l},u:=[uSu]e:=[e 1], 4:=[4,q]and

C.= C+@ﬁ, _ 4
5, 5,

_al L
5, S,

and go to Step 4.
Step 8. (Singular case.) Calculate ¢, := CA"Ha,, p,:=1 —¢e'q,, and §;:=
1= ayH(a, — Agqy). If 6, = 0, set oy := 0. If §, =+ O, set
g i= - %
k

lli . u;
Oy = —=mn|—1|,
w; iel w;

where w; = gy — (B/B)) d1i» i€ J, w, = BB, [ = {iel:w; > 0}. Set z:= min
(ay, 05). Caleulate u:=u — a(q, — (B/B) 41), uy:=u, — AB[B)), wp 1=ty + %,
and vy := (1 — ofoy) v,. If o = oy, set g, := [g],0]" and go to Step 5. If o + o,
andj = [, setl:= I\{l} and go to Step 4. If « & o, and j # I, go to Step 6.

Calculate
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Algorithm 4.1 has a considerably complex logical structure, but its numerical
calculations are not more expensive than those of a usual algorithm for solving
the standard quadratic programming problems. Similar operations take place in
both the singular and nonsingular cases, the only exception being Step 7 where,
when performing the transition from a singular to a nonsingular case, it is necessary
to calculate repeatedly the vector g, in order to make the reconstruction of the
matrix C possible.

Let us show that, in the singular case, f8, + 0 holds (assumption of Lemma 3.1).
This inequality is valid in each transition from a nonsingular case to a singular case
(Bevi + 6 %= 0 and 6, = 0). Inspecting Step 7 and Step 8 we can see that the value
B, remains unchanged in the singular case (the vector g; is changed only by adding
or by deleting a zero element). Therefore we have always f§; & 0 in the singular case,
so that the assumption of Lemma 3.1 is valid.

Now we will prove the convergence of the dual method for solving the problem

(1.3).

Theorem 4.1. Algorithm 4.1 finds the solution of the problem (1.3) after a finite
number of steps.

Proof. Let (s*, z*) e R, be the solution of the problem (1.3) and let I* =« M
be a set of indices such that (s*, z*) € R, is a basic solution of the problem P(I*).
During the execution of Algorithm 4.1 we construct a sequence of subsets T ;= M,
j = 0. Theorems 2.1 and 3.1 guarantee the validity of ¢(5;, Z;) > o(5;-4, Z,_,),
j = 1 (the pair (§;, Z;) € R,1 is a basic solution of the problem P(I;)). Hence the
sets I; = M, j 2 0 must be distinct. Since M is finite, the sequence of mutually
different subsets Tj < M, j = 0 is also finite. The last element of this sequence must
be the set I'*, for, if it were not so, it could be possible to continue in constructing
the next subset according to Algorithm 4.1, O

Algorithm 4.1 uses the matrices H = G™', C = (ATHA) ™" If we desire to obtain

a numerically more stable version of the algorithm, we can replace the matrix H =
= G~ with a triangular decomposition G = LL" (Lis a lower triangular matrix).
Similarly, instead of the matrix C, we can make use of the orthogonal decomposition
L '4 = Q[R],

o]

where Q is an orthogonal matrix and R is an upper triangular matrix. More details
relative to these decompositions are presented in [6].
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Souhrn

DUALNI METODA PRO RESENI SPECTIALNI ULOHY KVADRATICKEHO
PROGRAMOVANI, KTERA SE VYSKYTUJE PRI NELINEARNI MINIMAXOVE
APROXIMACI

LADISLAV LUKSAN

V ¢&lanku je popsana dualni metoda pro feSeni specialni ulohy kvadratického programovani,
ktera se vyskytuje jako poduloha pfi nelinearni minimaxové aproximaci. Podrobné jsou analyzo-
vany dva ptipady, které se 1i§i linearni zavislosti gradientd funkci aktivnich v daném bodé&.
ZavErem je uveden podrobny algoritmus dualni metody a je dokazana jeho konvergence po ko-
neéném poctu kroku. ‘

Pe3ome

IOYAJNBHBIM METOJA PEMIEHUMA CIELMAJIBHON 3ATAYM KBAJAPATHUYHOIO
TTPOTPAMMMPOBAHUSA KOTOPAS SABJASETCSA IOA3AJAYEN HEJIWHENHOM
MUWUHUMAKCHOM ATIITPOKCMMACHU

LADISLAV LUKSAN

B crarhe ONMUCHIBACTCS AyalibHBIK METOM PEIICHUA 3a[a¥d KBaJPaTUYHOIO NPOTPAMMHUPOBARMS,
KOTOpas ABJISETCS NoA3aAaveli HETUHEHHOW MUHUMAKCHOR annpokxcuMauan. ITonpoBuee ananusu-
PYIOTCSl ABa Cilydasi, KOTOpbIe OTIMYAIOTCS IPYT OT APYTra JUHEHHOH 3aBUCHMOCTBIO FPaiHEHTOB
(byHKUNH, AKTUBHBIX B JAHHOM TOuke. B 3aKiIoyeHue APUBOIUTCS MOAPOOHBIH aNrOpuT™M AyanbHO=-
ro MeTona, U AOKA3bIBACTCA €ro CXOIMMOCTB IIOC/IE KOHEYHOrO YHCJa 1Naros.
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