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A two-component network is studied by Monte Callo simulation to model the lipid/spectrin membrane 
of red blood cells. The model predicts that the shear modulus decreases rapidly with the maximum 
length of the model spectrin lind shou ld be in the 10 - 7 11m 2 range for human red blood cells. A 
simplified model for the isolated spectrin network shows a negative Lame coefficient i... Transverse fluc
tuations of the dual membrane are found to be fl uidlike over the range of wavelengths investigated. 
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Erythrocytes are rem arkab le e lastic bodies Ill. They 

are stiff enough to recover t heir biconcave equilibrium 

shape after being squeezed through narrow capillaries 

on ly t of their diameter. Yet they a re soft enough to a l

low for thermally excited shape fluctuations as seen in the 

flicker phenomenon [21. Their basic membrane architec

ture is essen tia lly a three-component system. The lipid 

bilayer provides a relatively la rge area compression 

modulus and high flex ibility for bending deformations. 

The cytoskeleton on the cytoplasmatic side of this bilayer 

consists mainly of spectrin let ramers linked together at 

junctional complexes to form a quasi hexagonal network. 

The spect rin network and its junctional complexes are at

tached to the bilayer by integral membrane proteins. The 

third component, the glycoca li x, controls the interact ion 

with the extracellu la r ma trix or other cells. 

Understanding how the mechanica l properties of the 

red blood cell (RBC) membrane arise from its st ructural 

composition remains a sign ifican t cha llenge. While equ i

librium shapes. shape transformations, and fluctuations of 

giant lipid bilayer vesicles are now understood on the 

basis of cont inuum elastic models for the bending energy 

I3J. it is not yet fully clear whether and how the 

cytoskeleton affects the equilibrium shape of the erythro

cyte and its fluctuations. Recently, analysis of the flicker 

spect rum revealed a wavelengt h dependence characteris

tic of fluid membranes and, thus. no effect of the spect rin 

network for wavelengths less than 1.5 pm [41. Likewise. 

direct measu rement of the mean-square thickness fluctua

tions (51. which are dominated by the long-wavelength 

shape fl uctuat ions, seems to suggest that the shea r 

modu lus for sma ll fluctuations is much less than the one 

obtained from the micromechanica l experiments 161. A 

possible explanation for such a discrepancy might be a 

non linear behavior of the network with respect to shea r 
distortions. If the spectrin tethers can be expanded to a 

certain lengt h with almost no cost in energy. then one 

might expect that small fluctuations basically do not in

volve the network, whereas larger distortions as measured 

by micromechanical experiments involve shea r of this 

network. These effects a re difficult to model within a 

conti nuum mechanical model. 

In this paper, we present a mod~l for RBC membranes 

which draws its inspiration from computer simulations 

developed for both polymerized [7,81 and fluid 191 mem

branes. We capture what we believe to be the two essen

tial aspects of the RBC membrane. namely. the fluid bi

layer and the cytoskeleton. In our model, the elasticity is 

of en tropic origin, an aspect previously incorporated in 

phenomenological con tinuum models 110, 111. Using 

Monte Ca rlo simulations, we fi rst determine the two

dimensional elastic constants of the model membrane and 

then investigate its out-of-plane fluctuations in t hree di

mensions. 

We define the membrane as a two-dimensional surface 

represented by a fixed number N of hard spherical beads 

(or vertices) of diameter a. Two different sets of straight 

flexible tethers connect the beads together. One set of 

connections are flUid tethers, shown in light grey in Fig. 

I, whose maximal length of -J3a enforces membrane 

sel f-avoidance. These tethers are fluid in that they can 

migrate from vertex to vertex. Every bead has an aver

age of six flu id tethers allached to it. A second set of 

con nections are what we ca ll speclrin tethers, which f(lrm 

a hexagonal network with fixed connectivity, as shown in 

white in Fig. I. The spectrin tethers have a maximal 

length of Smu. which is the main model parameter. One 

out of every 36 beads is a n anchor point at which a hex

agona l junction point of the spect rin network is attached 

to the fluid network. Spectrin tethers a re allowed to in

tersect, as they on ly represent the in-plane projections of 

the three-dimensional protein chains. Beads con nected 

on ly by fluid tethers move freely through the membrane 

like lipid molecules. Anchor beads have their movement 

restricted by the spectrin tether const ra ints. as do the 

junction complexes in RBe's. However. the beads a re 

used only to mathematically represent the mem brane, 

a nd their number density shou ld not be equ ated with the 

number density of lipid molecules. 

In the first set of simulations to determine the elastic 

moduli, we confine the ve rtex positions to a two

dimensional plane. We use a Metropolis Monte Carlo 
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FIG. I. Sample configuration for s"",-9 viewed perpendicu
lar to Ihe x-y plane. The fluid telhers an: grey. while Ihe spec' 
Irin telhers are while. 

techniqut: to generate a set of appropriately weighted 

sample configu rations. A sweep across the membrane in

volves the following steps: (i) An attempt is madt: to 

change the position of each vertex by choosing a new po

sition randomly from within a square box of length 21 to 

the side centered on the old position. where we choose 

f -0. 1 a. (ii) An attempt is made to reconnect every nuid 

tether following the procedu re of Baumgartner and Ho 

(91. In this procedure, a tether is removed and replaced 

with a new tether connecting the two "opposi te" vertices 

which (along with the vertices at the ends of the original 

tether) define the two triangles having Ihe original tether 

in com mon. The spectrin tethers are not subject to pro

cedure Oi) since their attachment is permanent. Elich 

trial move is accepted if it docs not violate the tether 

length and bead size constraints. 

A rectangular membrane "patch" subject to periodic 

boundary conditions in the x and)' directions is used in 

the simulation . An isobaric simulation is performed by 

allowing the rectangle lengt hs L" and Ly to vary indepen

dently. There is one tria l move to rescale the rectangle 

size per sweep. The resca ling moves are accepted with a 

pseudo Boltzmann f:lctor (121 

W -exp( -IlPl1A + Nin O + t.AI A) 1 . 

where P is the pressure and t.A is the difference In the 

area (A =L"Ly ) before and after the rescating. Except 

where otherwise noted, the pressure has been set to zero. 

At least 100 or 200 sample configurations are generat

ed at each parameter set . Each configuration is separated 

by a "Rouse time" r =NI/ I Monte Carlo sweeps. The 

equilibration time is within a factor of 3 or less of the 

Rouse time for membranes of the size used here (7,8, J 31, 

so each in itialization is allowed to relax for lOr before 

sa mple collection commences. Be tween 5x 101> and 

lOx 10 6 attempted moves arc made on each vertex and 
tether for membranes with N-576. The ent ire sim ula-
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FIG. 2. Logarithmic plot of the elast ic constants {JJ.lQ 1 (cir
cles) and fjKAQ 1 (squares) as a function of the ma~imum spec
trin length Sm .. in the dual network. Our estimated ullcertaill
ties are in the 10% range. 

tion required approximately ten CPU months on a MIPS 

R 3000 processor. 
Our fial membrane is described by two lateral displace

ment fields II 1 and U2 which are funct ions of the referencc 

coord inate system ((I.XI). In terms of the strai n tensor 

lIij - (au;/dx j + all )aXi )/2, the elastic energy is (141 

H ~l- f d 2x{KA(Ul\+un)2/2 

+p[(lIl\ -un)2/2+2urlil, (2) 

whert: KA lJ nd J.l are the area com pressibilit y modulus and 

shear modulus, respectively. Computat ionall y. K;t and 

the Young's moduli Yx and Yy are determ ined from fluc

tuations of L", LJ .• and A: 

IlK;t -<A)f«A 2) _ (A }l ) . 

IlY . ~ - {<A ) «Ll } / ( L~ ) 2- 1) 1 - I. 

IlY} . -[(A)«L/ } / ( L )"} 2~ J)J - I . 

(J) 

(4) 

(l) 

Finally. the shear modulus p can be obtained from Yand 

KA viii 

(6) 

where we usc the average of Y" and Yy for Yin Eq. (6) . 

The behavior of these constants for the model network 

is shown in Fig. 2. The smallest va lue for Sma~ consisten t 

with our density of anchor vert ices is 6a. where all the 

beads touch at their hard-core lim it. Such a network 

should have infin itely large p and KA • From Fig. 2 we 

sec that p and KA decrease from large values as .fm~A in

creases from 6a. The compression modu lus IlK;ta I de

creases to about 20 and remains near th is value as s ",u 

becomes large. The shear modulus. on the other hand, 
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fall s approx imately as s ';a~ ± lover t he la rger va lues of 

Smu studied. This behavior is expected since networks 

with la rger Smu can support larger shear deformations. 

The compression modulus at large Smu can be under

stood by considering the single-component fluid [9J or po

lymerized [7,8J network model. Kantor and Nelson [8J 
point out th at in a two-dimensional network of harmon ic 

springs KA -2J.l-3'12kI2, where k is the spring consta nt. 

Kantor and Nelson estimate that the squa re-we ll tethers 

correspond to fJka 2 = 22 and hence they pred ict 

fJK,.,a 2= 20. In a separate simu lat ion of two-dimen

sional networks, we obtain fJK,.,a 2 -15 ± 2 for a polymer

ized network and {JK,.,a 2 - 18 ± 2 for a pu re fluid net

work. These results are in the ra nge expected from the 

harmonic network and are simila r to the va lue of the dual 

net. Thus, the compression modulus of the dual net at 

la rge Sm .. is determined by its fluid component and not 

its spectrin componen t. 

To understand the shear modulus at la rge Smax we 

simul ate a pure two-dimensional spectrin network with 

fixed hexagonal connectivity, N j vertices, and a tet her 

length ranging from 0 to Smn. The network is su bject to 

a tension (or negative pressure) P < 0 so tha t the only in

dependent variable in the simu lat ion is {JPs~u. T he ten

sion is used to control the area of the membrane so the 

pure spectrin network ca n be compared with the dual net

work . The simula tion is performed using the compu ta

tional rules set out above for the spect rin part of the dual 

network . 

The shear modulus {JJiS~ ... is shown in Fig. 3 as a func-
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FIG. J. Comparison of the shear mexlulus {JjJ5J.v, for the 
dUlll ne twork (circles) and the pure spectrin network (squares) 
as a function of the area per junction vertell ( A )/Nj 5ln ... The 

compression mexlulus fJKA5ln •• of the pure spectri n network is 
also shown <triangles). Most pure spectrin data were calcu lated 

with N j - 144, ellcept the two smallest areas which used 

"",-576. 

tion of the area per j unction ve rtex < A >INjs~a . for the 

dual network a nd the pure spectrin network. To within 

our 10% uncertainties, both networks have sim ilar va lues 

of fJJ.lS~ .. for those values of (A )/Njs;' .. which corre

spond to large Smu. in the du al model. Hence, we con

d ude that the shear modulus at large Sm .. is determined 

by the specl rin network. Also shown in Fig. 3 is the 

compressio n modulus {JKAS~U. of the spect rin network. 

The fact that KA is less than J.l indicates that the second 

Lame coeffi cien t 114J A-K,.,-jJ is negative. Materials 

with negative A ex pand transversely when st retched long i

tudinally. 

We can lise Fig. 3 to make a "first-principles" estimate 

of the shear modulus of human RBe's [1 5J, for which the 

spectrin has a maximal extension (Smu) of = 200 nm 

and an average ex tension of = 75 nm [II . This corre

sponds to ( A)/N js~u =0. 12, for which we obtain 

(JJ.lS~u = 2 from Fig. 3. Thi s value is equiva lent to 

J.l::::' 2x 10 - 7 J/ m2 and is more than an order of magni

tude less than what is found in the mic ropipette expe ri

ments [Ji- (6-9) X 10 - 6 J/ m2 16,16JJ. Inclusion of out

of-pla ne fluctuations and protein steric effects will un

doubtedly affect the numerical value of this prediction. 

At face va lue, the prediction supports the hypothesis that 

the shear modulus determined by fluct uations [4,5J is 

considerably smaller than that determined by mi

cromechanical experimen ts [6J. 

We now investigate the out-of-plane nuctuations of the 

dual network by embedd in g the membrane in three d i

mensions. To incorporate out-of-plane bending resis

tance, we add to our si mulation a discrete version [7,81 of 

the continuum Helfrich Hamiltonian [17J 

where each D is a unit vector normal to the plane formed 

by three vertices which are a ll nearest neighbors to one 

another. The su m is ove r al l n's whose defining pIa

quelles sha re a common tether. 

We use the same Metropolis algorithm described 

above, modified (j) by using a spati al cu be for each trial 

vertex move and (ij) by accepting or rejecting a move ac

cording to the Boltzmann weight exp( - (JAN), whe re AH 

is the energy difference of the tr ia l move as determined 

by Eq. (7). For low enough temperature, i.e., Kdis» I, 

the out-or-plane fluctuations are moderate a nd a un ique 

height function hex) can be defined for every vertex posi

tion x in th e x -y plane. Fluctuations are characterized by 

the correl ation function 

(8) 

of the Fourier-transformed height u (q )=S - I f d 2xh (x) 

xexp{iq · :d , where S is the surface a rea over which the 

two-dimensional integral d 2x is performed. Fo r long 

wavelengths or small q, C(q) = q -<H2(), where the 

roughness exponent {; determines how fluct uat ions grow 

with spatia l sepa ration, that is, ([h(x) - h(0)j2)=x2( 

3407 
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for large x. Fluid membranes are characterized by ,-I. 

while simulations variously show '=0.65 for tethered 

membranes [13.18-20) and ,- t in a continuum model 

of a polymerized membrane [211 and in a perturbation 

theory calculation [221. 

For the simulation we choose Smu -8. which is a value 

in the crossover regime between the harmonic (.~ma> 

= 6-7) and pure fluid (large smu) networks. Over our 

available range of qa from about 0.2 to 2. the in -plane 

correlation func tion drops by 3 orders of magnitude and 

scales like q - 4 .0~0.1 characterist ic of pure fluid mem

branes (for wh ich we independently find q - 1.9:1: 0.1). The 

present system size is too small to show the predicted 

crossover to a "solid" or "tetherlike" behavior of fluctua

tions at larger length scales [21.221. For a pure polymtr

ized network. we find C(q) scales like q - 1.7±0.2 for 

N -576. indicating that we require larger system sizes to 

reach thc asymptot ic regime (18). 

In conclusion. we introduce a dual network model for 

the RBC membrane in which the max imum spectrin 

length Sma.. is the essential parameter. In two dimensions. 

the mechanical properties of this network are determined 

entirely by entropy and geometry. At large Sma. the elas

tic moduli decouple: The compression modulus is a func

tion of the fluid bilayer properties wh ile the shear 

modulus falls rapidly with the speclrin length. A 

simplified model for the spectrin network shows a nega

live Lame coefficient A. We predict the shear modulus 

for human RBC's to be in the range (1_3)XlO - 7 J/m 2
• 

In three dimensions. the transverse fluctuations are fluid

like over the range of wavelengths available in the simu

lation. 
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