
Dual-plane stereo particle image velocimetry measurements of velocity
gradient tensor fields in turbulent shear flow. II. Experimental results

John A. Mullin and Werner J. A. Dahma�

Laboratory for Turbulence & Combustion (LTC), Department of Aerospace Engineering,
The University of Michigan, Ann Arbor, Michigan 48109-2140

�Received 22 July 2004; accepted 26 September 2005; published online 9 March 2006�

Results are presented from highly resolved dual-plane stereo particle image velocimetry �DSPIV�
measurements for the structure, statistics, similarity, and scaling of all nine simultaneous

components of the velocity gradient tensor fields �ui /�x j on the quasi-universal intermediate and

small scales of turbulent shear flows. Measurements were obtained at three combinations of the

outer-scale Reynolds number Re� and the local mean shear rate S in the fully developed self-similar

far field of a turbulent jet, and thus reflect the combined effects of the large-scale structure, spatial

inhomogeneities, and anisotropies inherent in such a flow. Conditions addressed in this study

correspond to local outer-scale Reynolds numbers Re�=6,000 and 30,000 and local mean shear

values S� /uc=0 and 1.7, corresponding to Taylor-scale Reynolds numbers Re��44 and 113 and

shear rates Sk /�=0 and 2.1. Gradient fields investigated here include the individual velocity

gradient component fields, the strain rate component fields and the associated principal strain rates,

the vorticity component fields and their orientations with respect to the principal strain axes, the

enstrophy and enstrophy production rate fields, and the true kinetic energy dissipation rate field.

Results normalized on both inner- and outer-scale variables are presented to allow interpretation

relative to the similarity and scaling implied by classical turbulence theory. For both Re� values at

S=0, results show that most aspects of these gradient fields are essentially in agreement with the

predictions from homogeneous isotropic turbulence, while for S�0 there are significant and

consistent departures from isotropy. Results also provide direct measurements of the exponential

scaling factors in the left and right tails of the velocity gradient distributions, as well as

quantification of the inner �viscous� length scales in the enstrophy and dissipation rate fields. In

addition, strong evidence for multifractal scale similarity at length scales greater than about twice

the viscous length �� is found in both the enstrophy and dissipation rate fields. © 2006 American

Institute of Physics. �DOI: 10.1063/1.2166448�

I. INTRODUCTION

Turbulence theory has been extensively developed for

homogeneous isotropic and uniformly sheared turbulence. Its

application to inhomogeneous turbulent shear flows is based,

in broadest terms, on the classical hypothesis of a universal

approach to the homogeneous and isotropic state at suffi-

ciently small scales. Beyond this local isotropy assumption,

however, the precise extension of classical theory to the tur-

bulence encountered in shear flows is still a subject of con-

siderable uncertainty. Any universal approach to the homo-

geneous, isotropic state at small scales in turbulent shear

flows is complicated by the presence of organized large-scale

vortical structures, spatial inhomogeneities, anisotropy, and

the comparatively small range of scales present at the mod-

erate Reynolds numbers in many experimental studies. Rela-

tively little is known about the range of scales over which

these characteristics of shear flow turbulence will create sig-

nificant departures from the asymptotic state that is pre-

sumed to apply at sufficiently small scales. Similarly, com-

paratively little is known about the effect of the Reynolds

number and the local mean shear rate on this asymptotic

approach, or about the departures from the universal state at

larger scales. Several studies have reported comparatively

large degrees of anisotropy at remarkably small scales in

shear flow turbulence.
1–4

Here we present results from an

experimental study that characterizes key aspects of the

structure, statistics, similarity and scaling of velocity gradi-

ent fields at the intermediate and small scales of a turbulent

free shear flow for several values of the local Reynolds num-

ber Re� and the local mean shear rate �Sk /��. We use these to

infer the relevance of the local isotropy hypothesis to the

small scales of turbulent shear flows at relatively moderate

Re� values, and to quantify certain aspects of the departures

from this isotropic state at these values of Re� and �Sk /��.
Classical theory is usually applied to turbulent shear

flows by scaling turbulence quantities with the local rms ve-

locity fluctuation urms� and local Taylor scale �g, or equiva-

lently by corresponding scalings with local values of the av-

erage turbulence kinetic energy k and average turbulent

dissipation rate �. However these parameters are themselves

characteristics of the turbulence, and thus can be related to

appropriate outer length and velocity scales associated with

the mean flow. Since kinetic energy is supplied from the

local mean flow to the turbulence through vortex line stretch-
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ing by the mean shear profile, and since the local mean flow

width typically increases only slowly with downstream dis-

tance x, appropriate outer-scale parameters are the local ve-

locity uc�x� and length ��x� that characterize the local mean

shear profile. In jets and plumes, for example, uc�x� and ��x�
are the local mean centerline velocity and the local flow

width, so that the peak mean shear is O�uc /��, while in mix-

ing layers the outer velocity and length scales are the

freestream velocity difference and the local flow width. Scal-

ing laws for uc and � can often be obtained by simple dimen-

sional arguments, allowing local turbulence properties to be

obtained from their respective scalings in these outer-scale

parameters if the corresponding scaling coefficients are

known. One of the goals of the present study has been to

determine these outer-variable scaling coefficients for vari-

ous key turbulence quantities in a turbulent shear flow.

Aspects of turbulent free shear flows associated with the

outer scales, such as mean velocities and gradients of mean

quantities, scale with the outer velocity and length scales

uc�x� and ��x�. The corresponding local outer-scale Reynolds

number Re��x��uc� /� then determines the local inner �vis-

cous� length scale ���x� via the inner-to-outer length scale

relation ��� /���Re�
−3/4. Quantities that are concentrated at

the small scales of the flow, such as velocity gradients, scale

with the inner length scale �� and the inner velocity scale

�� /���; e.g., the rms fluctuation in the enstrophy would scale

as � /��
2. When the resulting inner-variable scalings are ex-

pressed in terms of the outer-scale parameters uc and �, they

imply specific Re� scalings, e.g., the enstrophy scaling above

becomes �uc /��Re�
1/2. One of the goals of the present study

has been to determine the extent to which the outer- and

inner-variable scalings predicted by classical theory apply to

velocity gradient quantities at these Re� values in turbulent

free shear flows, including strain rates and vorticity compo-

nents, the enstrophy and its production rate, and the kinetic

energy dissipation rate. This study has also sought to directly

determine the corresponding scaling coefficients in the outer-

and inner-variable scalings of these quantities, and to char-

acterize the quasi-universal distributions of the resulting

scaled velocity gradient quantities in turbulent shear flows.

The competing effects of the local strain rates �which act

to reduce the gradient length scales� and viscous diffusion

�which acts to increase the gradient scales� reach an equilib-

rium at the strain-limited viscous length scale �� in the ve-

locity gradient fields. A corresponding strain-diffusion com-

petition involving the diffusivity D of conserved scalars

leads to the strain-limited scalar diffusion length scale �D

=�� Sc−1/2, where Sc�� /D, is the scalar gradient field.
5,6

By

expressing the local inner-to-outer length scale relation

�� /�=� Re�
−3/4 in terms of the local outer-scale Reynolds

number Re�, the scaling coefficient � should presumably be

the same for all turbulent free shear flows. Indirect measure-

ments of � based on the gradient length scales �D in scalar

gradient fields
6–9

have indicated ��	�11.2. Here �D is the

physical thickness of the scalar diffusion layers, defined from

the layer-normal scalar dissipation profile as the distance be-

tween the points where the dissipation drops to 20% of the

local layer-normal maximum value.
5–9

Note that �� is pro-

portional to the Kolmogorov length scale �K���3��1/4.

However �K is defined solely on dimensional grounds, and

thus gives the correct scaling for the viscous diffusion length

scale but does not give the physical scale �� at which the

competing effects of strain and viscous diffusion balance to

set the local strain-limited viscous diffusion length scale.

Surrogate dissipation measurements
10

and ��	 as above sug-

gest ��
5.9�K, which appears at least roughly consistent

with the peak in the dissipation spectrum. Among the goals

of this investigation has been to determine the distribution of

� values directly from velocity gradient measurements, and

to determine the factor relating �� and �K directly from the

measured kinetic energy dissipation rate fields.

The classical assumption of local isotropy, when applied

to turbulent shear flows, suggests that if the local outer-scale

Reynolds number Re� is large enough for a sufficient scale

separation to exist between the local inner and outer length

scales �� and �, then at sufficiently small scales the structure

and statistics of all turbulent shear flows at all values of Re�

should be identical when scaled on the inner variables � and

��. Moreover, with increasingly smaller scales the structure,

statistics, similarity and scaling of all velocity gradients

should approach the corresponding characteristics of homo-

geneous isotropic turbulence. One of the further goals of the

present study has been to determine the extent to which the

outer- and inner-scale similarities and scalings predicted by

classical theory apply to various velocity gradient fields at

these Re� values in turbulent shear flows.

Refinements to these implications of classical theory fo-

cus on relatively weak additional Re� scalings associated

with intermittency effects. The resulting intermittency cor-

rections involve various assumptions for the physical struc-

ture and scaling of velocity gradient fields at intermediate

and small scales of high Reynolds number turbulent

flows.
2,11,12

However most studies to date of such intermit-

tency effects in turbulent shear flows have been based on

indirect measurements of velocity and scalar gradient quan-

tities. In most cases, these apply Taylor’s hypothesis to

single-point time-series data u�t� to obtain a surrogate esti-

mate of the form ��u /�t�2 that approximates one-dimensional

intersections through the dissipation rate fields.
13

One of the

further goals of this study has been to characterize intermit-

tency effects from the present direct measurements of true

velocity gradient fields in turbulent shear flows, avoiding any

resort to Taylor’s hypothesis or to surrogate enstrophy or

dissipation fields.

The present investigation is based on highly resolved

direct experimental measurements of the structure, statistics,

similarity, and scaling of all nine simultaneous components

of the velocity gradient tensor fields �ui /�x j on the quasi-

universal intermediate and small scales of turbulent shear

flows. Unlike direct numerical simulations �DNS� of homo-

geneous isotropic or uniformly sheared turbulence in peri-

odic domains, the present results from a turbulent shear flow

reflect the combined effects of the large-scale structure, in-

homogeneities, and anisotropies inherent in such a flow, and

address Reynolds numbers that significantly exceed values

currently attainable by DNS of spatially developing turbulent

shear flows. Three combinations of the local outer-scale Rey-

nolds number Re� and the local mean shear rate S
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��2SijSij�
1/2 are investigated here to examine their effect on

the similarity and scaling implied by classical turbulence

theory for the intermediate and small scales of turbulent

shear flows. Results are presented for Re�=6,000 and 30,000

and for values of the outer-scaled mean shear rate �S� /uc�
=0 and 1.7. These correspond to Taylor-scale Reynolds num-

bers Re�=44 and 113, and to normalized mean shear rates

�Sk /��=0 and 2.1. The two mean shear rates are, respec-

tively, from measurements on the centerline of an axisym-

metric turbulent jet and at the radial location of maximum

shear in the same flow. The latter value of �Sk /�� is typical

of the peak mean shear rate in most free turbulent shear

flows. It is also comparable to the �Sk /���3.2 value that

applies throughout the log layer of wall-bounded turbulent

shear flows. Direct numerical simulations of homogeneous

uniformly sheared turbulence
14

have examined roughly com-

parable shear rates, corresponding to �Sk /���4.3. Experi-

mental studies of homogeneous uniformly sheared turbu-

lence have addressed �Sk /�� values ranging from 6.5 �Ref.

15�, 13 �Ref. 3�, and 34 �Ref. 16�, however such compara-

tively larger shear values are principally relevant to the vis-

cous near-wall region �y+ �20� of wall-bounded shear

flows.

The present study investigates the effects of these pa-

rameters on various aspects of the velocity gradient compo-

nent fields, the strain rate component fields and their associ-

ated eigenvalues and eigenvectors, the vorticity component

fields and their orientations with respect to the principal

strain axes, the enstrophy and enstrophy production rate

fields, and the true kinetic energy dissipation rate field. The

results focus principally on �i� assessments of the Re� simi-

larity and scaling in various probability densities associated

with these fields for the S=0 and S�0 cases; �ii� determina-

tion of exponential scaling factors in the tails of these distri-

butions; �iii� determination of the quasi-universal scaling co-

efficients in inner- and outer-variable scaling laws associated

with these fields; �iv� comparisons with previous experimen-

tal and computational results for velocity gradients in homo-

geneous, isotropic turbulence at comparable Re� values; �v�
measurements of the inner length scales in the enstrophy and

dissipation rate fields; and �vi� assessments of scale similar-

ity in the true enstrophy and kinetic energy dissipation rate

fields. Results are presented with both local inner- and outer-

scale normalizations to allow their interpretation relative to

classical theory and their application to turbulent free shear

flows at other values of Re� and �S� /uc�.

II. EXPERIMENTAL ARRANGEMENT

A. Dual-plane stereo particle imaging velocimetry
„DSPIV…

Two-frequency dual-plane stereo particle image

velocimetry
17,18

was here used to obtain highly resolved di-

rect noninvasive measurements of all nine components of the

velocity gradient tensor field �ui /�x j at the intermediate and

small scales of a turbulent shear flow. The approach is based

on measurements in two differentially spaced light-sheet

planes, as shown in Figs. 1 and 2 of Ref. 18, using two

different laser frequencies in conjunction with filters to sepa-

rate the light scattered from the seed particles onto the indi-

vidual stereo camera pairs. The differential spacing of the

two stereo PIV planes allows resolution of velocity gradient

fields to the local inner scale �� of the turbulent flow.

Briefly, the present arrangement consisted of four

Nd:YAG lasers, of which two were sequentially triggered to

create the double pulses for the 532 nm light sheets and the

other two, also sequentially triggered at the same instants of

time, pumped two pulsed dye lasers that provided the 635

nm light sheets. A knife edge was traversed across each sheet

and the transmitted light collected onto a photodiode detector

to quantitatively establish the 400±20 �m thicknesses of the

two 532 nm light sheets and the 800±20 �m thicknesses of

the two 635 nm light sheets �see Fig. 4 of Ref. 17�. An

optical technique that images each sheet cross section and

determines the sheet centerline based on the measured inten-

sity profiles at various elevations across the sheet and over

the field of view was used to quantitatively verify coinci-

dence and parallelism, to within a rms angular error of less

than 0.2°, of the two 532 nm and 635 nm light-sheet pairs,

and to confirm the 400±20 �m separation between the

sheets �see Fig. 5 of Ref. 17�.
The scattered light from 0.5 �m aluminum oxide seed

particles was recorded on four 12-bit 1280	1024-pixel

CCD cameras arranged using Sigma 70-300 f 4-5.6 APO

macro lenses to achieve the desired 15.5 mm	12.5 mm

field of view. The 532 nm camera pair had narrow-band fil-

ters centered at 532±5 nm that blocked the 635 nm light,

and the 635 nm cameras were equipped with OG570 Schott

glass filters that blocked the 532 nm light. The four cameras

were arranged in an asymmetric, forward-forward scatter,

angular-displacement configuration with each of the camera

pairs satisfying the Scheimpflug condition for stereoscopic

imaging. Each pair of stereo cameras was orientated with an

included angle of 50° between the optical axes of each cam-

era pair, as shown in Fig. 6 of Ref. 17.

Particle images were processed with an adaptive multi-

pass technique using 32	32-pixel interrogation boxes with

no overlap in the final vector fields, giving the same in-plane

resolution between vectors as the out-of-plane resolution be-

TABLE I. Parameters used in inner- and outer-variable normalizations in the

present study.

Parameter

Re�=6,000 Re�=6,000 Re�=30,000

Re�=45 Re�=43 Re�=113

S=0 S=1.2 S=0

N 1244 150 1019

uc �m/s� 1.2 1.2 3.7

� �m� 0.075 0.075 0.129

�� �mm� 1.24 1.70 0.64

�g �mm� 2.48 3.79 1.91

urms� �m/s� 0.24 0.16 0.83

vrms� �m/s� 0.20 0.11 0.64

wrms� �m/s� 0.21 0.13 0.69

� �m2 / s3� 1.76 0.47 27.7

� �m2 / s� 1.5	10−5 1.5	10−5 1.5	10−5
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tween the planes. Velocity gradients were computed using

linear central differencing in the x and y directions and one-

sided differencing in the z direction of the measured velocity

fields to obtain all nine components of �ui /�x j. The overall

spatial resolution in the resulting velocity gradient fields was

determined by the laser sheet thicknesses and separation and

the PIV processing to be 1100 �m. Extensive assessments of

the accuracy of velocity gradient fields obtained with this

DSPIV technique are given in Ref. 18, where the resulting

measured divergence values demonstrate overall rms errors

of 8.9% and 11.7% in the off- and on-diagonal components

of the measured velocity gradients �ui /�x j.

B. Flow configuration

The present DSPIV measurements were obtained on the

centerline and at the radial location of maximum mean shear

in the self-similar far field of an axisymmetric coflowing

turbulent jet. Air seeded with 0.5 �m aluminum oxide par-

ticles issued from a 1.0 m long tube with 2.2 mm inner

diameter at nominal exit velocity Uo=12.7 m/s for the Re�

=6,000 cases, and Uo=36.7 m/s for the Re�=30,000 case,

into a uniformly seeded coflowing air stream in a 30

	30 cm test section with coflow velocity U
=0.25 m/s.

The measurements for the Re�=6,000 cases were obtained

FIG. 1. �Color� Typical nine-component velocity gradient tensor fields �ui /�x j�x , t� at �Re� ;S� � �a� �6,000; 0�, �b� �30,000; 0�, and �c� �6,000; 1.2�. Field of

view is shown normalized by local inner length scale ��. Color scale shows quantitative values normalized both on local inner �� ,��� and outer �uc ,�� scales.
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17 cm downstream from the virtual origin of the jet, and 29

cm downstream for the Re�=30,000 case. In terms of the

invariant momentum radius � that governs the similarity

scaling of coflowing turbulent jets,
19,20

these locations re-

spectively correspond to �x /��=2.1 and 1.0, both of which

are within the jet-limit scaling of coflowing jets in which the

effect of the coflow is negligible. Conventional PIV measure-

ments of the resulting mean velocity and velocity fluctuation

profiles, given in Figs. 3 and 4 of Ref. 18, show good agree-

ment with previously reported results for jet-limit scaling

and served to validate the turbulent shear flow used in these

experiments. These also provided the mean centerline excess

velocity uc�x�=Uc�x�−U
 and the local flow width ��x� for

each case as given in Table I. Further details of the flow

facility are given in Ref. 21.

For the �S� /uc�=1.7 case, the DSPIV imaging region

was centered at the point of maximum shear in the local

mean velocity profile. For the two �S� /uc�=0 cases this was

centered on the flow centerline, where the mean shear is

zero, but extended 7.25 mm on either side of the centerline,

with the result that effects of the relatively small mean shear

�S� /uc�0.2� present on either side of the centerline will be

detectable in these results.

Although these measurements were obtained in the self-

similar far field of an axisymmetric coflowing turbulent jet,

the 15.5 mm	12.5 mm field of view of the measurements

was significantly smaller than the local outer scale ��x� of

the flow, and was of the order of 10–20 local inner length

scales ���x� in each direction. As a result, if the local outer-

scale Reynolds numbers Re� are large enough for a sufficient

scale separation to exist between the local outer and inner

length scales, then when scaled on inner variables the results

should be independent of both the particular Reynolds num-

bers and the particular shear flow in which they were ob-

tained, and should be representative of the generic structure,

statistics, similarity and scaling of velocity gradient fields at

the intermediate and small scales of all high Reynolds num-

ber turbulent free shear flows at these values of the mean

shear rate �S� /uc�.

III. VELOCITY GRADIENT FIELDS

Figures 1�a�–1�c� show examples of the simultaneously

measured instantaneous velocity gradient tensor component

fields �ui /�x j at the three combinations of Re� and �S� /uc�
considered in this study. The dimensions of each plane are

indicated in terms of the local inner length scale ��, namely

the local strain-limited viscous diffusion length scale ob-

tained via �� /�=� Re�
−3/4 with ��11.2 as noted in Sec. I.

The two measurement planes are separated in the z direction

by 400 �m, with the resulting �z /���=0.32 in the two

Re�=6,000 cases and �z /���=0.63 in the Re�=30,000 case.

The velocity gradient fields were obtained by central differ-

encing of the velocity component values within each x-y

plane and one-sided differencing between the two z planes.

The differencing template was based on the pixel-based co-

ordinate frame as well as the two additional frames resulting

from 45° rotations around the x and z axes. This makes use

of all 18 points in the 3	3	2 volume around each point to

give more accurate derivatives without degrading the spatial

resolution in the resulting gradient fields. As shown in Table

I, over 1000 such validated velocity gradient planes were

measured in each of the Re�=6,000 and 30,000 cases with

�S� /uc�=0.

The color scales in Figs. 1�a�–1�c� give the resulting

velocity gradient component values normalized by the local

outer-scale value �uc /�� and by the local inner-scale value

�� /��
2�. From �� /��Re�

−3/4 the inner-scaled values should

then be Re� independent, while the outer-scaled values will

increase as Re�
1/2. Comparing the color scales for the two S

=0 cases at Re�=6,000 and 30,000 in Figs. 1�a� and 1�b�
shows that this is very nearly the case. The range of inner-

scaled values is the same despite the different Re� values,

while the range of outer-scaled values increases with Re�,

reflecting the increasing concentration of velocity gradient

fields onto an increasingly smaller fraction of the volume as

Re� is increased.

A. Taylor scales and Re� values

Taylor-scale Reynolds numbers allow comparisons of

the present results with corresponding investigations of ho-

mogeneous isotropic or uniformly sheared turbulence. The

Taylor scale can be obtained several ways, all of which are

equivalent in homogeneous isotropic turbulence but which

give slightly different results in turbulent shear flows. Para-

bolic fits to the two-point longitudinal and transverse veloc-

ity fluctuation correlations, f�r� and g�r�, from the measured

velocities in the most highly resolved case, with Re�

=6,000 and �S� /uc�=0, give corresponding Taylor scales

� f �4.5 mm and �g�3.3 mm. The ratio of these is roughly

consistent with the �2 factor applicable in homogeneous iso-

tropic turbulence. Alternatively, isotropy relations of the

form �g
2=u�

2 / ��u /�x�2, together with the measured M2 val-

ues in Table II, give � f �4.4 mm and �g�3.2 mm. How-

ever, since the kinetic energy dissipation rate fields

2�SijSij�x , t� in Sec. VI were measured directly without any

assumption of isotropy, Taylor scales can also be obtained

from the resulting mean dissipation rates � via the relation

�g
2=15u�

2�� /��. The two Re�=6,000 cases, with �S� /uc�=0

and 1.7, are essentially fully resolved and thus their mea-

TABLE II. Moment values scaled on inner variables �� ,��� for all nine

components of the velocity gradient field �ui /�x j measured at �Re� ;S�
= �6,000;0�, for which Re�=45, showing mean M1, rms fluctuation M2,

skewness M3, and kurtosis M4.

Derivative

component M1 M2 M3 M4

�u /�x −0.018 7.153 −0.428 4.222

�u /�y 0.002 9.944 −0.007 4.635

�u /�z 0.008 9.639 −0.220 6.021

�v /�x −0.004 9.233 0.022 4.834

�v /�y −0.022 6.707 −0.384 3.817

�v /�z 0.009 9.637 −0.168 4.858

�w /�x −0.013 9.850 0.031 4.483

�w /�y −0.017 9.539 −0.027 4.656

�w /�z −0.018 6.929 −0.137 4.526
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sured mean dissipation rates �=1.757 m2 / s3 and

0.465 m2 / s3 in Table I together with their respective rms

velocity fluctuation values can be used to determine �g val-

ues. Doing this gives �g=2.48 mm for the �S� /uc�=0 case,

and �g=3.79 mm for the �S� /uc�=1.7 case.

For the Re�=30,000 case with �S� /uc�=0, the slightly

lower relative spatial resolution in the velocity gradient mea-

surements suggests that the resulting value for the mean dis-

sipation rate ��27.67 m2 / s3 is slightly low. If this is never-

theless used, it gives �g�2.07 mm. However the Taylor

scale for this case can also be obtained from the Re�

=6,000 case with �S� /uc�=0 by the scaling relation �g /�
�Re�

−1/2. From the � values in Table I and �g above this

gives �g=1.91 mm at Re�=30,000. This is only slightly

smaller than the �g obtained above, consistent with the fact

that the Re�=30,000 case is only slightly less than fully re-

solved. Since the Re�=6,000 case is essentially fully re-

solved, the Taylor scale at Re�=30,000 obtained from it via

this scaling approach should be the more accurate value.

From these �g values and the measured rms velocity

fluctuations in Table I, corresponding Taylor-scale Reynolds

numbers Re��urms� �g /� are Re��45 for the Re�=6,000

case with �S� /uc�=0, Re��43 for the Re�=6,000 case with

�S� /uc�=1.7, and Re��113 for the Re�=30,000 case with

�S� /uc�=0. Note that the two Re�=6,000 cases are at Re�

values comparable to early DNS studies of homogeneous

isotropic turbulence,
22

and the Re�=30,000 case exceeds the

Re�=100 threshold above which turbulence is generally be-

lieved to have essentially attained its asymptotic state.
2,23

B. Probability densities and scaling

From classical theory, probability densities of the veloc-

ity gradients should show widths that scale as ��ui /�x j�rms

��� /��
2���uc /��Re�

1/2. The resulting measured pdfs for each

of the on- and off-diagonal gradient component are given in

Figs. 2–4 for each of the three combinations of Re� and

�S� /uc�. Each case is shown in both linear and semilogarith-

mic axes, which respectively emphasize the central portion

and the tails of the pdfs, with normalization on both inner-

and outer-scale variables. Comparing the two �S� /uc�=0

cases at Re�=6,000 and 30,000 in Figs. 2 and 3, it is appar-

FIG. 2. Probability densities for �left� on-diagonal �i= j� and �right� off-diagonal �i� j� components of �ui /�x j at �Re� ;S���6,000; 0� in linear �top� and

semilogarithmic �bottom� axes scaled on local inner �� ,��� and outer �uc ,�� variables. Resulting similarity suggests near-isotropy in velocity gradient fields.
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ent that the relative widths of both sets of corresponding

velocity gradient pdfs are essentially identical in the inner-

scale normalization. Furthermore, consistent with the classi-

cal Re�
1/2 scaling above, comparing the axes for the outer-

scale normalization shows that the corresponding pdfs at

Re�=30,000 are indeed about �5 times wider than at Re�

=6,000.

C. Similarity and isotropy

In incompressible homogeneous isotropic turbulence, the

on- and off-diagonal components of the velocity gradients

satisfy the similarity and isotropy relation ��ui /�x j�
2

i�j

=2��ui /�x j�
2

i=j. Figure 2 provides tests of this similarity in

pdfs of the measured �ui /�x j values from the most highly

resolved case. Isotropy would require the distributions for all

three on-diagonal components in Fig. 2 to be identical, and

the distributions for the six off-diagonal components in Fig.

2 to also be identical. There is strong evidence for such simi-

larity of the pdfs for each of the velocity gradient compo-

nents in each panel. The semilogarithmic axes in the lower

panel of each figure verify that the similarity demanded by

isotropy applies in turbulent shear flows even for relatively

rare large-magnitude gradients in the tails of these pdfs,

which have a frequency of occurrence nearly 104 times

smaller than the mean.

Figures 3 and 4 show corresponding similarity and isot-

ropy tests for the Re�=30,000 case with �S� /uc�=0 and the

Re�=6,000 case with �S� /uc�=1.7. Comparing these with

the results above for the Re�=6,000 case with �S� /uc�=0, it

is evident in the pdfs for the on- and off-diagonal compo-

nents that the two S=0 cases in Figs. 2 and 3 provide rela-

tively good agreement with the similarity required by isot-

ropy. In contrast, the S�0 case in Fig. 4 shows significant

departures from isotropy, as seen by the significantly lower

degree of similarity in the pdfs for the off-diagonal velocity

gradient components. The pdfs in Fig. 4 for the correspond-

ing on-diagonal components are seen to be very nearly simi-

lar and symmetric, while those for the off-diagonal compo-

nents show significant asymmetry and lack of similarity.

The departures from isotropy in the �S� /uc�=1.7 case

above are sufficiently large and consistent that they cannot

be attributed to the comparatively lower degree of conver-

FIG. 3. Probability densities for �left� on-diagonal �i= j� and �right� off-diagonal �i� j� components of �ui /�x j at �Re� ;S�= �30,000;0� in linear �top� and

semilogarithmic �bottom� axes scaled on local inner �� ,��� and outer �uc ,�� variables. Resulting similarity suggests near isotropy in velocity gradient fields.
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gence of these distributions. It will be seen in Sec. V that,

consistent with previous DNS results for homogeneous uni-

formly shear turbulence,
14

the underlying vorticity field for

S�0 case in this turbulent shear flow shows a strong pre-

ferred alignment with the strain rate field imposed by the

local mean shear that produces this anisotropy. By contrast,

the two S=0 cases have no such mean strain field and are

seen to agree far more closely with classical results for iso-

tropic turbulence.

Classical theory further suggests, that at sufficiently

large Re�, velocity gradient distributions of the type in Figs.

2–4 will become independent of Re� when scaled on inner

variables. This would require pdfs for the gradient compo-

nents from the two S=0 cases in Figs. 2 and 3, at Re�

=6,000 and 30,000, respectively, to be identical in the inner-

scaled axes. A direct test of this scaling and similarity is

shown in Fig. 5, where the inner-scaled distributions for the

on- and off-diagonal velocity gradient components are com-

pared. The results show generally good similarity between

the Re�=6,000 and 30,000 cases for the three on-diagonal

components and the six off-diagonal components, and pro-

vide further support for the classical isotropy and scaling in

the velocity gradient fields for the S=0 cases in this turbulent

free shear flow.

D. Moments

In Figs. 2 and 3 the relative widths of the velocity gra-

dient pdfs for the on- and off-diagonal components in the

two S=0 cases can be seen to agree reasonably well with the
�2 ratio in their rms values implied by the second-moment

relation from isotropy. Departures from isotropy in all three

cases can be quantified by moments of the measured velocity

gradient components, given in Tables II–IV. Comparing vari-

ous combinations of the mean-square gradient values M2

with their corresponding isotropic values allows assessments

of the degree of anisotropy in each case.

The three combinations shown in Table V are of particu-

lar interest, since they allow various aspects of the velocity

gradients to be isolated. The first is based on the ratio of

on-diagonal to off-diagonal components of �ui /�x j, for

which the isotropic value is 1 /4 and the corresponding mea-

FIG. 4. Probability densities of �left� on-diagonal �i= j� and �right� off-diagonal �i� j� components of �ui /�x j at �Re� ;S�= �6,000;1.2� in linear �top� and

semilogarithmic �bottom� axes scaled on local inner �� ,��� and outer �uc ,�� variables. Departures from strict similarity suggest significant anisotropy in this

case.
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sured values are 0.26 and 0.24 for the two S=0 cases at

Re�=6,000 and 30,000, and 0.21 for the S�0 case at Re�

=6,000. A second combination is based the ratio of z deriva-

tives to x and y derivatives. In this case the isotropic value is

1 /2, and the respective measured values are 0.50 and 0.50

for the two S=0 cases at Re�=6,000 and 30,000, and 0.48 for

the S�0 case at Re�=6,000. A final combination is based on

the ratio of w gradients to u and v gradients, for which the

FIG. 5. �Color online� Probability densities of �left� on-diagonal �i= j� and �right� off-diagonal �i� j� components of �ui /�x j for the two S=0 cases, in linear

�top� and semilogarithmic �bottom� axes, scaled on inner variables �� ,���, demonstrating that Re� similarity and isotropy largely account for measured

velocity gradients at Re�=6,000 and 30,000.

TABLE III. Moment values scaled on inner variables �� ,��� for all nine

components of the velocity gradient field �ui /�x j measured at �Re� ;S�
= �30,000;0�, for which Re�=113, showing mean M1, rms fluctuation M2,

skewness M3, and kurtosis M4.

Derivative

component M1 M2 M3 M4

�u /�x −0.006 7.065 −0.355 4.808

�u /�y −0.003 9.817 0.021 4.404

�u /�z 0.000 9.968 −0.065 5.503

�v /�x 0.004 9.030 0.006 4.291

�v /�y −0.004 6.779 −0.345 3.820

�v /�z −0.004 9.967 −0.060 5.497

�w /�x −0.000 11.228 −0.012 4.107

�w /�y 0.004 9.800 0.003 4.211

�w /�z −0.006 6.922 0.136 3.742

TABLE IV. Moment values scaled on inner variables �� ,��� for all nine

components of the velocity gradient field �ui /�x j measured at �Re� ;S�
= �6,000;1.2�, for which Re�=43, showing mean M1, rms fluctuation M2,

skewness M3, and kurtosis M4.

Derivative

component M1 M2 M3 M4

�u /�x −0.036 6.091 0.069 5.846

�u /�y 0.023 8.024 1.122 9.712

�u /�z −0.006 9.160 0.015 8.362

�v /�x −0.013 7.016 −0.223 7.567

�v /�y −0.043 6.025 −0.499 5.869

�v /�z −0.008 9.168 −0.125 7.619

�w /�x −0.014 10.588 0.073 7.602

�w /�y 0.004 11.081 0.234 7.600

�w /�z −0.041 6.023 −0.024 7.032
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isotropic value is 1 /2. The corresponding measured values

are 0.51 and 0.57, respectively, for the S=0 cases at Re�

=6,000 and 30,000, and 0.76 for the S�0 case at Re�

=6,000. Collectively, these moment ratios provide further

support for the observation that velocity gradient fields from

the two S=0 cases in this turbulent shear flow are largely

isotropic, and that the �S� /uc�=1.7 case shows significantly

greater anisotropy.

E. Comparisons with homogeneous isotropic
turbulence

Table VI compares the measured values for the third-

and fourth-moments of the longitudinal velocity gradients

from the present turbulent shear flow for the two S=0 cases

at Re�=45 and 113 with corresponding results from DNS of

homogeneous isotropic turbulence at Re�=54 and 125 from

Ref. 23 and Re�=61 and 168 from Ref. 22. Although the Re�

values are comparable, the present results are from a turbu-

lent free shear flow and thus differences relative to these

numerical studies of homogeneous isotropic turbulence may

be expected. Nevertheless, the M4 values follow a consistent

trend with increasing Re� in the measured results and in the

DNS results, suggesting relatively little difference in the flat-

ness between isotropic and shear flow turbulence. However

for the M3 values there is no such consistent trend seen in

these results between isotropic and shear flow turbulence.

Moreover, there are significant differences apparent in the

Re� trend even between the two numerical studies. Table VII

thus makes a further comparison of the present measured M3

values from the present turbulent shear flow at Re�=45 with

values obtained experimentally
24

in grid turbulence at Re�

=52 using multiple hot-wire probes. The three longitudinal

velocity gradients are shown in order of decreasing M3 val-

ues. There is generally good agreement between the two sets

of results, suggesting that the differences in Table VI may be

real.

TABLE V. Measured values for various combinations of mean-square velocity gradient ratios for all three

cases, showing corresponding isotropic values �right� for comparison.

Validation component

Re�=6,000 Re�=30,000 Re�=6,000

Isotropic

value

Re�=45 Re�=113 Re�=43

S=0 S=0 S=1.2

� �u

�x
2

+ � �v

�y
2

+ � �w

�z
2

� �u

�y
2

+ � �u

�z
2

+ � �v

�x
2

+ � �v

�z
2

+ � �w

�x
2

+ � �w

�y
2 0.26 0.24 0.21 0.25

� �w

�x
2

+ � �w

�y
2

+ � �w

�z
2

� �u

�x
2

+ � �u

�y
2

+ � �u

�z
2

+ � �v

�x
2

+ � �v

�y
2

+ � �v

�z
2 0.51 0.57 0.76 0.50

� �u

�z
2

+ � �v

�z
2

+ � �w

�z
2

� �u

�x
2

+ � �u

�y
2

+ � �v

�x
2

+ � �v

�y
2

+ � �w

�x
2

+ � �w

�y
2 0.50 0.50 0.48 0.50

TABLE VI. Comparisons of present measured velocity gradient moment

values M3 and M4 with corresponding results from DNS studies of homo-

geneous isotropic turbulence at comparable Re� values.

Component

Present

data

Gotoh

et al.

Jimenez

et al.

Re� 45 54 61

M3��u /�x� −0.428 −0.517 −0.495

M4��u /�x� 4.22 4.47 4.60

Re� 113 125 168

M3��u /�x� −0.355 −0.529 −0.525

M4��u /�x� 4.81 5.65 6.10

TABLE VII. Comparisons of present measured velocity gradient moment

values M3 with corresponding results from hot-wire measurements in grid

turbulence of Tsinober et al. at comparable Re�.

Component

Present

data

Tsinober

et al.

Re� 45 52

M3��u /�x� −0.43 −0.50

M3��v /�y� −0.38 −0.37

M3��w /�z� −0.14 −0.14
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F. Exponential scaling of the pdf tails

The semilogarithmic forms in Figs. 2–4 show strong evi-

dence for exponential scaling of the form P�q��e−��q� at

large values of �q� in the tails of these distributions, corre-

sponding to relatively rare occurrences of large positive and

negative gradient values. The scaling constant � in each of

the tails can thus be obtained as

� =
− d

d�q�
log P�q� . �1�

The complete set of these scaling constants quantifies the

relative occurrence of such large positive and negative values

in each of the gradient component fields.

Figure 6 shows linear least-squares fits to the left and

right tails of each of the velocity gradient pdfs for the most

highly resolved case. It has been known for some time from

studies of velocity gradients in Burgers turbulence that the

two tails can have different exponential scaling constants.
25

Similar observations have been made in velocity gradient

pdfs from DNS studies of homogeneous isotropic or uni-

formly sheared turbulence.
23

It is apparent in Fig. 6 that in

shear flow turbulence the scaling of the left and right tails is

also significantly different, especially for the on-diagonal

components of ��ui /�x j�. Table IV gives the resulting left-

and right-tail � values for all three cases from �1�. It can be

seen that, even for the two S=0 cases, there are substantial

differences in the tail-scaling constants among the on-

diagonal �or off-diagonal� velocity gradient components.

Such differences would represent further relatively weak de-

partures from isotropy, since they correspond to differing

frequencies of occurrence of relatively rare positive and

negative large-gradient values for the various components

�see Table VIII�.

IV. STRAIN RATE FIELDS

Section III revealed large departures from isotropy in

velocity gradient fields for the S�0 case, and weaker depar-

tures for the two S=0 cases. This section examines the mani-

FIG. 6. �Color online� Least-squares fits to exponential tails of probability

densities of �ui /�x j for i= j �top� and i� j �bottom� from measured velocity

gradients at Re�=6,000, S=0. Resulting scaling constants

��−�d/d �q � �log P�q� for left and right tails of each component q are given

in Table VIII.

TABLE VIII. Results from present study for scaling constants ��−�d/d �q � �log P�q� in left and right expo-

nential tails from least-squares fits to the inner-scaled probability densities of velocity gradient components

�ui /�x j in Fig. 6.

Left-tail scaling exponent � Right-tail scaling exponent �

Re�=6,000 Re�=30,000 Re�=6,000 Re�=6,000 Re�=30,000 Re�=6,000

Gradient Re�=45 Re�=113 Re�=43 Re�=45 Re�=113 Re�=43

component S=0 S=0 S=1.2 S=0 S=0 S=1.2

�u /�x 0.24 0.24 0.24 0.34 0.35 0.25

�v /�y 0.27 0.26 0.22 0.44 0.37 0.42

�w /�z 0.24 0.31 0.20 0.36 0.35 0.20

�u /�y 0.16 0.16 0.20 0.16 0.17 0.20

�u /�z 0.16 0.16 0.15 0.16 0.17 0.21

�v /�x 0.17 0.19 0.18 0.17 0.19 0.15

�v /�z 0.15 0.15 0.13 0.39 0.33 0.33

�w /�x 0.15 0.13 0.12 0.38 0.36 0.31

�w /�y 0.16 0.16 0.12 0.37 0.32 0.30
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festation of these departures in the strain rate field

Sij�x,t� � � �ui

�x j

+
�u j

�xi

 , �2�

which drives the underlying vorticity field in Sec. V. Figure 7

gives a typical example of the instantaneous strain rate tensor

component fields, corresponding to the same data plane as

other fields shown in following sections to provide an indi-

cation of the relative structures in each of these fields.

Resulting measured distributions of the normal and shear

strain rate components for each of the three cases are shown

in Figs. 8–10. For the two S=0 cases at Re�=6,000 and

30,000 these show generally good agreement with the simi-

larity implied by isotropy. For the S�0 case it is apparent

that the normal strain rate components in Fig. 10 show com-

parably good similarity as seen for the other two cases, how-

ever the shear components in Fig. 10 show very significant

departures from similarity. This lack of similarity cannot be

attributed to the smaller number of data planes for that case,

since the corresponding normal components show good

agreement with similarity.

A further test of both the scaling and similarity in the

strain rate component fields is shown in Fig. 11, where the

measured component values from the two S=0 cases at

Re�=6,000 and 30,000 are compared. It is apparent that

when scaled on inner variables the strain rate values at S

=0 in this turbulent shear flow are essentially identical, in

conformance with the scaling and isotropy implied by clas-

sical theory. Moreover, many of the relatively weak depar-

tures from isotropy can be seen in these distributions to be

largely similar at both Re� values.

A. Principal strain rates

The eigenvalues Si of the local strain rate tensor play a

key role in the local structure and dynamics of the vorticity

field. Figure 12 gives the probability densities of the three

principal strain rates S1, S2, and S3 for each case, where in

the notation used here S1�S2�S3. Incompressibility re-

quires S1+S2+S3=0, and thus S1�0 and S3�0. In solving

for the principal strain rates from the measured velocity gra-

dients, any points that fail to meet the latter two criteria are

rejected, since these represent instances where small mea-

surement errors lead to nonphysical combinations of the ve-

locity gradients. Note that less than 0.6% of all points failed

to meet these criteria, reflecting the high accuracy of these

DSPIV measurements. The distributions in Fig. 12 can also

be compared with Fig. 5c of Ref. 26, which are in good

agreement with the present results for the two S=0 cases.

Consistent with classical scaling, the principal strain rate

FIG. 7. �Color online� Typical six-component strain tensor field Sij�x , t� at

�Re� ;S�= �6,000;0�. Field of view is shown normalized by local inner length

scale ��. Color scale shows quantitative values normalized on local inner

�� ,��� and outer �uc ,�� scales.

FIG. 8. Probability densities of on-diagonal �top� and off-diagonal �bottom�
components of the strain rate fields Sij�x , t� at �Re� ;S�= �6,000;0�, scaled on

local inner �� ,��� and outer �uc ,�� variables.
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distributions for the two S=0 cases at Re�=6,000 and

30,000, when scaled with the inner-scale strain rate �� /��
2� as

in Fig. 12, can be seen to be nearly identical. The corre-

sponding outer-scaling Si��uc /��Re�
1/2 is confirmed in Table

IX, where the proportionality constants in both the inner- and

outer-variable scalings for the mean Si values are seen to be

essentially identical for the two S=0 cases. However for the

S�0 case Fig. 12 shows a substantial difference, especially

in the S1 distribution.

Various parameters have been used to characterize the

relative magnitudes of the three principal strain rates.
27

Here

we use the ratio ��S2 /S1, which from incompressibility is

bounded by −1/2���1. The local � value plays a key role

in the structure and dynamics of gradients fields in turbulent

flows.
5,6

In particular, where ��0 the local strain field tends

toward formation of line-like concentrations of vorticity,

while for ��0 the strain field promotes development of

sheet-like structures. Figure 13 shows distributions of the

measured � values for all three cases. Note that less than 6%

of all points produced � value outside the range allowed by

incompressibility, consistent with minimum limits of diver-

gence errors in DSPIV measurements obtained in Ref. 18.

The shapes of the � distributions for the two S=0 cases are

largely similar, while the S�0 case shows an increased ten-

dency of the flow to form line-like vortical structures.

B. Eigenvector alignments

For each of the three cases, Figs. 14 and 15 show the

measured distributions of the two spherical orientation

angles � and � that give the alignment of the three strain rate

eigenvectors êi . Here � is the polar angle measured from the

mean streamwise direction and � is the azimuthal angle in

the transverse plane. In the absence of any preferred eigen-

vector orientation, spherical symmetry would require the iso-

tropic joint distribution

P��,�� =
1

4�
sin � , �3�

with the corresponding isotropic marginal distributions

FIG. 9. Probability densities of on-diagonal �top� and off-diagonal �bottom�
components of the strain rate fields Sij�x , t� at �Re� ;S�= �30,000;0�, scaled

on local inner �� ,��� and outer �uc ,�� variables.

FIG. 10. Probability densities of on-diagonal �top� and off-diagonal �bot-

tom� components of the strain rate fields Sij�x , t� at �Re� ;S�= �6,000;1.2�,
scaled on local inner �� ,��� and outer �uc ,�� variables. Results show simi-

larity in on-diagonal components, but strong departures from similarity in

off-diagonal components.
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P��� =
1

2�
and P��� =

1

2
sin � . �4�

Each of these isotropic marginal distributions is shown by

the solid lines in Figs. 14 and 15.

The � distributions for the two S=0 cases in Figs. 14

�top, middle� are very similar, suggesting that the departures

from strict isotropy in each of these figures are not due to

lack of statistical convergence, but are signatures of weak

anisotropy in the strain rate fields. As noted in Sec. II, even

for the S=0 cases there is a relatively weak mean shear on

either side of the flow centerline over the field of view of the

measurements. This is further supported by the � distribution

for the S�0 case in Fig. 14 �bottom�, which has a largely

similar shape as in the two S=0 cases, but has higher peaks

corresponding to the larger departures from isotropy created

by the local mean shear. The two peaks in Fig. 14 �bottom�
near �=� /4 and 3� /4 correspond to the most extensional

principal axes of the strain rate field imposed by the mean

flow, further indicating that these departures from isotropy

are due to the mean shear, even in the two nominally S=0

cases.

Since there is no preferred � alignment due to the mean

shear, the � distributions for all three cases in Fig. 15 show

no consistent patterns. The deviations from isotropy are thus

largely attributable to statistical convergence in these

distributions.

V. VORTICITY FIELDS

This section examines the effect of the outer-scale Rey-

nolds number Re� and the mean shear rate S on the vorticity

field

�k�x,t� �
1

2
� �u j

�xi

−
�ui

�x j

�ijk �5�

in shear flow turbulence. Figure 16 shows the instantaneous

vorticity vector components in the same data plane as the

fields shown for Re�=6,000 and S=0 in other sections. Mea-

sured distributions of the vorticity components �i for each of

the three cases are shown in Fig. 17. It is apparent that for

the two S=0 cases the vorticity field is very nearly isotropic.

However the inner-scaled pdfs for the S�0 case are funda-

mentally different from these, reflecting a clear effect of the

FIG. 11. Probability densities of on-diagonal �top� and off-diagonal �bot-

tom� components of strain rate fields Sij�x , t� for the two S�0 cases at

Re�=6,000 and 30,000, scaled on inner variables �� ,��� to assess Re� simi-

larity and isotropy in measured strain rate fields.

FIG. 12. Probability densities of principal strain rates �S1 ,S2 ,S3�, corre-

sponding to local eigenvalues of the strain rate tensor fields Sij�x , t�, for the

S=0 cases at Re�=6,000 and 30,000 �top�, and for S�0 at Re�=6,000

�bottom�, shown scaled on inner variables to test Re� similarity.
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mean strain rate on the vorticity. The widths of the inner-

scaled pdfs for the S�0 case are substantially smaller than

for the two S=0 cases, but the three vorticity components in

Fig. 17 �bottom� show far greater similarity than did the

corresponding shear components of the strain rate for the

same case in Fig. 10 �bottom�.
A further test of the scaling and isotropy in the vorticity

fields is shown in Fig. 18, where the inner-scaled component

values from the two S=0 cases at Re�=6,000 and 30,000 are

directly compared. The result shows that, consistent with the

fundamental scaling, similarity and isotropy that form the

basis of classical theory, the scaled vorticity component dis-

tributions at these Re� values are essentially identical in this

turbulent shear flow.

A. Vorticity alignment

The origins of the anisotropy evident for the S�0 case

in Figs. 2–17 can be identified in the vorticity vector orien-

tations relative to the original coordinate frame. The two

spherical angles � and � again define the orientation as in

Sec. IV B, and in the absence of any alignment preference

would follow the distributions in �3� and �4�. Figures 19 and

20 give the measured distributions for each of the three

cases, with the solid line giving the isotropic form. For the

two S=0 cases, the � distributions in Fig. 19 generally fol-

low the isotropic form, with only relatively small departures

from isotropy that are attributed to the relatively weak mean

shear across the field-of-view on either side of the flow cen-

terline. However the S�0 case shows a very strong depar-

ture from the isotropic form, with a large peak near �

�� /2, that corresponds to a strong preference for the vor-

ticity vector to point along the most extensional principal

strain axis of the mean strain rate field. The corresponding �

distributions in Fig. 20 show no significant alignment pref-

erence, consistent with the fact that the mean strain field

imposes no preference for any � orientation.

Figure 21 gives the orientation of the vorticity vector

with respect to the strain rate eigenvectors for each of the

three cases. Shown are distributions of the orientation co-

sines êi · ê� between the strain rate eigenvector êi and the

vorticity unit vector ê�. Comparing the two S=0 cases at

Re�=6,000 and 30,000 shows that the vorticity orientation

with respect to the local strain rate tensor is essentially the

same in both cases. The vorticity is most strongly aligned

with the eigenvector ê2 corresponding to the intermediate

principal strain rate S2, and shows a preference to align per-

pendicular to the eigenvector ê3 corresponding to the most

compressional principal strain rate S3. There is virtually no

correlation between the vorticity and the eigenvector ê1 that

corresponds to the most extensional principal strain rate S1.

The detailed forms of these two sets of S=0 distributions

TABLE IX. Scaling constants for scaling laws in outer and inner variables.

Outer scale normalization Inner scale normalization

Scaling

constant

Scaling

law

Re�=6,000 Re�=30,000 Re�=6,000

Scaling

law

Re�=6,000 Re�=30,000 Re�=6,000

Re�=45 Re�=113 Re�=43 Re�=45 Re�=113 Re�=43

S=0 S=0 S=1.2 S=0 S=0 S=1.2

C f � f /� Re�
−1/2 3.63 3.63 5.54 ¯ ¯ ¯

CS1 S1 / �uc /��Re�
1/2 0.077 0.079 0.039 S1 / �� /��

2� 11.1 11.5 10.6

CS2 S2 / �uc /��Re�
1/2 0.010 0.008 0.001 S2 / �� /��

2� 1.4 1.2 0.2

CS3 S3 / �uc /��Re�
1/2 0.088 0.088 0.041 S3 / �� /��

2� 12.6 12.8 10.9

CW �i�i / �uc /��2 Re�
1/2 0.016 0.017 0.003 �i�i / �� /��

2�2 321 353 227

CP �iSij� j / �uc /��3 Re�
3/2 5.4�10−4� 5.0�10−4� 0.1�10−4� �iSij� j / �� /��

2�3 1569 1538 91

CS 2�SijSij / �uc
3 /�� 0.061 0.062 0.015 2�SijSij / ��3 /��

4� 1404 1485 631

CK �� /�K 6.1 6.2 5.9 ¯ ¯ ¯

�W ����W /� Re�
−3/4 12.3 ¯ ¯ ¯ ¯ ¯

�� ����� /� Re�
−3/4 14.7 ¯ ¯ ¯ ¯ ¯

FIG. 13. Probability densities of strain rate structure parameter �

��S2 /S1� for all three �Re� ;S� cases, showing Re� similarity for the two

S=0 cases, and shift toward ��0 for the S=1.2 case showing increase in

strain rate eigenstates that lead to formation of line-like structures in the

vorticity field.
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agree with numerical simulations of homogeneous isotropic

turbulence
28

and with previous measurements.
24,29–31

The alignment preference in Figs. 21 �top, middle� is

consistent with simple kinematic considerations in the geo-

metric statistics of turbulence.
32

A concentrated vortical

structure has a preferred orientation relative to the eigenvec-

tors êi
B of the local background strain field Sij

B created by all

other vortical structures in the flow. The vortex stretching

term �iSij
B will cause the structure to rotate away from the

most compressional principal strain axis ê3
B of the back-

FIG. 14. Probability densities of the orientation angle � for each of the three

principal strain axes êi for all three �Re� ;S� cases: �6,000; 0� �top�, �30,000;

0� �middle�, and �6,000; 1.2� �bottom� with the solid line giving the isotropic

result.

FIG. 15. Probability densities of the orientation angle � for each of the three

principal strain axes êi for all three �Re� ;S� cases: �6,000; 0� �top�, �30,000;

0� �middle�, and �6,000; 1.2� �bottom� with the solid line giving the isotropic

result.
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ground strain field and toward the most extensional principal

axis ê1
B. This might suggest a different alignment than that

seen in Fig. 21, however these are distributions for the ori-

entation relative to the eigenvectors êi of the total strain rate

field, consisting of the sum of the background strain and the

local strain induced by the structure. The latter is two-

dimensional, and has eigenvectors in the plane normal to the

structure. Thus even though the vorticity rotates toward

alignment with ê1
B, if the circulation of the vortical structure

is large enough relative to the background strain rate SB

= �Sij
BSij

B�1/2, then the most extensional principal axis of the

combined strain field in the vicinity of the structure will be in

the plane perpendicular to ê1
B, which corresponds to the ori-

entations seen in Fig. 21.

The eigenvectors êi
B vary with time, and the vorticity

reorients itself on the time scale 1 /SB. Thus if the time scale

�B on which Sij
B varies satisfies �B�1/SB then the reorienta-

tion dynamics due to vortex stretching cannot keep up with

the changes in Sij
B, and there will be no preferred alignment

FIG. 16. �Color online� Typical three-component vorticity field �i�x , t� at

�Re� ;S�= �6,000;0�. The field of view is shown normalized by the local

inner length scale ��. The color scale shows quantitative values normalized

on local inner �� ,��� and outer �uc ,�� scales.

FIG. 17. Probability densities of vorticity vector components �i at

�Re� ;S�= �6,000;0� �top�, �30,000; 0� �middle�, and �6,000; 1.2� �bottom�
shown scaled on local inner �� ,��� and outer �uc ,�� variables.
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of the vorticity with the eigenvectors êi of the combined

strain field. On the other hand, if �B�1/SB then the preferred

alignment noted above will be maintained. The fact that a

strong preferred alignment is seen for the two S=0 cases in

Fig. 21 indicates that �B�1/SB occurs far more often, with

the consequence that the vorticity maintains a significant but

imperfect alignment with the local instantaneous eigenvec-

tors of the background strain field.

For the S�0 case in Fig. 21, the relative alignments are

significantly different than in the two S=0 cases. This can be

understood from the stationary mean strain field Sij
M imposed

by the mean shear, which acts in addition to the time-varying

background strain field Sij
B to reorient the vortical structures.

When Sij
M �Sij

B the vorticity will tend toward alignment with

ê1
B, while if Sij

M �Sij
B the vorticity would align with ê1

M. As a

result, for the S�0 case in Fig. 21, the vorticity alignment

with respect to the eigenvectors of the total strain field shows

roughly similar trends as in the two S=0 cases, but with

much weaker preference to maintain this alignment.

B. Enstrophy and enstrophy production rate

Figure 22 gives typical examples of the instantaneous

enstrophy fields �i�i�x , t� in each of the three cases, showing

the highly intermittent structures into which such second-

order gradient quantities are concentrated by the underlying

strain-diffusion competition noted in Sec. I. Owing to the

fixed field of view of the measurements and the � values in

Table I, the relative size of the Re�=30,000 planes is nearly

twice that of the Re�=6,000 planes.

Probability densities of the scaled enstrophy values are

given in Fig. 23. For the two S=0 cases it can be seen that

the enstrophy values scaled on inner variables with �� /��
2�2

are essentially identical at Re�=6,000 and 30,000. When

scaled on outer variables with �uc /��2 the values at Re�

=6,000 and 30,000 differ by a factor of 5, in agreement with

the result from �� /��Re�
−3/4 giving �� /��

2�2��uc /��2Re� . It

is also apparent that the scaled enstrophy distribution from

the S�0 case is significantly different than for the two S

=0 cases. Scaling coefficients for the mean enstrophy values

for all three cases are given in Table IX.

The dashed lines in Fig. 23 give log normal fits with the

same first two moments as the measured distributions. In all

three cases, the measured enstrophy values are seen to be

FIG. 18. Probability densities of all three vorticity vector components �i for

both S=0 cases at Re�=6,000 and 30,000, shown scaled on inner variables

�� ,��� to test Re� similarity and isotropy.

FIG. 19. Probability densities of the orientation angle � for the vorticity

vector field ��x , t� for �Re� ;S�= �6,000;0� �top�, �30,000; 0� �middle�, and

�6,000, 1.2� �bottom�, with solid line giving isotropic distribution.
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nearly log normally distributed, though consistent small de-

partures from strict log normality are evident. The origins of

these may be related to the nonergodic properties of random

multiplicative cascades, which are shown in Sec. VIII to de-

scribe the spatial scale similarity in these enstrophy fields. In

such multiplicative cascades, distributions resulting from en-

sembles of independent samples will be log normal, whereas

distributions from spatial samples reflect the spatial correla-

tions inherent in such cascades. The distributions in Fig. 23

FIG. 20. Probability densities of the orientation angle � for the vorticity

vector field ��x , t� for �Re� ;S�= �6,000;0� �top�, �30,000; 0� �middle�, and

�6,000; 1.2� �bottom�, with solid line giving isotropic distribution.

FIG. 21. Probability densities of local alignment cosines between vorticity

vector ��x , t� and each of the three principal strain axes êi of the strain rate

field �ij�x , t�, for �Re� ;S�= �6,000;0� �top�, �30,000; 0� �middle�, and �6,000;

1.2� �bottom�.
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for the two S=0 cases result from a mixture of spatial and

ensemble statistics, involving roughly 1000 velocity gradient

values in each spatial data plane and roughly 1000 indepen-

dent planes in each ensemble, and thus departures from strict

log normality may be expected.

The local enstrophy production rate �iSij� j�x , t� is a

third-order gradient quantity and thus based on classical

theory would show a rapid increase in intermittency with

increasing outer-scale Reynolds number, since the inner scal-

ing �� /��
2�3 corresponds to the outer scaling �uc /��3Re�

3/2.

Figure 24 gives an example of the measured enstrophy pro-

duction rate field for each of the three cases. From the outer

scaling above, the production rate values scaled on �uc /��3

should be 11.1 times larger at Re�=30,000 than at Re�

=6,000 for S=0. This appears consistent with the scales in

Fig. 24, and can be verified in the measured distributions in

Fig. 25. The scaling coefficient for the mean enstrophy pro-

duction rate can be seen in Table IX to be essentially the

same in the two S=0 cases, but is far smaller for the S�0

case. This is consistent with the positive skewness for the

S=0 cases seen in the semilogarithmic axes on the right in

Fig. 25. In contrast, the S=0 cases show nearly symmetric

distributions, consistent with the result in Fig. 21 showing far

poorer alignment of the vorticity with the eigenvectors of the

strain rate tensor.

VI. KINETIC ENERGY DISSIPATION RATE

Figure 26 shows the measured kinetic energy dissipation

rate field 2��ij�ij�x , t� for all three cases, in the same plane as

for the corresponding enstrophy and production rate fields in

Figs. 22 and 24. Since the two Re�=6,000 cases are fully

resolved these are true dissipation rate fields, while the Re�

=30,000 case is nearly fully resolved. This can be verified by

the corresponding scalings on inner and outer variables. Note

that the appropriate inner-variable scaling ��3 /��
4� for the dis-

sipation is equivalent to the outer-variable scaling �uc
3 /��,

and is thus independent of Re�. This can be verified in the

measured distributions in Fig. 27, where the measured dissi-

pation rates for the two S=0 cases when normalized on both

the inner- and outer-variable scalings are indeed virtually

identical at Re�=6,000 and 30,000. Table IX gives the scal-

ing coefficients for the mean dissipation rate for all three

cases.

The dashed lines in Fig. 27 give log normal fits to the

measured distributions. In all three cases, the measured dis-

sipation rate values can be seen to be roughly log normally

distributed, with the largest departures seen for the S�0

case, though consistent departures from strict log normality

are evident in the semilogarithmic forms. As noted for the

enstrophy distributions in Fig. 25, this may be attributable to

the nonergodic properties of random multiplicative cascades,

which are shown in Sec. VIII to also apply to the spatial

scale similarity in these dissipation rate fields. As a conse-

quence, the smaller ensemble of independent data planes in

the S�0 case leads to probability distributions dominated by

spatial statistics, in which spatial correlations can lead to

departures from log normality. The two S=0 cases involve a

much larger ensemble of independent planes, with the result-

ing distributions are thus more strongly influenced by en-

semble statistics that produce log normal distributions.

VII. INNER LENGTH SCALES

Values for the viscous length scale �� used for inner-

variable normalizations throughout these results were ob-

tained from the relation ��� /��=� Re�
−3/4, with the mean

scaling constant ��	�11.2 from Refs. 5–9. However, the �

values from these earlier studies were obtained indirectly

from length scales in the scalar dissipation rate field

D�� ·���x , t� via measurements of dynamically passive con-

served scalar fields ��x , t�. The corresponding gradient length

scale �D results from the competing effects of the local strain

rate Sij and the scalar diffusivity D. A similar competition

between Sij and viscous diffusion leads to the viscous length

scale �� in the velocity gradient fields, as noted in Sec. I. If

there were no other differences in these two strain-diffusion

processes, then the ratio of the scalar and viscous diffusion

length scales would be ��D /���=Sc−1/2, where Sc��� /D�.
All measured values of � to date have been based on this

assumption.

FIG. 22. �Color online� Typical measured enstrophy fields �i�i�x , t� at

�Re� ;S�= �6,000;0� �top�, �30,000; 0� �middle�, and �6,000; 1.2� �bottom�.
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However there are differences in the two strain-diffusion

processes beyond the simple difference in � and D. Different

geometries are associated with the diffusive-scale structures

in the velocity gradient field than in the scalar gradient field,

which must be taken into account when inferring �� values

from �D. The conserved scalar dynamics lead to scalar gra-

dients that form solely into sheet-like diffusive-scale struc-

tures, while the vorticity dynamics allows both line-like and

sheet-like diffusive-scale structures.
5,6

Consequently, earlier

indirect measurements of � provided accurate results for the

scalar gradient length scale ��D /��=�D Re�
−3/4 Sc−1/2, but the

different inner-scale geometries prevent direct inference of

corresponding �� values from �D measurements.

The present velocity gradient results allow measurement

of �� in a turbulent shear flow to determine the correspond-

ing inner scaling constant ��. One-dimensional intersections

FIG. 23. Probability densities of the enstrophy �i�i, scaled on local inner �� ,��� and outer �uc ,�� variables for �Re� ;S�= �6,000;0� �top�, �30,000; 0� �middle�,
and �6,000; 1.2� �bottom�, with dashed lines giving corresponding log normal fits.
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corresponding to every row and column in the enstrophy and

dissipation rate fields were analyzed for the Re�=6,000 case

with S=0. In each intersection all local maxima were iden-

tified, and the distance ����50% on either side required for the

field to decrease to one-half of the local maximum value was

found. Instances in which a local minimum was reached on

either side before the field had decreased to the local half-

maximum value were rejected, since these correspond to

merging of adjacent inner-scale structures.

Figure 28 shows probability densities for the resulting

����50% values in the enstrophy and dissipation rate fields.

Small differences between these distributions are expected

due to the different types of fields considered in each panel;

Ref. 33 has also proposed different inner length scales for

various fields. The resulting distributions of one-dimensional

gradient length scales ����1D can be deconvolved to obtain

the corresponding distributions of true three-dimensional

gradient length scales ����3D based on the geometry and isot-

ropy of the inner-scale structures.
34,35

The assumed isotropy

is justified for the S=0 case. Regarding the inner-scale ge-

ometry, this involves the fraction of intersections through

sheet-like ��→1�, line-like ��→−1/2�, and other structures,

though the effect of these is relatively small. The solid lines

in Fig. 28 show the resulting distributions of ����50%, with

the deconvolution based on sheet-like structures. The distri-

butions obtained for the enstrophy and dissipation rate fields

are very similar, with the largest �� values exceeding the

smallest by only about a factor of 3.

From the resulting mean values �����3D	 in Fig. 28, res-

caled to the standard ����20% definition noted in Sec. I, cor-

responding values for the scaling constant ���	 can be ob-

tained from �����3D	 /�= ���	Re�
−3/4. This gives ���	�12.3

in the enstrophy field and ���	�14.7 in the dissipation rate

field, as shown in Table IX. The differences result from the

differing diffusive scale structures in these fields; in principle

a different ���	 value should apply to each field. The present

results for ���	 are slightly larger than the previous indirect

estimates based on �D measurements,
5–9

and represent the

first direct measurements of �� in a turbulent flow.

The present measurements also provide the true mean

kinetic energy dissipation rate � in the two fully resolved

cases at Re�=6,000, and provide a nearly resolved value for

� in the Re�=30,000 case. These allow the resulting Kol-

mogorov scale �K���3 /��1/4 to be obtained without any ad-

ditional assumptions. The measured mean dissipation rates �

for each case in Table I give the ratio �� /�K�6.1 as indi-

cated in Table IX, verifying that the Kolmogorov scale is

about a factor of 6 smaller than the physical size of the

inner-scale structures.

VIII. SCALE SIMILARITY

Previous studies have examined intermittency correc-

tions to the classical theory based on multifractal scale simi-

larity in various surrogates for the true enstrophy and kinetic

energy dissipation rate fields.
36–38

The present direct mea-

surements of these fields flow allow a rigorous test for such

scale similarity in a turbulent shear.

A. Multifractal scaling

Multifractal fields result from the repeated application of

a scale-invariant multiplicative process to an initial field. In

turbulent flows, such a multiplicative process is produced by

the continual stretching and folding action of the time-

varying strain rate and vorticity fields, with the required

scale invariance being satisfied for scales sufficiently smaller

than the local outer scale �. Such scale-invariant multiplica-

tive processes can be represented by deterministic or stochas-

tic multiplicative cascades in which a fixed set of multipliers

M maps the field from one iteration to the next as the cas-

cade proceeds. In one-dimensional stochastic cascades, at

each successive stage in the process the total amount m of

the field quantity contained in any given cell is distributed

over two cells, each half the size of the previous stage, with

the multiplier 0�M �1 that determines the division between

the two cells obtained randomly from a scale-invariant dis-

tribution P�M�. After a sufficient number of such repetitions,

the resulting field m�x� becomes highly intermittent and dis-

plays multifractal scaling properties.

The same process can be applied “in reverse” to test for

multifractal scale similarity in a given field. One-

dimensional extracts from the field are repeatedly integrated

over increasingly larger cell sizes r, with the cell size dou-

bling between successive stages in the process. At each stage

FIG. 24. �Color online� Typical measured enstrophy production rate fields

�iSij� j�x , t� scaled on local inner �� ,��� and outer �uc ,�� variables for

�Re� ;S�= �6,000;0� �top�, �30,000; 0� �middle�, and �6,000; 1.2� �bottom�.
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i, in each cell j the ratio of the integrated value �m j�i to the

integrated value �m j��i−1� is the local multiplier value 0

� �Mr� j �1 at the scale r. The ensemble of multiplier values

from the j=1¼2i cells at the scale r=2−i determines the

multiplier distribution P�Mr� at that scale. If the field is mul-

tifractal then the resulting P�Mr� will be the same at all

scales r where the underlying multifractal scale invariance

applies. Generating the set of multiplier distributions P�Mr�

from such one-dimensional intersections through the field of

interest provides a direct way to test for multifractal scale

similarity in the field. If the field is shown to be multifractal

through scale invariance in its distributions P�Mr�, then the

resulting scale-invariant multiplier distribution P�M� deter-

mines all the scaling properties of the field, including its

moments Mq of all orders q, and the associated scaling ex-

ponents ��q�.

FIG. 25. Probability densities of enstrophy production rates �iSij� j, scaled on inner �� ,��� and outer �uc ,�� variables in linear �left� and semilog �right� axes

for �Re� ;S�= �6,000;0� �top�, �30,000; 0� �middle�, and �6,000; 1.2� �bottom�.
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B. Results for enstrophy and dissipation fields

Figure 29 gives the resulting multiplier distributions

P�Mr� at each scale �r /��� from enstrophy fields of the type

in Fig. 22 for the Re�=6,000 and 30,000 cases with S=0.

Corresponding results from dissipation rate fields of the type

in Fig. 26 for the same two cases are given in Fig. 30. Note

first that as r /��→0 the multiplier distributions P�Mr� must

converge to the trivial result M→1/2 since the fields be-

come increasingly uniform for r���. Evidence of the ap-

proach to this trivial limit can be seen in the P�Mr� distribu-

tions in both Figs. 29 and 30 for �r /����1.3. Moreover, the

similarities in the form of P�Mr� at the same �r /��� in these

figures at Re�=6,000 and 30,000, for which the relative mea-

surement resolution differs by nearly a factor of 2 �see Table

I�, strongly indicates that the departures from the scale in-

variance seen at larger scales is due to the viscous cutoff, and

not due to measurement resolution. This further verifies that

�� is the appropriate physical length scale at which the vis-

cous cutoff occurs in the scaling of turbulent flows.

For �r /����2.5, the results in Figs. 29 and 30 show

clear evidence of multifractal scale similarity in the enstro-

phy and dissipation rate fields. At Re�=6,000 in the top panel

of each figure, the multiplier distributions at the three largest

scales shown, corresponding to �r /���=2.5, 5.1 and 10.3, are

clearly scale invariant. Moreover for both the enstrophy and

the dissipation fields, the forms of the corresponding P�Mr�
over this scale range are essentially identical to the results

found for Re�=30,000 in the lower panel of each figure at

the four largest scales �r /���=2.5, 5.0, 10.0 and 20.0. The

scale invariance in these P�Mr� distributions over the same

scale range �r /��� from independent measurements at differ-

ent Re� values confirms that the enstrophy and dissipation

fields are multifractal, and gives the respective scale-

invariant forms of P�M� that determine their scaling

properties.
45

These present results also show the scale-invariant form

of P�Mr� over this scale range in the dissipation rate fields in

Fig. 30 to be substantially different from that in the enstro-

phy fields in Fig. 29. The wider distribution of M values in

the enstrophy reflects a more intermittent structure in that

field than for the dissipation field at the same Re�. This is

consistent with the typical structures evident in both these

fields in Figs. 22 and 26. A similar observation has been

made from DNS investigations,
39–41

and this is also consis-

tent with previous estimates from one-dimensional

measurements
42

that the enstrophy field is more intermittent

than the dissipation. It has been previously argued that on

symmetry grounds the intermittency in both fields should be

the same,
43,44

and in any case that as Re�→
 the associated

scaling exponents of both fields should become the same.

The present direct measurements of both these fields show,

however, that at least under these conditions in this turbulent

shear flow the enstrophy field is clearly more intermittent

than the dissipation rate field.

The scale similarity for �r /����2.5 in P�Mr� in Figs. 29

and 30 relies on any remaining scale-to-scale variations be-

ing solely attributable to statistical convergence due to the

finite number of independent one-dimensional intersections

available from these measurements. This can be tested using

the procedure in Ref. 45, where the scale-invariant form of

P�M� is used in a random multiplicative cascade to generate

one-dimensional intersections having multifractal scale simi-

larity. From these, corresponding P�Mr� distributions are

constructed, and the maximum allowable scale-to-scale dif-

ference norm L1�r /��� between the distributions at succes-

sive �r /��� is obtained. These differences can then be com-

pared with corresponding L1�r /��� from the measured

P�Mr�. Such results are shown in Fig. 31, which verify that

the small scale-to-scale differences in the measured P�Mr�
distributions agree well with the limits due solely to incom-

plete statistical convergence, confirming that the dissipation

field in turbulent flows displays multifractal scale similarity

at scales �r /����2.5.

IX. DISCUSSION AND CONCLUSIONS

The present results have experimentally documented nu-

merous aspects associated with the structure, statistics, simi-

larity and scaling of the turbulence at intermediate and small

scales in turbulent shear flows. The mean strain rate values

�S� /uc�=0 and 1.7 investigated here correspond to �Sk /��

FIG. 26. �Color online� Typical measured kinetic energy dissipation rate

fields 2� SijSij�x , t� at �Re� ;S�= �6,000;0� �top�, �30,000; 0� �middle�, and

�6,000; 1.2� �bottom�.
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=0 and 2.1, and represent the radial locations of maximum

and minimum mean shear in an axisymmetric turbulent jet.

This range of normalized mean shear rates is typical of that

found in most other free turbulent shear flows, and through-

out most wall-bounded turbulent shear flows as well, with

values of �Sk /���3 occurring only below the log layer in

near-wall turbulence. The present results should thus be in-

dicative of the approach to isotropy and the departures from

isotropy at these scales in most turbulent shear flows.

Unlike uniformly sheared turbulence, in which the im-

posed mean shear rate is the same everywhere, in turbulent

shear flows the mean shear rate varies substantially along the

lateral direction, and the rapid lateral stirring created by the

large-scale structures thus subjects the turbulence to a widely

varying range of mean strain rates. Note that these large

scales transport fluid laterally across the shear flow on a time

FIG. 27. Probability densities of the measured kinetic energy dissipation rates 2� SijSij�x , t�, scaled on local inner �� ,��� and outer �uc ,�� variables, for

�Re� ;S�= �6,000;0� �top�, �30,000; 0� �middle�, and �6,000, 1.2� �bottom�, with dashed lines giving log normal fits.
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scale �� /uc�, which is seen in Table I to be about the same as

the time scale �k /�� on which the turbulence can readjust to

the changing mean strain rate. The turbulence in shear flows

is thus only marginally able to maintain an equilibrium be-

tween the local mean strain field and the local turbulence

properties. If the ratio �= �� /uc� / �k /�� of these time scales

is in the limit ��1 then turbulence can maintain the equi-

librium with the local mean strain field, and if ��1 the

turbulence will be far out of equilibrium and essentially un-

correlated with the local strain field. A partial equilibrium

exists for ��1, which applies throughout most turbulent

shear flows. In this case the varying mean strain field to

which the turbulence is subjected will principally affect the

larger scales, which are in closer equilibrium with the local

mean strain rate, while successively smaller scales are in-

creasingly further out of equilibrium and thus should ap-

proach a state that is independent of the local mean strain

rate.

The present results, which focus on the small scales,

support such a partial equilibrium in turbulent free shear

flows. They show clear differences in the level of anisotropy

between the �S� /uc�=0 and 1.7 cases, reflecting departures

from the ideal equilibrium limit at these scales. The two S

=0 cases in Fig. 14, for instance, show significant anisotropy

in the strain rate eigenvector orientations, in a way that re-

flects a residual signature of the much stronger anisotropy

seen in the S�0 case. This suggests that turbulence which

had previously been at the radial location of maximum mean

shear has, upon being transported to the centerline, under-

gone only a partial relaxation to the isotropic equilibrium

state that would nominally apply at S=0 if the mean strain

rate were not changing. Similar effects are seen in the vor-

FIG. 28. Probability densities of inner-scale thicknesses ����50% obtained

directly from one-dimensional intersections and from deconvolution of

����1D �dashed� to yield ����3D �solid� for the enstrophy field �top� and the

kinetic energy dissipation rate field �bottom� at �Re� ;S�= �6,000;0�.

FIG. 29. Assessment of multifractal scale similarity from enstrophy field

measurements at �Re� ;S�= �6,000;0� �top� and �30,000; 0� �bottom�, show-

ing multiplier distributions P�Mr� at various scales �r /���.
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ticity orientations in Figs. 19 and 21, and in the enstrophy

production rates in Fig. 25.

Owing to the relative difficulty in making such highly

resolved velocity gradient measurements at the small scales

of turbulent shear flows, it is possible that some of the effects

seen in these results may be due to small measurement er-

rors. However, the extensive assessments in Ref. 18 of the

accuracy in such measured velocity gradients suggest that

these errors are sufficiently small. This is further supported

by the strong similarity seen in the velocity gradients mea-

sured independently in this study at Re�=6,000 and 30,000.

Key issues relevant to the partial equilibrium in shear

flow turbulence include the effect of the local mean shear

�S� /uc� on the range of scales over which significant depar-

tures from the small-scale equilibrium will exist, as well as

the effect of the relative mean shear on the rate of approach

to this equilibrium with decreasing scale size. The present

results show for S�0 significant departures from the equi-

librium state remain present even at the smallest scales for

the Reynolds numbers currently accessible with these mea-

surements. These Re� values, ranging from 45 to 113, are

typical of early DNS investigations of homogeneous isotro-

pic turbulence, and will likely increase as experimental mea-

surement capabilities progress further. While DNS of homo-

geneous isotropic or uniformly sheared turbulence in

periodic domains can reach far higher Re�, comparable simu-

lations of spatially developing turbulent shear flows are re-

stricted to lower Re� by the need to simulate the entire range

of flow scales, from the organized large-scale structures to

the finest diffusive scales, over a sufficiently large spatial

domain for the results to be unaffected by details of the in-

flow, outflow and boundary conditions. In the meantime, ad-

vanced measurement capabilities such as the dual-plane ste-

reo particle image velocimetry method used in this study and

in Refs. 46–52, as well as other single-point probe-based and

multidimensional imaging-based measurement capabilities

noted in Ref. 18, may provide the most direct means for

probing these issues in turbulent shear flows.
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