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Dual networks based 3D Multi-Person Pose
Estimation from Monocular Video

Yu Cheng, Bo Wang, and Robby T. Tan, Member, IEEE

Abstract—Monocular 3D human pose estimation has made progress in recent years. Most of the methods focus on single persons,
which estimate the poses in the person-centric coordinates, i.e., the coordinates based on the center of the target person. Hence,
these methods are inapplicable for multi-person 3D pose estimation, where the absolute coordinates (e.g., the camera coordinates) are
required. Moreover, multi-person pose estimation is more challenging than single pose estimation, due to inter-person occlusion and
close human interactions. Existing top-down multi-person methods rely on human detection (i.e., top-down approach), and thus suffer
from the detection errors and cannot produce reliable pose estimation in multi-person scenes. Meanwhile, existing bottom-up methods
that do not use human detection are not affected by detection errors, but since they process all persons in a scene at once, they are
prone to errors, particularly for persons in small scales. To address all these challenges, we propose the integration of top-down and
bottom-up approaches to exploit their strengths. Our top-down network estimates human joints from all persons instead of one in an
image patch, making it robust to possible erroneous bounding boxes. Our bottom-up network incorporates human-detection based
normalized heatmaps, allowing the network to be more robust in handling scale variations. Finally, the estimated 3D poses from the
top-down and bottom-up networks are fed into our integration network for final 3D poses. To address the common gaps between
training and testing data, we do optimization during the test time, by refining the estimated 3D human poses using high-order temporal
constraint, re-projection loss, and bone length regularizations. We also introduce a two-person pose discriminator that enforces natural
two-person interactions. Finally, we apply a semi-supervised method to overcome the 3D ground-truth data scarcity. Our evaluations
demonstrate the effectiveness of the proposed method and its individual components. Our code and pretrained models are available

publicly: https://github.com/3dpose/3D-Multi-Person-Pose.

Index Terms—3D multi-person pose estimation, semi-supervised learning, test time optimization.

1 INTRODUCTION

3D multi-person pose estimation from a monocular
video is useful for many real-world applications (e.g., [58],
[59], [60], [61], [62]). However, this multi-person estima-
tion is challenging not only because of the inter-person
occlusion but also because of the necessity to estimate 3D
poses in an absolute coordinate system (e.g., the camera
coordinates), where each person is located properly to the
other persons reflecting their locations in the real scenes [35],
[38]. However, the progress in 3D human pose estimation
in the last few years mostly lies in single-person case.
Existing methods can be generally grouped into top-down
or bottom-up approaches, where the top-down methods
employ a human detection method to detect each person
and then perform human pose estimation, while the bottom-
up methods estimate all human keypoints simultaneously
and then group them to form one or several skeletons.

Multi-person pose estimation methods can be grouped
into top-down and bottom-up approaches. Top-down meth-
ods first use human detection to detect every person in an
image, and then process the cropped image patch of each
detected person individually. The benefit of the top-down
approach is that human detection can ensure that in each
image patch there is only one target person. Moreover, the
size of the image patches can be normalized, alleviating
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the variation of human scales. The downside of the top-
down approach is that, if human detection fails to detect
one or a few persons, then there is no chance to predict
the poses for those persons. Unlike top-down methods,
bottom-up methods do not rely on human detection to
detect each person, instead, they simultaneously detect all
possible keypoints in a given image, and then group them to
form individual human poses. The disadvantage of bottom-
up methods is that the whole image is processed at once
and no person-wise normalization can be performed, and
thus the accuracy of pose estimation for small-scale persons
particularly can be affected.

Based on the pros and cons of top-down and bottom-up
methods, it is clear that neither one is suitable for all scenar-
ios. Top-down methods can miss some persons in the case
of occlusions, while bottom-up methods can not achieve
good accuracy for small-scale persons. Such observation
motivates us to develop a dual network for multi-person
3D pose estimation that integrates both the top-down and
bottom-up networks, to robustly handle the challenging
cases including occlusions and small-scale persons.

Table [l summarizes the top-down and bottom-up meth-
ods in 2D and 3D human pose estimation. The majority of
them are top-down and bottom-up 2D human pose estima-
tion, followed by methods in 3D human pose estimation
for single persons, which use the person-centric coordi-
nates. Few methods are proposed to handle 3D multi-person
pose estimation, particularly those that employ the bottom-
up approach. Table [2| summarizes the differences between
single-person and multi-person 3D pose estimation. Single-
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TABLE 1

Summary of the top-down and bottom-up 2D/3D human pose estimation methods and the coordinate systems of the obtained human pose results.

Task Coordinate system Metric Dataset Publication
MPJPE, Human3.6M,
3D human pose Person-centric PA-MPJPE, 3DHP, [12], [13], [14], [15], [16] [17], [18], [19], [20], [21]
p (relative coordinate) PCK, HumanEva, 122], [23], [24], [25], [26] [27], [28], [29], [301, [31]
AUC,.¢; Penn Action
PCKabsr
3D multi-person pose  CAImera-centric AP, }\%XPOTS-SD/ [32], [33], [34], [35], [36], [37], [53], [54], [56, [57]
p p (absolute coordinate) MPRE [35], ! 1381, [55]
3DPW
F1 value [54]
TABLE 2

Summary of the differences between 3D human

person methods use the person-centric coordinates, while
multi-person methods use the camera-centric coordinates.
This difference further influences the metrics and datasets
used for evaluations.

Existing top-down 3D pose estimation methods rely
considerably on human detection to localize each person,
prior to estimating the joints within the detected bounding
boxes, e.g., [25], [28], [35]. These methods show promising
performance for single-person 3D-pose estimation [25], [28]],
yet since they treat each person individually, they have no
awareness of non-target persons and the possible interac-
tions. When multiple persons occlude each other, human
detection also becomes unreliable. Moreover, when target
persons are closely interacting with each other, the pose es-
timator may be misled by the nearby persons, e.g., predicted
joints may come from the nearby non-target persons.

Recent bottom-up methods (e.g., [53], [54], [55]) achieve
comparable performance in multi-person datasets without
using human detection. As bottom-up methods consider
multiple persons simultaneously and, in certain cases, may
better distinguish the joints of different persons. Unfortu-
nately, without using detection, bottom-up methods suffer
from the scale variations (i.e., no bounding box to normalize
image patch), and the pose estimation accuracy is compro-
mised, rendering inferior performance compared with top-
down approaches [49]]. As shown in Fig.[1} neither top-down
nor bottom-up approach alone can handle all the challenges
at once, particularly the challenges of: inter-person occlu-
sion, close interactions, and human-scale variations.

In this paper, we aim to integrate the top-down and
bottom-up approaches to achieve more accurate and robust
3D multi-person pose estimation from a monocular video.
To achieve this, we introduce a top-down network to es-

pose estimation and multi-person pose estimation.

timate human joints inside each detected bounding box.
Unlike existing top-down methods that only estimate one
human pose given a bounding box, our top-down network
predicts 3D poses for all persons inside the bounding box.
Our top-down network generates the joint heatmaps and
feeds them to our bottom-up network, which enables our
bottom-up network to handle the scale variations. Finally,
the estimated 3D poses from both top-down and bottom-up
networks are processed by our integration network to obtain
the final estimated 3D poses given an image sequence.

Unlike existing methods’ pose discriminators, which are
designed solely for a single person, and consequently cannot
enforce natural inter-person interactions, we propose a two-
person pose discriminator that enforces two-person natural
interactions. We also employ semi-supervised learning to
mitigate the data scarcity problem where 3D ground-truth
data is limited. To address the domain gap problem between
the training and testing data, we do optimization during test
time. In particular, we propose novel approaches to refine
the estimated 3D human poses through high-order temporal
constraint, reprojection loss, and bone-length regularization.

This paper is based on our conference paper [63]. Unlike
our conference version, however, we add test time opti-
mization to handle the gap between training and testing
data in Section [3.5, which is critical for our method to
process unseen videos. For this test-time optimization to
work, we propose new unsupervised losses, i.e., high-order
temporal constraints in Eq. reprojection loss in Eq.
and bone-length regularization in Eq. We also provide
more analysis for inter-person pose discriminator in Table
detailed information of the semi-supervised learning part in
Fig. |7l and more extensive qualitative comparisons against
SOTA methods on MuPoTS and JTA datasets in Fig. [10|and
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Fig. 1. Incorrect 3D multi-person pose estimation from existing top-down
(2nd row) and bottom-up (3rd row) methods. The top-down method is
RootNet [35], the bottom-up method is SMAP |55]. The input images
are from MuPoTS-3D dataset [56]. The top-down method suffers from
inter-person occlusion and the bottom-up method is sensitive to scale
variations (i.e., the 3D poses of the two persons in the back are inac-
curately estimated). Our method substantially outperforms the state-of-
the-art.

In summary, our contributions are listed as follows.

¢ We introduce a novel two-branch framework, where
the top-down network detects multiple persons and
the bottom-up network incorporates the normalized
image patches in its process. Our framework gains
benefits from the two networks, and at the same time,
overcomes their shortcomings.

e We employ multi-person pose estimation for our
top-down network, which can effectively handle the
inter-person occlusion and interactions caused by
detection errors.

e We incorporate human detection information into
our bottom-up network so that it can better handle
the scale variation, which addresses the problem in
existing bottom-up methods.

o Unlike the existing discriminators that focus on sin-
gle person pose, we introduce a novel discriminator
that enforces the validity of human poses of close
pairwise interactions in the camera-centric coordi-
nates.

e We propose high-order temporal constraint and bone
length loss for test time optimization to improve the
generalization capability of our method on testing
videos.

2 RELATED WORKS

Top-Down Monocular 3D Human Pose Estimation Exist-
ing top-down 3D human pose estimation methods com-
monly use human detection as an essential part of their
methods to estimate person-centric 3D human poses [13],
[16], 119], [25], [28], [31], [64]. They demonstrate promising
performance on single-person evaluation datasets [65], [66],
unfortunately the performance decreases in multi-person
scenarios, due to inter-person occlusion or close interactions
[16], [28]. Moreover, the produced person-centric 3D poses
cannot be used for multi-person scenarios, where camera-
centric 3D-pose estimation is needed. Top-down methods
process each person independently, leading to inadequate
awareness of the existence of other persons nearby. As a
result, they perform poorly on multi-person videos where
inter-person occlusion and close interactions are commonly
present. Rogez et al. [32], [67] develop a pose proposal
network to generate bounding boxes and then perform pose
estimation individually for each person. Recently, unlike
previous methods that perform person-centric pose esti-
mation, Moon et al. [35] propose a top-down 3D multi-
person pose-estimation method that can estimate the poses
for all persons in an image in the camera-centric coordinates.
However, the method still relies on detection and processes
each person independently; hence it is likely to suffer from
inter-person occlusion and close interactions.

Bottom-Up Monocular 3D Human Pose Estimation A few
bottom-up methods have been proposed [34], [36], [37],
[54], [55]. Fabbri et al. [54] introduce an encoder-decoder
framework to compress a heatmap first, and then decom-
press it back to the original representations in the test time
for fast HD image processing. Mehta et al. [34] propose
to identify individual joints, compose full-body joints, and
enforce temporal and kinematic constraints in three stages
for real-time 3D motion capture. Li et al. [36] develop
an integrated method with lower computation complexity
for human detection, person-centric pose estimation, and
human depth estimation from an input image. Lin et al. [37]
formulate the human depth regression as a bin index esti-
mation problem for multi-person localization in the camera
coordinate system. Zhen et al. [55] estimate the 2.5D repre-
sentation of body parts first and then reconstruct camera-
centric multi-person 3D poses. These methods benefit from
the nature of the bottom-up approach, which can process
multiple persons simultaneously without relying on human
detection. However, since all persons are processed at the
same scale, these methods are inevitably sensitive to human
scale variations, which limits their applicability on wild
videos.

Top-Down and Bottom-Up Combination Earlier non-deep
learning methods exploring the combination of top-down
and bottom-up approaches for human pose estimation are
in the forms of data-driven belief propagation, different
classifiers for joint location and skeleton, or probabilistic
Gaussian mixture modelling [68], [69], [70]. Recent deep
learning based methods that attempt to make use of both
top-down and bottom-up information are mainly on esti-
mating 2D poses [71], [72], [73], [74]. Hu and Ramanan [71]
propose a hierarchical rectified Gaussian model to incor-
porate top-down feedback with bottom-up convolutional
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Fig. 2. The overview of our framework. Our proposed method comprises four major components: 1) A top-down network to estimate fine-grained
instance-wise 3D pose. 2) A bottom-up network to generate a global-aware camera-centric 3D pose. 3) An integration network to generate final
estimation based on paired poses from top-down and bottom-up to take benefits from both networks. 4) A test time optimization process to refine
the obtained integrated 3D poses for the final result. Note that the semi-supervised learning part is a training strategy so it is not included in this

figure.

neural network (CNN). Tang et al. [72] develop a framework
with bottom-up inference followed by top-down refinement
based on a compositional model of the human body. Cai
et al. [73] introduce a spatial-temporal graph convolutional
network (GCN) that uses both bottom-up and top-down
features. These methods explore to benefit from top-down
and bottom-up information. However, they are not suitable
for 3D multi-person pose estimation because the fundamen-
tal weaknesses in both top-down and bottom-up methods
are not addressed completely, which include inter-person
occlusion caused detection and joints grouping errors, and
the scale variation issue. Li et al. [74] adopt LSTM and
combine bottom-up heatmaps with human detection for
2D multi-person pose estimation. They address occlusion
and detection shift problems. Unfortunately, they use a
bottom-up network and only add the detection bounding
box as the top-down information to group the joints. Hence,
their method is essentially still bottom-up and thus still
vulnerable to human scale variations.

Test Time Optimization for Human Pose Estimation Al-
though supervised learning approaches show promising
results in human pose estimation, it is unavoidable to
encounter images/videos in testing which are not seen
in training datasets in terms of appearance, motion, pose,
occlusions, etc. As a result, existing deep learning based
pose estimation methods may not perform well on testing
data. A few recent works explore to mitigate these issues
[75], [76]], [77], [78]. Zhang et al. [75] propose to check the
validity of estimated 2D pose and the consistency of lifted
3D poses from randomly projected 2D poses to refine the
estimated 3D human pose. Cheng et al. [76] propose to use
2D pose estimator’s confidence to weight a re-projection loss
in inference stage to make pose corrections when estimated
3D pose is erroneous but the 2D pose is more accurate
where 2D pose estimator is trained on dataset with larger
variations in appearance and pose (i.e., 2D annotation is
easier to obtain compared to 3D ground-truth). Shimada
et al. [77] propose to enforce physical constraints to ensure
the estimated 3D human poses are physically plausible. Su
et al. [78] propose a neural radiance fields (NeRF) based

3D pose correction framework where estimated 3D pose
of a person is used as input for a customized NeRF to
render the person to compute a image difference loss against
input image with the person to correct the initial 3D pose
estimated.

3 METHOD

Fig. 2| shows our pipeline, which consists of four major
parts to accomplish the multi-person camera-centric 3D hu-
man pose estimation: a top-down network for fine-grained
instance-wise pose estimation, a bottom-up network for
global-aware pose estimation, an integration network to
integrate the estimation results of the top-down and bottom-
up networks with inter-person pose discriminator, and a test
time optimization process to refine and obtain the final 3D
human poses. Moreover, a semi-supervised training process
is proposed to enhance the 3D pose estimation based on
reprojection consistency.

3.1 Top-Down Network

Given a human detection bounding box, existing top-down
methods estimate full-body joints of one person. Conse-
quently, if there are multiple persons inside the box or
partially out-of-bounding box body parts, the full-body joint
estimation are likely to be erroneous. Fig. [3|shows such fail-
ure examples of existing methods. In contrast, our method
produces the heatmaps for all joints inside the bounding
box (i.e., enlarged to accommodate inaccurate detection),
and estimates the ID for each joint to group them into
corresponding persons, similar to [42].

Given an input video, for every frame we apply a human
detector [1], and crop the image patches based on the
detected bounding boxes. A 2D pose detector [49] is applied
to each patch to generate heatmaps for all human joints,
such as shoulder, pelvis, ankle, and etc. Specifically, our top-
down loss of 2D pose heatmap is an L2 loss between the
predicted and ground-truth heatmaps, formulated as:

TD
Lhmap

=|H - HJ3, )
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Fig. 3. Examples of estimated heatmaps of human joints. The left image
shows the input frame overlaid with an inaccurate detection bounding
box (i.e., only one person detected). The middle image shows the esti-
mated heatmap of existing top-down methods. The right image shows
the heatmap of our top-down network.

where H and H are the predicted and ground-truth
heatmaps, respectively.

Having obtained the 2D pose heatmaps, a directed GCN
network is used to refine the potentially incomplete poses
caused by occlusions or partially out-of-bounding box body
parts, and two TCNs are used to estimate both person-
centric 3D pose and camera-centric root depth based on a
given sequence of 2D poses similar to [38]. As the TCN
requires the input sequence of the same instance, a pose
tracker [79] is used to track each instance in the input video.
We also apply data augmentation in training our TCN so
that it can handle occlusions [28|.

3.2 Bottom-Up Network

Top-down methods perform estimation inside the bounding
boxes, and thus are lack of global awareness of other per-
sons, leading to difficulties to estimate poses in the camera-
centric coordinates. To address this problem, we further pro-
pose a bottom-up network that processes multiple persons
simultaneously. Since the bottom-up pose estimation suffers
from human scale variations, we concatenate the heatmaps
from our top-down network with the original input frame
as the input of our bottom-up network. With the guidance
of the top-down heatmaps, which are the results of the
object detector and pose estimation based on the normalized
boxes, the estimation of the bottom-up network will be more
robust to scale variations. Our bottom-up network outputs
four heatmaps : a 2D pose heatmap, ID-tag map, relative
depth map, and root depth map. The 2D pose heatmap and
ID-tag map are defined in the same way as in the previous
section (3.1). The relative depth map refers to the depth map
of each joint with respect to its root (pelvis) joint. The root
depth map represents the depth map of the root joint.

In particular, the loss functions LY and LEY for the
heatmap and ID-tag map are similar to [42]. In addition, we
apply the depth loss to the estimations of both the relative
depth map A" and the root depth h™*°*. Please see Fig. for
example of the four estimated heatmaps from the bottom-
up network. For N persons and K joints, the loss can be
formulated as:

1
Ldepth — ﬁ Z Z ‘hk:(xnkvynk) - dnk:|27 (2)
n k

where h is the depth map and d is the ground-truth depth
value. Note that, for the pelvis (i.e., the root joint), the depth
is a camera-centric depth. For other joints, the depth is
relative with respect to the corresponding root joint.

We group the heatmaps into instances (i.e., persons), and
retrieve the joint locations using the same procedure as in
the top-down network. Moreover, the values of the camera-
centric depth of the root joint 2"°° and the relative depth
for the other joints 2 are obtained by retrieving from the

corresponding depth maps where the joints (i.e., root or
others) are located. Specifically:
zroot — hroot( root yu)ot) (3)
a4 = hid(%,kayzyk) €

where ¢, k refer to the iy, instance and k;}, joint, respectively.

3.3

Having obtained the results from the top-down and bottom-
up networks, we first need to find the corresponding poses
between the results from the two networks, i.e., the top-
down pose PP and bottom-up pose PJBU belong to the
same person. Note that P stands for camera-centric 3D pose
throughout this paper.

Given two pose sets from bottom-up network PBY and
top-down network PTP we match the poses from both sets,
in order to form pose pairs. The similarity of two poses is
defined as:

Integration with Interaction-Aware Discriminator

K
Sim; j = > min(c, el P)OKS(PHY, P]P), (5)
k=0
where:
d(z,y)?
OKS(xvy) :exp(— 2820'2 )7 (6)

OKS stands for object keypoint similarity [8], which mea-
sures the joint similarity of a given joint pair. d(z,y) is the
Euclidean distance between two joints. s and o are two con-
trolling parameters. Sim; ; measures the similarity between
the iz, 3D pose PPY from the bottom-up network and the
Jin 3D pose PJ-TD from the top-down network over K joints.
Note that both poses from top-down P?P and bottom-up
PBU are camera-centric; thus, the similarity is measured
based on the camera coordinate system. The ¢ ik U and c] P
are the confidence values of joint & for 3D poses PV and
PTD respectively. Having computed the snmlarlty matrlx
between the two sets of poses PTP and PBY according to
the Sim; ; definition, the Hungarian algorithm [80] is used
to obtain the matching results.

Once the matched pairs are obtained, we feed each pair
of the 3D poses and the confidence score of each joint to our
integration network. Our integration network consists of 3
fully connected layers, which outputs the final estimation.

Integration Network Training To train the integration net-
work, we take some samples from the ground-truth 3D
poses. We apply data augmentation: 1) random masking the
joints with a binary mask M*?* to simulate occlusions; 2)
random shifting the joints to simulate the inaccurate pose
detection; and 3) random zeroing one from a pose pair to
simulate unpaired poses. The loss of the integration network
is an L2 loss between the predicted 3D pose and its ground-
truth: .

Lint = 22 > 1P = P/, @)

k
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where K is the number of the estimated joints. P and P are
the estimated and ground-truth 3D poses, respectively.

Inter-Person Discriminator For training the integration net-
work, we propose a novel inter-person discriminator. Unlike
most existing discriminators for human pose estimation (e.g.
[26], [31]), where they can only discriminate the plausible
3D poses of one person, we propose an interaction-aware
discriminator to enforce the interaction of a pose pair is
natural and reasonable, which not only includes the ex-
isting single-person discriminator, but also generalize to
interacting persons. Specifically, our discriminator contains
two sub-networks: D, which is dedicated for one person-
centric 3D poses; and, D2, which is dedicated for a pair of
camera-centric 3D poses from two persons. We apply the
following loss to train the network, which is formulated as:

Lais = log(C) + log(1 — C) ®)
where:
C = 0.25(D;(P%) + D1(P%)) + 0.5D(P*, P?)

C = 0.25(Dy (P") + Dy(PY)) + 0.5D5(P*, P) ©)

where P® P’ are the estimated poses of person a and
person b, respectively. P are the estimated and ground-truth
3D poses, respectively.

3.4 Semi-Supervised Training

Semi-supervised learning is an effective technique to im-
prove the network performance, particularly when the data
with ground-truths are limited. A few works also explore
how to make use of the unlabeled data [79], [81], [82]. We
first train our network with the 3D ground-truth dataset
only, and then use the trained network to generate the
pseudo-labels of unlabelled data, which are then used to
fine tune the network.

The generated pseudo-labels cannot be directly used be-
cause some of them are likely incorrect. Unlike recent noisy
student training strategy [83], where data with ground-truth
labels and pseudo-labels are mixed to train the student net-
work by adding various types of noise (i. e., augmentations,
dropout, etc), we use reprojection loss and multi-perspective
loss to correct the errors in the pseudo-labels. Our Semi-
supervised Learning (SSL) pipeline is shown in Fig. 4] First,
we use the trained model to generate the pseudo-label of
the unlabelled data, which is the COCO dataset in our
experiment. Note that, we use only the images, and not
the 2D ground-truths of the joints to mimic the unlabelled
data scenario. Therefore, we use two consistency terms to
measure the quality of all the pseudo-labels: the reprojection
loss and multi-perspective loss.

As the pose variations of 2D datasets are more abun-
dant than those of 3D datasets, e.g. COCO compared to
H36M, the estimated 2D poses are more robust than the
estimated 3D poses in terms of different environments and
poses. Existing reprojection loss [26] measures the deviation
between generated 3D poses and detected 2D poses. Unlike
this, we make use of the confidence of the joints from the
2D pose heatmap as weight in computating the reprojection
loss to adjust adaptively how much we should enforce the
reprojected 3D poses to match the estimated 2D poses based

Reprojection error

Estimated 2D 3D Pseudo-label
Input image l

1

f - f -9

Re-estimation Re-projected 2D Random Rotation

I |

Multi-perspective error

Fig. 4. The illustration of our SSL pipeline. The SSL aims to keep two
consistency: reprojection and multi-perspective.

on the confidence of the joints. Thus, the reprojection loss is
formulated as:

K
1
Lyep = Ve E Crlrep(Xap i) — Xop i|? (10)
=1

where the X3p is the predicted 3D pose from the network,
and X,p stands for the 2D estimations from our multi-
person 2D pose estimator. rep(-) is the reprojection function
from 3D to 2D. K stands for the number of joints in
total. Moreover, the loss is a weighted sum of each joint’s
confidence score C}, which is the maximum value of the
joint’s heatmap.

A multi-perspective loss is used as an additional mea-
sure to enforce the consistency of the predicted 3D poses
from different viewing angles [81]. As shown in Fig. [
given a pseudo-label 3D pose Pi}, we randomly rotate
the pose along y axis (i.e., y-axis is perpendicular to the
ground plane) to obtain P55, and re-project it to the 2D
coordinates. Finally, we predict the P;5°® based on the 2D
projection from P

The reprojection loss measures the deviation between the
projection of generated 3D poses and the detected 2D poses.
Since there are more abundant data variations in 2D pose
dataset compared to 3D pose dataset (e.g., COCO is much
larger compared to H36M), the 2D estimator is expected to
be more reliable than its 3D counterpart. Therefore, mini-
mizing a reprojection loss is helpful to improve the accuracy
of 3D pose estimation.

The multi-perspective loss, L,,,, measures the consis-
tency of the predicted 3D poses from different viewing
angles. This loss indicates the reliability of the predicted 3D
poses. Based on the two terms, our semi-supervised loss,
Lgsr,, is formulated as,

Lss. = w(Lrep + me) + Lais, (11)
where w is a weighting factor to balance the contribution of
the reprojection and multi-perspective losses. In the train-
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ing stage, w first focuses on easy samples and gradually
includes the hard samples. The weight, w, is formulated as:

Enp )

w = softmax(%) + softmax( (12)
T

where r is the number of training epochs.

3.5 Test Time Optimization

Unlike the semi-supervised training in Section where
the network is fine-tuned with the extra data. In this section,
the purpose of test time optimization is to refine the esti-
mated 3D poses at the inference time without permanently
updating the network itself. As the training process focuses
on fitting an optimal model only on the training set, and
is not aware of the gap between training and testing data,
test time optimization brings performance improvement by
adopting the prediction from trained model to the testing
data.

The domain gap can be observed from both temporal
and spatial perspectives. First, the speed of motion varies
from video to video. In training data, the speed of motion is
fixed and cannot cover all possible variations even with aug-
mentations, which results in the gap from testing data. Since
the TCN takes temporal information into consideration, the
change of motion speed can drag down the accuracy of
predicted 3D poses. Second, since there is a limited variation
of bone lengths in the training data, the TCN learns a strong
prior of fixed bone length. This will result in inaccurate
predictions because the same 2D poses can correspond to
different 3D poses with different bone lengths. To this end,
we propose two strategies for inference stage optimization
with two regularizations: trajectory, reprojection, and bone-
length regularization.

First, we introduce the trajectory regularization to re-
strict the motion from unusual motions. Different motions
follow a certain trajectory which can be expressed as a
motion function f,,(¢). Taking a Taylor expansion of this
function, we can approximate the motion function by a
high-order polynomial. Our target is to predict the pose at
the ¢4, future frame given the poses in frames 0 to ¢ — 1,
which is formulated as:

fm(t) = co + c1t + cot® + cst® + ... (13)

As an approximation, we take the first 3 orders and approx-
imate the coefficients cg, c1, c2, c3 using linear regression.
The temporal trajectory constraint is the mean squared error
between the estimated pose P, and the trajectory fp,(t) at
frame ¢:

Ltraj = (Pt - fm(t))2

Second, we propose to utilize the reprojection regulariza-
tion to make the predicted 3D joints to be consistent with 2D
joints. The same function as Eq. is used as the reprojec-
tion loss. Third, as the bone length should be consistent for
the same person across all frames in one video, we propose
to use a bone length constraint to regularize the variation
of each estimated 3D pose sequence. We first set up latent
variables By, By, ... to represent the lengths of all bones in
human skeleton, and the bone loss is represented as:

Lbone - Z Z(B;,t - Bi,t)2a
t A

(14)

(15)

where B; is the bone length of estimated poses. By mini-
mizing the equation above, we concurrently minimize the
variance of bone lengths across the whole video, as well as
the latent variables.

In summary, the loss function for the test time optimiza-
tion is:

LTTO = Ltraj + creerep + CboneLbone; (16)

where ¢,¢p and cpone are the coefficients for reprojection and
bone losses. Empirically, we observe that using the two-
stage training strategy with different coefficients between
different losses will result in better convergence of the test-
time optimization process. First, we train with c¢,¢, = 0.1
and cpone = 1 with 3000 iterations. Then, we increase the
Crep to 100 to restrict more on the reprojection consistency
for 3000 more iterations. We refer to the first step as “one-
stage” and to the whole process as “two-stage” optimization
strategy.

4 EXPERIMENTS
4.1 Datasets

We use MuPoTS-3D [56] and JTA [84] datasets to evaluate
the camera-centric 3D multi-person pose estimation per-
formance by following the existing methods [35], [54] and
their training protocols (i.e., train, test split). In addition,
we use 3DPW [85] to evaluate person-centric 3D multi-
person pose estimation performance following [86], [87]. We
also perform evaluation on the widely used Human3.6M
dataset [65] for person-centric 3D human pose estimation
following [25], [26].

MuPoTS-3D [56] is a 3D multi-person testing set that
consists of >8000 frames of 5 indoor and 15 outdoor scenes,
and its corresponding training set is augmented from 3DHP,
called MuCo-3DHP. The ground-truth 3D pose of each per-
son in a video is obtained from a multi-view markerless
motion capture system, which is suitable for evaluating 3D
multi-person pose estimation performance in both person-
centric and camera-centric coordinates. Following [35]], the
training set (MuCo-3DHP) is used for training our bottom-
up network, and MuPoTS-3D is used only for performance
evaluation.

JTA [84] is a synthesized dataset from Grand Theft
Auto V (GTA-V) game scene including various illumination,
viewpoints, and occlusion. It is a multi-person dataset with
at most 32 persons appearing in one frame. In addition, the
images also demonstrate large person size variation as the
crowd spread from close to the camera and far from the
camera in various scenes. Because of these reasons, even
though it is a synthetic dataset, we want to evaluate it.
The dataset contains 512 videos, in which there are 256,
128, 128 for training, validation and testing, respectively. We
follow the work [54] to estimate the F1 score under different
distance thresholds as a performance evaluation metric.

Human3.6M [65] is widely used for 3D human pose
estimation. The dataset contains 3.6 million single-person
images where an actor performs different activities in mocap
studio at each video clip, so it is suitable for evaluation of
3D single-person pose estimation. Therefore, Human3.6M
is used for person-centric pose estimation evaluation to
demonstrate the performance of the proposed method
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Fig. 5. Interaction loUs of 3DPW test set.

against other person-centric human pose estimation meth-
ods. Following previous works [24], [25], [26], the subject
1,5,6,7,8 are used for training, and 9 and 11 for testing.

3DPW [85] is an outdoor multi-person video dataset
for 3D human pose reconstruction. Following previous
methods [86], [87], we use 3DPW for testing without any
fine-tuning. The ground-truth of 3DPW is SMPL 3D mesh
model [88], where the definition of joints differs from what
is used in 3D human pose estimation (skeleton-based) like
Human3.6M, so 3DPW is rarely used in the evaluation of
skeleton-based methods [|89].

As evaluation on 3DPW cannot objectively reflect the
performance of the skeleton-based methods, due to different
definitions of joints. We select the top 3000 frames with the
largest IoU between the target person (i.e., the person with
3D ground-truth label) and other persons based on detection
out of 3DPW test set to create an inter-person occlusion
subset, and then perform evaluation on it. The IoU statistics
of the 3DPW test set is shown in Fig. |5, and the threshold at
3000*" frame is 0.26.

In fact, the error on this subset is still not a good
performance indicator, the performance change of a method
between the full testing set and this subset can measure
how well the method can handle the inter-person occlusion
problem. As shown in Table our method shows the
smallest error increase among all the existing methods,
which demonstrates that our method is indeed capable of
handling inter-person occlusion more effectively.

4.2 Implementation Details

We use HRNet-w32 [9] as the backbone network for both
multi-person pose estimators in the top-down and bottom-
up networks. The top-down network is trained for 100
epochs on the COCO dataset [90] with the Adam optimizer
and learning rate 0.001. The bottom-up network is trained
for 50 epochs with the Adam optimizer and learning rate
0.001 on a combined dataset of MuCO [91] and COCO [90].

4.3 Evaluation Metrics

Since the majority of 3D human pose estimation methods
produce person-centric 3D poses, to be able to compare, we

Method APQTS"‘” AUC,.; | PCK | PCKgps
TD (w/0 MP) 43.7 41.0 81.6 42.8
TD (w MP) 45.2 48.9 87.5 45.7
BU (w/0 CH) 442 34.5 76.6 40.2
BU (w CH) 46.1 35.1 78.0 415
TD + BU (w/o0 MP, CH) 449 42.6 82.8 43.1
TD + BU (hard) 46.1 48.9 87.5 46.2
TD + BU (linear) 46.1 49.2 88.0 46.7
TD + BU (w/0 PM) 46.0 48.6 85.5 453
TD + BU (IN) 46.3 49.6 88.9 474
TD + BU (IN) + SSL 46.3 50.6 89.3 47.7
TD + BU (IN) + TTO 46.5 50.1 89.2 47.6
Full model 46.5 50.7 89.6 48.1

TABLE 3

Ablation study on MuPoTS-3D dataset. TD, BU, MP, CH, IN, PM, SSL,
TTO stand for top-down, bottom-up, multi-person pose estimator,
combined heatmap, integration network, pose matching,
semi-supervised learning, and test time optimization, respectively. Best
in bold, second best underlined.

perform person-centric 3D human pose estimation. We use
Mean Per Joint Position Error (MPJPE), Procrustes analysis
MPJPE (PA-MPJPE), Percentage of Correct 3D Keypoints
(PCK), and area under PCK curve from various thresholds
(AUC};) following the literature [25], [31], [35]. Since we
focus on 3D multi-person camera-centric pose estimation,
we also use the metrics designed for evaluating perfor-
mance in the camera coordinate system, including average
precision of 3D human root location (APQTg)Ot) and PCK s,
which is PCK without root alignment to evaluate the ab-
solute camera-centric coordinates from [35], and F1 value
following [54].

4.4 Ablation Studies

Analysis of the Major Components Ablation studies are
performed to validate the effectiveness of each sub-module
of our framework as in Table 3 We validate our top-down
network by using an existing top-down pose estimator (i.e.,
detection of one full-body joints) as a baseline, abbreviated
as TD (w/o MP) to compare to our top-down network
denoted as TD (w MP). We also validate our bottom-up
network by using existing bottom-up heatmap estimation
(i.e., estimate persons at the same scale) as a baseline, named
BU (w/o CH) to compare to our bottom-up network, called
BU (w CH). To evaluate our integration network, we use
three baselines. The first is a straightforward integration by
combining existing TD and BU networks, called TD + BU
(w/0 MP, CH). The second is hard integration, abbreviated
TD + BU (hard), where the top-down person-centric pose
is always used, plus the root depth from the bottom-up
network. The third is linear integration, abbreviated TD +
BU (linear), where the person-centric 3D pose from top-
down is combined with its corresponding bottom-up one
based on the confidence values of the estimated heatmap.
Compared against these baselines, the proposed integration
solution is abbreviated as TD + BU (IN), we also provide
the result where pose matching is not used, abbreviated
TD + BU (w/o PM) to show the effect of pose matching.
To evaluate other major components in our method, we
also provide the following baselines: TD + BU (IN) + SSL
where semi-supervised learning is used; TD + BU (IN) +
TTO where test time optimization is used but no SSL. In the
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Method AP0t | AUChe | PCK | PCKgps Method MPJPE (w. GT) | MPJPE (w/o GT)
Rep 46.3 434 77.2 40.7 Baseline 44.84 58.71
MP 46.3 32.2 72.8 29.5 + reprojection regularization 39.27 54.45
Rep+dis 46.3 49.9 89.1 46.8 + trajectory regularization 38.92 53.91
Rep+MP+dis 46.3 50.6 89.3 47.7 + bone length consistency 37.11 51.30
TABLE 4 + one-stage opti.mi‘zati.on 35.75 50.66
Ablation study on MuPoTS-3D dataset. Rep, MP, and dis stand for + two-stage optimization 34.95 49.31

reprojection, multi-perspective, and discriminator. Best in bold, second TABLE 6

best underlined.

Method | APt | AUC,.; | PCK | PCKgps
Baseline | 463 134 772 40.7
Disl 46.1 48.9 873 46.1
Dis2 46.3 49.9 89.1 46.8
Dis3 46.3 49.7 89.0 46.7
TABLE 5

Parameter analysis of different number of poses to check in the
inter-person discriminator on MuPoTS-3D dataset. Dis1, Dis2, and Dis3
stand for checking one, two, and three poses in the inter-person
discriminator. Best in bold.

last row of Table [3} it is the result of our full model, which
is TD + BU (IN) + SSL + TTO.

As shown in Table 3} we observe that our top-down net-
work, bottom-up network, and integration network clearly
outperform their corresponding baselines. Our top-down
network tends to have better person-centric 3D pose estima-
tion results compared with our bottom-up network, because
the top-down network benefits from not only the multi-
person pose estimator, but also the GCN and TCN that
help to deal with inter-occluded poses. On the contrary, our
bottom-up network achieves better performance for the root
joint estimation, because it estimates the root depth based on
a full image; while the root depth of the top-down network
is estimated based on an individual skeleton. Our integra-
tion network demonstrates superior performance compared
to hard or linear combining the poses from the top-down
and bottom-up networks, which validates its effectiveness.
Moreover, we observe that the proposed semi-supervised
learning and test time optimization further improve the
performance of 3D multi-person pose estimation.
Semi-Supervised Learning Other than validating our top-
down and bottom-up networks, we also perform ablation
analysis on our semi-supervised learning. In Table 4, we
show the result of using reprojection loss, multi-perspective
loss, reprojection loss with the proposed discriminator, and
reprojection + multi-perspective loss with discriminator.
We find that the reprojection loss is more useful than the
multi-perspective loss because it leverages the information
from the 2D pose estimator, which is trained with 2D
human pose datasets with larger variations in human pose
and appearance . More importantly, we observe that our
proposed interaction-aware discriminator demonstrates the
largest performance improvement compared with the other
modules, proving the importance of enforcing the validity
of the interaction between persons. Note that, since Table 7|
is focused on evaluating the semi-supervised learning part,
the test time optimization is not used in this experiment.
Inter-Person Discriminator To validate our choice in the
inter-person discriminator to check the interaction between
two persons, we conduct parameter analysis in terms of the
number of poses to check in the discriminator as illustrated

Ablation study of test time optimization on Human3.6M dataset.
MPJPE (w. GT) means 2D ground truth is used, MPJPE (w/o GT)
means 2D pose estimation is used instead of the ground truth. Best in
bold, second best underlined.

Order1 | Order2 | Order3 | MPJPE
2 0 0 9.18
3 0 0 9.24
5 0 0 10.51
2 3 3 5.88
2 5 5 5.84
2 7 7 5.93
3 3 3 5.94
3 5 5 7.21
3 7 7 7.71

TABLE 7

Ablation study on the number of temporal window lengths for different
motion trajectory order using ground-truth 3D poses on Human3.6M
dataset. The error is measured by MPJPE. Best in bold.s

in Table 5| Checking the pose validity for only one person
(results of Disl), which is what most existing methods
do, shows improvement against baseline. However, when
checking the validity of pair of poses (results of Dis2), we
observe the accuracy improves in both person-centric and
camara-centric pose estimation metrics. Further improving
the number of poses to three does not help but negatively
affect the performance. Thus, this analysis supports the
use of the pair of poses in validity checking for the inter-
person discriminator. Note that, since Table Blis focused on
evaluating the inter-person discriminator part, the test time
optimization is not used in this experiment.

Test Time Optimization We also provide ablation study
results of the test time optimization to understand the
contribution of each loss term as shown in Table [ The
baseline method in the table is the GCN network [38] with
2D ground truth (w. GT) or 2D pose estimation [9] (w/o
GT). The first column in Table[d] shows the results of using
the ground truth of 2D pose; the second column illustrates
the results of using 2D estimator instead. In both cases, we
observe that our TTO regularization is helpful to reduce
the error on top of the baseline. In particular, it is observed
that the reprojection regularization brings the largest error
reduction compared with the baseline. By adding each
additional regularization or optimization strategy, the error
is further reduced, combining all the losses and strategies
achieves the highest performance in terms of MPJPE metric,
which validates the proposed test time optimization is help-
ful to refine the estimated 3D poses at the inference stage.
Temporal Window Analysis Finally, we analyze the perfor-
mance of different temporal window lengths for different
motion trajectory order in our trajectory regularization on
the Human3.6M dataset using ground-truth 3D poses as
shown in Table |7] It is observed that using temporal win-
dows 2, 5, 5 for order 1, 2, 3 achieves the lowest error, which
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Method Time(ms)
Human detector 97
2D pose estimator 53
GCN 4
TCN 9
Bottom-up 201
Integration 6
TTO 31
Total 401
TABLE 8

Runtime of each component.

Group Method PCK | PCKgps
Mehta et al. [56] 65.0 n/a
Person- | Rogezetal, [32] | 70.6 n/a
centric Cheng et al. [28] | 74.6 n/a
Cheng et al. [31] | 80.5 n/a
Moon et al. [35] 825 31.8
Camera- Lin et al. [37] 83.7 35.2
centric Zhen et al. [55] 80.5 38.7
Li et al. [36] 82.0 43.8
Cheng et al. [38] | 87.5 45.7
Our method 89.6 48.1

TABLE 9

Quantitative evaluation on multi-person 3D dataset, MuPoTS-3D. Best
in bold, second best underlined.

are the parameters we choose for the following experiments.
Same as before, since Table[7]is focused on evaluating the
temporal window lengths, TTO is not used in this experi-
ment.

Runtime Analysis Table [§ shows the runtime of each
component of the proposed method. We use HRNet-w32
[9] as the backbone network for both multi-person pose
estimators in the top-down and bottom-up networks. The
input resolution for bottom-up network is 512 and 256 for
multi-person pose estimator in top-down branch. For object
detector, we use Faster RCNN [92] with ResNeXt [93]
backbone. The temporal window length is set to 243 for
TCN. For the TTO, we run both steps with 3000 iterations
on the whole video and compute the runtime per frame.
The runtime speed is tested on single RTX2080Ti GPU with
17-9900k CPU.

4.5 Quantitative Evaluation

Method t=04m | t=0.8m | t=1.2m
[94] + [13] + [32] 39.14 47.38 49.03
LoCO [54] 50.82 64.76 70.44
Ours 58.15 69.32 74.19
TABLE 10

Quantitative results on JTA dataset. F1 values are reported based on

different threshold ¢ when the point is considered "true positive” when

the distance from corresponding distance is less than ¢. Best in bold,
second best underlined.

To evaluate the performance for 3D multi-person
camera-centric pose estimation in both indoor and out-
door scenarios, we perform evaluations on MuPoTS-3D as
summarized in Table [0 The results show that our camera-
centric multi-person 3D pose estimation outperforms the
SOTA [36] on PCKps by 2.3%. We also perform person-
centric 3D pose estimation evaluation using PC K where we

Group Method MPJPE | PA-MPJPE
Hossain et al., [24] 51.9 42.0
Wandt et al., [26[* 50.9 38.2
Person- Pavllo et al., |25] 46.8 36.5
centric Cheng et al., [28] 429 32.8
Kocabas et al., [96] 65.6 414
Kolotouros et al. [95] n/a 41.1
Moon et al., [35] 544 35.2
Camera- Zhen et al., [55] 54.1 n/a
centric Li et al., [36] 48.6 30.5
Ours 39.1 29.3

TABLE 11

Quantitative evaluation on Human3.6M for normalized and
camera-centric 3D human pose estimation. * denotes ground-truth 2D
labels are used. Best in bold, second best underlined.

outperform the SOTA method [37] by 2.1%. The evaluation
on MuPoTS-3D shows that our method outperforms the
state-of-the-art methods in both camera-centric and person-
centric 3D multi-person pose estimation as our framework
overcomes the weaknesses of both bottom-up and top-down
networks and at the same time benefits from their strengths.
Note that, our method in Table[9 means our full model,
including the test time optimization, same for the following
evaluations in Table 10} [TT]

Following recent work [54], we also perform evaluations
on JTA, which is a synthetic dataset acquired from computer
games, to further validate the effectiveness of our method
for camera-centric 3D multi-person pose estimation. As
shown in Table our method is superior over the SOTA
method [54] (e.g., our result shows 12.6% improvement
on F1 value, ¢ = 0.4m) on this challenging dataset where
both inter-person occlusion and large person scale variation
present, which again illustrate that our proposed method
can handle these challenges in 3D multi-person pose esti-
mation.

Human3.6M is widely used for evaluating 3D single-
person pose estimation. As our method is focused on deal-
ing with inter-person occlusion and scale variation, we do
not expect our method to perform significantly better than
the SOTA methods. Table [11f summarizes the quantitative
evaluation on Human3.6M where our method is comparable
with the SOTA methods [36], [95] on person-centric 3D hu-
man pose evaluation metrics (i.e., MPJPE and PA-MPJPE).

3DPW is an outdoor multi-person 3D human shape
reconstruction dataset. It is unfair to compare the errors
between skeleton-based methods with ground-truth defined
on SMPL model [88] due to the different definitions of
joints [89]. We run human detection on all frames and create
an occlusion subset where the frames with the large over-
lay between persons are selected. The performance drop
between the full testing test of 3DPW and the occlusion
subset can effectively tell if a method can handle inter-
person occlusion, which is shown in Table [12} We observe
that our method shows the least performance drop from the
testing set to the subset, which demonstrates our method is
indeed more robust to inter-person occlusion.

4.6 Qualitative Evaluation

Fig. [f] shows the comparison among a SOTA bottom-up
method SMAP [55], our bottom-up network, top-down
network, and full model. We observe that SMAP suffers
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Fig. 6. Examples of results from our whole framework compared with different baseline results on two video clips on 3DPW dataset. First row shows
the images from two video clips; second row shows the results from SMAP [55]; third row shows the result of of our bottom-up (BU) network; fourth
row shows the results of our top-down (TD) network; last row shows the results of our full model. Wrong estimations are labeled with red circles.

Dataset Method PA-MPJPE 4
Doersch et al. [64] 74.7 n/a
Kanazawa et al. \E:EI 72.6 n/a
Original Arnab et al. [30] 72.2 n/a
Cheng et al. [31] 71.8 n/a
Sun et al. [87] 69.5 n/a
Kolotouros et al. [95]* 59.2 n/a
Kocabeas et al., [96] 51.9 n/a
Our method 61.7 n/a
Cheng et al. [31] 923 +20.5
Sun et al. 84.4 +14.9
Subset Kolotouros et a * 79.1 +19.9
Kocabas et al., [96] 72.2 +20.3
Our method 72.4 +9.5

TABLE 12
Quantitative evaluation using PA-MPJPE on original 3DPW test set and
its occlusion subset. * denotes extra 3D datasets were used in training.
Best in bold, second best underlined.

from person scale variation where the person who is far
from the camera is missing in frame 280 as well as inter-
occlusion (e.g., frame 365 and 340). Our bottom-up network
is robust to scale variance, but fragile to the out-of-image
poses as our discriminator is not used here (e.g., frame
365 and 330). Moreover, our top-down network produces
reasonable relative poses with the aid of GCN and TCNs.
However, there exists an error of camera-centric root depth
in our top-down network, because our top-down network
estimates root depth based on individual 2D poses and lacks

global awareness (e.g., frame 280). Finally, our full model
benefits from both networks and produces the best 3D pose
estimations among these baselines.

To further demonstrate the performance of our method
compared with the SOTA 3D multi-person pose estimation
methods, we provide additional qualitative results of our
method compared with that of the SOTA bottom-up method
SMAP and the SOTA top-down method RootNet
on four video clips from MuPoTS dataset, as shown in Fig.
The errors of existing methods are highlighted in red
circles or arrows, where we clearly observe our method
outperforms the existing methods and can provide accurate
camera-centric 3D multi-person pose estimation when inter-
person occlusions present in the videos. Moreover, as we
reported our quantitative performance on JTA dataset in
Table we also provide the qualitative results of our
method compared with that of the SOTA method reported
and released their trained model on the JTA dataset
in Fig. [T1] The two video clips in Fig. [I1] show both inter-
person occlusions and large multi-person scale variation
where we observe our method can handle both challenges
well and produce accurate camera-centric 3D multi-person
pose estimation compared with LoCO [54].

We also provide results of the estimated 3D poses in
novel viewpoints and the estimated 2D poses overlaid on
input images as in Fig. El Our estimated camera-centric 3D
poses visualized from different angles further validate the
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Fig. 7. Qualitative results of the estimated 2D poses overlaying on
input images and the estimated 3D poses visualized in novel viewpoints
(virtual camera rotated by 0, 45, 90 degrees clockwise). Different colors
are used for different persons in both 2D and 3D human poses for
better visualization purpose. Top frame from Posetrack dataset, bottom
example from 3DPW dataset.

[
A

Fig. 8. Failure cases of our method. Example frames are from PoseTrack
dataset.

effectiveness of the proposed method, where the depth of
each person is estimated reasonably well from the results of
different angles.

Qualitative comparisons of the proposed TTO module
are shown in Fig.[9} where results of our full model with
and without TTO on two wild videos are provided. In
both video clips, we observe that the predicted 3D human
poses without TTO are inaccurate (i.e., highlighted in red
circles), which are affected by poor illumination or occlu-
sion. In contrast, the results with TTO are improved, where
the inaccuracies are fixed. Thus, these qualitative results
demonstrate the effectiveness of the proposed TTO module
on wild video.

4.7 Failure Analysis

Fig.[8shows the failure cases where the images are from the
PoseTrack dataset [44]. There are two major kinds of failure

cases of our method on the wild videos. First, the persons
that are constantly heavily occluded in a video are likely
to be missed by our method, as shown in the left column
of Fig. Bl In such cases, the occluded person usually has
only few joints with high confidence across frames, which
makes it difficult to group them together to form a complete
human pose. Thus, robustly dealing with incomplete or
even extremely incomplete human poses is still a challenge
to be solved in the future. A second kind of failure cases is
the extreme human poses, as shown in the right column
of Fig. [8l The extreme human poses are rare, which are
usually not well represented in the training dataset. This
can be viewed as an out-of-distribution problem, where
the extreme human poses are out of the distribution of the
training data (i.e., training dataset is dominated by regular
or normal human poses.). As a result, both 2D and 3D pose
estimation cannot handle these images well. Addressing this
issue is another future work.

5 CONCLUSION

We have proposed a novel method for monocular-video
3D multi-person pose estimation, which addresses the
problems of inter-person occlusion and close interactions.
We introduced the integration of top-down and bottom-
up approaches to exploit their strengths. A novel inter-
person pose discriminator is proposed to enforce the va-
lidity of human poses of close pairwise interactions. Semi-
supervised learning and test time optimization are proposed
to further improve the accuracy of 3D multi-person pose
estimation. In addition, we introduce unsupervised losses,
i.e. the high-order temporal constraint, reprojection loss, and
bone-length regularization.,which enable the optimization
in test time. This optimization is critical in improving our
performance, particularly in the cases where the gaps be-
tween the training and testing data are relatively signifi-
cant. Our quantitative and qualitative evaluations show the
effectiveness of our method compared to the state-of-the-art
baselines.
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