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Abstract

To explain energy dissipation via turbulence in collisionless, magnetized plasmas, the existence of a dual real- and
velocity-space cascade of ion-entropy fluctuations below the ion gyroradius has been proposed. Such a dual
cascade, predicted by the gyrokinetic theory, has previously been observed in gyrokinetic simulations of two-
dimensional, electrostatic turbulence. For the first time, we show evidence for a dual phase-space cascade of ion-
entropy fluctuations in a three-dimensional simulation of hybrid-kinetic, electromagnetic turbulence. Some of the
scalings observed in the energy spectra are consistent with a generalized theory for the cascade that accounts for
the spectral anisotropy of critically balanced, intermittent, sub-ion-Larmor-scale fluctuations. The observed
velocity-space cascade is also anisotropic with respect to the magnetic-field direction, with linear phase mixing
along magnetic-field lines proceeding mainly at spatial scales above the ion gyroradius and nonlinear phase mixing
across magnetic-field lines proceeding at perpendicular scales below the ion gyroradius. Such phase-space
anisotropy could be sought in heliospheric and magnetospheric data of solar-wind turbulence and has far-reaching
implications for the dissipation of turbulence in weakly collisional astrophysical plasmas.
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1. Introduction

Turbulence is one means by which a fluid or plasma
nonlinearly transforms kinetic and/or electromagnetic energy
into thermodynamic heat. In a fluid or collisional plasma,
this conversion is mediated by molecular viscosity and/or
resistivity, which dissipatively remove power from small spatial
scales. However, many astrophysical and space plasmas are so
hot and diffuse that their collisional mean free paths are as large
as, if not bigger than, the macroscopic scales of interest.
Examples include the solar wind, the intracluster medium, and
low-luminosity accretion flows. In this situation, the production
of small-scale (“kinetic”) structure in velocity space can
compensate for the small collisionality and eventually lead to
collisional relaxation and irreversible heating. In other words,
turbulent collisionless plasmas find a nonlinear route to
dissipation through phase space (see Schekochihin et al. 2008).

One way to generate this velocity-space structure is via linear
phase mixing, caused by the ballistic response of the particle
distribution function and associated with Landau (1946) damping.
In a magnetized plasma, this process occurs primarily along
magnetic-field lines, being stifled across them by the smallness of
particles’ gyroradii. Another route to generating small-scale
structure in velocity space is nonlinear phase mixing, by which
the particles’ distribution function at a given position is
nonlinearly mixed by decorrelated ring-averaged fluctuations.
This mechanism, predicted by the gyrokinetic theory (Dorland &
Hammett 1993; Schekochihin et al. 2008, 2009; Plunk et al.
2010), causes a dual cascade in both the real and velocity spaces
perpendicular to the magnetic field of fluctuations in the ion
distribution function—the so-called entropy cascade.

Classical turbulence theory is formulated in Fourier space,
where nonlinear interactions between fluctuations produce a flux
of energy to larger wavenumbers with varying degrees of
wavevector anisotropy with respect to the magnetic-field direction
(e.g., Iroshnikov 1963; Kraichnan 1965; Goldreich & Sridhar
1995; Boldyrev 2006). An analogous approach can be used to

study velocity-space cascades by instead employing Hermite
polynomials or Hankel functions as the basis (e.g., Plunk et al.
2010; Adkins & Schekochihin 2018, and references therein).
Unfortunately, velocity-space cascades have traditionally

been difficult to diagnose, both in satellite data and in
numerical simulations. Although several three-dimensional
(3D) simulations of kinetic/gyrokinetic turbulence exist (e.g.,
Howes et al. 2008, 2011; Servidio et al. 2015; Told et al. 2015;
Wan et al. 2016; Cerri et al. 2017; Grošelj et al. 2018;
L. Arzamasskiy et al. 2018, in preparation; Franci et al. 2018),
thus far the velocity-space cascade produced by nonlinear
phase mixing has been directly diagnosed only in two-
dimensional (2D) simulations of gyrokinetic electrostatic
turbulence (Tatsuno et al. 2009, 2012), with little other indirect
evidence (Bañón Navarro et al. 2011; Cerri et al. 2014).
Numerical evidence of linear phase mixing and its associated
velocity-space cascade exists, but still within reduced settings
(e.g., Watanabe & Sugama 2004; Hatch et al. 2014; Parker
et al. 2016; Grošelj et al. 2017). Observationally, only recent
advances in spacecraft instrumentation have provided the first
evidence of a velocity-space cascade (in the electron distribu-
tion function) occurring in the solar wind filling the Earth’s
magnetosheath (Servidio et al. 2017).
In this Letter, we report on the occurrence of a phase-space

cascade in a high-resolution 3D-3V simulation of hybrid-Vlasov–
Maxwell (HVM) turbulence in a collisionless plasma with finite
electron inertia. We also derive scaling laws for the ion-entropy
cascade, generalized to account for different spectral anisotropies
and a possible reconnection-mediated energy transfer. Some of
these scalings are in agreement with our simulation results.

2. Sub-ion-Larmor Turbulence

2.1. Kinetic-Alfvén-wave (KAW) and Ion-entropy Cascades

As turbulent energy arrives from the “MHD” inertial range at
k⊥ρi∼1 (k⊥ is the wavenumber perpendicular to the magnetic
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field, ρi is the ion Larmor radius), it can be resonantly absorbed
and/or redistributed into various phase-space cascades. Two
examples of the latter are those of KAWs and of ion-entropy
fluctuations (Schekochihin et al. 2008, 2009; Kunz et al. 2017).
By way of reviewing their predicted turbulence scaling laws,
we generalize them to account for different wavevector
anisotropies.

We measure ion-entropy fluctuations via

vd f f F Fln ln , 13
M M òd º - -( ) ( )

where r vF F t, ,M M= ( ) is an isotropic Maxwellian whose
number density n, mean flow u, and temperature T matches,
respectively, the zeroth, first, and second moments of the ion
distribution function r vf f t, ,= ( ). Often, a linearized version
of Equation (1) is defined, vd T f F23 2

M òd d» ( ) with fd º
f FM- , which features in a collisionless invariant called the
gyrokinetic free energy (Schekochihin et al. 2009). For
low-frequency, sub-ion-Larmor-scale KAW turbulence, this δf
is asymptotically equal to the non-adiabatic “gyrokinetic”
response h, i.e., δf≈h and vd Th F23 2

M òd » ( ) for k⊥ρi ? 1.
In the gyrokinetic theory, the KAW and ion-entropy cascades
are energetically decoupled, with h being a passive tracer of the
ring-averaged KAW turbulence in phase space.

As the fluctuations cascade via nonlinear interactions to
k⊥ρi ? 1, particles with different gyroradii but similar guiding-
center positions—i.e., with different velocities perpendicular to
the magnetic field—experience different fluctuations. Plasma
particles belonging to different portions of f then undergo
different turbulent evolution, leading to phase mixing in the
velocity space perpendicular to the magnetic field (v⊥) with
correlation scale
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where v T m2thi iº is the ion thermal speed, mi is the ion
mass, and Ωi is the ion Larmor frequency (see Schekochihin
et al. 2009, Section 7.9.1). In the Hermite representation of
velocity space, v v mthi

1 2d ~^ ^
- , where m̂ is the order of the

Hermite basis function, and so Equation (2) implies m k2µ^ ^.
The real- and velocity-space cascades of ion-entropy fluctua-
tions are thus tightly entwined and occur simultaneously:
ion-entropy fluctuations are mixed in velocity space by
decorrelated fluctuations in real space, and the resulting
decorrelated velocity-space structure impacts the ring-aver-
aging of those fluctuations. Scaling laws for the entropy
cascade should reflect this mixing.

In Section 2.2, we derive such scaling laws using arguments
borrowed from gyrokinetic theory. In doing so, we are neither
promoting the gyrokinetic theory as a generic description of
sub-ion-Larmor-scale turbulence, nor are we claiming that our
simulation parameters (see Section 3) are best suited to test
such a theory, which is based on a low-frequency, small-
amplitude, spatially anisotropic asymptotic ordering. Rather,
the agreement or lack thereof between the consequent scaling
theory and our simulation results highlights the degree to which
certain aspects of the gyrokinetic theory manifest in a more
general (Vlasov) setting. It is important to note, however, that
the concept of correlated real- and velocity-space fluctuations
in the sub-ion-Larmor range (as in Equation (2)) does not

require especially low frequencies; it is a generic consequence
of particles with similar guiding centers but gyroradii differing
by an amount k 1~ ^

- experiencing decorrelated electromagnetic
fluctuations.

2.2. Spectral Anisotropy and Turbulence Scaling Laws

We denote the scales perpendicular and parallel to the
magnetic-field direction by λ and ℓP, respectively. The relation
between these scales is parameterized as follows:

ℓ , 3,
3lµl

a
 ( )

where α describes the spectral anisotropy of the fluctuations in
the sub-ion-Larmor range of interest. α=1 returns the
“standard” scalings for KAW turbulence (e.g., Schekochihin
et al. 2009; Boldyrev et al. 2013); α=2 corresponds to the
intermittency-corrected scenario proposed by Boldyrev &
Perez (2012); and α=3 describes an “isotropic” cascade,
which has been measured in some hybrid-PIC simulations
(L. Arzamasskiy et al. 2018, in preparation; Franci et al. 2018).
Using the characteristic timescale of linear KAWs

( ℓKAW, ,t lµl l ) and assuming a critically balanced cascade
in which the scale-dependent linear and nonlinear timescales
are comparable, the nonlinear timescale nl,t l

a( ) at perpendicular
scale λ satisfies

. 4nl, KAW,
1 3t t l~ µl l

a a+ ( )( )

Following the arguments in (Schekochihin et al. 2009, Section
7.9.2), the nonlinear timescale in the entropy cascade is
obtained by weighting KAW,t l

a( ) by the factor (ρi/λ)
1/2 due to the

ring-averaging in the gyrokinetic nonlinearity:

. 5h,
i

1 2

KAW,t
r
l

t~l l
a ⎜ ⎟⎛

⎝
⎞
⎠ ( )( )

With λ= ρi, during each KAW correlation time the nonlinearity
changes the scale-dependent gyrokinetic response hλ only by a
small factor, h h 1hKAW, ,t tD ~l l l

a
l ( ) . These changes accu-

mulate as a random walk, i.e., as t hKAW,
1 2t Dl

a
l( )( ) . The entropy

cascade time h,t l
a( ) is the time needed to produce an order-unity

change in hλ, i.e., h hh, KAW,
1 2t t D ~l

a
l

a
l l( )( ) ( ) . Thus,

. 6h,
i

KAW,
3t

r
l

t l~ ~l
a

l
a a⎜ ⎟⎛

⎝
⎞
⎠ ( )( ) ( )

Assuming a constant entropy flux through scales, h h
2

,t ~l l
consthe = , we obtain

h , 76lµl
a a ( )( )

which corresponds to the following spectra of h and d :

E k k , 8h
3 3µ a

^ ^
- +( ) ( )( )

E k k . 93 2 3
 µd

a
^ ^

- +( ) ( )( )

For standard KAW-turbulence anisotropy k k1 3µ ^ (α=1),
the predicted h spectrum k 4 3µ ^

- is recovered (Schekochihin
et al. 2009), and E k 5 3

 µd ^
- . In the intermittency-corrected

case (α=2), k k2 3µ ^ and so E kh
5 3µ ^

- and E k 7 3
 µd ^

- .
For isotropic sub-ion-scale turbulence (α=3), k kµ ^ and so

E kh
2µ ^

- and E k 3
 µd ^

- . In all of these cases, the
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corresponding spectra in parallel wavenumber are independent
of α:

E k k E k kand . 10h
2 3

µ µd
- -

   ( ) ( ) ( )

Accompanying these real-space spectra are velocity-space
spectra described by the perpendicular Hermite number m⊥.
Using m k2µ^ ^ (see Equation (2)) in Equation (8) implies
E m mh

6 6µ a
^ ^

- +( ) ( ) . Note that E m mh
7 6µ^ ^

-( ) for α=1,
which is equivalent to the E p ph

4 3µ -( ) Hankel spectrum
predicted by Plunk et al. (2010) for nonlinear phase mixing in
2D electrostatic gyrokinetic turbulence (note that p m~ ^ ). In
the intermittency-corrected case, E m mh

4 3µ^ ^
-( ) .

We caution that some of these scalings may be degenerate
with a turbulent cascade whose energy transfer is mediated by
magnetic reconnection (e.g., Cerri & Califano 2017; Franci
et al. 2017). As the cascade proceeds toward smaller spatial
scales and the wavevector anisotropy increases, the reconnec-
tion timescale of the turbulent fluctuations may eventually
become comparable to the nonlinear cascade time (Loureiro &
Boldyrev 2017; Mallet et al. 2017). As discussed in Mallet
et al. (2017), this process will naturally “reset” the wavevector
anisotropy and can thus provide an alternative explanation for
spectral anisotropies with α>1. To explore this possibility,

we adopt the scale-dependent reconnection timescale as the
nonlinear cascade time for the turbulent cascade upon which
the ion-entropy cascade develops; that is, we substitute τrec, λ
for τKAW, λ in the arguments leading to Equations (8) and (9).
Using the rates given in Loureiro & Boldyrev (2017) for β∼1,
viz. n n n

rec,
4 2 3t lµl

+( ) ( ) ( ) (the index 1<n�2 parameterizes
cases where the tearing-mode parameter k n1l lD¢ ~ - -( ) , with
λ being a proxy for the current-sheet thickness), it is easy to
show that h n n n2 6lµl

+( ) ( ) ( ). For the limiting cases n=1 and
n=2, we recover the spectra in Equations (8) and (9) for
α=3 and α=2, respectively. For n=1, the reconnection
rate, ∝λ−2, at kinetic scales becomes large enough to
efficiently disrupt the turbulent “eddies,” producing an
effectively isotropic cascade (α=3). For n=2, such disrup-
tion events may occur, but perhaps not so efficiently as to
completely isotropize the cascade; sheet-like structures may
then persist long enough to produce the intermittency-corrected
spectral anisotropy, α=2.

3. Ion-entropy Cascade in HVM Turbulence

The possibility of a dual phase-space cascade at sub-ion-
Larmor scales is investigated using a nonlinear simulation of
decaying turbulence with the Eulerian (i.e., grid-based both in
real and velocity space) HVM code (Valentini et al. 2007). The
model equations governing the ion distribution function

r vf t, ,( ) and the electromagnetic fields E rt,( ) and B rt,( )
are the Vlasov equation, Faraday’s law of induction, and a
generalized Ohm’s law that assumes quasi-neutrality and
includes the inductive and Hall electric fields, a thermo-electric
field driven by pressure gradients in the (isothermal) electron
fluid, and the leading-order electron inertia term(Cerri et al.
2017):

v E v B
v
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f
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where all quantities are normalized using mi, Ωi, the Alfvén
speed v B m n4A ipº , and the ion inertial length di≡vA/Ωi.
The electron inertia term in Equation (12) involving the
electron inertial length de is the only term able to physically
break flux freezing and allow magnetic reconnection to occur.
To correctly capture such physics, a reduced mass ratio
mi/me=100 has been adopted so that de=0.1di is spatially
resolved.
The simulation (published in Cerri et al. 2017) was initialized

with a stationary, spatially homogeneous, Maxwellian, ion-
electron plasma, threaded by a uniform magnetic field B zB0 0= ˆ
and characterized by a plasma beta parameter i0 e0b b= º

n T B8 10 0 0
2p = (the subscript “0” denotes an initial value).

Large-scale, random, nearly isotropic 3D magnetic perturbations
Bd are placed on top of B0, with k0.1 0.5Bi r d( ) and δ
Brms;0.23. The ion phase space is discretized using
N N N N N N, , , , ,x y z v v vx y z( )=(384, 384, 64, 51, 51, 51) uniformly
distributed points. Periodic boundary conditions are imposed in
real space, with Lz;62ρi and Lx=Ly;31ρi, corresponding
to a spectral domain spanning 0.2�kx,y ρi�38.4 and

Figure 1. Energy spectra of the perpendicular electric field EE⊥ (red solid line),
the perpendicular magnetic field EB⊥ (blue solid line), the parallel magnetic-
field fluctuations EB (light-blue solid line), and the non-thermal entropy
fluctuations E d (orange solid line), all vs. k⊥. Insets report the same spectra vs.
k. Labeled dashed and dotted–dashed lines provide reference slopes.
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0.1�kzρi�3.2. Velocity space is limited in each direction by
v T m5max 0 i=  , beyond which f=0.

The initial Bd freely decays into fully developed turbulence
after a few Alfvén-crossing times, when a peak in the rms
current density and quasi-stationary energy spectra are
obtained. Our analysis is performed during this fully developed
turbulent state, which is characterized by intermittent magnetic-
field fluctuations across and below ρi and by a spectral
anisotropy that, in the k⊥ρi1 kinetic range, is consistent with
this intermittency, viz.,k k2 3µ ^ .

3.1. Real-space Cascades

The top panel of Figure 1 displays energy spectra of the
perpendicular electric field EE⊥ (red solid line), the perpendicular
magnetic field EB⊥ (blue solid line), and the parallel magnetic-field
fluctuations EB (light-blue solid line) versus k⊥. The inset shows
the same spectra versus k. (The parallel electric-field spectrum, not
shown, is at least an order of magnitude smaller than any other
spectrum.) Here, “” and “⊥” are defined with respect to B0. Both
EB⊥ and EB exhibit a break near k⊥ρi≈2, with a sub-ion-
Larmor-scale slope close to −8/3. The perpendicular electric-field
spectrum at these scales is shallower, with slope initially close to
−2/3 but progressively steepened by electron inertial effects. The
spectral cutoffs at k⊥ρi20 and k 2i r are caused by electron
inertia and (weak) spectral filters.

The bottom panel of Figure 1 displays E k ;d ^( ) the inset
shows E kd ( ). In the kinetic range, below the scales at which
the magnetic-field spectrum breaks, the d spectrum shows a
spectral slope near −7/3. The corresponding k spectrum has a
slope very close to −3. Both are in remarkable agreement with
the theory presented in Section 2.2 for α=2, derived by
treating d as a passive scalar of intermittent KAW turbulence.

3.2. Phase-space Representation of the Cascade

The ion-entropy cascade is predicted to be a dual cascade
simultaneously in real and velocity space. To test this idea, we
must Fourier–Hermite transform δf. However, due to computa-
tional expense, the full 3D-3V distribution function spanning
the entire computational domain cannot be analyzed at once.
Instead, we have analyzed two reduced quantities separately: (i)
a vz-integrated δf measured at eight different z locations,

f x y z z v v, , , , ;j x y v0 1 ... 8 zdá = ñ=( { } ) and (ii) a (vx, vy)-integrated
δf with no spatial information removed, f x y z v, , , z v v,x y

dá ñ( ) .
These quantities are Fourier–Hermite transformed using a
maximum Hermite mode number M=30 (accounting for our
finite velocity-space resolution). The first reduced quantity then
gives the spectrum in the (k⊥, m⊥) plane, while the second is
representative of the (k⊥, k, m) space. Because of the Fourier
transform, here “” and “⊥” are defined with respect to B0, so
that m mz= and m m mx y

2 2 1 2= +^ ( ) .
Figure 2 displays contour plots of these reduced phase-space

spectra in the (k⊥, k), (k⊥, m⊥), and (k⊥, m) planes. We
observe several interesting features. The entropy cascade in real
space develops a spectral anisotropy consistent with k k2 3µ ^
(panel (a)), the same as occurs in the electromagnetic fields
(Cerri et al. 2017). Note that within the hybrid-kinetic model
and in the wavenumber range explored by our simulation,
effects ordered out of gyrokinetics (e.g., finite Larmor
frequency) may be present. Indeed, the white solid lines in
Figure 2(a), which trace ωKAW/Ωi=0.25, 0.5, and 1
isocontours, indicate that the linear KAW frequency ωKAW

can exceed Ωi in our simulation.4 Nevertheless, perpendicular
phase mixing occurs at k⊥ρi1 and consists of a dual phase-
space cascade, occurring approximately along m k2µ^ ^ (panel
(b)). A similar calculation of the Fourier–Hankel spectrum of δf
(not shown) reveals p∝k⊥, as predicted by Plunk et al. (2010)
and consistent with m k2µ^ ^. (Using a gyro-averaged δf does
not qualitatively change these results.) Parallel phase mixing
occurs simultaneously, but is confined mainly to k⊥ρi1
(panel (c)) and k 0.5i r (not shown), in agreement with the
conjecture by (Schekochihin et al. 2009, Section 7.9.4) that
nonlinear perpendicular phase mixing is more efficient than
linear parallel phase mixing at sub-ion-Larmor scales.

3.3. Velocity-space Cascades

We now examine the velocity-space spectrum of δf. We
extracted δf (x, y, z, vx, vy, vz) from eight reduced local sub-
domains of spatial size ℓx=ℓy;ρi and ℓz;7ρi, each consisting
of 12×12×8 grid points, and then performed a 3D Hermite
transform at each grid point. Using the local magnetic-field
direction b B Bºˆ , the resulting spectra were transformed

Figure 2. Fourier–Hermite spectrum of the (reduced) non-thermal distribution
function, flog k m,

2d∣ ∣ . Top to bottom: (k, k⊥), (m⊥, k⊥), and (m, k⊥) planes.
Labeled dashed lines provide reference slopes. White solid lines in panel (a)
trace ωKAW/Ωi=0.25, 0.5, and 1 isocontours.

4 For simplicity, we have used the approximate expression KAWw =
k v k1 0.5A i

2r+ ^ ( ) for βi=Ti/Te=1, which matches the result from the
linear gyrokinetic theory to within ≈2% in the wavenumber regime of interest.
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into a field-aligned coordinate system (m⊥1, m⊥2, m) with m =^

m m1
2

2
2 1 2+^ ^( ) .

The resulting (spatially averaged) Hermite spectrum of δf is
shown in Figure 3.5 The spectrum is clearly anisotropic and
gyrotropic with respect to b̂ (panels (a) and (b)), as expected for
magnetized turbulence (e.g., Servidio et al. 2017). The m 1 2-


spectrum in Figure 3(c) for m 15 likely reflects linear phase
mixing occurring along magnetic-field lines, as predicted by
Zocco & Schekochihin (2011) and Kanekar et al. (2015) (cf.
Watanabe & Sugama 2004). The m⊥ spectrum, on the other
hand, is noticeably steeper than predicted, being closer to −2
(for m⊥15). The same m 2

^
- spectrum is consistently

recovered when integrating the δf spectrum in Figure 2(b) over
k⊥; an analogous procedure applied to the Fourier–Hankel
transform of δf returns a compatible spectrum close to p−3.
Likewise, integrating the spectrum in Figure 2(b) over m⊥

yields a spectrum close to k 3
^
- in the range where the dual

cascade is observed, also steeper than our prediction for Eh(k⊥)
(see Equation (8)). These results hold true for the gyro-
averaged δf as well. While we have no explanation for this
discrepancy, we do note that Servidio et al. (2017) predict an
m−2 spectrum and m-space anisotropy when magnetic-field
fluctuations play a dominant role in the velocity-space cascade
(by contrast with the gyrokinetic case, in which the v⊥ cascade
is driven predominantly by electric-field fluctuations). The
difference may be a result of the relatively weak spectral
anisotropy in our simulation, which causes the linear KAW
frequency to approach Ωi somewhat early in the sub-ion-

Larmor range (see Figure 2), violating the gyrokinetic ordering
used in Section 2 to predict the h spectrum.
Both the parallel and perpendicular Hermite spectra steepen

at m 15, »^ to approximately m 3 2-
 and m 3

^
- . Although a

−3/2 slope is predicted by Adkins & Schekochihin (2018) and
Servidio et al. (2017) for the regime of Vlasov turbulence
where advection or electric-field fluctuations dominate, because
of the finite velocity-space resolution in our simulation, our
measured slopes in this range may not be converged.

4. Conclusions

Using a high-resolution HVM simulation, we have shown
for the first time that a dual phase-space cascade is occurring in
3D-3V electromagnetic turbulence. Generalized scaling laws
that account for different spectral anisotropies with respect to
the magnetic-field direction have been derived, and the
observed ion-entropy cascade is consistent with some of these
new scalings in the intermittency-corrected case, k k2 3µ ^
(Boldyrev & Perez 2012). The non-thermal distribution
function δf is shown to develop both real- and velocity-space
structure that is anisotropic with respect to the magnetic-field
direction. Both the real-space cascades of δf and the
electromagnetic fields exhibit a sub-ion-Larmor-scale spectral
anisotropy consistent with k k2 3µ ^ . At the largest “fluid”
scales, k⊥ρi1, linear phase mixing drives a velocity-space
cascade in the Hermite moments along the magnetic-field
direction, with a power law close to m 1 2-

 . A dual phase-space
cascade in (k⊥, m⊥) develops at scales below the ion
gyroradius, k⊥ρi1, with m k2µ^ ^ likely due to nonlinear
phase mixing (Schekochihin et al. 2008, 2009). The resulting
Hermite spectrum is steeper than our predictions based on
gyrokinetic theory, but is close to the m 2

^
- spectrum predicted

for magnetized turbulence in a Vlasov plasma (Servidio et al.
2017). This steepness could be due to effects ordered out of the
gyrokinetic theory, such as finite Larmor frequency(see, e.g.,
Bruno & Trenchi 2014; Telloni et al. 2015), and/or due to
multiscale dissipation or non-local couplings in phase space
(e.g., Cerri et al. 2014; Hatch et al. 2014; Passot & Sulem 2015;
Teaca et al. 2017).
These results constitute the first evidence that both linear and

nonlinear phase mixing are at play in magneto-kinetic plasma
turbulence. Because the resulting spectral scaling laws are
largely consistent with theories accounting for turbulent
intermittency, we expect the consequent dissipation to be
associated with intermittent structures such as current sheets
and coherent magnetic structures. This, alongside the fact that
reconnection seems to enhance/trigger the energy transfer
below ion kinetic scales (Cerri & Califano 2017; Franci et al.
2017), may explain why most of the kinetic activity, energy
conversion, and dissipation in solar-wind turbulence and in
kinetic simulations is concentrated within or in the vicinity of
ion-scale current sheets (e.g., Osman et al. 2012a, 2012b;
Servidio et al. 2012, 2015; Karimabadi et al. 2013; TenBarge &
Howes 2013; Wu et al. 2013; Chasapis et al. 2015; Wan et al.
2015, 2016; Bañón Navarro et al. 2016; Yang et al. 2017).
Although the present model neglects possible contributions
from electron kinetics at sub-ion-Larmor scales (e.g., Told et al.
2015), we believe these ion-phase-space cascades constitute an
important pathway to turbulent dissipation in collisionless
plasmas.

Figure 3. Spatially averaged Hermite spectrum of the non-thermal distribution
function, flog m

2d∣ ∣ , in a local magnetic-field-aligned coordinate system m m, ^( )
with m m m1

2
2

2 1 2= +^ ^ ^( ) . Labeled dashed lines provide reference slopes.

5 Despite δf having no zeroth, first, or second moment, the Hermite spectra
exhibit residual m=1 and m=2 coefficients. There are two causes of this: (i)
a finite velocity-space resolution is used when subtracting off the local, shifted
Maxwellian FM from f and then projecting δf onto the discrete Hermite basis;
and (ii) FM is taken to be isotropic in velocity space, even though magnetic-
field-biased temperature anisotropy T T T¹ ¹^ is observed.
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