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Background: The ultrasonic diagnosis of lymph node lesions is usually based on a small number of 

subjective visual features from a single ultrasonic modality, which limits diagnostic accuracy. Therefore, our 

study aimed to propose a computerized method for using dual-mode ultrasound radiomics and the intrinsic 

imaging phenotypes for accurately differentiating benign, lymphomatous, and metastatic lymph nodes. 

Methods: A total of 543 lymph nodes from 538 patients were examined with both B-mode ultrasonography 

and elastography. The data set was randomly divided into a training set of 407 nodes and a validation set of 

136 nodes. First, we extracted 430 radiomic features from dual-mode images. Then, we combined the least 

absolute shrinkage and selection operator with the analysis of variance to select several typical features. We 

retrieved the intrinsic imaging phenotypes by using a hierarchical clustering of all radiomics features, and 

we integrated the phenotypes with the selected features for the classification of benign, lymphomatous, and 

metastatic nodes. 

Results: The areas under the receiver operating characteristic curves (AUCs) on the validation set were 

0.960 for benign vs. lymphomatous, 0.716 for benign vs. metastatic, 0.933 for lymphomatous vs. metastatic, 

and 0.856 for benign vs. malignant. 

Conclusions: The radiomics features and intrinsic imaging phenotypes derived from the dual-mode 

ultrasound can capture the distinctions between benign, lymphomatous, and metastatic nodes and are 

valuable in node differentiation.
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Introduction

 
Lymph nodes are essential organs that regulate the 

core functions of the immune system. Lymph nodes are 

widely present throughout the human body and allow for 

the trapping and presentation of foreign antigens from 

peripheral tissues to prime the adaptive immune response (1).  

Lymph node lesions are divided into benign lesions 

and malignant lesions, of which, the malignant lesions 

are further subdivided into lymphoma and metastatic 

cancer (2). The precise diagnosis of benign lymph nodes, 
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lymphomatous nodes, and metastatic nodes is critical 

for making decisions of clinical treatment. In the past, 

the diagnosis of lymph node lesions was usually through 

palpation, but clinically, some lymph nodes are often too 

small, deep, and inaccessible. Nowadays, the gold standard 

for evaluating the state of lymph nodes is pathology by 

biopsy. Lymph node biopsies are divided into needle 

biopsy and surgical excisional biopsy. However, excisional 

biopsy often causes wound infection, tumor spread, and 

complications, while needle biopsy has a risk of producing 

false negative (FN) results (3-5). Therefore, there is a need 

to develop an accurate, feasible, and noninvasive system for 

the assessment of lymph node status.  

Imaging  examinat ions ,  u l t ra sound,  computed 

tomography, magnetic resonance imaging, among many 

others, play a crucial role in the differential diagnosis of 

lymph node lesions. Among all the imaging techniques, 

ultrasound has become the preferred method for lymph 

node examination due to its fast, painless, noninvasive, 

and convenient nature. Conventional B-mode ultrasound 

can evaluate lymph nodes and provide valuable structural 

information about the number, shape, size, boundary, 

and internal echogenicity of lymph nodes (6,7). Recently, 

another ultrasound modality, real-time elastography (RTE), 

has been applied for the assessment of tissue elasticity, 

which calculates and displays tissue strains in real time when 

operators compress and decompress tissues. Compared 

with conventional B-mode ultrasound, the RTE provides 

additional information concerning the biomechanical 

properties of lymph nodes (8-10).

In common clinical practice, the B-mode and RTE 

images are visually observed and graded by experienced 

radiologists for diagnosis (11,12); however, the diagnostic 

results suffer from large inter- and intra-observer variability 

because of the subjective nature of visual observation and 

the lack of a standard grading scheme for lymph nodes (13). 

Therefore, a computer-aided diagnosis (CAD) system is 

needed to reduce subjectivity and dependence of observers 

so that lymph nodes can be assessed more accurately and 

effectively.

Recent advancements in machine learning algorithms 

allow for a more accurate and more objective description of 

ultrasound images, which could be used to comprehensively 

assess lymph node size, shape, intensity, texture, and other 

less apparent features (14). Radiomics is a quantitative 

method that can enhance the objectiveness of image 

representation (15). Radiomics refers to quantitatively 

extracting high-throughput features from medical images 

and analyzing the features for disease diagnosis, prognosis, 

or treatment effect evaluation (14-16). Recently, intrinsic 

imaging phenotypes have been further derived from the 

high-throughput radiomics features using hierarchical 

clustering to depict distinct inherent patterns of diseases. It 

has been demonstrated that intrinsic imaging phenotypes 

are valuable for identifying distinct clinicopathological 

characteristics, molecular pathways, and patient prognoses 

(17-20).  

At present, radiomics has been widely used in single-

mode medical images, such as B-mode ultrasound or 

RTE, but combining it with dual-mode images remains a 

challenge. Dual-mode ultrasound radiomics combines the 

features of the 2 modalities rendering their information 

complementary, and thus improving the accuracy and 

disease classification performance of the quantitative 

analysis of the lesion (13,21). Working from this basis, we 

endeavored to create a dual-mode ultrasound radiomics 

method for CAD of benign, lymphomatous, and metastatic 

lymph nodes. We extracted the high-throughput radiomics 

features from dual-mode ultrasound images and select a 

few of the most important features by using computerized 

algorithms. We further produced intrinsic ultrasound 

imaging phenotypes of lymph nodes via the hierarchical 

clustering of the high-throughput radiomics features. We 

then combined the selected radiomics features with the 

imaging phenotypes to achieve an integrated CAD system 

for lymph node lesions. We hypothesized that the dual-

mode radiomics features and intrinsic imaging phenotypes 

could capture distinct differences in various types of lymph 

nodes and may thus have a discriminative ability in lymph 

node classification.  
We present the following article in accordance with 

the STARD reporting checklist (available at http://dx.doi.

org/10.21037/atm-19-4630). 

Methods 

Figure 1 shows the framework of this study. First, radiomics 

features were extracted from B-mode and RTE images, 

including morphological features, intensity statistics, binary 

image features, gray level co-occurrence matrix (GLCM) 

texture features, and local variance (LV) texture features. 

Then, based on the extracted radiomics features, the least 

absolute shrinkage and selection operator (LASSO) method 

and the analysis of variance (ANOVA) method were used 

to select a few most important features. After that, the 

study got the intrinsic imaging phenotypes by using the 
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hierarchical clustering of all radiomics features. Finally, 

the phenotypes were combined with the selected radiomics 

features for classification of benign, lymphomatous, and 

metastatic lymph nodes.

Image acquisition and preprocessing

From December 2013 to December 2016, 538 patients 

(53.26±14.39 years old; age range, 15–83 years) with 

suspicious lymph node enlargement, who underwent 

examination conventional ultrasound and RTE and 

subsequently underwent the ultrasound-guided core 

needle biopsy (US-CNB) to get pathological results, were 

enrolled in this study. In total, 543 lymph nodes were finally 
confirmed by pathology, where 142 were benign, 258 were 
lymphomatous, and 143 were metastatic. These lymph 

nodes were located in the armpit (281 cases), neck (203 

cases), and groin (59 cases). Among the metastatic nodes, 

131 originated from breast cancer, 4 from nasopharyngeal 

cancer, 3 from gastric cancer, 2 from skin cancer, 1 from 

malignant melanoma, 1 from lung cancer, and 1 from 

testicular cancer. The majority of cases were metastatic 

breast cancer because our hospital mainly specializes in the 

diagnosis and treatment of breast tumor. This retrospective 

study was approved by the Ethics Committee of Tongren 

Hospital (approval number Tongrenlunshen2018-046-02) 

and was carried out in adherence with the Declaration of 

Helsinki. The need for informed consent from all patients 

was waived due to the study’s retrospective nature. 

We randomly divided the data set into a training set and 

a validation set in a 3:1 ratio. The training set included 107 

benign, 193 lymphomatous, and 107 metastatic nodes, while 

the validation set included 35 benign, 65 lymphomatous, 

and 36 metastatic nodes. 

Ultrasonography was performed by 1 radiologist with 

more than 5 years of experience in conventional ultrasound 

and 3 years in RTE. The L523 probe with a frequency 

of 4–13 MHz was used in the Mylab 90 system (Esaote, 

Genoa, Italy). The target lymph node was selected on 

the B-mode ultrasound and subsequently examined with 

the RTE. During the RTE examination, the radiologist 

manually applied slight axial compression to the lymph 

node using an ultrasound probe until the pressure indicator 

traced a sinus curve with 4–5 cycles and it was stabilized for 

Figure 1 The main procedure performed in this study comprised five steps: image acquisition and preprocessing, feature extraction, feature 
selection, identification of intrinsic imaging phenotypes, and classification. RTE, real-time elastography; GLCM, gray level co-occurrence 
matrix; LV, local variance; LASSO, least absolute shrinkage and selection operator; ANOVA, analysis of variance; SVM, support vector 

machine. 
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2 or 3 seconds (bottom right in Figure 2A). The imaging 

system provides dual-mode visualization in a full screen 

(Figure 2A), where the left part is a grayscale B-mode 

image, and the right is elastography. To obtain the region 

of interest, the lymph node boundary was delineated on the 

B-mode image (Figure 2B) by another radiologist with more 

than 5 years of experience in conventional ultrasound (Figure 

2C), and the same radiologist performed all delineations. 

The elastography produces a composite color image 

displayed as a translucent color elastogram superimposed 

on the grayscale B-mode image (Figure 2D). According to 

the rule of pseudo-color coding in the Mylab 90 system, the 

color elastography was converted into a softness map, which 

was a grayscale image ranging from 0 (hardest) to 1 (softest) 

(Figure 2E) (13). 

Feature extraction 

We extracted a total of 430 features from B-mode and RTE 

images (223 from B-mode and 207 from RTE), including 16 

morphological features, 132 intensity statistics, 142 binary 

image features, 120 GLCM texture features, and 20 LV 

texture features. Because the delineation of the lymph nodes 

was performed on the B-mode image, the morphological 

features were calculated solely on B-mode ultrasound. 

Other features were calculated on both modalities of the 

B-mode and RTE. If the extracted feature value was none, 

replace with 0. 

The morphological features quantitatively depicted the 

shape of a lymph node. They included the area, convex 

area, long- and short-axis diameters, the ratio of long-to-

short-axis diameter (L/S), equivalent diameter, perimeter, 

eccentricity, solidity, and orientation, in addition to the 

median and maximal thicknesses, and the mean, median, 

and maximal widths.

The intensity statistics represented the intensity 

distribution of image pixels within and outside a lymph 

node. They were calculated from the image intensities; i.e., 

the grayscale values on B-mode ultrasound or the softness 

values on RTE. They included the center deviation degree, 

the radial deviation degree (22), and a variety of first-order 
statistics within a lymph node, such as the mean, median, 

max, standard deviation, coefficient of variance, skewness, 

kurtosis, the entropy of histogram, the entropy of brightness 

(EnBrt), and several percentiles. Other features included the 

normalized mean (MeanNorm), a group of area ratios, and 

combined area ratios (23). The area ratio was the ratio of 

the area of the pixels with grayscales greater than the Otus’ 

threshold to the area of the entire lymph node.

The binary image features were calculated from a binary 

image that was converted from a B-mode image or an RTE 

softness map by a certain threshold. The pixel values larger 

Figure 2 Dual-mode ultrasound visualization of a lymph node. (A) A dual-mode image; (B) B-mode ultrasound; (C) B-mode ultrasound with 

the delineated border of the lymph node (yellow); (D) real-time elastography; (E) the softness map retrieved from the color elastogram. 
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than the threshold were set to 1 (white), and the others 

were set to 0 (black) in the binary image. The binary image 

features were then calculated as the proportion of white 

pixels within a lymph node. The thresholds ranged from 20 

to 90 in an interval of 1.

The GLCM texture features were calculated based 

on the GLCM G(i, j) (24), which measured the co-

occurrence frequency of a 2-pixel pair within a lymph node 

with intensities i and j at a specific relative direction and 

distance. To more efficiently represent the texture, the 

B-mode image or the RTE softness map was requantized 

to 8 intensities, and thus the size of GLCM was 8×8. The 

GLCM was normalized to acquire the joint conditional 

probability ( ) ( ) ( ), , ,p i j G i j i jG i j =  ∑ ∑ , from which the 
features reflecting tissue textures were extracted including 
the energy, contrast, homogeneity, and entropy of the 

GLCM (13). In our practice, the GLCM was calculated at 

distances of 1 to 15 pixels and directions of 0°, 45°, 90°, and 

135°. The final GLCM texture features were averaged over 
4 directions.

In addition to the GLCM texture features, we also 

computed the LV texture features to further describe the 

heterogeneity of intensities in a lymph node. For a pixel 

inside a lymph node, its local area was defined as the area 
covering its neighboring pixels with a q-value determining 

the half-width of the neighborhood window (25). The local 

area variance for each pixel was defined as the variance of 
intensities within the local area of the pixel. We took q from 

1 to 10, and the LV index (LVIq) of the entire lymph node 

was calculated as the following:

q

VOV
LVI

MOV
=  [1]

where VOV was the variance of the local area variances for 

all pixels within the entire node, and MOV was the mean of 

the local area variances.

Feature selection

Correlation and redundancy exist between high dimensional 

features, and these redundant features lead to over-fitting 

and the reduction of classification accuracies. Therefore, 

a few of the most informative and important features for 

discriminating between different types of lymph nodes 

need to be selected to acquire an optimized subset. In this 

study, the LASSO method and the ANOVA method were 

combined to select the features; we named the combined 

method as the LASSO + ANOVA method. We performed 

LASSO + ANOVA in the training set, recorded the selected 

features, and then applied them to the validation set. 

The LASSO method, which is suitable for the regression 

of high-dimensional data, was used to select the most useful 

predictive features from the data set (26). It compressed the 

regression coefficients by using the absolute value function 
of the model coefficients as a penalty, and thereby screened 
the feature subset from the data set of lymph nodes with a 

strong discriminating ability. 

The feature subset selected with the LASSO method 

was further optimized by using the ANOVA. That is, the 

features with P values of ANOVA less than 0.001 were 

further selected. 

Identification of intrinsic imaging phenotypes  

Hierarchical clustering has been widely adopted in 

genomics, where the gene expression data is used (27-29).  

Here, we propose employing hierarchical clustering to 

identify the intrinsic ultrasound imaging phenotypes in 

lymph nodes. We performed unsupervised hierarchical 

clustering on the feature vector consisting of all 430 features 

of the training set. We obtained the hierarchical clusters 

that were represented by a dendrogram (30,31), which is a 

multilevel hierarchy in which clusters at 1 level are joined 

to form clusters at the next level. The generation of the 

dendrogram is described as follows. Given the training set 

of the lymph nodes, each lymph node was represented by a 

430-dimensional standardized feature vector [i.e., z-score 

normalized features (32)]. Each lymph node was regarded 

as a tree node of the dendrogram, and Pearson’s correlation 

was calculated between every pair of lymph nodes. The pair 

with the highest correlation was merged, and a new parent 

tree node was created; the correlations among the feature 

vectors were then updated, and the process was repeated 

until a single node remained (18). 

From the dendrogram, the lymph nodes were divided into 

several non-overlap clusters called imaging phenotypes (18).  

We initially grouped lymph nodes into 10 clusters, in which 

2 clusters included samples lower than 5, and they were 

merged into their neighboring clusters. Thus finally, there 
were 8 total clusters of imaging phenotypes generated. 

Phenotype order was determined in descending order of the 

percentage of the benign samples in each phenotype (Table 1). 

We used the hierarchical clustering to produce a heat 

map matrix for visualizing the properties of the detected 

imaging phenotypes (Figure 3) (33). In the heat map matrix, 

each column represented a 430-dimensional standardized 
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Figure 3 The heat map depicting z-scores of 430 radiomics features for 407 lymph nodes on the training set, with dendrograms (clustering 

trees) obtained from unsupervised hierarchical clustering. The columns (samples) are clustered into 8 groups of phenotypes. Phe, phenotype. 

phe.4 phe.3 phe.1 phe.2 phe.7 phe.8 phe.6 phe.5

Table 1 Distributions of samples on the training set in eight groups of phenotypes  

Classes Phe. 1 Phe. 2 Phe. 3 Phe. 4 Phe. 5 Phe. 6 Phe. 7 Phe. 8 N

Benign 37 (65%) 28 (27%) 10 (26%) 9 (22%) 11 (16%) 4 (15%) 8 (14%) 0 (0%) 107

Lymphomatous 3 (5%) 64 (63%) 22 (58%) 16 (39%) 22 (33%) 6 (23%) 44 (77%) 16 (84%) 193

Metastatic 17 (30%) 10 (10%) 6 (16%) 16 (39%) 34 (51%) 16 (62%) 5 (9%) 3 (16%) 107

N 57 102 38 41 67 26 57 19 407

Phe, phenotype; N, number. 

feature vector for each lymph node, and each row 

represented 1 feature across all training samples.    

A Pearson’s correlation was calculated between each 

validation sample and each training sample. For a validation 

sample, its corresponding phenotype was determined by 

the largest Pearson’s correlation calculated between the 

validation sample and all training samples.

Classification

By utilizing the support vector machine (SVM) as the 

computerized classifier, we compared 3 sets of radiomics 

features for classification of lymph nodes: (I) all features, 

(II) features selected by using the LASSO method, and 

(III) features selected by using the LASSO + ANOVA 

method. The classification tasks covered the following 

4 circumstances: benign vs. lymphomatous, benign vs. 

metastatic, lymphomatous vs. metastatic, and benign vs. 

malignant (lymphomatous + metastatic). The differences 

between each 2 classes were examined with the Kruskal-

Wallis test to determine the non-normal distribution of 

the variables. In disease classification, according to the 

combination of the real category and predicted category, 

there are 4 kinds of situations: true positive (TP), false 
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positive (FP), true negative (TN), and FN. The accuracy of 

classification can be measured by accuracy (ACC). ACC is 
defined as follows:

TP TN
ACC

TP FP TN FN

+
=

+ + +
 [2]

However, in clinical practice, sensitivity (SEN), 

specificity (SPC), and Youden’s index (YI) are more suitable 
for being evaluation indicators. They are defined as the 

following:

TP
SEN

TP FN
=

+
 [3]

TN
SPC

TN FP
=

+
 [4]

1YI SEN SPC= + −  [5]

For a specific feature, if its SEN increased, then its SPC 
is reduced (34,35). Therefore, an indicator that can measure 

the performance comprehensively is need. In this case, 

drawing a receiver operating characteristic (ROC) curve is 

the best solution. The ROC curve reflects the relationship 
between SEN and SPC (36). Its abscissa (X) and ordinate (Y) 

are defined as follows: 

SPCX −=1  [6]

SENY =  [7]

The ROC curve generates a set of key points (X, Y) on 

the curve by constantly moving the “cutoff” of the classifier. 
The best cutoff value is when the YI value reaches the 

maximum value. According to the position of the curve, 

the entire graph is divided into 2 parts. The area under 

the curve is called AUC, and this can intuitively evaluate 

the quality of the classifier (Figure 4). The larger the AUC 

values, the better the performance of classification (36).
The AUC values from the validation set were computed 

for the intrinsic imaging phenotypes and for each radiomics 

feature selected with the LASSO + ANOVA. Furthermore, 

we used the cutoff values for each feature obtained from the 

Figure 4 The ROC curves of the 3 feature subsets on the validation set. (A) Benign vs. lymphomatous; (B) benign vs. metastatic; (C) 

lymphomatous vs. metastatic; (D) benign vs. malignant. ROC, receiver operating characteristic curve; AUC, area under curve; LASSO, least 

absolute shrinkage and selection operator; ANOVA, analysis of variance. 
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training set to yield its final SENs, SPCs, ACCs, and YIs 

at the validation set. The phenotypes were combined with 

each feature selected with the LASSO + ANOVA, and the 

classification results were compared between the features 

combined and not combined with phenotypes.

All computerized image interpretations, including 

the preprocessing, feature extraction, feature selection, 

identification of imaging phenotypes, and lymph node 

classification, in addition to the statistical analyses and 

validation, were performed by using programs implemented 

with the MATLAB software (MathWorks, Natick, MA, USA).

Results

Classification results of three feature sets 

Based on all  430 features,  the AUC values of the 

validation set were given as follows: 0.892 for benign vs. 

lymphomatous, 0.651 for benign vs. metastatic, 0.920 

for lymphomatous vs. metastatic, and 0.774 for benign 

vs. malignant. The ACC values of the validation set were 

80.00% for benign vs. lymphomatous, 57.75% for benign 

vs. metastatic, 80.20% for lymphomatous vs. metastatic, and 

68.38% for benign vs. malignant (Table 2).

From the 430 features, 31 features were selected with 

the LASSO method. By using the selected features, the 

AUC values of the validation set were 0.939 for benign 

vs. lymphomatous, 0.688 for benign vs. metastatic, 0.926 

for lymphomatous vs. metastatic, and 0.827 for benign vs. 

malignant. The ACC values were 84.00% for benign vs. 

lymphomatous, 67.61% for benign vs. metastatic, 82.18% 

for lymphomatous vs. metastatic, and 69.85% for benign 

vs. malignant. Compared with all 430 features, the LASSO-

selected features improved the AUC values of benign vs. 

lymphomatous, benign vs. metastatic, lymphomatous vs. 

metastatic and benign vs. malignant by 4.70%, 3.70%, 

0.60%, and 5.30%, respectively; meanwhile, they improved 

the ACC-value of the 4 above classification tasks by 4.00%, 
9.86%, 1.98%, and 1.47%, respectively (Table 2). 

We further performed the ANOVA on the LASSO-

selected features and finally selected 23 features with the 

LASSO + ANOVA method to obtain an optimal feature 

subset. The AUC values of the validation set were 0.953 for 

benign vs. lymphomatous, 0.716 for benign vs. metastatic, 

0.929 for lymphomatous vs. metastatic, and 0.842 for benign 

vs. malignant. The ACC values were 86.00% for benign vs. 

lymphomatous, 66.20% for benign vs. metastatic, 85.15% 

for lymphomatous vs. metastatic, and 77.21% for benign vs. 

malignant (Table 2).

By using the LASSO + ANOVA method, the P values 

for all 4 classification tasks were less than 0.001 (Table 2).  

Compared with all 430 features, the features selected with 

the LASSO + ANOVA improved the AUC values for 

classification tasks of benign vs. lymphomatous, benign 

vs. metastatic, lymphomatous vs. metastatic, and benign 

vs. malignant by 6.10%, 6.50%, 0.90%, and 6.80%, 

respectively. Compared with the LASSO-selected features, 

the features selected with the LASSO + ANOVA improved 

the AUC values of the above 4 classification tasks by 1.40%, 
2.80%, 0.30%, and 1.50%, respectively; meanwhile, they 

improved the ACC values of benign vs. lymphomatous, 

lymphomatous vs. metastatic, and benign vs. malignant by 

2.00%, 2.97%, and 7.36%, respectively (Table 2).

In summary, by using the LASSO + ANOVA method, 

a preferable radiomics feature subset was obtained for the 

classification of lymph node lesions.

Typical features selected with LASSO + ANOVA

Table 3 lists 7 typical features among the LASSO + ANOVA-

selected features, including 5 features from B-mode and 2 

features from RTE. The definitions and implications are 

also given in Table 3. The medians and interquartile ranges 

(IQR) of these typical features, along with their P values 

from the Kruskal-Wallis test, are shown in Table 4, while the 

classification results are shown in Table 5. 

Results of intrinsic imaging phenotypes

We obtained 8 phenotypes on the validation set as 

categorical features and calculated their corresponding 

P values (Table 4), cut-off values, AUCs, SENs, SPCs, 

ACCs, and YIs (Table 5). There were significant differences 
between benign and lymphomatous lymph nodes (P<0.001), 

benign and metastatic lymph nodes (P=0.006), and 

benign and malignant lymph nodes (P<0.001). However, 

there was no difference between the lymphomatous and 

metastatic lymph nodes (P=0.138). The AUC values on 

the validation set were 0.759 for benign vs. lymphomatous, 

0.686 for benign vs. metastatic, 0.413 for lymphomatous vs. 

metastatic, and 0.734 for benign vs. malignant. 

Results of combining radiomics features with phenotypes

The phenotypes were combined with each typical 

radiomics feature selected with the LASSO + ANOVA. The 
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Table 2 Classification performance on the validation set when different features were selected

Groups Indices All features (n=430) LASSO (n=31) LASSO + ANOVA (n=23)

Benign vs. lymphomatous AUC 0.892 0.939 0.953

SEN (%) 78.46 87.69 83.08

SPC (%) 82.86 77.14 91.43

ACC (%) 80.00 84.00 86.00

YI (%) 61.32 64.84 74.51

Cutoff value 0.108 0.404 0.295

P value <0.001 <0.001 <0.001

Benign vs. metastatic AUC 0.651 0.688 0.716

SEN (%) 58.33 80.56 75.00

SPC (%) 57.14 54.29 57.14

ACC (%) 57.75 67.61 66.20

YI (%) 15.48 34.84 32.14

Cutoff value 0.197 0.528 0.516

P value 0.029 0.006 <0.001

Lymphomatous vs. metastatic AUC 0.920 0.926 0.929

SEN (%) 80.56 86.11 85.56

SPC (%) 80.00 80.00 87.69

ACC (%) 80.20 82.18 85.15

YI (%) 60.56 66.11 68.25

Cutoff value 0.960 0.724 0.556

P value <0.001 <0.001 <0.001

Benign vs. malignant AUC 0.774 0.827 0.842

SEN (%) 72.28 68.32 77.23

SPC (%) 57.14 74.29 77.14

ACC (%) 68.38 69.85 77.21

YI (%) 29.42 42.60 54.37

Cutoff value 0.198 0.211 0.269

P value <0.001 <0.001 <0.001

AUC, area under curve; SEN, sensitivity, SPC, specificity, ACC, accuracy, YI, Youden’s index.

results are presented in Table 6. Compared with a single 

radiomics feature alone, the combination of the phenotypes 

and a single feature increased the AUCs of benign vs. 

lymphomatous by 0.30–24.90%, benign vs. metastatic by 

1.30–18.80%, and benign vs. malignant by 0.30–9.50%. 

Finally, all 23 radiomics features selected with the LASSO 

+ ANOVA were combined with the phenotypes, and the 

AUC values were 0.960 for benign vs. lymphomatous, 

0.716 for benign vs. metastatic, 0.933 for lymphomatous vs. 

metastatic, and 0.856 for benign vs. malignant.

Discussion

In recent years, a few advancements have been made in 
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Table 3 Typical radiomics features selected with the LASSO+ANOVA method 

Names Categories Definitions Implications (when the feature is larger)

Solidity (B) Morphological feature The ratio of the area within a lymph node to the area of 

its smallest convex polygon

The surface of the node is smoother

RatInt79 (B) Binary image feature The ratio of the area of the pixels with intensities less 

than 79 to the area of the entire lymph node

The entire lymph node is darker

L/S (B) Morphological feature The ratio of long- to-short-axis diameter The shape of the node is more oblate 

and less round

RAR3 (B) Intensity statistic The ratio of the area ratio in the 1/3 central region of a 

lymph node to the area ratio in the 2/3 marginal region.

The core of the node is brighter

LVI10 (B) Local variance texture 

feature
q

VOV
LVI

MOV
=  when q is 10, defined in Eq. [1] The texture within the node is more 

heterogeneous

EnBrt (E) Intensity statistic The entropy of brightness within a lymph node The elasticity distribution within the 

node is more uniform

MeanNorm (E) Intensity statistic A normalized mean, defined as the ratio of the mean of 

a node to the 90th percentile of the rectangular region 

including the node

The node is more elastic

B, B-mode; E, real-time elastography; RatInt79, ratio of intensities less than 79; L/S, ratio of long-to-short-axis diameter; RAR3, ra-

tio of the area ratio in the 1/3 central region to the area ratio in the 2/3 marginal region; LVI10: local variance index 10; EnBrt: entropy of  

brightness; Mean Norm, normalized mean.

Table 4 The median (IQR) and P values of typical radiomics features on the validation set

Groups and 

median

Classes and P 

values

Phenotype Solidity (B) RatInt79 (B) L/S (B) LVI10 (B) RAR3 (B) EnBrt (E) MeanNorm (E)

Median (IQR) Benign 2.00 (3.00) 0.97 (0.02) 0.90 (0.45) 2.12 (0.81) 1.11 (0.56) 0.60 (1.45) 0.98 (0.01) 0.52 (0.15)

Lymphomatous 4.00 (4.00) 0.99 (0.01) 0.95 (0.08) 1.65 (0.75) 1.91 (0.79) 0.08 (0.41) 0.97 (0.02) 0.49 (0.15)

Metastatic 4.00 (2.00) 0.98 (0.02) 0.92 (0.20) 1.58 (0.67) 1.17 (0.34) 0.16 (1.04) 0.97 (0.02) 0.43 (0.13)

Malignant 4.00 (3.00) 0.98 (0.01) 0.94 (0.11) 1.63 (0.74) 1.62 (0.92) 0.10 (0.54) 0.97 (0.02) 0.44 (0.11)

Benign vs.  

lymphomatous

P value <0.001 <0.001 0.022 0.027 <0.001 <0.001 0.125 0.038

Benign vs.  

metastatic

P value 0.006 0.062 0.3697 0.015 0.945 0.048 0.001 0.008

Lymphomatous  

vs. metastatic

P value 0.138 0.036 0.035 0.427 <0.001 0.125 0.027 0.290

Benign vs.  

malignant

P value <0.001 <0.001 0.049 0.024 <0.001 <0.001 0.012 0.009

B, B-mode; E, real-time elastography; IQR, interquartile range; RatInt79, ratio of intensities less than 79; L/S, ratio of long-to-short-axis 

diameter; RAR3, ratio of the area ratio in the 1/3 central region to the area ratio in the 2/3 marginal region; LVI10: local variance index 10; 

EnBrt: entropy of brightness; Mean Norm, normalized mean.

the study of lymph node differentiation. Zakaria et al. 

studied 177 cervical lymph nodes in 128 children, using a 

histological assessment of lymph nodes through fine-needle 
aspiration cytology (FNAC) to compare the histology 

results with the features of weather B-mode, Doppler, and 

elastography. The results showed that elastography has high 

accuracy in distinguishing benign from malignant nodes, 

reaching 90.23% (37). Latif et al. evaluated the role of 

B-mode ultrasound, elastography, and diffusion-weighted 

imaging (DWI) in differentiating benign and malignant 
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Table 5 Classification performance of each typical radiomics feature on the validation set 

Groups Indices Phenotype Solidity (B) RatInt79 (B) L/S (B) LVI10 (B) RAR3 (B) EnBrt (E) MeanNorm (E)

Benign vs.  

lymphomatous

AUC 0.759 0.626 0.627 0.548 0.860 0.592 0.633 0.615

SEN (%) 98.5 69.2 86.2 66.2 83.1 67.6 46.2 56.9

SPC (%) 31.4 68.6 45.7 48.6 68.6 65.7 65.7 57.1

ACC (%) 75.0 69.0 72.0 60.0 78.0 67.0 53.0 57.0

YI (%) 29.9 37.8 31.9 14.7 51.7 33.4 11.9 14.1

Cutoff value 1.000 0.978 0.855 1.951 1.332 0.317 0.975 0.471

Benign vs.  

metastatic

AUC 0.686 0.629 0.562 0.650 0.495 0.637 0.733 0.678

SEN (%) 58.3 61.1 36.1 69.4 61.1 75.0 50.0 61.1

SPC (%) 71.4 68.6 57.1 48.5 40.0 37.1 80.0 57.1

ACC (%) 64.8 64.7 46.5 59.2 50.7 56.3 64.8 59.2

YI (%) 29.8 29.7 6.75 18.0 1.11 12.1 30.0 18.3

Cutoff value 3.000 0.975 0.853 1.896 1.064 1.065 0.970 0.461

Lymphomatous vs. 

metastatic

AUC 0.413 0.626 0.627 0.548 0.865 0.602 0.633 0.567

SEN (%) 58.3 75.0 44.4 52.8 83.3 47.2 50.0 27.8

SPC (%) 49.2 41.5 80.0 50.8 78.5 67.7 64.6 78.5

ACC (%) 52.5 53.5 67.3 51.5 80.2 60.4 59.4 60.4

YI (%) 7.56 16.5 24.4 3.55 61.8 14.9 14.6 6.24

Cutoff value 3.000 0.986 0.893 1.603 1.471 0.314 0.969 0.390

Benign vs.  

malignant

AUC 0.734 0.707 0.612 0.628 0.730 0.718 0.643 0.637

SEN (%) 89.1 66.3 78.2 66.3 86.1 62.4 51.5 60.4

SPC (%) 54.3 68.5 45.7 48.6 40.0 68.6 71.4 57.1

ACC (%) 80.1 66.9 69.9 61.8 74.3 63.9 56.6 59.6

YI (%) 43.4 34.9 23.9 14.9 26.1 30.9 22.9 17.5

Cutoff value 3.000 0.976 0.855 1.896 1.064 0.316 0.974 0.471

B, B-mode; E, real-time elastography; RatInt79, ratio of intensities less than 79; L/S, ratio of long-to-short-axis diameter; RAR3, ratio  

of the area ratio in the 1/3 central region to the area ratio in the 2/3 marginal region; LVI10: local variance index 10; EnBrt: entropy of  

brightness; Mean Norm, normalized mean, AUC, area under curve; SEN, sensitivity, SPC, specificity, ACC, accuracy, YI, Youden’s index. 

axillary lymph nodes. ROC analysis was constructed to 

obtain the best cutoff values for B-mode criteria, elasticity 

score, strain ratio, and ADC value. The results showed that 

DWI and elastography significantly aided in improving 

the characterization of metastatic axillary nodes when 

compared with B-mode ultrasound (38). However, only two 

types of lymph nodes, benign and malignant, were classified 
in these studies. Also, the features used for the evaluation 

of the studies relied on the individual experience of the 

investigators, which might have led to high subjectivity 

and large inter- and intra-observer variability. Liu et al.  

used radiomics features from sonoelastography and 

B-mode ultrasound to objectively diagnose the lymph node 

metastasis of papillary thyroid carcinoma with an accuracy 

of 85% (39). However, unlike in our study, their diagnosis 

only looked at the images of the thyroid tumors themselves 

and not those of the lymph nodes, and was also limited to 

examining the benign vs. metastatic distinction. In 2017, 

our research team applied radiomics to classify the benign 

and malignant axillary lymph nodes in ultrasound images, 
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Table 6 The phenotypes are combined with each typical radiomics feature and the LASSO + ANOVA-selected features, and the AUC-values on 

the validation sets are compared with and without the combination

Groups Methods Solidity (B) RatInt79 (B) L/S (B) LVI10 (B) RAR3 (B) EnBrt (E) MeanNorm (E) LASSO + ANOVA

Benign vs.  

lymphomatous

Without phenotype 0.626 0.627 0.548 0.860 0.592 0.633 0.615 0.953

With phenotype 0.809 0.669 0.722 0.873 0.841 0.734 0.753 0.960

Benign vs.  

metastatic

Without phenotype 0.629 0.562 0.650 0.495 0.637 0.733 0.678 0.716

With phenotype 0.700 0.683 0.739 0.683 0.717 0.764 0.743 0.716

Lymphomatous  

vs. metastatic

Without phenotype 0.626 0.627 0.548 0.865 0.602 0.633 0.567 0.929

With phenotype 0.646 0.601 0.512 0.862 0.575 0.669 0.602 0.933

Benign vs.  

malignant

Without phenotype 0.707 0.612 0.628 0.730 0.718 0.643 0.637 0.843

With phenotype 0.772 0.657 0.723 0.783 0.736 0.689 0.683 0.856

B, B-mode; E, real-time elastography; RatInt79, ratio of intensities less than 79; L/S, ratio of long-to-short-axis diameter; RAR3, ratio  

of the area ratio in the 1/3 central region to the area ratio in the 2/3 marginal region; LVI10: local variance index 10; EnBrt: entropy of  

brightness; Mean Norm, normalized mean; LASSO, least absolute shrinkage and selection operator; ANOVA, analysis of variance. 

and achieved good results (40). The present study further 

studied the classification of multiple types of lymph nodes. 
Compared with the previous study, we collected more 

lymph node data, and optimized the algorithm of feature 

extraction and feature selection. Although the clustering 

algorithm has been used in earlier research, the concept of 

phenotype was not included, and this addition of phenotype 

is helpful in describing the inherent pattern of disease and 

improving the whole classification system. 
To our knowledge, our current study is the first to 

use computer-assisted methods to extract dual-mode 

ultrasound radiomics features from lymph nodes for 

differentiating various types of lymph node lesions, and 

includes 4 distinctions: benign vs. lymphomatous, benign 

vs. metastatic, lymphomatous vs. metastatic, and benign 

vs. malignant. We also combined the radiomics features 

with the intrinsic imaging phenotypes from hierarchical 

clustering to enhance the classification performance. To 

some extent, this method realizes the combination of 

supervised and unsupervised learning. The results of this 

study have demonstrated that our CAD system can reduce 

FNs and FPs and thus may help to effectively diagnose 3 

types of lymph nodes and assist in clinical decision-making. 

We used a radiomics approach on dual-mode ultrasound 

for generating high-throughput quantitative features and 

obtained the subsets of optimized features with the LASSO 

method and the LASSO + ANOVA method. The features 

selected with the LASSO + ANOVA achieved better 

results than all non-selected and LASSO-selected features, 

indicating the superiority of the LASSO + ANOVA feature 

selection. 

When visually interpreting B-mode ultrasound images, 

radiologists mainly consider the size, shape, echo uniformity, 

and boundary of lymph nodes (41); when interpreting 

elastograms, they mainly consider the overall hardness of 

the lesions and the heterogeneity of the hardness (42,43). 

Based on these visual experiences from radiologists, we 

list in Table 3 a few typical features that have been selected 

by the LASSO + ANOVA. These typical features have 

medically explainable meanings that may be useful for 

revealing characteristics of lymph nodes and thus may help 

diagnosis. For example, on B-mode ultrasound, benign 

lymph nodes tend to be elliptical with the long-to-short 

axis ratios (L/S) greater than 2.0, while metastatic nodes are 

round in shape (L/S <2.0) (44,45). Malignant lymph nodes 

tend to be more heterogeneous in B-mode intensities and 

have more mixed textures, resulting in higher LVI10 (25). 

Benign lymph nodes tend to have stronger echogenicity 

than malignant lymph nodes, especially lymphomas, and 

thus the benign nodes have lower RatInt79 values. The core 

areas of benign lymph nodes tend to be brighter than those 

of malignant nodes, and thus they have higher RAR3 values. 

On elastograms, benign lymph nodes are more elastic, and 

malignant nodes are stiffer (13), which is consistent with the 

higher MeanNorm values found in benign nodes. In short, 

these typical radiomics features have meaningful diagnostic 

capability for lymph nodes. 

The unsupervised hierarchical clustering offers a 

method for detecting intrinsic imaging phenotypes. In 

our study, along the columns (samples) of the data matrix, 
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the hierarchical clustering agglomerated the samples into 

8 clusters, and each cluster was treated as an imaging 

phenotype. This method is similar to the hierarchical 

clustering analysis of gene expression data that may 

discover the intrinsic molecular subtypes of tumors (18). 

It is indicated from Table 6 that the combination of the 

phenotypes and the radiomics features was helpful in 

improving the AUC values for diagnostic tasks of benign 

vs. lymphomatous, benign vs. metastatic, and benign vs. 

malignant. However, the combination did not meaningfully 

improve the lymphomatous vs. metastatic task. This may 

be explained by the fact that the order of the phenotypes 

was determined by the descending order of the percentage 

of the benign samples in each phenotype (Table 1); hence, 

the phenotypes could not adequately distinguish between 

lymphoma and metastatic nodes (P=0.138; Table 4). More 

complex phenotypes need to be established in the future for 

better discrimination between lymphomas and metastatic 

lymph nodes.

There are some limitations and areas for further work. 

First, the size of samples was small, and the distribution of 

samples was unbalanced across the 3 types of lymph nodes. 

However, this preliminary yet promising study warrants 

future studies with large samples. Second, the lymph node 

boundaries were manually delineated on B-mode images 

by an experienced radiologist. We plan to propose an 

automated method for lymph node segmentation based 

on convolutional neural networks to more objectively 

and reproducibly assess the lymph node lesions (46-48). 

Third, although more features can be obtained in dual 

mode ultrasound radiomics than the individual mode, it 

is inevitable that some features are useless and redundant. 

In this paper, the best and most suitable feature selection 

method was adopted, but there were still some features 

without statistical significance that could have been 

ignored. Therefore, in a future study, we will focus more on 

advanced statistical methods and machine learning methods 

to perform more effective dimensionality reduction and 

feature screening on data. Fourth, this study focused on 

B-mode and elastic ultrasound, while other ultrasound 

modes, such as Doppler ultrasound, contrast-enhanced 

ultrasound, and shear-wave elastography, are also effective 

methods for diagnosing lymph nodes (9). We also only 

acquired dual-mode images from 1 ultrasound imaging 

device, and our CAD methods were tailored for this device. 

In the future, more ultrasound modalities will be combined, 

and images from multiple devices at multiple centers will be 

enrolled to develop a more comprehensive CAD system (49). 

Conclusions 

We proposed a dual-mode radiomics approach on both 

B-mode ultrasound and sonoelastography for generating 

high-throughput quantitative features of lymph nodes, 

from which an optimized feature subset is selected with 

the LASSO + ANOVA method. Meanwhile, the intrinsic 

ultrasound imaging phenotypes are obtained by using 

hierarchical clustering. The dual-mode radiomics features 

and imaging phenotypes can capture distinctions between 

benign, lymphomatous, and metastatic lymph nodes and are 

valuable in lymph node discrimination.
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