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DUAL POLARITY IN OPTIMIZATION OF POLYNOMIAL

REPRESENTATIONS OF SWITCHING FUNCTIONS

DRAGAN JANKOVIC, RADOMIR S. STANKOVIC AND CLAUDIO
MORAGA

Abstract. Compact representations of switching functions pro-
vide for simplified realizations of logic networks. Recent advent
of digital technology and VLSI raised a considerable interest in
polynomial expressions for switching functions. Complexity of
these expressions is estimated through the number of product
terms. For a given function and the selected class of polyno-
mial expressions, the number of products can be reduced by
a suitable selection of polarities for switching variables, which
results in Fixed Polarity Polynomial Expressions (FPPEs).

This paper proposes a method for optimization of polyno-
mial representation of switching functions. The method ex-
ploits the notion of dual polarity of switching variables and
takes advantages of a simple relationship between two FPPEs
for dual polarities. Calculation of FPPEs is performed along
the extended dual polarity route so that each FPPE is calcu-
lated from its extended dual polarity FPPE. Conversion from
one FPPE to another is carried out by using one-bit check,
which ensures the efficiency of the method. The proposed
method can be applied to arbitrary polynomial expressions
providing that the corresponding transform matrix has the
Kronecker product structure.

1. Introduction

Polynomial representations of switching functions are an alternative way
to represent this class of discrete functions that appears convenient in many
applications. There are various polynomial representations for switching
functions that differ mutually by the set of basis functions used and their
range. Nowadays, the most widely used are Reed-Muller expressions and
Kronecker expressions among bit-level representations, while the arithmetic
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representations are an important class of word-level polynomial expressions
[1], [6], [8], [9]. The terms bit-level and word-level representations relate
to the range allowed for the coefficients in polynomial expressions although
expressions being applied to two-valued logic functions. Similar considera-
tion applies to multiple-valued logic functions, in which case each bit can be
multiple- valued [2], [7].

Optimization of polynomial representations is possible by using differ-
ent polarities for variables. If variables appear in either complemented or
non-complemented form, but not both in the same expression, polynomial
expressions are known as Fixed polarity polynomial expressions (FPPEs).
The number of non-zero coefficients is usually used as the optimization cri-
terion in comparing different polynomial expressions for a given function in
terms of time and space complexity. The term polarity is used to denote
particular assignments of positive and negative literals to variables. For a
given function f , the polarity resulting in the polynomial expressions with
the minimum number of non-zero coefficients is considered as the optimal
polarity, and this expression is the optimal fixed polarity expression for f .

There is a variety of methods for the determination of the optimal polar-
ity. These methods can be classified as exact and heuristic methods. Exact
methods mainly reduce to efficient implementation of an exhaustive search
over all possible combinations of literals for variables, while heuristic meth-
ods reduce the search space by some heuristic rules. The main disadvantage
of heuristic methods is that they do not provide any guarantee for the quality
of the solutions produced. However, for the reduced calculation complexity,
these methods are usually applicable for large functions.

The chief drawback of exact methods is large run-time which is often a
restricting factor in practical applications. With this motivation, in this pa-
per we propose an exact method with reduced implementation time. We
consider exploitation of the dual polarity property in optimization of fixed
polarity polynomial expressions. The main idea is that calculation of all pos-
sible fixed polarity expressions for a given n-variable function f is performed
along the dual polarity route where each two neighboring polarities are dual.
The standard definition of dual polarity is adapted to various polynomial
expressions (as, for example, Kronecker expressions) and the term extended
dual polarity is used. We show the relation between dual polarity polyno-
mial expressions and give a unified method for calculation of different fixed
polarity expression starting from the dual polarity expressions. In this way,
the calculation cost is significantly reduced compared to the methods where
all fixed polarities are calculated starting from the truth vectors. We also
propose procedures to generate the dual polarity route and extended dual
polarity route.
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The algorithm proposed is an exhaustive-search algorithm, but conver-
sion from a given fixed polarity expression to another polarity expression is
carried out by using one-bit check. Due to that, and for the simplicity of
the related processing, the algorithm appears efficient in terms of both space
and time as confirmed by experimental results over benchmark functions. It
should be noticed that the algorithm proposed expresses high possibilities
for parallelization, which is a feature important for practical applications.

2. Basic definitions

Definition 2.1. A q-valued function of n p-valued variables is a mapping
f : {0, 1, . . . , q − 1}n → {0, 1, . . . , r − 1}.

For q=2 and r=2, f is a Boolean (binary-vlued) function, while for q =
r > 2, f is a multiple-valued (MV) function.

2.1. Polynomial expressions.

Definition 2.2. (Polynomial expressions (PE))
Each n-variable q-valued function f given by the truth- vector

F = [f0, · · · , fqn
−1]

T

can be represented by the polynomial expression defined as

f(x1, . . . , xn) = X(n)T(n)F,

where

X(n) =
n

⊗

i=1

[

1 xi x2
i · · · x

q−1
i

]

,

and

T(n) =
⊗n

i=1 T(1), T(1) = (X(1))−1
,

where
⊗

denotes the Kronecker product, and the basic transform matrix
T(1) is defined as the inverse of X(1), assuming that symbolic notation for
columns of X(1) is replaced by the corresponding truth-vectors. Addition
and multiplication (and, hence, exponentiation) are defined in the algebraic
structure assumed for this consideration depending on the intended applica-
tions.

2.2. Optimization of polynomial expressions. Optimization of poly-
nomial expressions, which means determination of an expressions with the
minimum number of non-zero coefficients (i.e., the number of terms), can
be done by introducing different polarity for variables. The representations
produced in this way are the Fixed polarity polynomial expressions (FPPE)
where each variable appears as either the positive or the negative literal.
i.e., as uncomplemented or complemented, but not both at the same time.
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A polarity vector P is introduced to denote the polarity of variables, and
correspondingly, the polarity of the representation.

Definition 2.3. Polarity vector P = (p1, . . . , pn), pi ∈ {0, 1, . . . , q − 1} is a
vector of the length n, where n is the number of variables, whose elements
specify polarity of variables in FPPE for an n-variable function f , i.e., pi = j

shows that the j-th complement is assigned to the i-th variable which is
denoted as jxi.

FPPEs are uniquely characterized by specifying decomposition rules as-
signed to variables and the polarity vectors [8].

Definition 2.4. For the polarity is p = (p1, . . . , pn), each n-variable q-

valued function f given by the truth-vector F = [f0, · · · , fqn
−1]

T , can be
represented by the following FPPE

f(x1, . . . , xn) = X<p>(n)G<p>(n)F

where

X<p>(n) =
n

⊗

i=1

[

1 pixi (pixi)
2 . . . (pixi)

q−1
]

,

G<p>(n) =
n

⊗

i=1

G<pi>(1).

Therefore, for a given polarity P = (p1, . . . , pn), pi ∈ {0, 1, . . . , q − 1},
FPPEs are uniquely specified by the vector of coefficients, usually denoted
as spectrum, S<p>

f defined as

S<p>
f = G<p>(n)F.

3. Extended dual polarity

In minimization of FPPE in the number of non-zero coefficients count, it
appears convenient to exploit the notion of the dual polarity [5], the extended
dual polarity, and the related dual polarity vectors.

Definition 3.1. (Extended dual polarity)
For a given polarity P = (p1, . . . , pi−1, pi, pi+1, . . . , pn), the extended dual
polarity is P ′ = (p′1, . . . , p′i−1, p

′

i, p
′

i+1, . . . , p′n), iff p′j = pj, j 6= i and p′j 6= pi.

Example 3.2. Extended dual polarities for the polarity P = (1, 0) are the
polarities (0, 0), (2, 0), (3, 0), (1, 1), (1, 2), and (1, 3).
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3.1. Dual polarity route. The number of polarity vectors characterizing
all possible FPPEs for an n-variable q-valued function is qn. It is possible
to order these polarities such that each two successive polarities are the
extended dual polarities. We denote this order as the extended dual polarity
route. Traversing a q-valued n-dimensional hypercube can generate one of
many possible extended dual polarity routes.

Example 3.3. An extended dual polarity route generated by traversing a
4-valued n-dimensional hypercube is given by

(000)—(001)—(002)—(003)—(013)—(012)—(011)—(010)—(020)—(021)—(022)—
(023)—(033)—(032)—(031)—(030)—(130)—(131)—(132)—(133)—(123)—(122)—
(121)—(120)—(110)—(111)—(112)—(113)—(103)—(102)—(101)—(100)—(200)—
(201)—(202)—(203)—(213)—(212)—(211)—(210)—(220)—(221)—(222)—(223)—
(233)—(232)—(231)—(230)—(330)—(331)—(332)—(333)—(323)—(322)—(321)—

(320)—(310)—(311)—(312)—(313)—(303)—(302)—(301)—(300).

An extended dual polarity route can be constructed by using the recursive
procedure route(level, direction) given in Fig. 3.1 for the particular case
q = 4. Extension to an arbitrary q is straightforward. The extended dual
polarity route will be produced if the procedure is called with arguments
equal 0, i.e., route(0,0).

4. The relationship between extended dual polarity FPPEs

In this section, the relationship between two extended dual polarity ex-
pressions will be explained on the example of fixed polarity polynomial ex-
pressions defined on GF(4), short, FPGFs [3], [4].

The relationship between two FPGFs can be expressed as

S<p′> = G<p′> · F = G<p′> ·
(

G<p>
)

−1
· S<p>.

If polarities p′ = (p1 · · · pi−1p
′

ipi+1 · · · pn) and p = (p1 · · · pi−1pipi+1 · · · pn)
are the extended dual polarities, and p′i 6= pi, the relationship between the
corresponding FPGFs is given by

S<p′> = G<p′> · F =
((

i−1
⊗

j=1
G<pj>

)

⊗G<p′

i
> ⊗

(

n
⊗

j=i+1
G<pj>

))

· F =
((

i−1
⊗

j=1
(G<pj>)−1

)

⊗ (G<pi>)−1 ⊗

(

n
⊗

j=i+1
(G<pj>)−1

))

· S<p>

Due to the features of Kronecker product (assuming consistent dimensions
of related matrices), the above relation can be written as

S<p′> =
(

Ii ⊗G<p′> ·
(

G<p>
)

−1
⊗ In−i

)

· S<p>(4.1)

where Ik is the identity matrix of order k.
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void route(int level, int direction){
if( direction == 0){

if(level == no variable){
– out new polarity vector h }

else {
h[level ] = 0;
route(level+1, 0);
h[level ] = 1;
route(level+1, 1);
h[level ] = 2;
route(level+1, 0);
h[level ] = 3;
route(level+1, 1);}}

else{
if(level == no variable){

– out new polarity vector h }
else {

h[level ] = 3;
route(level+1, 0);
h[level ] = 2;
route(level+1, 1);
h[level ] = 1;
route(level+1, 0);
h[level ] = 0;
route(level+1, 1); } } }

Figure 1. Procedure route().

4.1. The processing rule. ¿From the relation (4.1), i.e. from all possible

matrix products G<p′> · (G<p>)−1 given in Table 1, it is possible to derive

a rule for processing terms in S<p> to calculate S<p′>.
Let m = mi−1

1 mim
n
i+1 be a term in a FPGF expression of a function f

for the polarity p = (p1 · · · pi−1pipi+1 · · · pn). The value of f for the term
m is S<p>(m). The term m produces new terms in the FPGF expression

S<p′> for the function f for the dual polarity p′ = (p′1 · · · p
′

i−1p
′

ip
′

i+1 · · · p
′

n)
depending on the value pi and p′i.

The value of the FPGF on a newly generated term is given by vS<p>(m).
Table 2 shows processing rules for all possible cases. It is obvious that
these processing rules are simple and due to that, efficient in terms of space
and time. After processing all terms by using the given rules, it starts a
procedure for deleting terms whose value is equal to zero after summation
of contributions of the processed terms.
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Example 4.1. For the polarity (12), the fixed polarity GF(4) expression
of a two-variable four-valued function f given by the truth vector F =
[0, 1, 2, 2, 1, 3, 0, 0, 0, 1, 1, 0, 0, 1, 2, 3]T is represented by the spectrum

S<1,2> = [0, 2, 0, 2, 1, 0, 0, 1, 2, 3, 3, 1, 1, 1, 2, 3]T .

The extended dual polarities and the corresponding FPGFs are given in
the Table 3.

Calculation procedure for determination of (02) dual polarity FPGF ex-
pression from (12) polarity FPGF is shown in Table 4.

Table 1. Relationship between dual polarities

G<0> ·
(

G<1>
)

−1
= G<1> ·

(

G<0>
)

−1
= G<2> ·

(

G<3>
)

−1

= G<3> ·
(

G<2>
)

−1
=









1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1









G<0> ·
(

G<2>
)

−1
= G<2> ·

(

G<0>
)

−1
= G<1> ·

(

G<3>
)

−1

= G<3> ·
(

G<1>
)

−1
=









1 2 3 1
0 1 0 3
0 0 1 2
0 0 0 1









G<0> ·
(

G<3>
)

−1
= G<3> ·

(

G<0>
)

−1
= G<1> ·

(

G<2>
)

−1

= G<2> ·
(

G<1>
)

−1
=









1 3 2 1
0 1 0 2
0 0 1 3
0 0 0 1









5. Optimization algorithm

The example 4.1 shows that it is possible to calculate all possible FPGF
expressions by using the proposed method for transforming fixed polarity
GF(4) expressions into extended dual polarity GF(4) expressions along the
route without repetitive calculations. Therefore, we can perform the op-
timization of FPGF expressions by using an exhaustive-search algorithm
consisting of the following steps.

(1) Initialization:
Set the polarity vector p′ to p′ = (0, 0, · · · , 0)

Calculate the spectrum S<p′>

Cmin =the number of non-zero coefficients in S<p′>

(2) List all the terms for S<p′>.
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(3) Determine the next extended dual polarity p’, according to the re-
cursive route.

(4) Calculate the spectrum S<p′>by using the proposed rule. Calculate
the total number of non-zero coefficients C ′

min.
If C ′

min < Cmin then Cmin = C ′

min.
(5) Stop if all polarities have been treated. Otherwise go to the step 2.

The algorithm starts from the zero polarity FPGF, but it can start from
any other polarity. Therefore, FPGF for the zero polarity for a given function
f should be calculated from the truth-vector. For this task, we can use some
of known methods, for example, the tabular technique [3], [10].

6. Experimental results

In this section, we present some experimental results estimating features
and efficiency of the proposed algorithm for minimization of FPGF expres-
sions. We developed a program in C for determination of optimal FPGF
expression for arbitrary four-valued functions represented by minterms. The
experiments were carried out on 1GHz PC Celeron with 128Mb of main
memory and all runtimes are given in CPU seconds. Table 5 compares the
runtimes for optimization of FPGF expressions by the CTT method in [3]
(columns TT) with the algorithm proposed in this paper (columns Dual).
We consider randomly generated four-valued functions with 25% and 75% of
non-zero minterms (columns 25% and 75%, respectively) where the number
of four-valued variables n ranges from 4 to 7. Columns %d show the ratio
(CTT – Dual)/ Dual where CTT and Dual refer to the method in [3] and
the proposed algorithm, respectively.

The proposed algorithm is faster than CTT for the simplify processing
by using the dual polarity property. This ratio increases with a number
of variables. Furthermore, the number of non-zero minterms has smaller
influence to the runtime of the proposed algorithm as compared to CTT.

7. Particular examples

In this section, we discuss processing rules for some particular cases of
FPPEs.

he Table 6 shows the processing rule for optimization of Kronecker expres-
sion, while Table 7 shows the processing rule for optimization of arithmetic
expressions. After processing all terms, by using above rules, a procedure
for deleting terms whose contribution is equal to 0 starts.

8. Conclusions

We have introduced the notion of dual polarities for Fixed polarity Ga-
lois field (FPGF) expressions for functions defined on GF(4) and present a
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Table 2. GF(4) processing rule.

pi p′i new terms

0 1 if mi=1 then generate mi−1
1 0mn

i+1 v = 1

1 0 if mi=2 then generate mi−1
1 0mn

i+1 v = 1

2 3 if mi=3 then generate mi−1
1 0mn

i+1 v = 1

3 2 mi−1
1 1mn

i+1 v = 1

mi−1
1 2mn

i+1 v = 1

0 2 if mi=1 then generate mi−1
1 0mn

i+1 v = 2

1 3 if mi=2 then generate mi−1
1 0mn

i+1 v = 3

2 0 if mi=3 then generate mi−1
1 0mn

i+1 v = 1

3 1 mi−1
1 1mn

i+1 v = 3

mi−1
1 2mn

i+1 v = 2

0 3 if mi=1 then generate mi−1
1 0mn

i+1 v = 3

1 2 if mi=2 then generate mi−1
1 0mn

i+1 v = 2

2 1 if mi=3 then generate mi−1
1 0mn

i+1 v = 1

3 0 mi−1
1 1mn

i+1 v = 2

mi−1
1 2mn

i+1 v = 3

Table 3. Extended dual polarity GF(4) expressions.

polarity spectrum
02 (2011012232121123)
22 (1230323010231123)
32 (2100231301001123)
10 (1332032100111333)
11 (3112023101012003)
13 (0022011132211213)

method for conversion of FPGF expressions from one polarity to the dual
polarity. Based on this method, we define an algorithm for calculation of
all FPGF expressions. Calculation is performed by starting from the truth-
vectors of functions considered. All FPGF expressions are calculated along
a route that provides calculation of each FPGF expressions exactly once.

The proposed method for transformation of FPGF expression from one
to another extended dual polarity is simple. Due to that, although being an
exhaustive-search method, the proposed method for minimization of FPGF
expressions is efficient as documented by experimental results.

The proposed method can be applied to the optimization of all FPPEs
with Kronecker product representable transform matrices. The proposed
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Table 4. Polarity (12) to (02)

polarity (12) New terms polarity (02)
01 – 2 00 – 2
03 – 2 02 – 1
10 – 1 00 – 1 03 – 1
13 – 1 03 – 1 11 – 1
20 – 2 00 – 2 12 – 2
21 – 3 01 – 3 13 – 2
22 – 3 02 – 3 20 – 3
23 – 1 03 – 1 21 – 2
30 – 1 00 – 1; 10 – 1; 20 – 1 22 – 1
31 – 1 01 – 1; 11 – 1; 21 – 1 23 – 2
32 – 2 02 – 2; 12 – 2; 22 – 2 30 – 1
33 – 3 03 – 3; 13 – 3; 23 – 3 31 – 1

32 – 2
33 – 3

Table 5. Experimental results.

n
25% nonzero 75% nonzero
Dual TT %d Dual TT %d

4 0.04 0.06 -33.33 0.4 0.16 -75.0
5 0.54 2.17 -75.11 0.56 6.33 -91.15
6 10.34 89.75 -88.48 12.69 266.54 -95.24
7 251.32 3922.05 -93.59 299.28 12429.99 -97.59

Table 6. Processing rule for optimization of Kronecker expressions.

pi p′i new terms
0 1

if mi=1 then generate mi−1
1 0mn

i+11 0
0 2

if mi=0 then generate mi−1
1 1mn

i+12 0
1 2 if mi=1 then set mi=0

if mi=0 then generate mi−1
1 1mn

i+1

2 1 if mi=0 then set mi=1

if mi=1 then generate mi−1
1 0mn

i+1
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Table 7. Processing rule for optimization of arithmetic expressions.

hi h′

i new terms

0 1 if mi=1 then a) generate m′ = mi−1
1 0mn

i+1 and v(m′) = v(m)
1 0 b) set v(m) to − v(m)

methods offers high possibilities for parallelization which can be considered
as an advantage in practical applications.

Future work in this subject will be devoted to the extension of the method
proposed and the related implementation algorithm for minimization of poly-
nomial representations for multiple-valued functions.
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