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Dual-Path Convolutional Image-Text Embeddings

with Instance Loss
Zhedong Zheng, Liang Zheng, Michael Garrett, Yi Yang, Yi-Dong Shen

Abstract—Matching images and sentences demands a fine
understanding of both modalities. In this paper, we propose a
new system to discriminatively embed the image and text to
a shared visual-textual space. In this field, most existing works
apply the ranking loss to pull the positive image / text pairs close
and push the negative pairs apart from each other. However,
directly deploying the ranking loss is hard for network learning,
since it starts from the two heterogeneous features to build
inter-modal relationship. To address this problem, we propose
the instance loss which explicitly considers the intra-modal data
distribution. It is based on an unsupervised assumption that each
image / text group can be viewed as a class. So the network
can learn the fine granularity from every image/text group. The
experiment shows that the instance loss offers better weight
initialization for the ranking loss, so that more discriminative
embeddings can be learned. Besides, existing works usually apply
the off-the-shelf features, i.e., word2vec and fixed visual feature.
So in a minor contribution, this paper constructs an end-to-
end dual-path convolutional network to learn the image and
text representations. End-to-end learning allows the system to
directly learn from the data and fully utilize the supervision.
On two generic retrieval datasets (Flickr30k and MSCOCO),
experiments demonstrate that our method yields competitive
accuracy compared to state-of-the-art methods. Moreover, in
language based person retrieval, we improve the state of the art
by a large margin. The code has been made publicly available.

Index Terms—Image-Sentence Retrieval, Cross-Modal Re-
trieval, Language-based Person Search, Convolutional Neural
Networks.

I. INTRODUCTION

IMAGE and text both contain very rich semantics but reside

in heterogeneous modalities. Comparing to information

retrieval within the same modality, matching image-text poses

extra critical challenges, i.e., mapping images and text onto

one shared feature space. For example, a model needs to

distinguish between the “black dog”, “gray dog” and “two

dogs” in the text, and understand the visual differences in

images depicting “black dog”, “gray dog” and “two dogs”.

In this paper, given an unseen image (text) query, we aim to

measure its semantic similarity with the text (image) instances

in the database and retrieve the true matched texts (images) to

the query. Considering the testing procedure, this task requires

connecting the two modalities with robust representations. In

the early times, some relatively small datasets were used, e.g.,
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Fig. 1: Motivation. We define an image / text group as

an image with its associated sentences. We observe that an

image / text group is more or less different from each other.

Therefore, we view every image / text group as a distinct class

during training, yielding the instance loss.

Wikipedia [1] and Pascal Sentence [2], which contain around

3,000 and 5,000 image-text pairs, respectively. In recent years,

several large-scale datasets with more than 30,000 images,

including MSCOCO [3] and Flickr30k [4], have been intro-

duced. Each image in these datasets is annotated with around

five sentences. These large datasets allow deep architectures to

learn robust representations and provide challenging evaluation

scenarios.

During the past few years, ranking loss is commonly used

as the objective function [5]–[10] for image-text representation

learning. The ranking loss aims to make the distance between

positive pairs smaller than that between negative pairs by a

predefined margin. In image-text matching, every training pair

contains a visual feature and a textual feature. The ranking

loss focuses on the distance between the two modalities. Its

potential drawback is that it does not explicitly consider the

feature distribution in a single modality. For example, when

using ranking loss during training which does not distinguish

between the slight differences in images, then given two

testing images with slightly different semantics, the model

may output similar descriptors for the two images. This is

clearly undesirable for image / text matching considering the

extremely fine granularity of this task. In our experiment, we

observe that using the ranking loss alone in end-to-end training

may cause the network to be stuck in a local minimum.

What motivates us is the effectiveness of class labels in

earlier years of cross-media retrieval [11]–[15]. In these works,

the class labels are annotated manually and during testing, the

aim is to retrieve image / text belonging to the same class to

the query. In light of this early practice, this paper explores the
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feasibility of “class labels” in image / text matching, which is

an instance retrieval problem. Two differences exist between

cross-media retrieval on the category level [13], [15] and on

the instance level (considered in this paper). First, the true

matches are those with the same category, and those with the

exact same content with the query, respectively. That is to

say, instance-level retrieval has a more strict matching criteria

than category-level retrieval. Second, instance-level retrieval

does not assume the existence of class labels. In this field of

research, only image / text pairs are utilized during training.

Given the intrinsic differences between the two tasks, it is

non-trivial to directly transfer the experience from using class

labels in category-level retrieval to instance-level retrieval.

Without annotated class labels, how can we initiate the

investigation of the underlying data structures in the image

/ text embedding space? In this paper, we name an image

and its associated sentences an “image / text group”. Our key

assumption is that each “image / text” group is different from

the others, and can be viewed as a distinct class (see Fig. 1). So

we propose a classification loss called instance loss to classify

the image / text groups. Using this unsupervised class labels as

supervision, we aim to enforce the model to discriminate each

two images and two sentences (from different groups). It helps

to investigate the fine-grained difference in single modality

(intra-modal) and provides a good initialization for ranking

loss which is a driving force for end-to-end retrieval represen-

tation learning. In more details, using such an unsupervised

assumption, we train the network to classify every image / text

group with the softmax loss. In the experiment, we show that

the instance loss which classifies a large number of classes,

i.e., 113,287 image / text groups on MSCOCO [3], is able

to converge without any hyper-parameter tuning. Improved

retrieval accuracy can be observed as a result of instance loss.

In addition, we notice in the field of image-text matching

that most recent works employ off-the-shelf deep models for

image feature extraction [8]–[10], [16]–[22]. The fine-tuning

strategy commonly seen in other computer vision tasks [23]–

[25] is rarely adopted. A drawback of using off-the-shelf

models is that these models are usually trained to classify

objects into semantic categories [26]–[28]. The classification

models are likely to miss image details such as color, number,

and environment, which may convey critical visual cues for

matching images and texts. For example, a model trained

on ImageNet [29] can correctly classify the three images

as “dog”; but it may not tell the difference between black

dog and gray dog, or between one dog and two dogs. The

ability to convey critical visual cues is a necessary component

in instance-level image-text matching. Similar observations

have been reported with regards to image captioning [30].

Moreover, for the text feature, word2vec [31] is a popular

choice in image-text matching [8], [17], [21], [32]. Aiming

to model the context information, the word2vec model is

learned through a shallow network to predict neighboring

words. However, the word2vec model is initially trained on

GoogleNews, which differs substantially from the text in the

target dataset. As such, instead of using the off-the-shelf

model, we explore the possibility of fine-tuning the word2vec

model using image-text matching datasets.

Briefly, inspired by the effectiveness of class labels in

early-time cross-media retrieval, we propose a similar practice

in image-text matching called “instance loss”. Instance loss

works by providing better weight initialization for the ranking

loss, thus producing more discriminative and robust image

/ text descriptions. Next, we also note that the pretrained

CNN models may not meet the fine-grained requirement in

image / text matching. So we construct a dual path CNN to

extract image and text features directly from data rather. The

network is end-to-end trainable and yields superior results to

using features extracted from off-the-shelf models as input.

Our contributions are summarized as follows:

• To provide better weight initialization and regularize

the dual-path CNN model, we propose a large-number

classification loss called instance loss. The robustness

and effectiveness of instance loss are demonstrated by

classifying each image / text group into one of the

113,287 classes on MSCOCO [3].

• We propose a dual-path CNN model for visual-textual

embedding learning (see Fig. 2). In contrast to the com-

monly used RNN+CNN model using fixed CNN features,

the proposed CNN+CNN structure conducts efficient and

effective end-to-end fine-tuning.

• We obtain competitive accuracy compared with the state-

of-the-art image-text matching methods on three large-

scale datasets i.e., Flickr30k [4], MSCOCO [3] and

CUHK-PEDES [33].

We note that Ma et al. also apply the CNN structure for text

feature learning [7]. The main difference between our method

and [7] is two-fold. First, Ma et al. [7] use the ranking loss

alone. In our method, we show that the proposed instance loss

can further improve the result of ranking loss. Second, in [7],

four text CNN models are used to capture different semantic

levels i.e., word, short phrase, long phrase and sentence. In this

paper, only one text CNN model is used and the word-level

input is considered. Our model uses the residual block shown

in Fig. 3, which combines low level information i.e., word, as

well as high level inference to produce the final feature. In

experiment (Table I and Table VIII), we show that using on

the same image CNN (VGG-19), our method (with one text

CNN) is superior to [7] with text model ensembles by a large

margin.

The rest of this paper is organized as follows. Section II

reviews and discusses the related works. Section III describes

the proposed Image-Text CNN Structure in detail, followed

by the objective function in Section IV. Training policy is

described in Section V. Experimental results and comparisons

are discussed in Section VI and conclusions are in Section

VII. Furthermore, some qualitative results are included in

Appendix.

II. RELATED WORKS

The image-text bidirectional retrieval requires both under-

standing images and sentences in detail. In this section, we

discuss some related works.

Deep models for image recognition. Deep models have

achieved success in computer vision. The convolutional neural
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Fig. 2: We learn the image and text representations by two convolutional neural networks, i.e., deep image CNN (top) and deep

text CNN (bottom). The deep image CNN is a ResNet-50 model [28] pre-trained on ImageNet. The deep text CNN is similar

to the image CNN but with different basic blocks (see Fig. 3). After the average pooling, we add one fully connected layer

(input dim: 2, 048, output dim: 2, 048), one batchnorm layer, relu and one fully connected layer (input dim: 2, 048, output dim:

2, 048) in both image CNN and text CNN (We denote as fc and fc∗ in the figure, and the weights are not shared). Then we

add a shared-weight Wshare classification layer (input dim: 2, 048, output dim: 29, 783). The objectives are the ranking loss

and the proposed instance loss. On Flickr30k, for example, the model needs to classify 29,783 classes using instance loss.

network (CNN) won the ILSVRC12 competition [29] by a

large margin [26]. Later, VGGNet [27] and ResNet [28] further

deepened the CNN and provide more insights into the network

structure. In the field of image-text matching, most recent

methods directly use fixed CNN features [8]–[10], [16]–[22]

as input which are extracted from the models pre-trained on

ImageNet. While it is efficient to fix the CNN features and

learn a visual-textual common space, it may lose the fine-

grained differences between the images. This motivates us to

fine-tune the image CNN branch in the image-text matching

to provide for more discriminative embedding learning.

Deep models for natural language understanding. For

natural language representation, word2vec [31] is commonly

used [8], [17], [21], [32], [34]. This model contains two

hidden layers, which learns from the context information.

In the application of image-text matching, Klein et al. [17]

and Wang et al. [8] pool word vectors extracted from the

fixed word2vec model to form a sentence descriptor using

Fisher vector encoding. Karpathy et al. [32] also utilize fixed

word vectors as word-level input. With respect to this routine,

this paper proposes an equivalent scheme to fine-tuning the

word2vec model, allowing the learned text representations to

be adaptable to a specific task, which is, in our case, image-

text matching.

Recurrent Neural Networks (RNN) are another common

choice in natural language processing [35], [36]. Mao et al.

[16] employ a RNN to generate image captions. Similarly,

Nam et al. [9] utilize directional LSTM [37] for text encod-

ing, yielding state-of-the-art multi-modal retrieval accuracy.

Conversely, our approach is inspired by recent CNN break-

throughs on natural language understanding. For example,

Gehring et al. apply CNNs to conduct machine translation,

yielding competitive results and more than 9.3x speedup on

the GPU [38]. There are also researchers who apply layer-

by-layer CNNs for efficient text analysis [39]–[42], obtaining

competitive results in title recognition, event detection and text

content matching. In this paper, in place of RNNs which are

more commonly seen in image-text matching, we explore the

usage of CNNs for text representation learning.

Multi-modal learning. There is a growing body of works

on the interaction between multiple modalities. Some works

focus on the efficient cross-modal searching by binary coding

and hashing [14], [43], [44]. Others pay more attention to

the effective retrieval by understanding the semantic meaning,

which is close to this work. As for the content-based retrieval,

one line of methods focus on category-level retrieval and

leverage the category labels in the training set. Sharma et al.

[11] extend the Canonical Correlation Analysis [45] (CCA)

to learning class labels, and Wang et al. [12] learn the

shared image-text space based on coupled input with class

regression. Wu et al. [13] propose a bi-directional learning

to rank for representation learning. In [15], Wei et al. perform

CNN fine-tuning by classifying categories on the training set

and report an improved performance on image-text retrieval.

Castrejon et al. deploy the multiple labels to learn the shared

semantic space [46]. The second line of methods consider

instance-level retrieval and, except for matched image-text

pairs, do not provide any category label. Given a query, the

retrieval objective is a specific image or related sentences

[47]. Some works apply the auto-encoder to project high-

dimensional features from different modalities onto a com-

mon low-dimensional latent space [48], [49]. Some works

deploy the pair-wise constraints. In [50], He et al. use the

assumption that the text and image components in a web

document form a pairwise constraint. Zhang et al. consider the

verification loss, using a binary classifier to classify the true
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matches and false matches [51]. Other works widely apply

the ranking loss for instance-level retrieval [5]–[10]. Karpathy

et al. propose a part-to-part matching approach using a global

ranking objective [6]. The “SPE” proposed in [8] extends

the ranking loss with structure-preserving constraints. SPE is

similar to our work in that both works consider the intra-

modal distance. Nevertheless, our work differs significantly

from SPE. SPE enforces the model to rank the texts, i.e.,

considering the feature separability within the text modality

only. In comparison, with the proposed instance loss, our

method jointly discriminates the two modalities, i.e., images

and their associated texts.

Briefly, we focus on instance-level retrieval and propose

the instance loss, a novel contribution to the cross-modality

community. It views each training image / text group as a

distinct class and uses the softmax loss for model training.

The assumption is unsupervised. We show that this method

converges well and yields consistent improvement.

III. PROPOSED CNN STRUCTURE

In this paper, we propose a dual path CNN to simultaneously

learn visual and textual representations in an end-to-end fash-

ion, consisting of a deep image CNN for image input and one

deep text CNN for sentence input. The entire network only

contains four components, i.e., convolution, pooling, ReLU

and batch normalisation. Compared to many previous methods

which use off-the-shelf image CNNs [8]–[10], [16]–[22], end-

to-end fine-tuning is superior in learning representations that

encode image details (see Fig. 2).

A. Deep Image CNN

We use ResNet-50 [28] pre-trained on ImageNet [26] as a

basic model (the final 1000-classification layer is removed) be-

fore conducting fine-tuning for visual feature learning. Given

an input image of size 224 × 224, a forward pass of the

network produces a 2, 048-dimension feature vector. Followed

by this feature, we add one fully-connected layer (input dim:

2, 048, output dim: 2, 048), one batch normalization, relu

and one fully-connected layer (input dim: 2, 048, output dim:

2, 048). We denote the final 2, 048-dim vector fimg as the

visual descriptor of the input I . The forward pass process of

the CNN, which is a non-linear function, is represented by

function Fimg(·) defined as:

fimg = Fimg(I). (1)

B. Deep Text CNN

Text processing. Next, we describe our text processing

method and the text CNN structure. Given a sentence, we first

convert it into code T of size n × d, where n is the length

of the sentence, and d denotes the size of the dictionary. T is

used as the input for the text CNN. We use word2vec [31]

as a general dictionary to filter out rare words; if a word does

not appear in the word2vec dictionary (3,000,000 words), it

is discarded. For Flickr30k, we eventually use d = 20, 074
words as the dictionary. Every word in Flickr30k thus can find

an index l ∈ [1, d] in the dictionary; for instance, a sentence

Fig. 3: The basic block of deep image CNN and deep

text CNN. Similar with the local pattern of the images, the

neighbor words in the sentence may contains important clues.

The filter size in the image CNN is 3 × 3 with height and

width padding; the filter size in the text CNN is 1 × 2 with

length padding. Besides, we also use a shortcut connection,

which helps to train a deep convolutional network [28]. The

output F(x) + x has the same size with the input x.

of 18 words can be converted to 18×d matrix. The text input

T can thus be formulated as:

T (i, j) =

{

1 if j = li

0 otherwise
, (2)

where i ∈ [1, 18], j ∈ [1, d]. The text CNN needs a fixed-

length input. We set a fixed length 32 in this paper because

about 98% sentences contain less than 32 words. If the length

of the sentence is shorter than 32, we pad with zeros to the

columns of T . If the length of the sentence is longer than 32,

we clip the final several words. Now we obtain the 32 × d

sentence code T . We further reshape T into the 1 × 32 × d

format, which can be considered as height, width and channel

known in the image CNNs [26], [28].

Position shift. We are motivated by the jittering operation

in the image CNN training. For text CNN, we apply a

data augmentation policy called position shift. In a baseline

approach, if the sentence length n is shorter than the standard

input length 32, a straightforward idea is to pad zeros at the

end of the sentence, called left alignment. In the proposed

position shift approach, we pad a random number of zeros at

the beginning and the end of a sentence. In this manner, shift

variations are contained in the text representation, so that the

learned embeddings are more robust. In the experiment, we

observe that position shift is of importance to the performance.

Deep text CNN. In the text CNN, filter size of the first

convolution layer is 1× 1× d× 300, which can be viewed as

a lookup table. Using the first convolutional layer, a sentence

is converted to the word vector as follows. Given input T of

1 × 32 × d, the first convolution layer results in a tensor of

size 1 × 32 × 300. There are two methods to initialize the

first convolutional layer: 1) random initialization [52], and 2)

using the d×300-dim matrix from word2vec for initialization.

In the experiment, we observe that word2vec initialization is

superior to the random initialization.
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For the rest of the text CNN, similar residual blocks are used

as per the image CNN (see Fig. 3). Similar to the local pattern

in the image CNN, every two neighbor components may form

a phrase containing content information. We set the filter size

of convolution layers in basic text block to 1×2. Additionally,

we add the shortcut connection in the basic block, which has

been demonstrated to help training deep neural networks [28].

We apply basic blocks with a short connection to form the

deep textual network (see Fig. 2). The number of blocks is

consistent with the ResNet-50 model in the visual branch.

Given a sentence matrix T , its text descriptor ftext can be

extract in an end-to-end manner from the text CNN Ftext(·):

ftext = Ftext(T ). (3)

IV. PROPOSED INSTANCE LOSS

In this paper, two types of losses are used, i.e., the standard

ranking loss and the proposed instance loss. In Section IV-A,

we briefly review the formulation of the ranking loss and dis-

cuss the limitation of the ranking loss. Section IV-B describes

the motivation and the formulation of the instance loss fol-

lowed by a discussion. The differences between instance loss

and ranking loss are discussed, and some primary experiments

show the feasibility of instance loss. In Section IV-C, training

convergence of the instance loss is discussed.

A. Ranking Loss Review

Ranking loss is a widely used objective function for retrieval

problems. We use the cosine distance D(fxi
, fxj

) =
fxi

||fxi
||2

×
fxj

||fxj
||2

to measure the similarity between two samples, where

f is the feature of a sample, and || · ||2 denotes the L2-norm.

The distance value D(fxi
, fxj

) ∈ [−1, 1].
To effectively account for two modalities, we follow the

ranking loss formulation as in some previous works [6], [9].

Here, I denotes the visual input, and T denotes the text input.

Given a quadric input (Ia, Ta, In, Tn), where Ia, Ta describe

the same image / text group, In, Tn are negative samples,

ranking loss can be written as,

Lrank =

image anchor
︷ ︸︸ ︷

max[0, α− (D(fIa , fTa
)−D(fIa , fTn

))]

+max[0, α− (D(fTa
, fIa)−D(fTa

, fIn))]
︸ ︷︷ ︸

text anchor

, (4)

where D(·, ·) is the cosine similarity, and α is a margin. Given

an image query Ia, the similarity score of the correct text

matching should be higher. Similarly, if we use sentence query

Ta, we expect the correct image content should be ranked

higher. Ranking loss explicitly builds the relationship between

the image and text.

Limitations of ranking loss. Although widely used, rank-

ing loss has a potential drawback for the application of image-

text matching. According to Eq. 4, every pair contains a visual

feature and a textual feature. The ranking loss focuses on

the distance between the two modalities. So the potential

drawback is that the ranking loss does not explicitly consider

the feature distribution in a single modality. For instance, given

two testing images with slightly different semantics, the model

may output similar features. It is clearly undesirable for the

extremely fine granularity of this task. In the experiment, using

ranking loss alone is prone to get stuck in a local minimum

(as to be shown in Fig. 5 and Table II).

B. Instance Loss

Motivation. Some early works use coarse-grain category

i.e., art, biology, and sport, as the training supervision [11],

[12], [15]. The multi-class classification loss has shown a good

performance. But for instance-level retrieval, the classification

loss has not been used. There may be two reasons. First,

the category-level annotations are missing for most large-scale

datasets. Second, if we use the category to train the model,

it forces different instances, i.e., black dog, and white dogs,

to the same class. It may compromise the CNN to learn the

fine-grained difference.

In this paper, we propose the instance loss for instance-level

image-text matching. We define an image and its related text

descriptions as an image / text group. In specific applications

such as language-based person retrieval [33], [53], an image

/ text group is defined as images and their descriptions which

depict the same person (see Fig. 7). Based on image / text

groups, our assumption is that each image / text group is

distinct (duplicates have been removed in the datasets). Under

such assumption, we view each image / text group as a class.

So in essence, instance loss is a softmax loss which classifies

an image / text group into one of a large number of classes. We

want the trained model can tell the difference between every

two images as well as every two sentences (from different

groups). Formally, we define instance loss below.

Formulation. For two modalities, we formulate two classi-

fication objectives as follows,

Pvisual = softmax(WT
sharefimg), (5)

Lvisual = − log(Pvisual(c)), (6)

Ptextual = softmax(WT
shareftext), (7)

Ltextual = − log(Ptext(c)), (8)

where fimg and ftext are image and text features defined in Eq.

1 and Eq. 3, respectively. Wshare is the parameter of the final

fully connected layer (Fig. 2). It can be viewed as concatenated

weights Wshare = [W1,W2, ...,W29783]. Every weight Wi

is a 2048-dim vector. L denotes the loss and P denotes the

probability over all classes. P (c) is the predicted possibility

of the right class c. Here we enforce shared weight Wshare

in the final fully connected layer for the two modalities,

because otherwise the learned image and text features may

exist in totally different subspaces.

As to be described in Section V, in the first training stage,

the ranking loss is not used. We only use the instance loss; in

the second training stage, both losses are used. The final loss

function is a combination of the ranking loss and the instance

loss, defined as,

L = λ1Lrank + λ2Lvisual + λ3Ltextual, (9)

where λ1, λ2, λ3 are predefined weights for different losses.
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Fig. 4: We extract image features (2,048-dim) from a randomly

selected 100 images in the Flickr30k validation set, using the

ImageNet pre-trained ResNet-50 model and our model (after

Stage I), respectively. We visualize the 100 × 100 Pearson’s

correlation. Lower Pearson’s correlation between two features

indicates higher orthogonality. The instance loss encourages

the model to learn the difference between images.

Discussion. First, we show that instance loss provides better

weight initialization than the ImageNet pretrained model. To

prove this, we compare the image features from the off-the-

self model pre-trained on ImageNet and the model trained

with instance loss. Since the proposed instance loss explicitly

considers the intra-modal distance, we observe that the feature

correlation between two images is smaller after training with

the instance loss (see Fig. 4(b)). In fact, the instance loss

encourages the model to find the fine-grained image details

such as ball, stick, and frisbee to discriminate between image

/ text groups with similar semantics. We visualize the dog

retrieval results in Fig. 10. Our model can be well generalized

to the test set and still sensitive to the subtle differences.

Second, we provide an example of two classes to de-

scribe the working mechanism of instance loss (Fig. 6).

Wshare = [W1,W2]. Given image x1 which belongs to the

first class, the softmax loss function informs the constraint

of WT
1
fx1

> WT
2
fx1

. Similarly, if y1 is an input sentence

belonging to the first class, the softmax loss will lead to

the constraint of WT
1
fy1

> WT
2
fy1

. The decision boundary

indicates equal probability to be classified into the first class

and the second class. Since the image and text embedding

networks share the same final weight Wshare, the features of

the same image / text group will be close to each other in the

embedding space; the data points from different image / text

groups will be pushed away from each other. Therefore, after

training with the instance loss, the data points will usually

locate on the either side of the decision boundary. In this

manner, the image / text groups can be separated in the feature

space despite of the fine-grained differences among them. This

property, as shown in the Fig. 6 (right), will provide better

weight initialization for the subsequent training with both the

ranking loss and instance loss.

Third, we demonstrate that using the instance loss alone

can lead to a decent initialization. To validate this point, we

plot the distribution P of the intra-modal intra-class similarity

Dp = D(fxi
, fyi

) and the distribution Q of the intra-modal

inter-class similarity Dn = D(fxi
, fyj

)(j 6= i) on Flickr30k

validation set (Fig. 5(b)). We observe that, using instance loss

alone, in most cases, leads to Dp > Dn by a margin. The mean

of Dp equals to 0.2405 while the mean of Dn is 0.0237.

Fourth, using the ranking loss alone achieves a relatively

large margin between the positive pairs and negative pairs

but there also exist many “hard” negative pairs (Fig. 5(a)).

These “hard” negative pairs usually have a high similarity

which compromises the matching performance of the true

matches. Due to the potential drawback of the ranking loss

mentioned in Section IV-A, the image / text with slightly

difference may have the similar feature, which result in the

“hard” negative samples. To quantitatively compare the three

models, we propose a simple indicator function,

S =

∫
1

−1

min(P (x), Q(x))dx, (10)

which encodes the overlapping area of P and Q over the

range of cosine similarity [−1, 1]. Indicator S ∈ [0, 1]. The

smaller S is, the better the positive pairs and negative pairs

are separated, and thus the better retrieval performance. S = 1
indicates the case where the two distributions, P and Q are

completely overlapping. Under this worst case, the positive

pairs cannot be distinguished from the negative ones, and the

retrieval performance is random. To the other extreme, S = 0
indicates that the positive pairs and negative pairs are perfectly

separable: all the similarity scores of the positive pairs are

larger than the similarity scores of the negative pairs. In this

best case, the retrieval precision and recall are both 100%.

Therefore, a lower indicator score S indicates a better retrieval

system.

In our experiment (Fig. 5), the indicator scores of the three

models are Srank = 0.2563, Sinstance = 0.1633 and Sfull =
0.0914, respectively. It clearly demonstrates that in terms of

the extent of feature separability: “Full Model” > “Using

Instance Loss Alone” > “Using Ranking loss Alone”. With the

indicator function, we quantitatively show that using ranking

loss alone produces more hard negative pairs than the proposed

two competing methods, which compromises the matching

performance of the ranking loss. In comparison, using instance

loss alone produces a smaller S value, suggesting a better

feature separability of the trained model. Importantly, when the

two losses, i.e., ranking loss and instance loss, are combined,

our full model has the smallest S value, indicating the fewest

hard negative samples and the best retrieval accuracy among

the three methods.

For the retrieval performance, using the instance loss alone

can lead to a competitive accuracy in the experiment (Table

II). The effect of the instance loss is two-fold. In the first

training stage, when used alone, it pre-trains the text CNN and

fine-tunes the two fully-connected layers (and one batchnorm

layer) of image CNN so that ranking loss can arrive at a better

optimization for both modalities in the second stage (Fig. 6).

In the second training stage, when used together with ranking

loss, it exhibits a regularization effect on the ranking loss.

C. Training Convergence of Instance Loss

The instance loss views every image / text group as a

class, so the number of training classes is usually large. For
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Fig. 5: The similarity (cosine distance) distribution of the positive pairs P and negative pairs Q on Flickr30k validation dataset.

We show the result obtained by (a) using ranking loss alone, (b) using instance loss alone and (c) full model (instance loss +

ranking loss), respectively. Indicator S is calculated as the overlapping area between P and Q (defined in Section IV-B, lower

is better). Through comparing their S values, the performance of the three methods is: “Full Model” > “Using Instance Loss

Alone” > “Using Ranking Loss Alone”.

Fig. 6: Geometric Interpretation. The proposed instance loss

leads to a decent weight initialization for ranking loss +

instance loss in Stage II.

instance, we have 29,783 classes when training on Flickr30k.

In Fig. 8, we show the training error curves of the image

CNN and text CNN during training. We observe that the image

CNN converges faster (Fig. 8(a)) because the image CNN is

pretrained on ImageNet. Text CNN converges more slowly

because most part of it is trained from scratch, but it still begins

to learn something after 20 epochs, and finally converges after

240 epochs.

On the other hand, the convergence property is evidenced

by some previous works. To our knowledge, some practices

also suffer from limited data per class, because manually

annotating data is usually expensive. For example, in person

re-ID, CUHK03 dataset [54] has 9.6 training samples per

class; VIPeR dataset [55] has 2 training samples per class.

The previous works [56], [57] on CUHK03 and VIPeR show

that the CNN classification model can be well trained as long

as each class has more than a couple of training samples.

In our case, there are usually 6 positive training samples per

class (1 image and 5 sentences). In the experiment, despite

of the limited training data, the learned model has a good

generalization ability on the validation set and test set, which

accords with existing experience [56], [57].

V. A TWO-STAGE TRAINING PROCEDURE

We describe the training policy in this section. We split the

training procedure into two stages. In the experiment, we show

this policy helps the training.

Stage I: In this stage, we fix the pre-trained weights in the

image CNN and use the proposed instance loss to tune the

remaining part. The main reason is that most weights of the

text CNN are learned from scratch. If we train the image and

text CNNs simultaneously, the text CNN may compromise the

pre-trained image CNN. We only use the proposed instance

loss in this stage (λ1 = 0, λ2 = 1, λ3 = 1). It can provide a

good initialization for the ranking loss. We note that even after

Stage I, our network can achieve competitive results compared

to previous works using off-the-shelf CNNs.

Stage II: After Stage I converges, we start Stage II for

end-to-end fine-tuning of the entire network. Note that the

weights of the image CNN are also fine-tuned. In this stage, we

combine the instance loss with the ranking loss (λ1 = 1, λ2 =
1, λ3 = 1), so that both classification and ranking errors are

considered. In Section VI-D, we study the mechanism of the

two losses. It can be observed that in Stage II, instance loss

and ranking loss are complementary, thus further improving

the retrieval result. Instance loss still regularizes the model

and provides more attentions to discriminate the images and

sentences. After Stage II (end-to-end fine-tuning), another

round of performance improvement can be observed, and we

achieve even more competitive performance.

VI. EXPERIMENT

We first introduce the three large-scale image-text retrieval

datasets, i.e., Flickr30k, MSCOCO and CUHK-PEDES, fol-

lowed by the evaluation metric in Section VI-A. Then Section

VI-B describes the implementation details and the repro-

ducibility. We discuss the comparison with state of the art

and mechanism study in Section VI-C and Section VI-D.

A. Datasets

Flickr30k [4] is one of the large-scale image captioning

datasets. It contains 31,783 images collected from Flickr, in

which every image is annotated with five text descriptions.

The average sentence length is 10.5 words after removing rare

words. We follow the protocol in [6], [62] to split the dataset

into 1,000 test images, 1,000 validation images, and 29,783

training images.
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Fig. 7: Sample images in the three datasets. For the MSCOCO and Flickr30k datasets, we view every image and its captions

as an image / text group. For CUHK-PEDES, we view every identity (with several images and captions) as a class.

Method Visual Textual
Image Query Text Query

R@1 R@5 R@10 Med R@1 R@5 R@10 Med r

DeVise [5] ft AlexNet ft skip-gram 4.5 18.1 29.2 26 6.7 21.9 32.7 25
Deep Fragment [6] ft RCNN fixed word vector from [58] 16.4 40.2 54.7 8 10.3 31.4 44.5 13
DCCA [59] ft AlexNet TF-IDF 16.7 39.3 52.9 8 12.6 31.0 43.0 15
DVSA [32] ft RCNN (init. on Detection) w2v + ft RNN 22.2 48.2 61.4 4.8 15.2 37.7 50.5 9.2
LRCN [60] ft VGG-16 ft RNN 23.6 46.6 58.3 7 17.5 40.3 50.8 9
m-CNN [7] ft VGG-19 4 × ft CNN 33.6 64.1 74.9 3 26.2 56.3 69.6 4
VQA-A [18] fixed VGG-19 ft RNN 33.9 62.5 74.5 - 24.9 52.6 64.8 -
GMM-FV [17] fixed VGG-16 w2v + GMM + HGLMM 35.0 62.0 73.8 3 25.0 52.7 66.0 5
m-RNN [16] fixed VGG-16 ft RNN 35.4 63.8 73.7 3 22.8 50.7 63.1 5
RNN-FV [19] fixed VGG-19 feature from [17] 35.6 62.5 74.2 3 27.4 55.9 70.0 4
HM-LSTM [21] fixed RCNN from [32] w2v + ft RNN 38.1 - 76.5 3 27.7 - 68.8 4
SPE [8] fixed VGG-19 w2v + HGLMM 40.3 68.9 79.9 - 29.7 60.1 72.1 -
sm-LSTM [20] fixed VGG-19 ft RNN 42.5 71.9 81.5 2 30.2 60.4 72.3 3
RRF-Net [61] fixed ResNet-152 w2v + HGLMM 47.6 77.4 87.1 - 35.4 68.3 79.9 -
2WayNet [49] fixed VGG-16 feature from [17] 49.8 67.5 - - 36.0 55.6 - -
DAN (VGG-19) [9] fixed VGG-19 ft RNN 41.4 73.5 82.5 2 31.8 61.7 72.5 3
DAN (ResNet-152) [9] fixed ResNet-152 ft RNN 55.0 81.8 89.0 1 39.4 69.2 79.1 2

Ours (VGG-19) Stage I fixed VGG-19 ft ResNet-50† (w2v init.) 37.5 66.0 75.6 3 27.2 55.4 67.6 4

Ours (VGG-19) Stage II ft VGG-19 ft ResNet-50† (w2v init.) 47.6 77.3 87.1 2 35.3 66.6 78.2 3

Ours (ResNet-50) Stage I fixed ResNet-50 ft ResNet-50† (w2v init.) 41.2 69.7 78.9 2 28.6 56.2 67.8 4

Ours (ResNet-50) Stage II ft ResNet-50 ft ResNet-50† (w2v init.) 53.9 80.9 89.9 1 39.2 69.8 80.8 2

Ours (ResNet-152) Stage I fixed ResNet-152 ft ResNet-152† (w2v init.) 44.2 70.2 79.7 2 30.7 59.2 70.8 4

Ours (ResNet-152) Stage II ft ResNet-152 ft ResNet-152† (w2v init.) 55.6 81.9 89.5 1 39.1 69.2 80.9 2

TABLE I: Method comparisons on Flickr30k. “Image Query” denotes using an image as query to search for the relavant

sentences, and ‘Text Query’ denotes using a sentence to find the relevant image. R@K is Recall@K (higher is better). Med r

is the median rank (lower is better). “ft” means fine-tuning. †: Text CNN structure is similar to the image CNN, illustrated in

Fig. 3.

Fig. 8: Classification error curves when training on Flickr30k.

The image CNN (a) and text CNN (b) converge well with

29,783 training classes (image / text groups).

MSCOCO [3] contains 123,287 images and 616,767 de-

scriptions. Every images contains roughly 5 text descriptions

on average. The average length of captions is 8.7 after rare

word removal. Following the protocol in [32], we randomly

select 5,000 images as test data and 5,000 images as validation

data. The remaining 113,287 images are used as training data.

The evaluation is reported on 1K test images (5 fold) and 5K

test images.

CUHK-PEDES [33] collects images from many different

person re-identification datasets. It contains 40,206 images

from 13,003 different pedestrians and 80,440 descriptions.

On average, each person has 3.1 images, and each image

has 2 sentences. The average sentence length is 19.6 words

after we remove rare words. We follow the protocol in [33],

selecting the last 1,000 persons for evaluation. There are

3,074 test images with 6,156 captions, 3,078 validation images

with 6,158 captions, and 34,054 training images with 68,126

captions.
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Evaluation Metric We use two evaluation metrics i.e.,

Recall@K and Median Rank. Recall@K is the possibility that

the true match appears in the top K of the rank list, where a

higher score is better. Median Rank is the median rank of the

closest ground truth result in the rank list, with a lower index

being better.

B. Implementation Details

The model is trained by stochastic gradient descent (SGD)

with momentum fixed to 0.9 for weight update. While training,

the images are resized to 224×224 pixels which are randomly

cropped from images whose shorter size is 256. We also

perform simple data augmentation such as horizontal flipping.

For training text input, we conduct position shift (Section

III-B) as data augmentation. Dropout is applied to both CNNs,

and the dropout rate is 0.75. For Flickr30k and MSCOCO, we

set the max text length to 32; for CUHK-PEDES, we set the

max text length to 56, since most sentences are longer.

In the first training stage, we fixed the pre-trained image

CNN, and train the text CNN only. The learning rate is 0.001.

We stop training when instance loss converges. In the second

stage, we combine the ranking loss as Eq. 9 (the margin α = 1)

and fine-tune the entire network.

When testing, we can use the trained image CNN and

trained text CNN separately. We extract the image feature fimg

by image CNN and the text feature ftext by text CNN. We

use the cosine distance to evaluate the similarity between the

query and candidate images/sentences. It is consistent with the

similarity used in the ranking loss objective. The final retrieval

result is based on the similarity ranking. We also conduct the

horizontal flipping when testing and use the average features

(no flip and flip) as the image feature.

Reproducibility. Our source code is available online1. The

implementation is based on the Matconvnet package [63].

Since the entire network only uses four components i.e.,

convolution, pooling, ReLU and batch normalization, it can

be easily modified to other deep learning packages.

Training Time The image CNN (ResNet-50) in our method

uses ∼119 ms per image batch (batch size = 32) on an Nvidia

1080Ti GPU. The text CNN (similar ResNet-50) also uses

∼117 ms per sentence batch (batch size = 32). Therefore,

the image feature and text feature can be simultaneously

calculated. Although our implementation is sequential, the

model can run in a parallel style efficiently.

C. Comparison with State of the Art

We first compare our method with the state-of-the-art meth-

ods on the three datasets, i.e., Flickr30k, MSCOCO, and

CUHK-PEDES. The compared methods include recent models

on the bidirectional image and sentence retrieval. For a fair

comparison, we present the results based on different image

CNN structures, i.e., VGGNet [27] and ResNet [28]. We also

summarise the visual and textual embeddings used in these

works in Table I and Table VIII. Extensive results are shown in

Table I, Table VIII, and Table VII, respectively. On Flickr30k,

1https://github.com/layumi/Image-Text-Embedding

Method Stage
Image Query Text Query

R@1 R@10 R@1 R@10

Only Ranking Loss I 6.1 27.3 4.9 27.8
Only Instance Loss I 39.9 79.1 28.2 67.9

Only Instance Loss II 50.5 86.0 34.9 75.7
Only Ranking Loss II 47.5 85.4 29.0 68.7
Full model II 55.4 89.3 39.7 80.8

TABLE II: Ranking loss and instance loss retrieval results

on Flickr30k validation set. Except for the different losses,

we apply the entirely same network (ResNet-50). For a clear

comparison, we also fixed the image CNN in Stage I and tune

the entire network in Stage II to observe the overfitting.

we achieve competitive results with state-of-the-art DAN [9]:

Recall@1 = 55.6%, Med r = 1 using image queries, and

Recall@1 = 39.1%, Med r = 2 using text queries. While

both based on VGG-19, our method exceeds DAN 6.2% and

3.5% Recall@1 using image and text query respectively. On

MSCOCO 1K-test-image setting, we arrive at Recall@1 =

65.6%, Med r = 1 using image queries, and Recall@1 =

47.1%, Med r = 2 using text queries. On 5K-test-image setting,

we arrive at Recall@1 = 41.2%, Med r = 2 using image

queries, and Recall@1 = 25.3%, Med r = 5 using text queries.

CUHK-PEDES is a specific dataset for retrieving pedestrian

images using the textual description. On CUHK-PEDES, we

arrive at Recall@1 = 32.15%, Med r = 4. While both are

based on a VGG-16 network, our model has 6.21% higher

recall rate. Moreover, our model based on ResNet-50 achieves

new state-of-the-art performance: Recall@1 = 44.4%, Med r

= 2 using language description to search relevant pedestrians.

Our method exceeds the second best method [53] by 18.46%

in Recall@1 accuracy.

Note that m-CNN [7] also fine-tunes the CNN model to

extract visual and textual features. m-CNN encompasses four

different levels of text matching CNN while we only use one

deep textual model with residual blocks. While both are based

on VGG-19, our model has higher performance than m-CNN.

Compared with a recent arXiv work, VSE++ [64], our result

is also competitive.

D. Mechanism Study

The effect of Stage 1 training. We replace the instance loss

with the ranking loss at the first stage when fixing the image

CNN. As shown in Table II, the performance is limited. As

discussed in Section IV-B, ranking loss focuses on inter-modal

distance. It may be hard to tune the visual and textual features

simultaneously at the beginning. As we expected, instance loss

performs better, which focuses more on learning intra-modal

discriminative descriptors.

Two losses can works together. In Stage II, the experiment

on the validation set verifies that two losses can work together

to improve the final retrieval result (see Table II). Compared

with models using only ranking loss or instance loss, the model

with two losses provides for higher performance. In the second

stage, instance loss does help to regularize the model.

End-to-end fine-tuning helps. In Stage II, we fine-tune the

entire network. For the two general object datasets Flickr30k

https://github.com/layumi/Image-Text-Embedding
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Methods Dataset Image-Query R@1 Text-Query R@1

Res152 + Res50†
Flickr30k

44.4 29.6

Res152 + Res152† 44.2 30.7

Res152 + Res50†
MSCOCO

52.0 38.0

Res152 + Res152† 52.8 37.7

TABLE III: Deeper Text CNN on Flickr30k and MSCOCO.

We use fixed Image CNN (StageI). †: Text CNN structure.

Methods Image-Query R@1 Text-Query R@1

3000 categories (StageI) 38.0 26.1
10000 categories (StageI) 44.7 31.3
Our (StageI) 52.2 37.2

TABLE IV: K-class Loss vs. Instance Loss on MSCOCO. We

use the K-means clustering result as pseudo categories. The

experiment is based on Res50 + Res50† as the model structure.

and MSCOCO, fine-tuning the whole network can improve

the rank-1 accuracy by approximately 10% (see Table. I and

Table. VIII). Imagenet collects images from the Internet, while

the pedestrian dataset CUHK-PEDES collects images from

surveillance cameras. The fine-tuning result is more obvious

on the CUHK-PEDES due to the different data distribution.

The fine-tuned network (based on ResNet-50) improves the

Recall@1 by 29.37%. The experiments indicate the end-to-

end training is critical to image-sentence retrieval, especially

person search.

Do we really need so many classes? For instance loss,

the number of classes is usually large. Is it possible to use

fewer classes? We implement the pseudo-category method by

k-means clustering on MSCOCO, since MSCOCO has most

images (classes). We use pool5 feature of ResNet50 pretrained

on ImageNet to cluster 3, 000 and 10, 000 categories by K-

means. The clustering results are used as the pseudo label for

the images to conduct classification. Although clustering can

decrease the number of training classes and add the samples

per classes, different instances are forced to be of the same

class and details may be lost (black / gray dog, two dogs),

which compromises the accuracy. The retrieval result with k-

classes on MSCOCO is shown in Table IV. It shows that the

strategy is inferior to the instance loss.

Deeper Text CNN does not improve the performance

Several previous works report the Text CNN may not improve

the result when the network is very deep [65], [66]. It is

different with the observation in the image recognition [28].

In our experiment, we also observe a similar result when

deepening the Text CNN on Flickr30k and MSCOCO. Deeper

Text CNN does not significantly improve the result (see Table

III).

Method
Image Query Text Query

R@1 R@10 R@1 R@10

Random initialization [52] 38.0 78.7 26.6 66.6
Word2vec initialization 39.9 79.1 28.2 67.9

TABLE V: Ablation study. With/without word2vec initializa-

tion on Flickr30k validation. The result suggests word2vec

serves as a proper initialization for text CNN.

Method
Image Query Text Query

R@1 R@10 R@1 R@10

Left alignment 34.1 73.1 23.6 61.4
Position shift 39.9 79.1 28.2 67.9

TABLE VI: Ablation study. Position shift vs. Left alignment

on Flickr30k validation. It shows that position shift can serve

as a significant data augmentation method for the text CNN.

Method Visual
Text Query

R@1 R@5 R@10 Med r

CNN-RNN (VGG-16‡) [10] fixed 8.07 - 32.47 -

Neural Talk (VGG-16‡) [67] fixed 13.66 - 41.72 -

GNA-RNN (VGG-16‡) [33] fixed 19.05 - 53.64 -
IATV (VGG-16) [53] ft 25.94 - 60.48 -

Ours (VGG-16) Stage I fixed 14.26 33.07 43.47 16
Ours (VGG-16) Stage II ft 32.15 54.42 64.30 4
Ours (ResNet-50) Stage I fixed 15.03 31.66 41.62 18
Ours (ResNet-50) Stage II ft 44.40 66.26 75.07 2

TABLE VII: Method comparisons on CUHK-PEDES. R@K

(%) is Recall@K (high is good). Med r is the median rank

(low is good). ft means fine-tuning. ‡: pre-trained on person

identification.

Word2vec initialization helps. We compare the result using

the word2vec initialization or random initialization [52] for

the first convolution layer of text CNN. Note that we remove

the words, which have not appeared in the training set, in

the training data as well as dictionary. So the weight of first

convolution layer is d × 300 instead of 3, 000, 000 × 300. d

is the dictionary size. When testing, the missing words in the

dictionary will also be removed in advance. As shown in Table.

V, it can be observed that using word2vec initialization out-

performs by 1% to 2% compared to the random initialization.

Although word2vec is not trained on the target dataset, it still

serves as a proper initialization for text CNN.

Position shift vs. Left alignment: Text CNN has a fixed-

length input. As discussed in Section III-B, left alignment is

to pad zeros at the end of text input (like aligning the whole

sentence left), if the length of the sentence is shorter than 32.

Position shift is to add zeros at the end of text input as well as

the begining of the input. We conduct the position shift online

when reading data from the disk. We do the experiment on

Flickr30k validation set. As shown in Table VI, the model

using position shift outperforms the one using left alignment

∼ 5%. Position shift serves as a significant data augmentation

method for text feature learning.

In Fig. 9 and Fig. 10, we present some visual retrieval results

on CUHK-PEDES and Flickr30k, respectively. Our method

returns reasonable rank lists. (More qualitative results can be

found in Appendix.)

Does Text CNN learn discriminative words? The text

CNN is supposed to convey the necessary textual information

for image-text matching. To examine whether the text CNN

discovers discriminative words, we fix the visual feature. For

text input, we remove one word from the sentence each time.

If we remove a discriminative word, the matching confidence

will drop. In this way, we can determine the learned impor-

tance of different words.
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Method Visual Textual
Image Query Text Query

R@1 R@5 R@10 Med R@1 R@5 R@10 Med r

1K test images

DVSA [32] ft RCNN w2v + ft RNN 38.4 69.9 80.5 1 27.4 60.2 74.8 3
GMM-FV [17] fixed VGG-16 w2v + GMM + HGLMM 39.4 67.9 80.9 2 25.1 59.8 76.6 4
m-RNN [16] fixed VGG-16 ft RNN 41.0 73.0 83.5 2 29.0 42.2 77.0 3
RNN-FV [19] fixed VGG-19 feature from [17] 41.5 72.0 82.9 2 29.2 64.7 80.4 3
m-CNN [7] ft VGG-19 4 × ft CNN 42.8 73.1 84.1 2 32.6 68.6 82.8 3
HM-LSTM [21] fixed CNN from [32] ft RNN 43.9 - 87.8 2 36.1 - 86.7 3
SPE [8] fixed VGG-19 w2v + HGLMM 50.1 79.7 89.2 - 39.6 75.2 86.9 -
VQA-A [18] fixed VGG-19 ft RNN 50.5 80.1 89.7 - 37.0 70.9 82.9 -
sm-LSTM [20] fixed VGG-19 ft RNN 53.2 83.1 91.5 1 40.7 75.8 87.4 2
2WayNet [49] fixed VGG-16 feature from [17] 55.8 75.2 - - 39.7 63.3 - -
RRF-Net [61] fixed ResNet-152 w2v + HGLMM 56.4 85.3 91.5 - 43.9 78.1 88.6 -

Ours (VGG-19) Stage I fixed VGG-19 ft ResNet-50† (w2v init.) 46.0 75.6 85.3 2 34.4 66.6 78.7 3

Ours (VGG-19) Stage II ft VGG-19 ft ResNet-50† (w2v init.) 59.4 86.2 92.9 1 41.6 76.3 87.5 2

Ours (ResNet-50) Stage I fixed ResNet-50 ft ResNet-50† (w2v init.) 52.2 80.4 88.7 1 37.2 69.5 80.6 2

Ours (ResNet-50) Stage II ft ResNet-50 ft ResNet-50† (w2v init.) 65.6 89.8 95.5 1 47.1 79.9 90.0 2

5K test images

GMM-FV [17] fixed VGG-16 w2v + GMM + HGLMM 17.3 39.0 50.2 10 10.8 28.3 40.1 17
DVSA [32] ft RCNN w2v + ft RNN 16.5 39.2 52.0 9 10.7 29.6 42.2 14
VQA-A [18] fixed VGG-19 ft RNN 23.5 50.7 63.6 - 16.7 40.5 53.8 -

Ours (VGG-19) Stage I fixed VGG-19 ft ResNet-50† (w2v init.) 24.5 50.1 62.1 5 16.5 39.1 51.8 10

Ours (VGG-19) Stage II ft VGG-19 ft ResNet-50† (w2v init.) 35.5 63.2 75.6 3 21.0 47.5 60.9 6

Ours (ResNet-50) Stage I fixed ResNet-50 ft ResNet-50† (w2v init.) 28.6 56.2 68.0 4 18.7 42.4 55.1 8

Ours (ResNet-50) Stage II ft ResNet-50 ft ResNet-50† (w2v init.) 41.2 70.5 81.1 2 25.3 53.4 66.4 5

TABLE VIII: Method comparisons on MSCOCO. R@K (%) is Recall@K (high is good). Med r is the median rank (low is

good). 1K test images denotes using five non-overlap splits of 5K images to conduct retrieval evaluation and report the average

result. 5K test images means using all images and texts to perform retrieval. ft means fine-tuning. †: Text CNN structure is

similar to the image CNN, illustrated in Fig. 3.

Fig. 9: Qualitative image search results using text query.

The results are sorted from left to right according to their

confidence. The images in green boxes are the true matches,

and the images in red boxes are the false matches. In the last

row, the rank-1 woman also wears a blue shirt, a pair of blue

jeans and a pair of white shoes. The model outputs reasonable

false matches.

The proposed model learns discriminative words. As show

in Fig. 11, we observe that the words which convey the

objective/colour information, i.e., basketball, swing, purple,

are usually discriminative. If we remove these words, the

matching confidence drops. Conversely, the conjunctions, i.e.,

with, on, at, in, after being removed, have a small impact on

the matching confidence.

Fig. 10: Qualitative description search results using image

query on Flickr30k. Below each image we show the top five

retrieval sentences (there are 5,000 candidate sentences in the

gallery) in descending confidence. Here we select four black

and white dogs as our query. Except for the main object (dog),

we show the model can correctly recognize environment and

small object. The sentences in green are the true matches, and

the descriptions in red are the false matches. Note that some

general descriptions are also reasonable. (Best viewed when

zoomed in.)

VII. CONCLUSION

In this paper, we propose the instance loss for image-text

retrieval. It is based on an unsupervised assumption that every

image/test group can be viewed as one class. The experiment

shows instance loss can provide a proper initialization for

ranking loss and further regularize the training. As a minor

contribution, we propose a dual-path CNN to conduct end-to-

end training on both image and text branches. The proposed

method achieves competitive results on two generic retrieval

datasets Flickr30k and MSCOCO. Furthermore, we arrive a

+18% improvement on the person retrieval dataset CUHK-
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Fig. 11: Finding discriminative words on Flickr30k test set.

Top-3 discriminative words are in red. Some words, which

are not in word2vec vocabulary, are removed in advance.

PEDES. Our code has been made publicly available. Addi-

tional examples can be found in Appendix.
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APPENDIX

Additional examples of image-text bidirectional retrieval

can be found in Fig. 12, Fig. 13, Fig. 14 and Fig.15. The

true matches are in green.
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Fig. 12: Additional examples of image search (using text queries) on Flickr30k. Top-5 results are sorted from left to right

according to their confidence. True matches are in green.

Fig. 13: Additional examples of image search (using text queries) on MSCOCO. Top-5 results are sorted from left to right

according to their confidence. True matches are in green.
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Fig. 14: Additional examples of text search (using image queries) on Flickr30k. Under each query image, we show the top five

retrieved sentences in descending confidence. The descriptions in green are true matches, and the sentences in red are false

matches.

Fig. 15: Additional examples of text search (using image queries) on MSCOCO. Under each image, we show the top five

retrieval sentences in descending confidence. The descriptions in green are true matches, and the sentences in red are false

matches.


