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Dual-Path Convolutional Image-Text Embeddings
with Instance Loss

Zhedong Zheng, Liang Zheng, Michael Garrett, Yi Yang, Yi-Dong Shen

Abstract—Matching images and sentences demands a fine
understanding of both modalities. In this paper, we propose a
new system to discriminatively embed the image and text to
a shared visual-textual space. In this field, most existing works
apply the ranking loss to pull the positive image / text pairs close
and push the negative pairs apart from each other. However,
directly deploying the ranking loss is hard for network learning,
since it starts from the two heterogeneous features to build
inter-modal relationship. To address this problem, we propose
the instance loss which explicitly considers the intra-modal data
distribution. It is based on an unsupervised assumption that each
image / text group can be viewed as a class. So the network
can learn the fine granularity from every image/text group. The
experiment shows that the instance loss offers better weight
initialization for the ranking loss, so that more discriminative
embeddings can be learned. Besides, existing works usually apply
the off-the-shelf features, i.e., word2vec and fixed visual feature.
So in a minor contribution, this paper constructs an end-to-
end dual-path convolutional network to learn the image and
text representations. End-to-end learning allows the system to
directly learn from the data and fully utilize the supervision.
On two generic retrieval datasets (Flickr30k and MSCOCO),
experiments demonstrate that our method yields competitive
accuracy compared to state-of-the-art methods. Moreover, in
language based person retrieval, we improve the state of the art
by a large margin. The code has been made publicly available.

Index Terms—Image-Sentence Retrieval, Cross-Modal Re-
trieval, Language-based Person Search, Convolutional Neural
Networks.

I. INTRODUCTION

MAGE and text both contain very rich semantics but reside

in heterogeneous modalities. Comparing to information
retrieval within the same modality, matching image-text poses
extra critical challenges, i.e., mapping images and text onto
one shared feature space. For example, a model needs to
distinguish between the “black dog”, “gray dog” and “two
dogs” in the text, and understand the visual differences in
images depicting “black dog”, “gray dog” and “two dogs”.
In this paper, given an unseen image (text) query, we aim to
measure its semantic similarity with the text (image) instances
in the database and retrieve the true matched texts (images) to
the query. Considering the testing procedure, this task requires
connecting the two modalities with robust representations. In
the early times, some relatively small datasets were used, e.g.,
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1. A light brown dog with his tail
in the air jumps of a pentoan
toward the water .

1.A dog playing with a dag tay
as sameene tries to pull it from
its mouth .

1. ane man wearing a gray shirt
and a backpack with snowy
mountains in the backgroud

5. A mah In a biue shirt sitting
on the side of a mountain wea-
ning a backpack .

5.The photogra.;;her is playing
tug-of-war with a dog .

5. a gray and brawn dog Jumps
off a dock into a lake

Fig. 1: Motivation. We define an image / text group as
an image with its associated sentences. We observe that an
image / text group is more or less different from each other.
Therefore, we view every image / text group as a distinct class
during training, yielding the instance loss.

Wikipedia [1] and Pascal Sentence [2], which contain around
3,000 and 5,000 image-text pairs, respectively. In recent years,
several large-scale datasets with more than 30,000 images,
including MSCOCO [3] and Flickr30k [4], have been intro-
duced. Each image in these datasets is annotated with around
five sentences. These large datasets allow deep architectures to
learn robust representations and provide challenging evaluation
scenarios.

During the past few years, ranking loss is commonly used
as the objective function [5]-[10] for image-text representation
learning. The ranking loss aims to make the distance between
positive pairs smaller than that between negative pairs by a
predefined margin. In image-text matching, every training pair
contains a visual feature and a textual feature. The ranking
loss focuses on the distance between the two modalities. Its
potential drawback is that it does not explicitly consider the
feature distribution in a single modality. For example, when
using ranking loss during training which does not distinguish
between the slight differences in images, then given two
testing images with slightly different semantics, the model
may output similar descriptors for the two images. This is
clearly undesirable for image / text matching considering the
extremely fine granularity of this task. In our experiment, we
observe that using the ranking loss alone in end-to-end training
may cause the network to be stuck in a local minimum.

What motivates us is the effectiveness of class labels in
earlier years of cross-media retrieval [11]-[15]. In these works,
the class labels are annotated manually and during testing, the
aim is to retrieve image / text belonging to the same class to
the query. In light of this early practice, this paper explores the
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feasibility of “class labels” in image / text matching, which is
an instance retrieval problem. Two differences exist between
cross-media retrieval on the category level [13], [15] and on
the instance level (considered in this paper). First, the true
matches are those with the same category, and those with the
exact same content with the query, respectively. That is to
say, instance-level retrieval has a more strict matching criteria
than category-level retrieval. Second, instance-level retrieval
does not assume the existence of class labels. In this field of
research, only image / text pairs are utilized during training.
Given the intrinsic differences between the two tasks, it is
non-trivial to directly transfer the experience from using class
labels in category-level retrieval to instance-level retrieval.

Without annotated class labels, how can we initiate the
investigation of the underlying data structures in the image
/ text embedding space? In this paper, we name an image
and its associated sentences an “image / text group”. Our key
assumption is that each “image / text” group is different from
the others, and can be viewed as a distinct class (see Fig. 1). So
we propose a classification loss called instance loss to classify
the image / text groups. Using this unsupervised class labels as
supervision, we aim to enforce the model to discriminate each
two images and two sentences (from different groups). It helps
to investigate the fine-grained difference in single modality
(intra-modal) and provides a good initialization for ranking
loss which is a driving force for end-to-end retrieval represen-
tation learning. In more details, using such an unsupervised
assumption, we train the network to classify every image / text
group with the softmax loss. In the experiment, we show that
the instance loss which classifies a large number of classes,
i.e., 113,287 image / text groups on MSCOCO [3], is able
to converge without any hyper-parameter tuning. Improved
retrieval accuracy can be observed as a result of instance loss.

In addition, we notice in the field of image-text matching
that most recent works employ off-the-shelf deep models for
image feature extraction [8]-[10], [16]-[22]. The fine-tuning
strategy commonly seen in other computer vision tasks [23]-
[25] is rarely adopted. A drawback of using off-the-shelf
models is that these models are usually trained to classify
objects into semantic categories [26]-[28]. The classification
models are likely to miss image details such as color, number,
and environment, which may convey critical visual cues for
matching images and texts. For example, a model trained
on ImageNet [29] can correctly classify the three images
as “dog”; but it may not tell the difference between black
dog and gray dog, or between one dog and two dogs. The
ability to convey critical visual cues is a necessary component
in instance-level image-text matching. Similar observations
have been reported with regards to image captioning [30].
Moreover, for the text feature, word2vec [31] is a popular
choice in image-text matching [8], [17], [21], [32]. Aiming
to model the context information, the word2vec model is
learned through a shallow network to predict neighboring
words. However, the word2vec model is initially trained on
GoogleNews, which differs substantially from the text in the
target dataset. As such, instead of using the off-the-shelf
model, we explore the possibility of fine-tuning the word2vec
model using image-text matching datasets.

Briefly, inspired by the effectiveness of class labels in
early-time cross-media retrieval, we propose a similar practice
in image-text matching called “instance loss”. Instance loss
works by providing better weight initialization for the ranking
loss, thus producing more discriminative and robust image
/ text descriptions. Next, we also note that the pretrained
CNN models may not meet the fine-grained requirement in
image / text matching. So we construct a dual path CNN to
extract image and text features directly from data rather. The
network is end-to-end trainable and yields superior results to
using features extracted from off-the-shelf models as input.
Our contributions are summarized as follows:

o To provide better weight initialization and regularize
the dual-path CNN model, we propose a large-number
classification loss called instance loss. The robustness
and effectiveness of instance loss are demonstrated by
classifying each image / text group into one of the
113,287 classes on MSCOCO [3].

o We propose a dual-path CNN model for visual-textual
embedding learning (see Fig. 2). In contrast to the com-
monly used RNN+CNN model using fixed CNN features,
the proposed CNN+CNN structure conducts efficient and
effective end-to-end fine-tuning.

« We obtain competitive accuracy compared with the state-
of-the-art image-text matching methods on three large-
scale datasets i.e., Flickr30k [4], MSCOCO [3] and
CUHK-PEDES [33].

We note that Ma et al. also apply the CNN structure for text
feature learning [7]. The main difference between our method
and [7] is two-fold. First, Ma et al. [7] use the ranking loss
alone. In our method, we show that the proposed instance loss
can further improve the result of ranking loss. Second, in [7],
four text CNN models are used to capture different semantic
levels i.e., word, short phrase, long phrase and sentence. In this
paper, only one text CNN model is used and the word-level
input is considered. Our model uses the residual block shown
in Fig. 3, which combines low level information i.e., word, as
well as high level inference to produce the final feature. In
experiment (Table I and Table VIII), we show that using on
the same image CNN (VGG-19), our method (with one text
CNN) is superior to [7] with text model ensembles by a large
margin.

The rest of this paper is organized as follows. Section II
reviews and discusses the related works. Section III describes
the proposed Image-Text CNN Structure in detail, followed
by the objective function in Section IV. Training policy is
described in Section V. Experimental results and comparisons
are discussed in Section VI and conclusions are in Section
VII. Furthermore, some qualitative results are included in
Appendix.

II. RELATED WORKS

The image-text bidirectional retrieval requires both under-
standing images and sentences in detail. In this section, we
discuss some related works.

Deep models for image recognition. Deep models have
achieved success in computer vision. The convolutional neural
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Fig. 2: We learn the image and text representations by two convolutional neural networks, i.e., deep image CNN (top) and deep
text CNN (bottom). The deep image CNN is a ResNet-50 model [28] pre-trained on ImageNet. The deep text CNN is similar
to the image CNN but with different basic blocks (see Fig. 3). After the average pooling, we add one fully connected layer
(input dim: 2, 048, output dim: 2, 048), one batchnorm layer, relu and one fully connected layer (input dim: 2, 048, output dim:
2,048) in both image CNN and text CNN (We denote as fc and fc* in the figure, and the weights are not shared). Then we
add a shared-weight W, classification layer (input dim: 2,048, output dim: 29, 783). The objectives are the ranking loss
and the proposed instance loss. On Flickr30k, for example, the model needs to classify 29,783 classes using instance loss.

network (CNN) won the ILSVRCI12 competition [29] by a
large margin [26]. Later, VGGNet [27] and ResNet [28] further
deepened the CNN and provide more insights into the network
structure. In the field of image-text matching, most recent
methods directly use fixed CNN features [8]-[10], [16]-[22]
as input which are extracted from the models pre-trained on
ImageNet. While it is efficient to fix the CNN features and
learn a visual-textual common space, it may lose the fine-
grained differences between the images. This motivates us to
fine-tune the image CNN branch in the image-text matching
to provide for more discriminative embedding learning.

Deep models for natural language understanding. For
natural language representation, word2vec [31] is commonly
used [8], [17], [21], [32], [34]. This model contains two
hidden layers, which learns from the context information.
In the application of image-text matching, Klein ef al. [17]
and Wang ef al. [8] pool word vectors extracted from the
fixed word2vec model to form a sentence descriptor using
Fisher vector encoding. Karpathy ef al. [32] also utilize fixed
word vectors as word-level input. With respect to this routine,
this paper proposes an equivalent scheme to fine-tuning the
word2vec model, allowing the learned text representations to
be adaptable to a specific task, which is, in our case, image-
text matching.

Recurrent Neural Networks (RNN) are another common
choice in natural language processing [35], [36]. Mao et al.
[16] employ a RNN to generate image captions. Similarly,
Nam et al. [9] utilize directional LSTM [37] for text encod-
ing, yielding state-of-the-art multi-modal retrieval accuracy.
Conversely, our approach is inspired by recent CNN break-
throughs on natural language understanding. For example,
Gehring et al. apply CNNs to conduct machine translation,
yielding competitive results and more than 9.3x speedup on

the GPU [38]. There are also researchers who apply layer-
by-layer CNNs for efficient text analysis [39]-[42], obtaining
competitive results in title recognition, event detection and text
content matching. In this paper, in place of RNNs which are
more commonly seen in image-text matching, we explore the
usage of CNNs for text representation learning.
Multi-modal learning. There is a growing body of works
on the interaction between multiple modalities. Some works
focus on the efficient cross-modal searching by binary coding
and hashing [14], [43], [44]. Others pay more attention to
the effective retrieval by understanding the semantic meaning,
which is close to this work. As for the content-based retrieval,
one line of methods focus on category-level retrieval and
leverage the category labels in the training set. Sharma et al.
[11] extend the Canonical Correlation Analysis [45] (CCA)
to learning class labels, and Wang et al. [12] learn the
shared image-text space based on coupled input with class
regression. Wu et al. [13] propose a bi-directional learning
to rank for representation learning. In [15], Wei et al. perform
CNN fine-tuning by classifying categories on the training set
and report an improved performance on image-text retrieval.
Castrejon et al. deploy the multiple labels to learn the shared
semantic space [46]. The second line of methods consider
instance-level retrieval and, except for matched image-text
pairs, do not provide any category label. Given a query, the
retrieval objective is a specific image or related sentences
[47]. Some works apply the auto-encoder to project high-
dimensional features from different modalities onto a com-
mon low-dimensional latent space [48], [49]. Some works
deploy the pair-wise constraints. In [50], He ef al. use the
assumption that the text and image components in a web
document form a pairwise constraint. Zhang et al. consider the
verification loss, using a binary classifier to classify the true
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matches and false matches [51]. Other works widely apply
the ranking loss for instance-level retrieval [S]-[10]. Karpathy
et al. propose a part-to-part matching approach using a global
ranking objective [6]. The “SPE” proposed in [8] extends
the ranking loss with structure-preserving constraints. SPE is
similar to our work in that both works consider the intra-
modal distance. Nevertheless, our work differs significantly
from SPE. SPE enforces the model to rank the texts, i.e.,
considering the feature separability within the text modality
only. In comparison, with the proposed instance loss, our
method jointly discriminates the two modalities, i.e., images
and their associated texts.

Briefly, we focus on instance-level retrieval and propose
the instance loss, a novel contribution to the cross-modality
community. It views each training image / text group as a
distinct class and uses the softmax loss for model training.
The assumption is unsupervised. We show that this method
converges well and yields consistent improvement.

III. PROPOSED CNN STRUCTURE

In this paper, we propose a dual path CNN to simultaneously
learn visual and textual representations in an end-to-end fash-
ion, consisting of a deep image CNN for image input and one
deep text CNN for sentence input. The entire network only
contains four components, i.e., convolution, pooling, ReLU
and batch normalisation. Compared to many previous methods
which use off-the-shelf image CNNs [8]-[10], [16]-[22], end-
to-end fine-tuning is superior in learning representations that
encode image details (see Fig. 2).

A. Deep Image CNN

We use ResNet-50 [28] pre-trained on ImageNet [26] as a
basic model (the final 1000-classification layer is removed) be-
fore conducting fine-tuning for visual feature learning. Given
an input image of size 224 x 224, a forward pass of the
network produces a 2, 048-dimension feature vector. Followed
by this feature, we add one fully-connected layer (input dim:
2,048, output dim: 2,048), one batch normalization, relu
and one fully-connected layer (input dim: 2, 048, output dim:
2,048). We denote the final 2,048-dim vector f;,,, as the
visual descriptor of the input /. The forward pass process of
the CNN, which is a non-linear function, is represented by
function Fj,,4(-) defined as:

.fimg = ‘Emg(I) (1)

B. Deep Text CNN

Text processing. Next, we describe our text processing
method and the text CNN structure. Given a sentence, we first
convert it into code 7' of size n X d, where n is the length
of the sentence, and d denotes the size of the dictionary. T is
used as the input for the text CNN. We use word2vec [31]
as a general dictionary to filter out rare words; if a word does
not appear in the word2vec dictionary (3,000,000 words), it
is discarded. For Flickr30k, we eventually use d = 20,074
words as the dictionary. Every word in Flickr30k thus can find
an index [ € [1,d] in the dictionary; for instance, a sentence

T

Ixl cony layer 121 conv layer
batch norm batch narm
] ]
ﬁ‘(x) a3 conv layer x F(x) 1%2 conv layer x
batch nam entity batch narm identity
relul relul
1zl cony layer 1x] conv layer
batch norm batch narm
Fix) + x Fix) 1 x
'e'ul Image CNN el Text CNN

T

Fig. 3: The basic block of deep image CNN and deep
text CNN. Similar with the local pattern of the images, the
neighbor words in the sentence may contains important clues.
The filter size in the image CNN is 3 x 3 with height and
width padding; the filter size in the text CNN is 1 x 2 with
length padding. Besides, we also use a shortcut connection,
which helps to train a deep convolutional network [28]. The
output F(x) + = has the same size with the input .

of 18 words can be converted to 18 x d matrix. The text input
T can thus be formulated as:

T(i,5) = {1

o=l @)
0 otherwise
where ¢ € [1,18],5 € [1,d]. The text CNN needs a fixed-
length input. We set a fixed length 32 in this paper because
about 98% sentences contain less than 32 words. If the length
of the sentence is shorter than 32, we pad with zeros to the
columns of T'. If the length of the sentence is longer than 32,
we clip the final several words. Now we obtain the 32 X d
sentence code 7. We further reshape 7" into the 1 x 32 x d
format, which can be considered as height, width and channel
known in the image CNNs [26], [28].

Position shift. We are motivated by the jittering operation
in the image CNN training. For text CNN, we apply a
data augmentation policy called position shift. In a baseline
approach, if the sentence length n is shorter than the standard
input length 32, a straightforward idea is to pad zeros at the
end of the sentence, called left alignment. In the proposed
position shift approach, we pad a random number of zeros at
the beginning and the end of a sentence. In this manner, shift
variations are contained in the text representation, so that the
learned embeddings are more robust. In the experiment, we
observe that position shift is of importance to the performance.

Deep text CNN. In the text CNN, filter size of the first
convolution layer is 1 x 1 x d x 300, which can be viewed as
a lookup table. Using the first convolutional layer, a sentence
is converted to the word vector as follows. Given input 1" of
1 x 32 x d, the first convolution layer results in a tensor of
size 1 x 32 x 300. There are two methods to initialize the
first convolutional layer: 1) random initialization [52], and 2)
using the d x 300-dim matrix from word2vec for initialization.
In the experiment, we observe that word2vec initialization is
superior to the random initialization.



JOURNAL OF IKTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

For the rest of the text CNN, similar residual blocks are used
as per the image CNN (see Fig. 3). Similar to the local pattern
in the image CNN, every two neighbor components may form
a phrase containing content information. We set the filter size
of convolution layers in basic text block to 1 x 2. Additionally,
we add the shortcut connection in the basic block, which has
been demonstrated to help training deep neural networks [28].
We apply basic blocks with a short connection to form the
deep textual network (see Fig. 2). The number of blocks is
consistent with the ResNet-50 model in the visual branch.
Given a sentence matrix 7, its text descriptor fie,; can be
extract in an end-to-end manner from the text CNN Fyept(+):

ftext = ]:tewt (T) (3)

I'V. PROPOSED INSTANCE LOSS

In this paper, two types of losses are used, i.e., the standard
ranking loss and the proposed instance loss. In Section IV-A,
we briefly review the formulation of the ranking loss and dis-
cuss the limitation of the ranking loss. Section IV-B describes
the motivation and the formulation of the instance loss fol-
lowed by a discussion. The differences between instance loss
and ranking loss are discussed, and some primary experiments
show the feasibility of instance loss. In Section IV-C, training
convergence of the instance loss is discussed.

A. Ranking Loss Review

Ranking loss is a widely used objective function for retrieval
problems. We use the cosine distance D(fz,, fz;) = ﬁ X

H;:% to measure the similarity between two samples, where
f is the feature of a sample, and || - ||2 denotes the L2-norm.
The distance value D(fz,, fz,;) € [~1,1].

To effectively account for two modalities, we follow the
ranking loss formulation as in some previous works [6], [9].
Here, I denotes the visual input, and T" denotes the text input.
Given a quadric input (I,,T,,I,,T,), where I,,T, describe
the same image / text group, I,,7, are negative samples,
ranking loss can be written as,

image anchor

Lyank = maz[0, o — (D(f1,, fr,) — D(f1,, f1,.))]
+mazx[0, o — (D(fr,, fr,) — D(fr,, fr.))l, 4

text anchor

where D(-,-) is the cosine similarity, and « is a margin. Given
an image query [,, the similarity score of the correct text
matching should be higher. Similarly, if we use sentence query
T,, we expect the correct image content should be ranked
higher. Ranking loss explicitly builds the relationship between
the image and text.

Limitations of ranking loss. Although widely used, rank-
ing loss has a potential drawback for the application of image-
text matching. According to Eq. 4, every pair contains a visual
feature and a textual feature. The ranking loss focuses on
the distance between the two modalities. So the potential
drawback is that the ranking loss does not explicitly consider
the feature distribution in a single modality. For instance, given

two testing images with slightly different semantics, the model
may output similar features. It is clearly undesirable for the
extremely fine granularity of this task. In the experiment, using
ranking loss alone is prone to get stuck in a local minimum
(as to be shown in Fig. 5 and Table II).

B. Instance Loss

Motivation. Some early works use coarse-grain category
i.e., art, biology, and sport, as the training supervision [11],
[12], [15]. The multi-class classification loss has shown a good
performance. But for instance-level retrieval, the classification
loss has not been used. There may be two reasons. First,
the category-level annotations are missing for most large-scale
datasets. Second, if we use the category to train the model,
it forces different instances, i.e., black dog, and white dogs,
to the same class. It may compromise the CNN to learn the
fine-grained difference.

In this paper, we propose the instance loss for instance-level
image-text matching. We define an image and its related text
descriptions as an image / text group. In specific applications
such as language-based person retrieval [33], [53], an image
/ text group is defined as images and their descriptions which
depict the same person (see Fig. 7). Based on image / text
groups, our assumption is that each image / text group is
distinct (duplicates have been removed in the datasets). Under
such assumption, we view each image / text group as a class.
So in essence, instance loss is a softmax loss which classifies
an image / text group into one of a large number of classes. We
want the trained model can tell the difference between every
two images as well as every two sentences (from different
groups). Formally, we define instance loss below.

Formulation. For two modalities, we formulate two classi-
fication objectives as follows,

Puisuat = softmaz(W,, . fimg), o)
Lyisual = —108(Pyisuat(c)), (6)
Prestuar = softmaz(Ware freat), (7)
Licztuar = —108(Prext(c)), ()

where fing and fie,+ are image and text features defined in Eq.
1 and Eq. 3, respectively. Wypqre is the parameter of the final
fully connected layer (Fig. 2). It can be viewed as concatenated
weights Whare = [Wl,W27 ...,W29783]. Every weight W,
is a 2048-dim vector. L denotes the loss and P denotes the
probability over all classes. P(c) is the predicted possibility
of the right class c. Here we enforce shared weight W, ;..
in the final fully connected layer for the two modalities,
because otherwise the learned image and text features may
exist in totally different subspaces.

As to be described in Section V, in the first training stage,
the ranking loss is not used. We only use the instance loss; in
the second training stage, both losses are used. The final loss
function is a combination of the ranking loss and the instance
loss, defined as,

L= )\lLrank: + )\2Lvisual + /\SLtemtualy (9)

where A1, A2, A3 are predefined weights for different losses.
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(a) IgeNet (b) Using Instance Loss (Stage
Fig. 4: We extract image features (2,048-dim) from a randomly
selected 100 images in the Flickr30k validation set, using the
ImageNet pre-trained ResNet-50 model and our model (after
Stage I), respectively. We visualize the 100 x 100 Pearson’s
correlation. Lower Pearson’s correlation between two features
indicates higher orthogonality. The instance loss encourages
the model to learn the difference between images.

Discussion. First, we show that instance loss provides better
weight initialization than the ImageNet pretrained model. To
prove this, we compare the image features from the off-the-
self model pre-trained on ImageNet and the model trained
with instance loss. Since the proposed instance loss explicitly
considers the intra-modal distance, we observe that the feature
correlation between two images is smaller after training with
the instance loss (see Fig. 4(b)). In fact, the instance loss
encourages the model to find the fine-grained image details
such as ball, stick, and frisbee to discriminate between image
/ text groups with similar semantics. We visualize the dog
retrieval results in Fig. 10. Our model can be well generalized
to the test set and still sensitive to the subtle differences.

Second, we provide an example of two classes to de-
scribe the working mechanism of instance loss (Fig. 6).
Wshare = [W1, Wa]. Given image x; which belongs to the
first class, the softmax loss function informs the constraint
of Wl'f,, > W{f, . Similarly, if y; is an input sentence
belonging to the first class, the softmax loss will lead to
the constraint of W{ f,, > W f, . The decision boundary
indicates equal probability to be classified into the first class
and the second class. Since the image and text embedding
networks share the same final weight Wp4.e, the features of
the same image / text group will be close to each other in the
embedding space; the data points from different image / text
groups will be pushed away from each other. Therefore, after
training with the instance loss, the data points will usually
locate on the either side of the decision boundary. In this
manner, the image / text groups can be separated in the feature
space despite of the fine-grained differences among them. This
property, as shown in the Fig. 6 (right), will provide better
weight initialization for the subsequent training with both the
ranking loss and instance loss.

Third, we demonstrate that using the instance loss alone
can lead to a decent initialization. To validate this point, we
plot the distribution P of the intra-modal intra-class similarity
D, = D(fs,, fy;) and the distribution @) of the intra-modal
inter-class similarity D,, = D(f,, f,;)(j # i) on Flickr30k

validation set (Fig. 5(b)). We observe that, using instance loss
alone, in most cases, leads to D,, > D,, by a margin. The mean
of D, equals to 0.2405 while the mean of D,, is 0.0237.

Fourth, using the ranking loss alone achieves a relatively
large margin between the positive pairs and negative pairs
but there also exist many ‘“hard” negative pairs (Fig. 5(a)).
These ‘“hard” negative pairs usually have a high similarity
which compromises the matching performance of the true
matches. Due to the potential drawback of the ranking loss
mentioned in Section IV-A, the image / text with slightly
difference may have the similar feature, which result in the
“hard” negative samples. To quantitatively compare the three
models, we propose a simple indicator function,

1
5= / min(P(z). Q@))da.

which encodes the overlapping area of P and @ over the
range of cosine similarity [—1,1]. Indicator S € [0,1]. The
smaller S is, the better the positive pairs and negative pairs
are separated, and thus the better retrieval performance. S = 1
indicates the case where the two distributions, P and () are
completely overlapping. Under this worst case, the positive
pairs cannot be distinguished from the negative ones, and the
retrieval performance is random. To the other extreme, S = 0
indicates that the positive pairs and negative pairs are perfectly
separable: all the similarity scores of the positive pairs are
larger than the similarity scores of the negative pairs. In this
best case, the retrieval precision and recall are both 100%.
Therefore, a lower indicator score .S indicates a better retrieval
system.

In our experiment (Fig. 5), the indicator scores of the three
models are Syqni = 0.2563, Sinstance = 0.1633 and Sy =
0.0914, respectively. It clearly demonstrates that in terms of
the extent of feature separability: “Full Model” > “Using
Instance Loss Alone” > “Using Ranking loss Alone”. With the
indicator function, we quantitatively show that using ranking
loss alone produces more hard negative pairs than the proposed
two competing methods, which compromises the matching
performance of the ranking loss. In comparison, using instance
loss alone produces a smaller S value, suggesting a better
feature separability of the trained model. Importantly, when the
two losses, i.e., ranking loss and instance loss, are combined,
our full model has the smallest S' value, indicating the fewest
hard negative samples and the best retrieval accuracy among
the three methods.

For the retrieval performance, using the instance loss alone
can lead to a competitive accuracy in the experiment (Table
II). The effect of the instance loss is two-fold. In the first
training stage, when used alone, it pre-trains the text CNN and
fine-tunes the two fully-connected layers (and one batchnorm
layer) of image CNN so that ranking loss can arrive at a better
optimization for both modalities in the second stage (Fig. 6).
In the second training stage, when used together with ranking
loss, it exhibits a regularization effect on the ranking loss.

(10)

C. Training Convergence of Instance Loss

The instance loss views every image / text group as a
class, so the number of training classes is usually large. For
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Fig. 5: The similarity (cosine distance) distribution of the positive pairs P and negative pairs () on Flickr30k validation dataset.
We show the result obtained by (a) using ranking loss alone, (b) using instance loss alone and (c) full model (instance loss +
ranking loss), respectively. Indicator S is calculated as the overlapping area between P and () (defined in Section IV-B, lower
is better). Through comparing their S values, the performance of the three methods is: “Full Model” > “Using Instance Loss

Alone” > “Using Ranking Loss Alone”.
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Fig. 6: Geometric Interpretation. The proposed instance loss
leads to a decent weight initialization for ranking loss +
instance loss in Stage II.

instance, we have 29,783 classes when training on Flickr30k.
In Fig. 8, we show the training error curves of the image
CNN and text CNN during training. We observe that the image
CNN converges faster (Fig. 8(a)) because the image CNN is
pretrained on ImageNet. Text CNN converges more slowly
because most part of it is trained from scratch, but it still begins
to learn something after 20 epochs, and finally converges after
240 epochs.

On the other hand, the convergence property is evidenced
by some previous works. To our knowledge, some practices
also suffer from limited data per class, because manually
annotating data is usually expensive. For example, in person
re-ID, CUHKO3 dataset [54] has 9.6 training samples per
class; VIPeR dataset [55] has 2 training samples per class.
The previous works [56], [57] on CUHKO3 and VIPeR show
that the CNN classification model can be well trained as long
as each class has more than a couple of training samples.
In our case, there are usually 6 positive training samples per
class (1 image and 5 sentences). In the experiment, despite
of the limited training data, the learned model has a good
generalization ability on the validation set and test set, which
accords with existing experience [56], [57].

V. A TwWO-STAGE TRAINING PROCEDURE

We describe the training policy in this section. We split the
training procedure into two stages. In the experiment, we show

this policy helps the training.

Stage I: In this stage, we fix the pre-trained weights in the
image CNN and use the proposed instance loss to tune the
remaining part. The main reason is that most weights of the
text CNN are learned from scratch. If we train the image and
text CNNs simultaneously, the text CNN may compromise the
pre-trained image CNN. We only use the proposed instance
loss in this stage (A1 = 0, A2 = 1, A3 = 1). It can provide a
good initialization for the ranking loss. We note that even after
Stage I, our network can achieve competitive results compared
to previous works using off-the-shelf CNNs.

Stage II: After Stage I converges, we start Stage II for
end-to-end fine-tuning of the entire network. Note that the
weights of the image CNN are also fine-tuned. In this stage, we
combine the instance loss with the ranking loss (A\; = 1, Ay =
1,3 = 1), so that both classification and ranking errors are
considered. In Section VI-D, we study the mechanism of the
two losses. It can be observed that in Stage II, instance loss
and ranking loss are complementary, thus further improving
the retrieval result. Instance loss still regularizes the model
and provides more attentions to discriminate the images and
sentences. After Stage II (end-to-end fine-tuning), another
round of performance improvement can be observed, and we
achieve even more competitive performance.

VI. EXPERIMENT

We first introduce the three large-scale image-text retrieval
datasets, i.e., Flickr30k, MSCOCO and CUHK-PEDES, fol-
lowed by the evaluation metric in Section VI-A. Then Section
VI-B describes the implementation details and the repro-
ducibility. We discuss the comparison with state of the art
and mechanism study in Section VI-C and Section VI-D.

A. Datasets

Flickr30k [4] is one of the large-scale image captioning
datasets. It contains 31,783 images collected from Flickr, in
which every image is annotated with five text descriptions.
The average sentence length is 10.5 words after removing rare
words. We follow the protocol in [6], [62] to split the dataset
into 1,000 test images, 1,000 validation images, and 29,783
training images.
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(a) MSCOCO for General Object Retrieval

(b) Flickr30k for General Object Retrieval

\

(c) CUHK-PEDES for Pedestrian Retrieval

Fig. 7: Sample images in the three datasets. For the MSCOCO and Flickr30k datasets, we view every image and its captions
as an image / text group. For CUHK-PEDES, we view every identity (with several images and captions) as a class.

. Image Query Text Query

Method Visual Textual R@! R@5 R@I0 Med|R@! R@5 R@I0 Med r
DeVise [5] ft AlexNet ft skip-gram 45 181 292 26 | 67 219 327 25
Deep Fragment [6] ft RCNN fixed word vector from [58] | 16.4 402 54.7 8 10.3 314 445 13
DCCA [59] ft AlexNet TF-IDF 16.7 393 529 8 12.6  31.0 430 15
DVSA [32] ft RCNN (init. on Detection) w2v + ft RNN 222 482 614 48 | 152 377 505 9.2
LRCN [60] ft VGG-16 ft RNN 23.6 46.6 583 7 17.5 403 50.8 9
m-CNN [7] ft VGG-19 4 x ft CNN 33.6 64.1 749 3 1262 563 69.6 4
VQA-A [18] fixed VGG-19 ft RNN 339 625 745 - 249 52,6 648 -
GMM-FV [17] fixed VGG-16 w2v + GMM + HGLMM | 35.0 62.0 73.8 3 1250 527 66.0 5
m-RNN [16] fixed VGG-16 ft RNN 354 638 737 3 1228 507 63.1 5
RNN-FV [19] fixed VGG-19 feature from [17] 356 625 742 3 274 559 700 4
HM-LSTM [21] fixed RCNN from [32] w2v + ft RNN 38.1 - 76.5 3 1277 - 68.8 4
SPE [8] fixed VGG-19 w2v + HGLMM 403 689 799 - 29.7 60.1 72.1 -
sm-LSTM [20] fixed VGG-19 ft RNN 425 719 815 2 1302 604 723 3
RRF-Net [61] fixed ResNet-152 w2v + HGLMM 476 774 87.1 - 354 683 799 -
2WayNet [49] fixed VGG-16 feature from [17] 498 67.5 - - 36.0 55.6 - -
DAN (VGG-19) [9] fixed VGG-19 ft RNN 414 735 825 2 | 31.8 61.7 725 3
DAN (ResNet-152) [9] fixed ResNet-152 ft RNN 55.0 81.8 89.0 1 394 692 79.1 2
Ours (VGG-19) Stage I fixed VGG-19 ft ResNet-50T (w2v init.) | 37.5 66.0 75.6 3 272 554 676 4
Ours (VGG-19) Stage II ft VGG-19 ft ResNet-50T (w2v init.) | 47.6 77.3 87.1 2 353 666 782 3
Ours (ResNet-50) Stage I fixed ResNet-50 ft ResNet-50T (w2v init) | 41.2 69.7 78.9 2 28.6 562 67.8 4
Ours (ResNet-50) Stage 11 ft ResNet-50 ft ResNet-507 (w2v init.) | 53.9 809 89.9 1 392 698 80.8 2
Ours (ResNet-152) Stage 1 fixed ResNet-152 ft ResNet-152 (w2v init.) | 442 702  79.7 2 30.7 59.2 70.8 4
Ours (ResNet-152) Stage II ft ResNet-152 ft ResNet-1521 (w2v init.) | 55.6 81.9 89.5 1 39.1 69.2 809 2

TABLE I: Method comparisons on Flickr30k. “Image Query” denotes using an image as query to search for the relavant
sentences, and ‘Text Query’ denotes using a sentence to find the relevant image. R@K is Recall@K (higher is better). Med r
is the median rank (lower is better). “ft” means fine-tuning. T: Text CNN structure is similar to the image CNN, illustrated in

Fig. 3.
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Fig. 8: Classification error curves when training on Flickr30k.
The image CNN (a) and text CNN (b) converge well with
29,783 training classes (image / text groups).

MSCOCO [3] contains 123,287 images and 616,767 de-
scriptions. Every images contains roughly 5 text descriptions

on average. The average length of captions is 8.7 after rare
word removal. Following the protocol in [32], we randomly
select 5,000 images as test data and 5,000 images as validation
data. The remaining 113,287 images are used as training data.
The evaluation is reported on 1K test images (5 fold) and 5K
test images.

CUHK-PEDES [33] collects images from many different
person re-identification datasets. It contains 40,206 images
from 13,003 different pedestrians and 80,440 descriptions.
On average, each person has 3.1 images, and each image
has 2 sentences. The average sentence length is 19.6 words
after we remove rare words. We follow the protocol in [33],
selecting the last 1,000 persons for evaluation. There are
3,074 test images with 6,156 captions, 3,078 validation images
with 6,158 captions, and 34,054 training images with 68,126
captions.
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Evaluation Metric We use two evaluation metrics i.e.,
Recall@K and Median Rank. Recall @K is the possibility that
the true match appears in the top K of the rank list, where a
higher score is better. Median Rank is the median rank of the
closest ground truth result in the rank list, with a lower index
being better.

B. Implementation Details

The model is trained by stochastic gradient descent (SGD)
with momentum fixed to 0.9 for weight update. While training,
the images are resized to 224 x 224 pixels which are randomly
cropped from images whose shorter size is 256. We also
perform simple data augmentation such as horizontal flipping.
For training text input, we conduct position shift (Section
III-B) as data augmentation. Dropout is applied to both CNNss,
and the dropout rate is 0.75. For Flickr30k and MSCOCO, we
set the max text length to 32; for CUHK-PEDES, we set the
max text length to 56, since most sentences are longer.

In the first training stage, we fixed the pre-trained image
CNN, and train the text CNN only. The learning rate is 0.001.
We stop training when instance loss converges. In the second
stage, we combine the ranking loss as Eq. 9 (the margin o = 1)
and fine-tune the entire network.

When testing, we can use the trained image CNN and
trained text CNN separately. We extract the image feature fi,q
by image CNN and the text feature fi.,+ by text CNN. We
use the cosine distance to evaluate the similarity between the
query and candidate images/sentences. It is consistent with the
similarity used in the ranking loss objective. The final retrieval
result is based on the similarity ranking. We also conduct the
horizontal flipping when testing and use the average features
(no flip and flip) as the image feature.

Reproducibility. Our source code is available online'. The
implementation is based on the Matconvnet package [63].
Since the entire network only uses four components i.e.,
convolution, pooling, ReLLU and batch normalization, it can
be easily modified to other deep learning packages.

Training Time The image CNN (ResNet-50) in our method
uses ~119 ms per image batch (batch size = 32) on an Nvidia
1080Ti GPU. The text CNN (similar ResNet-50) also uses
~117 ms per sentence batch (batch size = 32). Therefore,
the image feature and text feature can be simultaneously
calculated. Although our implementation is sequential, the
model can run in a parallel style efficiently.

C. Comparison with State of the Art

We first compare our method with the state-of-the-art meth-
ods on the three datasets, i.e., Flickr30k, MSCOCO, and
CUHK-PEDES. The compared methods include recent models
on the bidirectional image and sentence retrieval. For a fair
comparison, we present the results based on different image
CNN structures, i.e., VGGNet [27] and ResNet [28]. We also
summarise the visual and textual embeddings used in these
works in Table I and Table VIII. Extensive results are shown in
Table I, Table VIII, and Table VII, respectively. On Flickr30k,

Ihttps://github.com/layumi/Image- Text-Embedding
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Image Query Text Query
Method Stage | p@1 R@I0 | R@I R@10
Only Ranking Loss I 6.1 273 4.9 27.8
Only Instance Loss I 39.9 79.1 28.2 67.9
Only Instance Loss 1T 50.5 86.0 34.9 75.7
Only Ranking Loss I 47.5 85.4 29.0 68.7
Full model 11 55.4 89.3 39.7 80.8

TABLE II: Ranking loss and instance loss retrieval results
on Flickr30k validation set. Except for the different losses,
we apply the entirely same network (ResNet-50). For a clear
comparison, we also fixed the image CNN in Stage I and tune
the entire network in Stage II to observe the overfitting.

we achieve competitive results with state-of-the-art DAN [9]:
Recall@1 = 55.6%, Med r = 1 using image queries, and
Recall@l = 39.1%, Med r = 2 using text queries. While
both based on VGG-19, our method exceeds DAN 6.2% and
3.5% Recall@1 using image and text query respectively. On
MSCOCO 1K-test-image setting, we arrive at Recall@1 =
65.6%, Med r = 1 using image queries, and Recall@1 =
47.1%, Med r = 2 using text queries. On SK-test-image setting,
we arrive at Recall@l = 41.2%, Med r = 2 using image
queries, and Recall@1 = 25.3%, Med r = 5 using text queries.
CUHK-PEDES is a specific dataset for retrieving pedestrian
images using the textual description. On CUHK-PEDES, we
arrive at Recall@1 = 32.15%, Med r = 4. While both are
based on a VGG-16 network, our model has 6.21% higher
recall rate. Moreover, our model based on ResNet-50 achieves
new state-of-the-art performance: Recall@1 = 44.4%, Med r
= 2 using language description to search relevant pedestrians.
Our method exceeds the second best method [53] by 18.46 %
in Recall@1 accuracy.

Note that m-CNN [7] also fine-tunes the CNN model to
extract visual and textual features. m-CNN encompasses four
different levels of text matching CNN while we only use one
deep textual model with residual blocks. While both are based
on VGG-19, our model has higher performance than m-CNN.
Compared with a recent arXiv work, VSE++ [64], our result
is also competitive.

D. Mechanism Study

The effect of Stage 1 training. We replace the instance loss
with the ranking loss at the first stage when fixing the image
CNN. As shown in Table II, the performance is limited. As
discussed in Section IV-B, ranking loss focuses on inter-modal
distance. It may be hard to tune the visual and textual features
simultaneously at the beginning. As we expected, instance loss
performs better, which focuses more on learning intra-modal
discriminative descriptors.

Two losses can works together. In Stage II, the experiment
on the validation set verifies that two losses can work together
to improve the final retrieval result (see Table II). Compared
with models using only ranking loss or instance loss, the model
with two losses provides for higher performance. In the second
stage, instance loss does help to regularize the model.

End-to-end fine-tuning helps. In Stage II, we fine-tune the
entire network. For the two general object datasets Flickr30k
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Image Query Text Query
Method R@l R@I0 | R@l  R@I0
Left alignment 34.1 73.1 23.6 61.4
Position shift 39.9 79.1 28.2 67.9

Methods Dataset | Image-Query R@1 | Text-Query R@1
Res152 + Res507 . 44.4 29.6
Res152 + Reslsat | THekr30k 442 30.7
Res152 + Res507 52.0 38.0
Res152 + Resls2t | MSCOCO 52.8 37.7

TABLE III: Deeper Text CNN on Flickr30k and MSCOCO.
We use fixed Image CNN (Stagel). f: Text CNN structure.

TABLE VI: Ablation study. Position shift vs. Left alignment
on Flickr30k validation. It shows that position shift can serve
as a significant data augmentation method for the text CNN.

Methods

Image-Query R@1

Text-Query R@1

3000 categories (Stagel)
10000 categories (Stagel)

Our (Stagel)

38.0
447
522

26.1
31.3
37.2

TABLE IV: K-class Loss vs. Instance Loss on MSCOCO. We
use the K-means clustering result as pseudo categories. The
experiment is based on Res50 + Res501 as the model structure.

and MSCOCO, fine-tuning the whole network can improve
the rank-1 accuracy by approximately 10% (see Table. I and
Table. VIII). Imagenet collects images from the Internet, while
the pedestrian dataset CUHK-PEDES collects images from
surveillance cameras. The fine-tuning result is more obvious
on the CUHK-PEDES due to the different data distribution.
The fine-tuned network (based on ResNet-50) improves the
Recall@1 by 29.37%. The experiments indicate the end-to-
end training is critical to image-sentence retrieval, especially
person search.

Do we really need so many classes? For instance loss,
the number of classes is usually large. Is it possible to use
fewer classes? We implement the pseudo-category method by
k-means clustering on MSCOCO, since MSCOCO has most
images (classes). We use pool5 feature of ResNet50 pretrained
on ImageNet to cluster 3,000 and 10,000 categories by K-
means. The clustering results are used as the pseudo label for
the images to conduct classification. Although clustering can
decrease the number of training classes and add the samples
per classes, different instances are forced to be of the same
class and details may be lost (black / gray dog, two dogs),
which compromises the accuracy. The retrieval result with k-
classes on MSCOCO is shown in Table IV. It shows that the
strategy is inferior to the instance loss.

Deeper Text CNN does not improve the performance
Several previous works report the Text CNN may not improve
the result when the network is very deep [65], [66]. It is
different with the observation in the image recognition [28].
In our experiment, we also observe a similar result when
deepening the Text CNN on Flickr30k and MSCOCO. Deeper
Text CNN does not significantly improve the result (see Table
III).

Image Query Text Query
Method R@! R@10 | R@l R@I0
Random initialization [52] 38.0 78.7 26.6 66.6
Word2vec initialization 39.9 79.1 28.2 67.9

TABLE V: Ablation study. With/without word2vec initializa-
tion on Flickr30k validation. The result suggests word2vec
serves as a proper initialization for text CNN.

. Text Query
Method Visual | @1 R@5 R@I0 Med r
CNN-RNN (VGG-16%) [10] | fixed | 8.07 - 3247 -
Neural Talk (VGG-16%) [67] | fixed | 13.66 - 41.72 -
GNA-RNN (VGG-16%) [33] | fixed | 19.05 - 53.64 -
IATV (VGG-16) [53] ft 25.94 - 60.48 -
Ours (VGG-16) Stage I fixed | 14.26 33.07 43.47 16
Ours (VGG-16) Stage 11 ft 32.15 5442 64.30 4
Ours (ResNet-50) Stage 1 fixed | 15.03 31.66 41.62 18
Ours (ResNet-50) Stage 11 ft 44.40 66.26 75.07 2

TABLE VII: Method comparisons on CUHK-PEDES. R@K
(%) is Recall@K (high is good). Med r is the median rank
(low is good). ft means fine-tuning. *: pre-trained on person
identification.

Word2vec initialization helps. We compare the result using
the word2vec initialization or random initialization [52] for
the first convolution layer of text CNN. Note that we remove
the words, which have not appeared in the training set, in
the training data as well as dictionary. So the weight of first
convolution layer is d x 300 instead of 3,000,000 x 300. d
is the dictionary size. When testing, the missing words in the
dictionary will also be removed in advance. As shown in Table.
V, it can be observed that using word2vec initialization out-
performs by 1% to 2% compared to the random initialization.
Although word2vec is not trained on the target dataset, it still
serves as a proper initialization for text CNN.

Position shift vs. Left alignment: Text CNN has a fixed-
length input. As discussed in Section III-B, left alignment is
to pad zeros at the end of text input (like aligning the whole
sentence left), if the length of the sentence is shorter than 32.
Position shift is to add zeros at the end of text input as well as
the begining of the input. We conduct the position shift online
when reading data from the disk. We do the experiment on
Flickr30k validation set. As shown in Table VI, the model
using position shift outperforms the one using left alignment
~ 5%. Position shift serves as a significant data augmentation
method for text feature learning.

In Fig. 9 and Fig. 10, we present some visual retrieval results
on CUHK-PEDES and Flickr30k, respectively. Our method
returns reasonable rank lists. (More qualitative results can be
found in Appendix.)

Does Text CNN learn discriminative words? The text
CNN is supposed to convey the necessary textual information
for image-text matching. To examine whether the text CNN
discovers discriminative words, we fix the visual feature. For
text input, we remove one word from the sentence each time.
If we remove a discriminative word, the matching confidence
will drop. In this way, we can determine the learned impor-
tance of different words.
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. Image Quer Text Que
Method Visual Textual R@I R@S R@I0 Med | R@l R@S R@I0 Med 1
1K test images
DVSA [32] ft RCNN w2v + ft RNN 384 699 80.5 1 274  60.2 74.8 3
GMM-FV [17] fixed VGG-16 w2v + GMM + HGLMM | 394  67.9 80.9 2 25.1 598 76.6 4
m-RNN [16] fixed VGG-16 ft RNN 41.0 73.0 83.5 2 29.0 422 77.0 3
RNN-FV [19] fixed VGG-19 feature from [17] 415 720 82.9 2 292 64.7 80.4 3
m-CNN [7] ft VGG-19 4 x ft CNN 42.8  73.1 84.1 2 326  68.6 82.8 3
HM-LSTM [21] fixed CNN from [32] ft RNN 439 - 87.8 2 36.1 - 86.7 3
SPE [8] fixed VGG-19 w2v + HGLMM 50.1 79.7 89.2 - 39.6 752 86.9 -
VQA-A [18] fixed VGG-19 ft RNN 50.5  80.1 89.7 - 37.0 709 82.9 -
sm-LSTM [20] fixed VGG-19 ft RNN 532  83.1 91.5 1 40.7 758 87.4
2WayNet [49] fixed VGG-16 feature from [17] 55.8 752 - - 39.7 633 - -
RRF-Net [61] fixed ResNet-152 w2v + HGLMM 564 853 91.5 - 439 78.1 88.6 -
Ours (VGG-19) Stage 1 fixed VGG-19 ft ResNet-50T (w2v init.) | 46.0 75.6 85.3 2 344 66.6 78.7 3
Ours (VGG-19) Stage 11 ft VGG-19 ft ResNet-50T (w2v init) | 59.4  86.2 929 1 416 763 87.5 2
Ours (ResNet-50) Stage I fixed ResNet-50 ft ResNet-50T (w2v init.) | 52.2 804 88.7 1 372 69.5 80.6 2
Ours (ResNet-50) Stage 11 ft ResNet-50 ft ResNet-50T (w2v init.) | 65.6  89.8 95.5 1 471 799 90.0 2
5K test images
GMM-FV [17] fixed VGG-16 w2v + GMM + HGLMM | 17.3 39.0 50.2 10 10.8 283 40.1 17
DVSA [32] ft RCNN w2v + ft RNN 16.5 39.2 52.0 9 10.7  29.6 422 14
VQA-A [18] fixed VGG-19 ft RNN 235 507 63.6 - 16.7  40.5 53.8 -
Ours (VGG-19) Stage I fixed VGG-19 ft ResNet-50T (w2v init.) | 245  50.1 62.1 5 16.5 39.1 51.8 10
Ours (VGG-19) Stage I ft VGG-19 ft ResNet-50T (w2v init.) | 355  63.2 75.6 3 21.0 475 60.9 6
Ours (ResNet-50) Stage 1 fixed ResNet-50 ft ResNet-50T (w2v init.) | 28.6  56.2 68.0 4 187 424 55.1 8
Ours (ResNet-50) Stage II ft ResNet-50 ft ResNet-50T (w2v init.) | 41.2  70.5 81.1 2 253 534 66.4 5

TABLE VIII: Method comparisons on MSCOCO. R@K (%) is Recall@K (high is good). Med r is the median rank (low is
good). 1K test images denotes using five non-overlap splits of SK images to conduct retrieval evaluation and report the average
result. 5K test images means using all images and texts to perform retrieval. ft means fine-tuning. f: Text CNN structure is

similar to the image CNN, illustrated in Fig. 3.

Text Query

The lady wears a
pink.biue,and
yellow shirt black
and white shorts
with brown sandals
she carries a beige
shoulder bag.

He is wearing a grey
sweater with 2 black
and while striped
searl. Hels also wea-
ring grey pants ard
black shoes. He is
carrying a black
Jacket as well.

A woman wearing &
Blue Button-up shirt,
a pair of blue jeans
and apair of black
and white shoes

Fig. 9: Qualitative image search results using text query.
The results are sorted from left to right according to their
confidence. The images in green boxes are the true matches,
and the images in red boxes are the false matches. In the last
row, the rank-1 woman also wears a blue shirt, a pair of blue
jeans and a pair of white shoes. The model outputs reasonable
false matches.

The proposed model learns discriminative words. As show
in Fig. 11, we observe that the words which convey the
objective/colour information, i.e., basketball, swing, purple,
are usually discriminative. If we remove these words, the
matching confidence drops. Conversely, the conjunctions, i.e.,
with, on, at, in, after being removed, have a small impact on
the matching confidence.

Image Query

e white cag s chasling 2

1
o

Eall.

Fig. 10: Qualitative description search results using image
query on Flickr30k. Below each image we show the top five
retrieval sentences (there are 5,000 candidate sentences in the
gallery) in descending confidence. Here we select four black
and white dogs as our query. Except for the main object (dog),
we show the model can correctly recognize environment and
small object. The sentences in green are the true matches, and
the descriptions in red are the false matches. Note that some
general descriptions are also reasonable. (Best viewed when
zoomed in.)

VII. CONCLUSION

In this paper, we propose the instance loss for image-text
retrieval. It is based on an unsupervised assumption that every
image/test group can be viewed as one class. The experiment
shows instance loss can provide a proper initialization for
ranking loss and further regularize the training. As a minor
contribution, we propose a dual-path CNN to conduct end-to-
end training on both image and text branches. The proposed
method achieves competitive results on two generic retrieval
datasets Flickr30k and MSCOCO. Furthermore, we arrive a
+18% improvement on the person retrieval dataset CUHK-
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Basketball : -0.1451 Young : 0.0018
player: -0.0369 bay : -0.0997
with : -0.0022 smiles : -0.0035
{32 REMOVED) at:0.0003

on :-0.0053 the:-0.0102
jersey : 0.0038 ¥ camera 0.0089
jumps : -0.0394 & from : 0.0062
{to REMOVED) the : 0.0017

make : -0.0097

{a REMOVED)
shot:-0.0114
crowd: -0.0078
in:0.0023
background : 0.0063

tire : -0,0547
S swing -0,1566

The :-0.0023
man : 0.057

Two: -0.0328 dressed : 0.0085

bicycles : -0.2457 E:.h.egmmm
: a‘m :DGSZU f|  indian :-0.0420
;:':II nglgD meﬁ wearing : 0.0207
it feathers : -0.0354
twao:-0.0346 i5:0.0133
people : 0.0238 standing : -0.0305
sitting : 0.0158 in:-0.0127
?;e:_oo.%iggl front: -0.0341
:0.0001 fof REMOVED)
grass :-0.1424 the :-0.0130
near:0.0232 " o
DA 0. microphone :-0.0238
body : 0.0026
{of REMOVED)
A:0.0026 water : 0.0013 Two: 00320
black: -0.1042 his-c01168
dog:-0.0219 dressed : 0.0091
with: -0.0000 i in:-040%9
purple : -0.0643 N costume : -0.0487

collar : -0.0046
black : -0.0096
leash : 0,0022
runs : 0.0044
in:-0.0021
the :-0.0013

grass : -0.0254
2

with : 0.0025

B purple : -0.0772
flowers : -0.0001
in: 0.0083
their : 0.0003
hair : -0.0199
strike : 0.0182

" pose : 0.0O057
for : 0L0029

= the: 0.0017
camera; 0.0002

Fig. 11: Finding discriminative words on Flickr30k test set.
Top-3 discriminative words are in red. Some words, which
are not in word2vec vocabulary, are removed in advance.

PEDES. Our code has been made publicly available. Addi-
tional examples can be found in Appendix.
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APPENDIX

Additional examples of image-text bidirectional retrieval
can be found in Fig. 12, Fig. 13, Fig. 14 and Fig.15. The
true matches are in green.
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Fig. 12: Additional examples of image search (using text queries) on Flickr30k. Top-5 results are sorted from left to right
according to their confidence. True matches are in green.

"a white toilet with a black seat in a stall"

"An antique white colored car next to a wooden fence."

]

Fig. 13: Additional examples of image search (using text queries) on MSCOCO. Top-5 results are sorted from left to right
according to their confidence. True matches are in green.
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Fig. 14: Additional examples of text search (using image queries) on Flickr30k. Under each query image, we show the top five
retrieved sentences in descending confidence. The descriptions in green are true matches, and the sentences in red are false

matches.
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Fig. 15: Additional examples of text search (using image queries) on MSCOCO. Under each image, we show the top five
retrieval sentences in descending confidence. The descriptions in green are true matches, and the sentences in red are false
matches.



