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DUAL OF THE FUNCTION ALGEBRA A−∞(D) AND

REPRESENTATION OF FUNCTIONS IN DIRICHLET SERIES
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(Communicated by Mario Bonk)

Abstract. In this paper we present the following results: a description, via
the Laplace transformation of analytic functionals, of the dual to the (DFS)-
space A−∞(D) (D being either a bounded C2-smooth convex domain in CN ,

with N > 1, or a bounded convex domain in C) as an (FS)-space A−∞
D of entire

functions satisfying a certain growth condition; an explicit construction of a
countable sufficient set for A−∞

D ; and a possibility of representating functions

from A−∞(D) in the form of Dirichlet series.

1. Introduction

1.1. Basic notation and definitions. O(D) (D being a domain in CN ) denotes
the space of functions that are holomorphic in D, with the topology of uniform
convergence on compact subsets of D.

O(K) (respectively C∞(K)), with K being a compact set in C
N , denotes the

space of germs of functions holomorphic on K, endowed with the topology of in-
ductive limit, O(K) = lim ind O(ω), where ω are open neighborhoods of K
(respectively the space of functions that are infinitely differentiable on K).

If z, ζ ∈ CN , then |z| = (z1z̄1 + · · ·+ zN z̄N )1/2 and 〈z, ζ〉 = z1ζ1 + · · ·+ zNζN .
The supporting function of a convex set M in CN is

HM (ξ) := sup
z∈M

Re〈z, ξ〉, ξ ∈ C
N

(see, e.g., [8]). This is a positively homogeneous, semi-additive function in CN .

For a set E ⊂ CN (such that 0 ∈ E) we denote by Ẽ the conjugate set of E; i.e.,

Ẽ := {w ∈ C
N : 〈z, w〉 �= 1 for any z ∈ E}.

In the case where E is open, its conjugate Ẽ is a compact set and plays the role of
“the exterior” in the duality of Martineau and Aı̆zenberg ([3], [15]).

1.2. The function spaces A−∞(D) and A−∞
D . Let D be a bounded domain in

CN . Put

d(λ) := inf
ζ∈∂D

|λ− ζ|, λ ∈ D,
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the minimum Euclidean distance between λ and the boundary ∂D of D. The space
A−∞(D) is defined as follows:

A−∞(D) :=

{
f ∈ O(D) : ∃ n,C > 0 such that sup

λ∈D
|f(λ)| [d(λ)]n ≤ C

}
.

Notice that the condition in the definition of A−∞(D) is the familiar polynomial
growth condition sup

λ∈D
(1− |λ|)n|f(λ)| ≤ C if the domain D is the open unit ball.

The space A−∞(D) can be thought of as the union of the Banach spaces

A−n(D) :=

{
f ∈ O(D) : ‖f‖n = sup

λ∈D
|f(λ)| [d(λ)]n < +∞

}
;

that is,

A−∞(D) =
∞⋃

n=1

A−n(D).

We can endow the space A−∞(D) with the natural topological structure of inductive
limit of spaces A−n(D).

Now let D be convex. Without loss of generality, we can assume that 0 ∈ D.
Define a space

A−∞
D :=

{
f ∈ O(CN ) : |f |n = sup

z∈CN

|f(z)|(1 + |z|)n
expHD(z)

< ∞ for all n ∈ N

}
,

where HD is the supporting function of D, endowed with the topology given by the
system of norms (| · |n)∞n=1.

It is easy to see that A−∞
D is a Fréchet-Schwartz space (briefly, an (FS)-space)

while A−∞(D) is a dual Fréchet-Schwartz space (briefly, a (DFS)-space). We refer
the reader to [24] and [16] for detailed information on these notions.

The aim of this paper is to establish that the dual of the space A−∞(D) is
isomorphic, via the Laplace transformation, to A−∞

D . As an application of this
result, we give an explicit construction of a sufficient set for the Fréchet space
A−∞

D ; due to the duality description, we are able to show that any function from
the algebra A−∞(D) can always be represented in the form of Dirichlet series.

It should be noted that the duality problem for the space A−∞(D) has been
studied by several authors, using different methods. In particular, Bell [5], Straube
[20], Barret [4], Kiselman [11], and others established the duality between A−∞(D)
and the space A∞(D) of holomorphic functions in D that are in C∞(D), and there-
fore their results are quite different from ours. Also, the representation problem is
never treated in above-mentioned papers.

One final remark is that similar problems for the space A−∞
D (establishing its

dual via the Laplace transformation and the possibility of representating functions
from this space in Dirichlet series) have been studied in our recent paper [2]. Also
note that some of our results were announced in [1].

2. The space A−∞
D is a dual of A−∞(D)

The Laplace transformation of an analytic functional ϕ on the space A−∞(D) is
defined as follows:

F(ϕ)(z) := ϕλ

(
e〈z,λ〉

)
, ϕ ∈ (A−∞(D))′, z ∈ C

N .
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Theorem 2.1. Let D be either a bounded convex domain with C2 boundary in CN ,
for N > 1, or an arbitrary bounded convex domain in C. The Laplace transforma-

tion establishes a topological isomorphism between the strong dual
(
A−∞(D)

)′

b
of

A−∞(D) and the space A−∞
D .

For N = 1 this theorem was obtained by Melikhov [18]. To prove it for N > 1,
we need some notation and auxiliary results.

For the sake of simplicity we write H(z) instead of HD(z). We also let r :=
minz∈S H(z) and R := maxz∈S H(z), where S := {z ∈ CN : |z| = 1}. It is clear
that 0 < r ≤ R < ∞ and 0 < d(λ) < R for every λ ∈ D.

Lemma 2.2. Let

an := min
{(r

e

)n

,
( nr

eR

)n}
, An := eR

(n
e

)n

.

For every n ∈ N,

(2.1) an
eH(z)

(1 + |z|)n ≤
∥∥e〈z,·〉∥∥

n
≤ An

eH(z)

(1 + |z|)n , ∀z ∈ C
N .

Proof. Obviously, Sd(λ) :=
{
ξ ∈ CN : |ξ − λ| = d(λ)

}
⊂ D for any λ ∈ D. Then

for each z ∈ CN and ξ ∈ Sd(λ),

Re〈z, λ〉 = Re〈z, ξ〉+Re〈z, λ− ξ〉 ≤ H(z) + Re〈z, λ− ξ〉.
Hence

Re〈z, λ〉 ≤ H(z) + inf
ξ∈Sd(λ)

Re〈z, λ− ξ〉 = H(z)− |z|d(λ).

From this it follows that

‖e〈z,·〉‖n = sup
λ∈D

eRe〈z,λ〉[d(λ)]n ≤ eH(z) sup
λ∈D

e−|z|d(λ)[d(λ)]n

≤ eH(z)+R sup
t≥0

tne−(|z|+1)t = An
eH(z)

(1 + |z|)n ·

For the lower bound in (2.1), write Br = {z ∈ CN : |z| ≤ r} and consider
Dt := {λ ∈ D : d(λ) ≥ t} with 0 < t < r. Since

D =
(
1− t

r

)
D +

t

r
D ⊃

(
1− t

r

)
D +

t

r
Br,

we have Dt ⊃
(
1 − t

r

)
D. From this it follows that for each z ∈ CN there exists

ξ ∈ ∂Dt such that

Re〈z, ξ〉 ≥
(
1− t

r

)
H(z) ≥ H(z)− t

r
R|z|.

Clearly, d(ξ) = t. Therefore, for |z| > n
R we have

‖e〈z,·〉‖n ≥ sup
0<t<r

sup
d(λ)=t

eRe〈z,λ〉tn ≥ eH(z) sup
0<t<r

tne−tR
r |z| =

( nr

eR

)n eH(z)

|z|n ·

On the other hand, for |z| ≤ n
R we have

‖e〈z,·〉‖n = sup
λ∈D

eRe〈z,λ〉[d(λ)]n ≥ [d(0)]n = rn ≥
(r
e

)n

eH(z) ≥
(r
e

)n eH(z)

(1 + |z|)n ·
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3626 A. V. ABANIN AND LE HAI KHOI

Thus

‖e〈z,·〉‖n ≥ an
eH(z)

(1 + |z|)n , ∀z ∈ C
N . �

Proposition 2.3. The system EN :=
{
e〈z,·〉 : z ∈ CN

}
is complete in A−∞(D).

Proof. Let ϕ ∈ (A−∞(D))′. Then for each n ∈ N there exists Cn > 0 such that

|ϕ(f)| ≤ Cn‖f‖n, ∀f ∈ A−n(D).

Define a Banach space of continuous functions

C−n
0 (D) := {f ∈ C(D) : ‖f‖n < ∞, f(λ)[d(λ)]n → 0 as λ → ∂D}.

By the Hahn–Banach theorem, ϕ can be extended as a continuous linear func-
tional on C−n

0 (D) for every n ∈ N. Obviously, A−n+1(D) ↪→ C−n
0 (D) (here and

in the sequel, the symbol ↪→ denotes the continuous embedding). From this it
follows that for each n ∈ N there exists a Borel complex measure μϕ,n on D with∫
D
[d(λ)]−n d|μϕ,n|(λ) < ∞ such that

ϕ(f) =

∫
D

f(λ) dμϕ,n(λ), ∀f ∈ A−n+1(D).

Note that d(λ) is a concave function on D (see, e.g., [9, Theorem 2.1.24]). There-
fore, d(γλ) ≥ γd(λ) for all 0 ≤ γ ≤ 1 and λ ∈ D. Then f(γ·) ∈ L(D,μϕ,n) for any
f ∈ A−n+1(D) and γ ∈ [0, 1], where L(D,μϕ,n) is the space of all μϕ,n-integrable
functions on D. By the Lebesgue dominated convergence theorem, we have

lim
γ↑1

ϕ
(
f(γ·)

)
= lim

γ↑1

∫
D

f(γλ) dμϕ,n(λ) =

∫
D

f(λ) dμϕ,n(λ) = ϕ(f).

So

(2.2) ϕ(f) = lim
γ↑1

ϕ
(
f(γ·)

)
for all f ∈ A−∞(D).

Furthermore, it is clear that f(γ·) ∈ O(D) for any γ ∈ (0, 1) and that O(D) ↪→
A−∞(D). From this and (2.2) we conclude that O(D) is dense in A−∞(D).

To finish the proof it remains to note that the system EN is complete in O(D).
�

Proposition 2.4. Let D be a bounded convex domain with C2 boundary in CN ,
for N > 1. For each f ∈ A−∞

D there exists ϕ ∈ (A−∞(D))′ such that F(ϕ) = f .

Proof. Define

ρ(λ) :=

{
−d(λ), λ ∈ D,

d(λ), λ /∈ D.

Since D has C2 boundary, ρ(λ) ∈ C2 in some neighborhood of ∂D. Take δ > 0
sufficiently small so that ρ ∈ C2(D \Dδ), where Dδ = {λ ∈ D : d(λ) > δ}.
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We put

∇λρ :=

(
∂ρ

∂λ1
, . . . ,

∂ρ

∂λN

)
,

Rj(λ) := det

⎛⎜⎜⎝
∂ρ/∂λ1 · · · ∂ρ/∂λN

∂2ρ/∂λ̄1∂λ1 · · · ∂2ρ/∂λ̄1∂λN

· · · [j] · · ·
∂2ρ/∂λ̄N∂λ1 · · · ∂2ρ/∂λ̄N∂λN

⎞⎟⎟⎠ ,

ω̄(λ,∇λρ) := 〈λ,∇λρ〉−N
N∑
j=1

Rj(λ)dλ̄1 ∧ . . . [j] . . . ∧ dλ̄N ∧ dλ1 ∧ . . . ∧ dλN ,

where ∧ is the symbol for exterior multiplication,

u(λ) := 〈λ,∇λρ〉−1∇λρ = (u1(λ), . . . , uN (λ)),

and

Rj(λ) := 〈λ,∇λρ〉−N
N∑

k=1

∂ūj

∂λ̄k
(λ)(−1)k−1Rk(λ), j = 1, . . . , N.

Now let f be a fixed function in A−∞
D . For each w ∈ ∂D̃ choose ξ ∈ C with

|ξ| = 1, Re ξ > 0 and H(ξw) = Re ξ. Then, for u = γw with 0 ≤ γ ≤ 1, put

F (u) :=
ξN−1

(N − 1)!

∫ ∞

0

f(tξu)tN−1e−tξdt.

By [15] and [22], F is a holomorphic function in int D̃ and the value of F (u),

for u ∈ int D̃, does not depend on the choice of ξ above. In [2, Lemma 2.7], it was

shown that F is infinitely differentiable on D̃ as a function of 2N real variables.
By Whitney’s extension theorem for C∞ functions, [23, Theorem I], there exists an

infinitely differentiable function F̃ on R2N such that F̃ |D̃ = F and supp F̃ ⊂ D̃δ.
Consider

〈g, f〉 := (N − 1)!

(2πi)N

∫
D\Dδ

g(λ)
N∑
j=1

∂F̃

∂ūj
(u(λ))Rj(λ) dλ̄ ∧ dλ, g ∈ A−∞(D).

We claim that 〈g, f〉 is a linear continuous functional on A−∞(D). Indeed, it is

well known that u(λ) maps ∂D onto ∂D̃. In this case, for each λ ∈ D \Dδ we have

dist
(
u(λ), ∂D̃

)
= inf

w∈∂D̃
|u(λ)−w| = inf

ξ∈∂D
|u(λ)−u(ξ)| ≤ Cρ inf

ξ∈∂D
|λ− ξ| = Cρd(λ),

where Cρ is some constant depending only on ρ.

Next, since ∂̄F̃ = ∂̄F = 0 on D̃, it follows from Taylor’s formula that∣∣∣∣∣ ∂F̃∂ūj
(u(λ))

∣∣∣∣∣ ≤ Cn

(
dist(u(λ), ∂D̃)

)n ≤ Cn(Cρ)
n[d(λ)]n, ∀λ ∈ D \Dδ, ∀n ∈ N.

Also, since Rj is continuous on D\Dδ, there exists B > 0 such that |Rj(λ)| ≤ B
for all λ ∈ D \Dδ.

So

|〈g, f〉| ≤
BCnC

n
ρN !

(2π)N
mes(D)‖g‖n, ∀g ∈ A−n(D), ∀n ∈ N,

where mes(D) is the Lebesgue measure of D. Therefore, ϕ := 〈·, f〉 ∈ (A−∞(D))′.
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Now let g ∈ O(D). By direct calculations, we can verify that

g(λ)
N∑
j=1

∂F̃

∂ūj
(u(λ))Rj(λ)dλ̄ ∧ dλ = d

(
g(λ)F̃ (u(λ))ω̄(λ,∇λρ)

)
.

In this case, by the Green–Stokes formula,

〈g, f〉 = (N − 1)!

(2πi)N

∫
∂D

g(λ)F (u(λ))ω̄(λ,∇λρ).

Hence, by Martineau’s projective formula ([3], [15]) we have

〈e〈z,·〉, f〉 = (N − 1)!

(2πi)N

∫
∂D

e〈λ,z〉F (u(λ))ω̄(λ,∇λρ) = f(z), ∀z ∈ C
N ;

that is, F(ϕ) = f . �

Proof of Theorem 2.1. From Lemma 2.2 it obviously follows that F : (A−∞(D))
′

b →
A−∞

D is a continuous mapping. By Proposition 2.3, this mapping is injective,
while by Proposition 2.4, it is surjective. Hence, by the open mapping theorem,
F : (A−∞(D))

′

b → A−∞
D is a topological isomorphism. �

3. Discrete sufficient sets in the (FS)-space A−∞
D

Let D be a bounded convex domain in CN (N ≥ 1) such that 0 ∈ D, with the
supporting function H(z).

Let S be a subset of CN . For each f ∈ A−∞
D define

|f |n,S := sup
z∈S

|f(z)|(1 + |z|)n
expH(z)

, n = 1, 2, . . . .

Notice that | · |n,S is in general a semi-norm and that the space A−∞
D can also

be endowed with the topology given by the system of semi-norms (| · |n,S)∞n=1.
Obviously, this topology is weaker than the global “original” topology given by the
system of norms (| · |n)∞n=1. If these two topologies coincide, S is called a sufficient
set for A−∞

D .
Sufficient sets for some spaces of entire and infinitely differentiable functions

were considered by Ehrenpreis [7], Taylor [21], Schneider [19] and others. It should
be noted that almost all results concern the case where the spaces are inductive
limits of countable sets of weighted Banach spaces.

For our space A−∞
D the definition of a sufficient set is as follows.

Definition 3.1. Let D be a bounded convex domain in CN . A subset S ⊂ CN is
said to be sufficient for the space A−∞

D if

∀p ∈ N ∃m = m(p) ∈ N, ∃C = C(p) > 0 :

sup
z∈CN

|f(z)|(1 + |z|)p
eH(z)

≤ C sup
z∈S

|f(z)|(1 + |z|)m
eH(z)

, ∀f ∈ A−∞
D .

In particular, a sequence Λ = (λk) ⊂ CN is said to be sufficient for the space A−∞
D

if

∀p ∈ N ∃m = m(p) ∈ N, ∃C = C(p) > 0 :

sup
z∈CN

|f(z)|(1 + |z|)p
eH(z)

≤ C sup
k≥1

|f(λk)|(1 + |λk|)m
eH(λk)

, ∀f ∈ A−∞
D .
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Below we present an explicit construction, in the form of an algorithm, of a dis-
crete sufficient sequence in the space A−∞

D . This construction exploits the method
given in [10] for the case of inductive limit spaces (for N = 1 see also [13]).

For t > 0 let St := {z ∈ CN : H(z) = t} and Mt(f) := supz∈St
|f(z)|.

Algorithm 3.2.

Step 1. Take a sequence 0 < (tk) ↑ ∞ such that

(3.1) lim
k→∞

tk+1

tk
= 1.

Step 2. Take a sequence 0 < (sk) ↑ ∞ such that

(3.2) lim
k→∞

1

sk(tk+1 − tk)
= 0.

Step 3. Take and fix some natural number N0 ≥ 1; on each Stk with
k = N0, N0+1, . . ., mark k points zk,j (j = 1, 2, . . . , k), which
form a 1/sk-net on Stk .

Step 4. We re-enumerate the obtained system of points {zk,j : 1 ≤
j ≤ k, k ≥ N0} in one sequence, denoted by Λ =

(
λn

)∞
n=1

,
by writing first all the points with k = N0 and then those with
k = N0 + 1, etc.

We will show that the countable set thus obtained is as desired.
In order to simplify the exposition, in the sequel we take tk = k (k = 1, 2, . . .),

although the result is valid for the general case.
Observe that r|z| ≤ H(z) = t ≤ R|z|, ∀z ∈ St. Then, writing α := logmin(1, 1

R )

and β := logmax(1, 1
r ), we have

(3.3) α+ log(1 + t) ≤ log(1 + |z|) ≤ β + log(1 + t), ∀z ∈ St, ∀t > 0.

Therefore,

(3.4) |f |p = sup
z∈CN

|f(z)|
eH(z)−p log(1+|z|) ≤ eβp sup

t>0

Mt(f)

et−p log(1+t)
= eβp sup

t>0

Mt(f)

egp(t)
,

where gp(t) = t− p log(1 + t) (t > 0).
Obviously, (gp)p∈N is a decreasing sequence and gp(t) is decreasing on (0, p− 1]

and increasing on [p− 1,∞). Moreover,

(3.5) gp(t+ 1)− gp(t) = 1− p log
t+ 2

t+ 1
< 1, ∀t > 0, ∀p ∈ N.

We estimate the quantity

sup
t>0

Mt(f)

egp(t)
, f ∈ A−∞

D .

For t ∈ (0, p− 1],

(3.6)
Mt(f)

egp(t)
≤ Mp−1(f)

egp(p−1)
≤ Mp−1(f)

egp+1(p−1)
·

Furthermore, due to (3.5), for t ∈ (, + 1] with  ≥ p− 1 we have

(3.7)
Mt(f)

egp(t)
≤ M�+1(f)

egp(�)
≤ e

M�+1(f)

egp+1(�+1)
·
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Now let J ≥ p; we have

XJ := sup
0<t≤J

Mt(f)

egp(t)
≤ max

{
sup

0<t≤p−1

Mt(f)

egp(t)
, sup
p−1<t≤J

Mt(f)

egp(t)

}

≤ emax

{
Mp−1(f)

egp+1(p−1)
, sup
p−1≤�≤J−1

M�+1(f)

egp+1(�+1)

}

= e sup
p−1≤�≤J

M�(f)

egp+1(�)
:= eYJ ·

For each  there exists w� ∈ S� such that |f(w�)| = M�(f). We can find, by
Step 3 of Algorithm 3.2, some point z�,j0 ∈ S� that satisfies |w� − z�,j0 | ≤ 1/s�.
Now use the following result from [10].

Lemma 3.3. For any numbers 0 < s < t, if z, w ∈ Ss and f ∈ O(CN ), then

(3.8) |f(z)− f(w)| ≤ RN
√
N

t− s
Mt(f)|z − w|.

By this lemma, we have

M�(f)− |f(z�,j0)| ≤ |f(w�)− f(z�,j0)|

≤ RN
√
NM�+1(f)|w� − z�,j0 | ≤

RN
√
N

s�
M�+1(f),

which, due to (3.5), implies that

M�(f)

egp+1(�)
≤ |f(z�,j0)|

egp+1(�)
+

RN
√
N

s�
· M�+1(f)

egp+1(�)

≤ |f(z�,j0)|
egp+1(�)

+
eRN

√
N

s�
· M�+1(f)

egp+1(�+1)
.

Then we get

YJ ≤ sup
p−1≤�≤J

|f(z�,j0)|
egp+1(�)

+ sup
p−1≤�≤J−1

{
eRN

√
N

s�
· M�+1(f)

egp+1(�+1)

}

+
eRN

√
N

sJ
· MJ+1(f)

egp+1(J+1)
·

Define

TJ := sup
p−1≤�≤J

sup
λk∈S�

|f(λk)|
egp+1(�)

and notice that z�,j0 ∈ S�. Then, assuming from the beginning that s1 > 4eRN
√
N ,

we obtain

YJ ≤ TJ +
1

4
sup

p−1≤�≤J−1

{
M�+1(f)

egp+1(�+1)

}
+

eRN
√
N

sJ
· MJ+1(f)

egp+1(J+1)

≤ TJ +
1

4
YJ +

eRN
√
N

sJ
· MJ+1(f)

egp+1(J+1)
,

or equivalently

(3.9)
3

4
YJ ≤ TJ +

eRN
√
N

sJ
· MJ+1(f)

egp+1(J+1)
·
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At this point we pause in our estimates for a moment and present the following
fact:

Lemma 3.4. For each nontrivial function f ∈ A−∞
D ,

(3.10) lim inf
k→∞

Mk+1(f)

Mk(f)
≤ e.

Proof. Assuming (3.10) is not true, we can then find r0 > 1 and k0 ∈ N so that

Mk+1(f) > er0Mk(f), ∀k ≥ k0.

Therefore for every k ≥ 1,

Mk0+k(f) > ekr0Mk0
(f).

Hence,

(3.11) lim inf
k→∞

logMk(f)

k
≥ r0 > 1.

On the other hand, using (3.3), we have

(3.12) |f |p = sup
z∈CN

|f(z)|
eH(z)−p log(1+|z|) ≥ eαp sup

t>0

Mt(f)

et−p log(1+t)
= eαp sup

t>0

Mt(f)

egp(t)
.

Thus,
logMk(f) ≤ log |f |p − αp+ gp(k), ∀k ≥ 1.

This implies

lim sup
k→∞

logMk(f)

k
≤ lim

k→∞

gp(k)

k
= 1,

which contradicts (3.11). �
Now we return to estimate (3.9). Take and fix a number σ > 1. By Lemma 3.4,

there is a sequence (kj) ↑ ∞ with sk1
> 4eσ+1RN

√
N and k1 ≥ p such that

Mkj+1(f) ≤ eσMkj
(f), ∀j ≥ 1.

In (3.9) putting J = kj , kj+1, . . . we obtain

3

4
Ykj

≤ Tkj
+

eRN
√
N

skj

·
Mkj+1(f)

egp+1(kj+1)

≤ Tkj
+

eσ+1RN
√
N

skj

·
Mkj

(f)

egp+1(kj)
≤ Tkj

+
1

4
Ykj

.

This means that Ykj
≤ 2Tkj

for all j.
By (3.3), for all j,

Tkj
= sup

p−1≤�≤kj

sup
λk∈S�

|f(λk)|
egp+1(�)

≤ e−(p+1)α sup
p−1≤�≤kj

sup
λk∈S�

|f(λk)|
eH(λk)−(p+1) log(1+|λk|)

≤ e−(p+1)α sup
k≥1

|f(λk)|
eH(λk)−(p+1) log(1+|λk|)

= e−(p+1)α|f |p+1,Λ.

Thus, for all j,

sup
0<t≤kj

Mt(f)

egp(t)
= Xkj

≤ eYkj
≤ 2eTkj

≤ 2e1−(p+1)α|f |p+1,Λ.
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Letting kj → ∞ in the last inequality, we obtain

sup
t>0

Mt(f)

egp(t)
≤ 2e1−(p+1)α|f |p+1,Λ.

Combining this and (3.4) yields

|f |p ≤ eβp sup
t>0

Mt(f)

egp(t)
≤ 2eβpe1−(p+1)α|f |p+1,Λ.

This means that the desired estimate in Definition 3.1 of a sufficient set for A−∞
D

holds with m = p+ 1 and C = 2eβp+1−α(p+1).

4. Representation of functions from A−∞(D)
by Dirichlet series

In this section, as an application of the results obtained above, we show that
any function from the space A−∞(D) can always be represented in the form of a
Dirichlet series,

f(z) =

∞∑
k=1

cke
〈λk,z〉, ∀z ∈ D,

that converges absolutely in the space A−∞(D).
Recall that, in a general setting (see, e.g., Korobeinik [12]), a sequence

(
xk

)
of

nonzero elements of a locally convex space H is said to be an absolutely representing
system in H if any element x from H can be represented in the form of a series

x =

∞∑
1

ckxk

which converges absolutely in the topology of H.
It should be noted that this concept is more general than the concept of basis,

for which uniqueness of representation is essentially required.
In studying representing systems, Korobeinik obtained criteria for a countable

system to be absolutely representing in Fréchet and (DFS)-spaces. Later those
results were proved for more practical spaces. In particular, the following result,
which follows directly from [14, Chapter 2, Theorem 7] and [17, Theorem 5], is of
use to our case considered in this paper.

Proposition 4.1. Let E = lim ind(En, ‖ · ‖n) be a (DFS)-space, where En are
Banach spaces with E1 ⊂ E2 ⊂ . . ., and let X = (xk)

∞
k=1 be a system of elements

from E1 such that

(4.1) lim
k→∞

‖xk‖n+1

‖xk‖n
= 0, n = 1, 2, . . . .

The system X is absolutely representing in E if and only if

∀p ∈ N ∃m = m(p) ∈ N, ∃C = C(p) > 0 :

sup
x∈Ep,‖x‖p≤1

|ϕ(x)| ≤ C sup
k≥1

|ϕ(xk)|
‖xk‖m

, ∀ϕ ∈ E′.

Now return to the situation considered in the present paper. For each λk ∈
CN (k = 1, 2, . . .) write xk(z) = e〈λk,z〉, z ∈ D. We first study the question of
whether the conditions in Proposition 4.1 are satisfied by the system

(
xk(z)

)
.
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By Lemma 2.2, for each k = 1, 2, . . . we have

‖xk(·)‖1 = ‖e〈λk,·〉‖1 = sup
z∈D

|e〈λk,z〉|d(z) ≤ A1
eH(λk)

1 + |λk|
< +∞,

which shows that xk(z) ∈ A−1(D).
For condition (4.1) we notice, by Lemma 2.2 again, that

an+1

An
· 1

1 + |λk|
≤ ‖xk(·)‖n+1

‖xk(·)‖n
≤ An+1

an
· 1

1 + |λk|
,

which implies that condition (4.1) holds if and only if |λk| → ∞ as k → ∞.
Applying Proposition 4.1 to the spaces A−∞

D and A−∞(D), by Theorem 2.1 we
obtain the following criterion.

Proposition 4.2. Let D be either a bounded convex domain with C2 boundary
in CN , for N > 1, or an arbitrary bounded convex domain in C. Further, let
λk ∈ C

N (k = 1, 2, . . .) with |λk| → ∞ as k → ∞. The system
(
e〈λk,z〉

)∞
k=1

is

absolutely representing in the space A−∞(D) if and only if

∀p ∈ N ∃m = m(p) ∈ N, ∃C = C(p) > 0 :

sup
z∈CN

|f(z)|(1 + |z|)p
eHD(z)

≤ C sup
k≥1

|f(λk)|(1 + |λk|)m
eHD(λk)

, ∀f ∈ A−∞
D

or, in other words, if and only if the sequence of frequencies
(
λk

)∞
k=1

is sufficient

for the space A−∞
D .

Combining Algorithm 3.2 and Proposition 4.2 yields the following representation
result for the function algebra A−∞(D).

Theorem 4.3. Let D be either a bounded convex domain with C2 boundary in
CN , for N > 1, or an arbitrary bounded convex domain in C. There is an explicit
construction of Λ =

(
λk

)∞
k=1

⊂ C
N such that the system

(
e〈λk,z〉

)∞
k=1

is absolutely

representing in the space A−∞(D); that is, any function f ∈ A−∞(D) can be
represented in the form of a Dirichlet series

(4.2) f(z) =
∞∑
k=1

cke
〈λk,z〉, ∀z ∈ D,

which converges absolutely in the space A−∞(D).

5. Concluding remarks

Summarizing the results on this subject that have been obtained in our papers
[2] and the present one (together with [6]), we see that for the well-known function
algebra A−∞(D) and the newly introduced space A−∞

D of entire functions in C
N

satisfying a certain growth condition, the following statements hold:

(1) There is a mutual duality between A−∞(D) and A−∞
D ; specifically, the

Laplace transformation of analytic functionals establishes a topological iso-
morphism between the following spaces:

(a) the strong dual
(
A−∞(D)

)′

b
of A−∞(D) and the space A−∞

D ;

(b) the strong dual
(
A−∞

D

)′

b
of A−∞

D and the space A−∞(D).
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(2) In both spaces A−∞(D) and A−∞
D there exists an absolutely representing

system of exponentials EΛ =
(
e〈λk,z〉

)∞
k=1

; that is, any function f(z) from
either space can be represented in the form of a Dirichlet series

f(z) =

∞∑
k=1

cke
〈λk,z〉

that converges absolutely in the topology of the corresponding space.
Equivalently, there exists a sequence

(
λk

)∞
k=1

, where

(a) (λk) ⊂ CN for the space A−∞(D),
(b) (λk) ⊂ D for the space A−∞

D ,
which is (weakly) sufficient for the corresponding space. Moreover, the
frequencies (λk) can be constructed explicitly.

These results not only allow us to study deeper properties of functions from
the spaces A−∞(D) and A−∞

D but may also have important applications to func-
tional equations and approximations of functions in those spaces. Problems in this
direction are being investigated and will be presented in our forthcoming work.
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