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ABSTRACT Outdoor-to-indoor (O2I) coverage in urban areas by using the sub-6 GHz (sub-6G) band is

important in the fifth generation (5G) mobile communication system. The spatial-temporal propagation

characteristics in different polarizations in the 5G spectrum are crucial for the network coverage. In this

paper, we measured the urban macrocell (UMa) O2I channels at 3.5 GHz in the space, time, and polarization

domains simultaneously. The channel sounder utilized two ±45◦ polarized antenna arrays. The transmitter

(TX) was placed on the rooftop of a five-storey building to emulate a base station and the receiver (RX) was

moved in the corridors on different floors in another building to emulate user equipments (UEs). We obtained

the small-scale parameters of excess delay, power, and azimuth/elevation of arrival (AoA/EoA) of individual

multipath components (MPCs), the propagation profiles of azimuth/elevation power spectrum (APS/EPS)

and power delay profile (PDP), and the large-scale parameters including azimuth/elevation spread of arrival

(ASA/ESA) and delay spread (DS). Based on the measurement results, we propose the lifted-superposed

Laplace distribution (LS-Laplace) function and lifted-superposed normal distribution (LS-Normal) function

to model the APS and EPS, respectively, and a three-phase model for the PDP. We find that the ASA and

ESA follow the lognormal distribution and the DS has a Rayleigh distribution. We also reveal the impact of

surrounding environments and polarization on the channel propagation profiles and statistical characteristics.

The measurement results and channel models in this paper provide reference for the design and deployment

of the 5G system to exploit the spatial and polarization diversities in the UMa O2I scenario.

INDEX TERMS Propagation measurement, channel modeling, 5G, dual-polarization, outdoor-to-indoor,

power spectrum.

I. INTRODUCTION

In the deployment of cellular networks, the outdoor-to-indoor

(O2I) coverage in urban areas is an important scenario for

service provisioning. In the fifth generation (5G) mobile

communication system, the active antenna units (AAUs)

of next generation NodeBs (gNBs) installed on building

rooftops or towers can provide O2I coverage in macrocells

by using the sub-6 GHz (sub-6G) spectrum, especially in the

standalone (SA) 5G-NR (new radio).

The associate editor coordinating the review of this article and approving
it for publication was Kostas Psannis.

Massive multiple-input-multiple-output (MIMO) is a

key technology in 5G and expected to be adopted on

AAUs [1], [2]. Massive MIMO performs full-dimensional

and high-granularity beamforming and thus provides signifi-

cant system capacity gain by exploiting spatial multiplexing.

The performance of beamforming depends critically on the

spatial propagation characteristics of the radio channels,

such as the angular power spectrum and angular spread.

In addition, AAUs will employ dual-polarized antenna

elements to further improve the spectrum efficiency by

polarization diversity. The correlation between the channels

with cross polarizations determines the polarization
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diversity gain. Therefore, the radio propagation characteris-

tics in 3-dimensional (3D) space with different polarizations

are critical for the signal strength and coverage range using

the 5G technologies. We need to study the propagation

characteristics in the time, space, and polarization domains

simultaneously and establish accurate channel models for the

sub-6G frequency band [3]. To the best of our knowledge,

the channel propagation has not be fully investigated for the

candidate 5G spectrum in the O2I scenario and is still an open

issue to address.

In this paper, we present a measurement campaign in the

urban macrocell (UMa) O2I scenario. In the 5G standardiza-

tion, 3.5 GHz has been selected as a commercial frequency

in the sub-6G band for macrocell coverage. The purpose of

our campaign is to obtain the spatial and temporal multi-

path component (MPC) parameters and the radio propagation

profiles in cross polarizations, and establish accurate spatial-

temporal statistic channel models. In addition, we analyze

the effect of scattering environments and polarization on the

radio propagation characteristics. The main contributions of

this paper are two-fold.

First, we measured the 3D radio propagation utilizing a

multi-domain channel sounder in a typical UMa O2I sce-

nario. Both the transmitter (TX) and receiver (RX) used

a ±45◦ polarized antenna array. The TX (emulating a

gNB) was installed on the rooftop of a 5-storey build-

ing and the RX (emulating a user equipment, UE) was

moved on the 1st, 2nd, and 3rd floors in another building

about 200 meters away. We measured the channel propa-

gation parameters and profiles in the cross polarizations,

including:

1) the small-scale MPC parameters including excess delay,

azimuth/elevation angle of arrival (AoA/EoA), and

power of each individual propagation path,

2) the large-scale channel parameters including root-

mean-square (RMS) delay spread (DS) and RMS

azimuth/elevation spread of arrival (ASA/ESA), and

3) the propagation profiles including power delay pro-

file (PDP) and azimuth/elevation power spectrum

(APS/EPS).

Second, we propose a series of stochastic models for the

propagation profiles and parameters based on the measure-

ment results as follows.

1) We propose a lifted-superposed Laplace distribution

(LS-Laplace) model and lifted-superposed normal dis-

tribution (LS-Normal) model for the APS and EPS,

respectively. The distribution of the parameters in these

models are obtained by fitting the functions to the

measured angular power spectra. The proposed models

not only describe the clustering behavior in the power

arrival over the incident angles but also incorporate the

power floor contributed by the scattered MPCs that

arrive at the RX quite uniformly.

2) In the time domain, we propose a three-phase model

for PDP that includes the rising, dropping, and

trailing stages. The measurement results show that the

MPC clusters overlap in the time domain and the model

can describe the pattern of the variation of the power

arrival with respect to excess delay.

3) For the large-scale channel parameters, we propose to

model ASA and ESA by the lognormal distribution

and DS by the Rayleigh distribution. The distribution

parameters are determined based on the calculated val-

ues from the measured power spectra.

4) We also analyze the impact of polarization by eval-

uating the correlation between the APSs, EPSs, and

PDPs in ±45◦ polarizations. The results show that

polarization does not introduce significant effect on the

multipath propagation profiles in both the space and

time domains.

The measurement results and proposed models reveal the

multipath propagation characteristics in the space, time, and

polarization domains. This work can be used for the design

and performance evaluation of the 5G technologies and net-

work coverage optimization in the UMa O2I scenario using

the sub-6G band [4].

The rest of the paper is organized as follows. Section II

overviews the previous measurement campaigns on the

spatial-temporal channels in cellular network scenarios.

Section III presents the multipath spatial-temporal channel

model and the key channel parameters. Section IV introduces

the measurement scenario and channel sounder in our cam-

paign. The measurement results and models for the spatial

propagation characteristics including APS, EPS, ASA, and

ESA are presented in Section V. The temporal propagation

characteristics including PDP and DS measurement results

and models are presented in Section VI. Section VII ana-

lyzes the impact of polarization by evaluating the correlation

between the cross-polarized channels. Section VIII concludes

the paper and points out future study issues.

II. RELATED WORK

To establish accurate 3D channel models for cellular net-

works, a large amount of effort has been made to develop

channel sounders and measure the radio propagation in prac-

tical environments [5]. To support the statistical channel mod-

eling in urban environments, the authors in [6] carried out

a 3D MIMO channel measurement campaign in the UMa

and UMi (urban microcell) O2I scenarios in the 2.52 to

2.54 GHz band. The results suggested that the ESA reduced

with the decreasing of the BS height and there was no clear

pattern for the ASA. The authors in [7] utilized the ray-

tracing method to evaluate the EPS in the urban O2I scenario.

It was found that the EPS at low-rise floors fitted the Laplace

distribution well, while the EPS at the high-rise floors fitted

the double-Gaussian functions. The authors in [8] performed

measurement at 3, 10, 17, and 60 GHz in the O2I scenario

and found that the power attenuation was relatively low

and frequency-independent for the non-coated glass windows

and was high and increasing with frequency for the coated

glass windows. In [9], through a measurement campaign in

the UMa I2O scenario at 2.6 GHz, the authors found that
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the probability distribution function (PDF) parameters of

ESA were independent to the UE height and position in the

non-line of sight (NLOS) case. The authors in [10] measured

the vehicle-to-vehicle channels at 5.3 GHz with a bandwidth

of 60 MHz in suburban, urban, and underground parking lot

environments. The results suggested that the MPC lifetime

could be fitted by a linear polynomial function and the small-

scale fading had the Nakagami distribution.

The authors in [11] performed an O2I channel measure-

ment at 3.5 GHz and inspected the MPC clustering behavior.

The results suggested that the number of paths in one cluster

and the number of clusters fitted the lognormal and nor-

mal distributions, respectively. For the quasi-static channels,

the authors in [12] conducted a measurement campaign at

the frequencies of 11, 16, 28, and 38 GHz in a typical office

environment. The birth-death property of MPC clusters and

the non-stationarity over the antenna array were verified.

In [13], the authors performed a measurement campaign in an

outdoor environment at the center frequency of 15 GHz with

a bandwidth of 4 GHz by utilizing a virtual 40 × 40 planar

antenna array. The authors introduced the spatial-stationary

clusters and described their behaviors such as the life distance

in horizontal and vertical directions.

On the other hand, channel polarization characteristics

have drawn attention from the 4G to 5G. The authors

in [14] presented the models to describe the dependence of

cross-polarization discrimination (XPD) on distance, angular

spreads, and DS in the 3D MIMO cross-polarized channels.

The authors in [15] parameterized anMPC cross-polarization

ratio (XPR) model for the indoor and outdoor environ-

ments in the above-6G bands based on 28 measurement

campaigns. They found that XPR did not depend strongly

on frequency or environment. The authors in [16] per-

formed measurements in a small office and an entrance hall

at 70 to 77 GHz utilizing a 3D spherical virtual antenna

array. They presented a double-directional dual-polarimetric

MIMO channel model in which the polarimetric statistics

were highly correlated and exhibited a clear dependence on

the geometry of environments. For sub-6G bands, the authors

in [17] performed measurement at 5.3 GHz with dual-

polarization in an urban street and also used the ray-tracing

method to study the polarimetric behaviors.

The latest 3GPP release TR 36.873 [3] has specified the

channel models that consider both the horizontal and vertical

directions. The models will support evaluating the perfor-

mance of physical-layer and higher-layer techniques in vari-

ous scenarios. The 3.5 GHz carrier frequency is proposed for

heterogeneous networks in [3]. For the UMa scenario, the dis-

tributions of AoA and EoA are modeled by the wrapped

Gaussian and Laplacian distributions, respectively, and the

delay distribution is described by the exponential distribu-

tion. The cluster power in PDPs is modeled by exponential

decaying distribution and the composite cluster APS and EPS

are modeled by the wrapped Gaussian and Laplacian distribu-

tion, respectively. IMT-2020 in [18] gives similar conclusions

with the 3GPP standards. PDP can be approximated by an

exponential decaying function, and the Gaussian and Lapla-

cian functions are adopted for APS and EPS, respectively.

The METIS project in [19] has specified some new require-

ments for 5G and meanwhile proposed the approach includ-

ing a map-based, stochastic and hybrid models to provide a

flexible and scalable channel modelling framework.

Different from the previous works, in our measurement

campaign, we emulated the deployment of a BS and UEs

in a typical UMa O2I scenario at 3.5 GHz, the candidate

5G frequency. The spatial and temporal multipath propaga-

tion in cross polarizations in this scenario has not been suf-

ficiently explored. In particular, we investigate the propaga-

tion parameters in the space, time, and polarization domains

simultaneously and the clustering behavior. Thus we can

describe the propagation inmultiple domainsmore accurately

and also reveal the impact of polarization on the channel

characteristics in more depth. Furthermore, the cluster-based

stochastic channel models for both the spatial and temporal

propagation profiles can extend the existing channel model

standards such as the 3GPP and METIS specifications.

III. CHANNEL PROPAGATION PARAMETERS

AND PROFILES

For purpose of describing the 3D multipath propagation

in radio channels, we adopt the spatial-temporal channel

impulse response (CIR) model that includes the AoA, EoA,

and excess delay information of MPCs. The CIR model is

expressed as

h(τ, θ, φ) =
L

∑

l=1

αle
jψl δ(τ − τl, φ − φl, θ − θl), (1)

where L is the number of signal propagation paths

(i.e., MPCs), αle
jψl , τl , φl , and θl are the complex gain, excess

delay, AoA, and EoA of the l-th path, respectively. The delta

function δ(τ, θ, φ) represents an impulse at the excess delay

of 0 ns and incident angle of (0◦, 0◦) in the joint space-and-

time domain. These parameters for individual MPCs are the

small-scale parameters.

The large-scale parameters describe the characteristics of

the MPC set in a CIR. In the space domain, RMS ASA and

ESA describe the angular dispersivity of the power arrival

over the impinging directions in the azimuth and elevation

dimensions, respectively. ASA is denoted by SA and calcu-

lated by

SA =

√

√

√

√

∑L
l=1 α

2
l (φl − µA)2

∑L
l=1 α

2
l

, (2)

where µA is the power weighted mean of AoA and defined as

µA =
∑L

l=1 α
2
l φl

∑L
l=1 α

2
l

. (3)

ESA, denoted by SE , is defined in a similar form with

φl replaced by θl in (2) and (3). In the time domain,

RMS DS describes the spread of the power arrival over the

122990 VOLUME 7, 2019



R. Zhang et al.: Dual-Polarized Spatial–Temporal Propagation Measurement and Modeling in UMa O2I Scenario at 3.5 GHz

excess delay. DS, denoted by SD, is calculated similarly with

respect to τl .

For the propagation profiles in the space domain, APS and

EPS present the distribution of the power arrival over the inci-

dent angles in the horizontal and vertical planes, respectively.

The APS between a pair of TX and RX, denoted by pA(φ), is

defined as

pA(φ) =
L

∑

l=1

|αl |2δ(φ − φl). (4)

EPS, denoted by pE (θ ), is defined similarly for EoA, θl .

PDP describes the MPC arrival with respect to excess delay.

PDP, denoted by pD(τ ), is defined similarly by (4) where the

independent variable is replaced by the excess delay ofMPCs.

We evaluate the correlation between ±45◦ polarized chan-
nels by calculating the cross-correlation of the channel pro-

files. For APS, the variable of φ can be discretized by

the interval of 1◦ in practical channel measurement. Thus

the measured APS is a discrete sequence with respect to the

index of AoA. When the transmitting antenna is in +45◦

polarization, the signal is +45◦ polarized (for easy presen-

tation, the radio channel is called +45◦ polarized channel)
and the APS sequence is denoted by p+

A (k) where k is the

index of the AoA bins. Similarly, the APS sequence in the

−45◦ polarized channel is denoted by p−
A (k). Then the cross-

correlation coefficient for APS is expressed as

ρC =
cov

[

p+
A (k),p

−
A (k)

]

√

var
[

p+
A (k)

]

√

var
[

p−
A (k)

]

. (5)

The cross-correlation for EPS is defined similarly where the

EPS sequences are defined with respect to the discrete EoA

(e.g., with the interval of 1◦). We discretize the PDPs by the

delay bin and thus obtain the PDP sequences, denoted by

p+
D(k) and p

−
D(k), where k is the index of the delay bins.

IV. CHANNEL MEASUREMENT SCENARIO AND SYSTEM

A. MEASUREMENT SCENARIO

Themeasurement campaign was conducted in a modern busi-

ness district. The TX emulated a BS and was installed on

the rooftop of 5-storey building where the antenna array was

25 meters above the ground. The RX was used to emulate

UEs distributed inside a building. The RX systemwas stacked

on an electric trolley and moved to eight positions along the

corridors on the 1st, 2nd, and 3rd floors in another office

building. The RX positions were spaced by 1.5 meters. The

building walls were made by concrete and there were glazed

windows in the external walls of the corridors. The farthest

distance between the TX and RX was about 200 meters.

The positions of the TX and RX are marked on the building

floorplan in Fig. 1. Fig. 2 shows the TX and RX systems and

the measurement environment. The line of sight (LOS) prop-

agation path between the TX and RXwas blocked by a glazed

window or a concrete external wall. The trees and shrubberies

out of the windows may also be obstacles when the RX was

on the first floor. Since there were no people walking around

FIGURE 1. Floorplan of the measurement building and the positions of
the TX and RX.

FIGURE 2. Channel sounder.

in the corridors, the channels in the corridors were static.

This measurement setting emulated the typical O2I network

converge in the 5G system.

B. MEASUREMENT SYSTEM

We used a 3D-MIMO radio channel sounder as shown

in Fig. 2. The sounder employs the direct sequence spread

spectrum (DSSS) scheme to probe channels and detect the

propagation of MPCs. The probing signal is a pseudo-noise

(PN) sequence composed of 1,023 chips. The signal band-

width is 160 MHz and thus the chip duration (i.e., the delay

bin in the measured temporal CIRs) is 6.25 ns. Six repeats of

the PN sequences plus additional prefix and suffix chips form

a channel probing frame (CPF) with the length of 6,400 chips.

Thus the duration of a CPF is 6400/(160 × 106) ×
106 = 40 µs.

The TX uses a rectangular planar array (RPA) of 32 patches

in a 4 × 8 matrix. Each patch contains two cross-polarized

(±45◦) dipole antennas and the 64 dipoles in the RPA form

two arrays in ±45◦ polarizations. Each dipole has 3 dBi

gain and a half power beam from −60◦ to +60◦ in both the

azimuth and elevation dimensions with respect to the normal

direction. The spacing distance between adjacent patches

is half a wavelength for the 3.5 GHz carrier wave. In the
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TX system, an arbitrary waveform generator (AWG) gener-

ates the CPFs circularly and input the sequences into an vector

signal modulator. The CPFs are modulated via BPSK on the

carrier of 3.5 GHz frequency. Then, after passing through

a power amplifier, the modulated radio signal is sent to

a 1-input-64-outputmicrowave switch (MS). The output ports

of the MS are connected to the 64 dipoles in the RPA. The

MS routes the input channel sounding signal to one of

the output ports to transmit the signal on one dipole. The

MS selects one output port for 320 µs and then switches to

the next port. Thus each dipole transmits eight CPFs in a time

slot and the dipoles in the RPA transmit one-by-one circularly.

The process that all the 64 dipoles transmit eight CPFs each

is called a transmitting cycle.

The RX utilizes an omnidirectional cylindrical array

(OCA) that comprises 32 patches of ±45◦ polarized dipoles.
The patches are placed in 8 columns that form a cylinder

and each column has 4 patches. The dipoles are connected to

the input ports of a 64-input-8-output MS. The MS captures

the signals on the 8 dipoles in one column for a time slot

of 40 µs (the duration of one CPF) and then switch to the

next column. In this way, the signals are captured column-

by-column circularly by the RX. The process that the signals

on all the dipoles in the OCA are captured for one round is

called a receiving cycle. The duration of a receiving cycle

is 8 × 40 = 320 µs. Thus while one TX dipole antenna

is transmitting, the RX can complete a receiving cycle. The

output signals from the MS (the signals on the 8 dipoles in

a column) are input into the low noise amplifiers (LNA) and

bandpass filters and then into a multi-channel vector signal

receiver (MC-VSR). The MC-VSR samples and digitalizes

the radio signals at the sampling rate of 200 MHz, and the

sample data of the I/Q components are stored in hard disks

for off-line processing.

The TX and RX systems are both equipped with

a GPS-triggered rubidium clock (RC). The RCs generate

synchronized one pulse per second (PPS) clocks to the AWG,

MSs, and MC-VSR to start the signal transmission and cap-

ture simultaneously at the beginning of every second. The

RCs also output synchronized 10MHz clocks to the twoMSs

to switch the antennas synchronously, in order to ensure that

the RX captures the signals on the dipoles at the beginning of

each CPF.

When a dipole antenna in the TX RPA transmits for

320 µs, the RX OCA completes a receiving cycle and each

antenna captures the channel response of a CPF. The received

array signal on the OCA from a transmitting antenna to the

64 antennas, form two 1 × 32 MIMO channel responses for

±45◦ polarizations. The array signal received on the 32 anten-
nas in one polarization is called a channel snapshot. We can

extract MPCs and obtain the parameter sets of the MPCs and

propagation profiles using the method described as follows.

The MPCs in the received signals on each RX antenna

are identified by sliding correlation and spatial-smoothing

method in the joint time and space domains. The AoA

and EoA of every resolved MPC are determined using the

complex responses on the RX OCA and the 2-dimensional

direction-of-arrival estimation algorithm [20] [21]. Before the

measurement campaign, we have measured the 3D radiation

pattern of the PRA andOCAwith the angular resolution of 1◦.
The measured steering vectors are plugged into the angular

parameter estimation algorithm such that the effect of the

antenna responses is removed. In addition, the phase shifts of

the radio chains in the RX system aremeasured by connecting

the TX and RX directly with cables on every measurement

day. These system phase shifts are removed from the captured

complex array signals before direction-of-arrival estimation.

C. MEASUREMENT DATA STRUCTURE

In this measurement campaign, when the RX was at a posi-

tion, the sounder completed a transmitting cycle to measure

the channel. Since there were 32 antennas in one polarization

in the RPA on the TX, we obtained 32 channel snapshots

(i.e., 32 × 32 MIMO channel responses, as specified in

Sec. IV-B) in one polarization.

The MPCs in a channel snapshot are resolved and the

small-scale parameters of each MPC are estimated using the

method described in Sec. IV-B. In a measured CIR, we set

the threshold of PM ,th = max {P1,P2} where P1 is the signal
power with -25 dB attenuation from the most significant

path and P2 is the power level with 2 dB above the noise

power. A propagation path is a valid MPC only when its

power is larger than PM ,th. According to channel model

in Sec. III, we have obtained the measurement results from

every channel snapshot including

• the MPC number (denoted by L̂),

• the small-scale parameter sets of all the MPCs (denoted

by �̂l =
{

α̂l, ψ̂l, τ̂l, φ̂l, θ̂l

}

for l = 1, 2, · · · ,L),
• the large-scale channel parameters of ASA, ESA, and

DS (denoted by ŜA, ŜE , and ŜD, respectively),

• the propagation profiles of APS, EPS, and PDP (denoted

by p̂A(φ) for φ ∈ [0◦, 360◦), p̂E (θ ) for θ ∈ [0◦, 180◦],
and p̂D(τ ) for τ ∈ [0, τmax] where τmax is the maximal

excess delay).

The TX and RXwere stationary during measurement when

the RX was placed at a position. There was not large-scale

fading among the 32 snapshots in one polarization in a

transmitting cycle because the scattering environment did not

change. But the noise in the sounder system and channel

as well as the subtle change in the environment may cause

random variation in the measured MPCs. As an illustrative

example, the APSs and EPSs in the 32 snapshots at the 2nd

RX position on the 3rd floor are presented in Fig. 3. We can

see that the incident angles and power of the significantMPCs

with relatively large power are stable among the 32 snapshots

and the less significant MPCs vary randomly. Therefore,

without large-scale fading, theMPC parameters in a transmit-

ting cycle follow the same probability distributions (i.e., the

measurement results are from the same sample space).

We take the average APS, EPS, and PDP from the

32 snapshots in a transmitting cycle as the measured
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FIGURE 3. The measured APSs and EPSs in one transmitting cycle at the
RX Position 2 on the 3rd floor. The x-axes are the index of the
transmitting dipole in the TX.

propagation profiles for a RX position to remove the random

variation caused by noise. We calculate the large-scale fading

parameters from the average propagation profiles for every

RX position. Thenwe collect the large-scale fading parameter

values at all the RX positions together to obtain the statistical

distributions of the parameters. Meanwhile, we find the best-

fitting models with certain parameter values for the propaga-

tion profiles at each RX position. Then based on the model

parameters at all the RX positions, we obtain the statistical

distributions of the model parameters for the propagation

profiles.

V. MEASUREMENT RESULTS AND STATISTICAL MODELS

FOR SPATIAL PROPAGATION

A. MEASUREMENT RESULTS OF APS

At every RX position, we obtained two average APSs in

±45◦ polarizations. Fig. 4 presents the measured APSs at

RX Position 2 on the 1st, 2nd, and 3rd floors. Multiple

distinct clusters in every APS illustrate the evident clustering

behavior of MPCs in the azimuth dimension. We can observe

several important phenomena in Fig. 4.

First, the main (most significant) clusters in the APSs

generally arrived at the RX from the direction of the TX,

and hence should be formed by the MPCs directly pen-

etrating the glazed windows or external walls. As shown

in Figs. 4(a), (b), (e), and (f) for the 1st and 3rd floors,

the main clusters are located at about 250◦, the direc-

tion of the TX, according to the space coordinate in the

measurement.

Second, the other clusters should be generated by the

reflections of the walls and grounds of the corridors. The

reflection processes of the MPCs are illustrated in Fig. 5(a)

for the azimuth dimension. For example, several clusters

arrive with the AoAs from 50◦ to 100◦ on the 1st floor as

FIGURE 4. Measured APSs at RX Position 2 on the three floors and the
fitting LS-Laplace functions.

shown in Figs. 4(a) and (b). These clusters may be reflected

by the walls behind the RX and hence propagate to the RX

on the other side with respect to the TX.

Third, the clustering behavior on the 2nd floor is different,

as shown in Figs. 4(c) and (d). The main clusters arrive at the

direction of about 120◦. This is because there is rich foliage

outside the 2nd floor that blocks the direct LOS propagation

path severely. Meanwhile, there is a metal door behind the

RX in the corridor that generates a strong reflection cluster.

In addition, as we can observe in the figures, there are much

more reflected clusters in theAPS due to the foliage andmetal

objects around the RX on the 2nd floor.

Fourth, the measured APSs in±45◦ polarizations are quite
similar with each other on every floor. This indicates that the

spatial propagation profiles in the cross-polarized channels

are consistent and polarization does not affect considerably

the statistical characteristics.

B. MEASUREMENT RESULTS OF EPS

The two measured EPSs in ±45◦ polarizations at the RX

Position 2 on the three floors are shown in Fig. 6. We can see

that the MPCs also arrive at the RX in distinct clusters in the

elevation dimension. We have several important observations

as follows.

First, the numbers of EPS clusters are obviously fewer than

those in the APSs. The MPCs are more concentrated in the

main cluster at the LOS direction in an EPS. The reason
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FIGURE 5. Diagrammatic sketches for MPC reflection in the azimuth and elevation dimensions
in the corridor environment.

can be explained using the sketch in Fig. 5(b). When the

MPCs are reflected on the walls, their EoAs are close to the

direct propagation path penetrating the glazed windows or

external walls. Second, the clusters with EoAs larger than 90◦

should be mainly generated by the ground reflection. Third,

there are obviously more clusters that distribute over the EoA

range on the 2nd floor, as shown in Figs. 6(c) and (d). This

phenomenon is consistent with the APSs and because of the

more complicated scattering environments with rich foliage

andmetal objects around on the 2nd floor. Fourth, the EPSs in

±45◦ polarizations are similar with each other. This reveals

that the polarization does not affect the statistical character-

istics of the MPC propagation in the elevation dimension.

C. STATISTICAL MODELING OF APS

According to the analysis in Sec. V-A, an APS can be divided

into three parts: a main (the most significant) cluster at the

direct propagation direction, the other significant clusters

generated by ground and wall reflections, and the scattered

MPCs by scattering in the surrounding environments. The

process to establish the model for APS in this work includes

three steps. First, we select an appropriate function to model

the profile of APS including both the clusters and scattered

MPCs. Second, we locate the clusters and find the optimal

modeling parameters. Third, the distributions of the parame-

ters in the APS model are determined based on our measured

APS samples.

1) MODELING FUNCTION OF APS

First, we determine the modeling function for the power spec-

tra of the main clusters in the APSs. LetµA,1 denote the angu-

lar location of the main cluster in an APS. Since the center of

the main cluster should be at the AoA of the maximum power,

µA,1 is determined by µA,1 = argmaxφ∈[0◦,360◦)
{

p̂A(φ)
}

.

The power spectrum inside a cluster should keep reduc-

ing monotonously and be larger than the threshold PM ,th.

FIGURE 6. Measured EPSs at RX Position 2 on the three floors and the
fitting LS-Laplace functions.

Therefore the angular boundaries of the main cluster are the

AoAs of adjacent local peaks or the direction with power

equal to PM ,th. Suppose that the AoA range of the main clus-

ter is [φL , φU ]. According to the shapes of the main clusters

(e.g., as shown in Fig. 4), we choose the truncated Laplace,
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TABLE 1. RMSEs of curve fitting for APS and EPS main clusters.

Cauchy, and normal distribution PDFs to fit the main clusters.

Meanwhile, because the measured APSs are normalized and

the power of each cluster is less than one, we introduce a

power parameter, aA, into the candidate functions to scale the

total power in fitting the main clusters.

The root-mean-square-error (RMSE) of the candidate

function, denote by fC (φ), in fitting the power spectra is

ε = 1

φU − φL

∫ φU

φL

[

fC (φ) − p̂A(φ)
]2
dφ. (6)

We have obtained a total of 48 APSs in ±45◦ polarizations

at the 24 RX positions in this measurement campaign. We fit

the candidate functions to the main clusters in all the APSs

and the average RMSEs of the 24 APSs in one polarization

for each candidate function are listed in Table 1. Because

the truncated power-scaled Laplace distribution PDF has the

minimum RMSEs in both polarizations, we select it as the

modeling function for the clusters in APSs. The fitting func-

tion for a cluster at µ is expressed as

fLap(φ) = a

2b
exp

[

−|φ − µA,1|
b

]

, φ ∈
[

0◦, 360◦] (7)

where a and b are the power and scale parameter, respectively.

Second, we employ fLap(φ) to model the other clusters.

Suppose that there are IA significant clusters in an APS, the

parameters of fLap(φ) for the i-th cluster are denoted by µA,i,

aA,i, and bA,i for i = 1, 2, · · · , I . The determination of these

parameters will be discussed in details in the next subsection.

Third, since the scattered MPCs arrive at the RX at omni-

directional azimuth angles, we introduce a constant power

floor in the APS model to describe the uniform arrival of the

scattered MPC over the AoA range. Because the total power

of the significant clusters are
∑IA

i=1 aA,i, the angular power

density for the scattered MPCs is (1 −
∑IA

i=1 aA,i)/360.

In summary, we propose a cluster-based model for APS,

called lifted-superposed Laplace distribution (LS-Laplace)

function. The model is expressed as

fAPS (φ)=
IA

∑

i=1

aA,i

2bA,i
exp

[

−|φ − µA,i|
bA,i

]

+
(1 −

∑IA
i=1 aA,i)

360
,

φ ∈
[

0◦, 360◦] (8)

where (1 −
∑IA

i=1 aA,i)/360 is the power floor formed by

the scattered MPCs. We can ensure that the total power of

fAPS (φ) is normalized because
∫ 360
0 fAPS (φ)dφ = 1. The

LS-Laplace function combines the power-scaled truncated

Laplace distribution PDFs for the significant clusters and the

power floor for the scattered MPCs together. The modeling

functions for the APSs are also plotted in Fig. 4.

2) LOCALIZATION AND MODELING OF CLUSTERS

As described above, we have located and modeled the main

clusters in the APSs with the function fLap(φ). Without loss

of generality, the index of the main cluster in an APS is i = 1.

Thus, we have obtained the values of the parameters of µA,1,

aA,1 and bA,1 for each measured APS.

Furthermore, we propose an algorithm to identify all clus-

ters in the measured APSs. At first, we use a threshold to

determine the existence of a significant cluster that is

PC,th = p̂A(φ) + σ̂A, (9)

where p̂A(φ) and σ̂A are the average power and standard

deviation (STD) of p̂A(φ), respectively. When the APS power

is larger then PC,th at a certain AoA, there may be a cluster at

the direction with its center at this AoA.

Then we propose an iteration algorithm to identify and

model the clusters in an APS, as given in Algorithm 1. The

input parameters are themeasuredAPS, parameters of fLap(φ)

for the main cluster, and the power threshold given in (9). The

output results are the number of significant clusters and the

parameters of fLap(φ) for the other clusters.

Algorithm 1 Searching and Modeling for Clusters in an APS

Input: p̂A(φ), µA,1, bA,1, and PC,th;

Output: IA, µA,i, aA,i, and bA,i (i = 2, 3, · · · , I );
1: Set i = 1;

2: Set p̂A(φ) = 0 for (µA,1 −
√
2bA,1) ≤ φ ≤ (µA,1 +√

2bA,1);

3: while max
{

p̂A(φ)|φ ∈ [0◦, 360◦)
}

≥ Pth do

4: i = i+ 1;

5: Get µA,i = argmaxφ∈[0◦,360◦)
{

p̂A(φ)
}

;

6: Set p̂AC,i(φ) = p̂A(φ) for (µA,i −
√
2bA,1) ≤ φ ≤

(µA,i +
√
2bA,1);

7: Fit p̂AC,i(φ) by fLap(φ) in (7) using the minimal

RMSE criteria, and get aA,i and bA,i.

8: Set p̂A(φ) = 0 for (µi −
√
2b1) ≤ φ ≤ (µi +

√
2b1);

9: end while

10: Set IA = i.

We first remove the main cluster over the angular range

of
[

µA,1 −
√
2bA,1, µA,1 +

√
2bA,1

]

from the APS in Step 2.

We approximate the angular range of the main cluster by

2
√
2b1 where

√
2bA,1 is the STD of the fitting function.

In Step 5, we find the center of the next significant cluster,

µA,i, that has the maximum arriving power in the current

APS. As we can observe in Fig. 4, the angular spreads of

the clusters are similar with that of the main cluster in an

APS. Therefore, we extract the measured power spectrum

over the AoA range of
[

µA,i −
√
2bA,1, µA,i +

√
2bA,1

]

in

Step 6 and fit the cluster power spectrum, p̂AC,i(φ), by fLap(φ)

in Step 7. Then we remove the identified cluster from p̂A(φ)

in Step 8 and go back to Step 3 to find the next cluster.

The algorithm can find and model all the significant clusters

sequentially by the iterative operation.
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FIGURE 7. Frequency histograms and distribution PDFs of the parameters
of the APS model. In (a) and (b), the histograms are the measurement
results, and the curves are the fitting PDFs of the normal and LT-Normal
distributions, respectively. The blue dotted-dashed and red dashed
figures are for +45◦ and −45◦ polarizations, respectively.

3) DISTRIBUTIONS OF THE PARAMETERS IN THE

LS-LAPLACE MODEL

By using Algorithm 1, we identify 422 significant clusters

in the measured APSs in ±45◦ polarizations at the 24 RX

positions, and obtain the values of the parameters of aA,i,

bA,i, and µA,i. Fig. 7 presents the frequency histograms of

the parameters. The distributions of the parameters are deter-

mined based on these sample sets as follows.

1) The numbers of clusters, IA, in the 48 measured APSs

in ±45◦ polarizations are plotted in Fig. 7(a). We can

see that the cluster numbers follow the normal distribu-

tion well. Therefore we model IA as a normal random

variable and the distribution parameters obtained by

hypothesis test are listed in Table 2.

2) The distributions of the cluster directions (i.e., the

AoAs of the cluster centers, µA,i) in ±45◦ polariza-

tions are plotted in Fig. 7(b). Please note that the LOS

direction is about 250◦. As expected, the clusters have a
higher probability to arrive around the LOS direction.

The probability for clusters to occur within the AoA

range of [0◦, 220◦) is about 0.1 to 0.27, while the

probability in the AoA range of [220◦, 360◦] is from

0.21 to 0.6. Therefore, about 60% clusters arrive at

the RX within 120◦ around the LOS direction. The

clusters are generated by the direct propagation pen-

etrating obstacles and the reflections by the ground

and objects in front of the RX. The clusters in the

other AoA ranges are mainly generated by the wall

reflections behind the RX. The AoA range and number

of these clusters are larger but their power is much

smaller than the LOS cluster. Suggested by the empiri-

cal distributions in Fig.7(b), we propose to use the trun-

cated normal distribution with a constant probability

floor, named lifted-and-truncated normal (LT-Normal)

distribution, for µA,i in both ±45◦ polarizations. The

PDF is expressed as

fLT (φ)=
aµ,A√
2πσµ,A

exp

[

−
(

φ−µµ,A
)2

2σ 2
µ,A

]

+ 1 − aµ,A

360
,

φ ∈
[

0◦, 360◦] (10)

where
1−aµ,A
360

is the probability floor to represent the

cluster arrival at omni-directional AoAs.

3) We utilize exponential distribution to model the power

parameter, aA,i, as shown in Figs. 7(c) and (d). In the

measured APSs, the normalized power of most clusters

is below 0.1. As mentioned earlier, we identify 422 sig-

nificant clusters in the 48 APSs. Each APS has about

7 to 9 clusters and, considering the scattered MPCs,

the average power of a cluster is about 0.1. However,

since only a fewmost significant clusters contribute the

majority of the received power, the power of the other

clusters is well below 0.1. Therefore, the exponen-

tial distribution of the power parameter is reasonable.

Meanwhile, the distribution of aA,i indicates that the

power contribution by the scattered MPCs,
(1−

∑

aA,i)

360
,

is unignorable and the power floor is necessary in the

APS model. It is also revealed that the power arrival

is quite dispersive in the azimuth dimension because

of the numerous reflections and scattering in the UMa

O2I scenario. The exponential distribution PDFs for the

sample histograms are plotted in Figs. 7(c) and (d) and

the distribution parameters are listed in Table 2.

4) The histograms of the scale parameter, bA,i, are pre-

sented in Figs. 7(e) and (f). Suggested by the empirical

distributions, we consider the candidate models of nor-

mal, lognormal, and Gamma distributions. The results

show that the lognormal PDFs have the minimum

RMSEs for both ±45◦ polarizations. The parameters

of the lognormal distributions listed in Table 2. Since

the parameter bA,i is around 4◦, the angular spread

of an APS cluster (the STD of the fitting ) fLap(φ) is

approximately
√
2bA,i ≈ 5.7◦.

In summary, from the measured 48 APSs in this campaign,

we have obtained the LS-Laplace model for APS and the dis-

tributions of the model parameters for the UMa O2I scenario.

The model is given in (8) and the parameter distributions are

listed in Table 2.
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TABLE 2. APS and EPS modeling parameters.

D. STATISTICAL MODELING OF EPS

1) MODELING FUNCTION OF EPS

Similar to the APSs, the EPSs also contain three parts: a

main cluster at the direct propagation direction, the other

significant clusters distributed over the incident angles, and

the scattered MPCs, as shown in Fig. 6. Following the same

approach for the APS modeling, we establish the EPS model

by three steps.

First, to describe the clusters in EPS, we extract the main

clusters from the 48measured EPSs. According to the profiles

of the EPS clusters, we select the truncated Laplace, Cauchy,

and normal distribution PDFs to fit the power spectra of the

extracted main clusters. Since the cluster power is smaller

than one, we multiply the candidate functions by a power

parameter, aE . The RMSEs are listed in Table 1 and the

truncated power-scaled normal distribution PDF, denoted by

fNor (θ ), has theminimumRMSEs in both±45◦ polarizations.
Second, we locate and model all the clusters in the mea-

sured EPSswith fNor (θ ), using Algorithm 1. The input param-

eters are the measured EPS, p̂E (θ ), parameters for the main

cluster, µE,1 and σE,1, and the power threshold PC,th. The

output results are the number of significant clusters, JE , and

the parameters of fNor (θ ) for the other clusters includingµE,j,

aE,j, and σE,j for j = 2, 3, · · · , JE . Please note that the

angular range of an EPS cluster is approximated by 2σE,1 in

Algorithm 1.

Third, considering the scattered MPCs distributed over the

EoA range, we introduce a constant power floor in the EPS

model. The angular power density for the scattered MPCs is

(1 −
∑JE

j=1 aE,j)/180.

Finally, by combining the cluster fitting functions and

constant power floor, we propose the EPSmodel called lifted-

superposed normal distribution (LS-Normal) function that is

expressed

fEPS (θ )

=
JE
∑

j=1

aE,j√
2πσE,j

exp

[

− (θ − µE,j)
2

2σ 2
E,j

]

+
1 −

∑JE
j=1 aA,j

180
,

θ ∈
[

0◦, 180◦] (11)

where
1−

∑JE
j=1 aA,j

180
is the power floor. We ensure the total

power of fEPS (θ ) is normalized because
∫ 180
0 fEPS (θ )dθ = 1.

The best-fitting LS-Normal functions are plotted in Fig. 6.

FIGURE 8. Frequency histograms and distribution PDFs of the parameters
of the EPS model. In (a) and (b), the histograms are the measurement
results, and the curves are the fitting PDFs of the normal and LT-Normal
distributions, respectively. The blue dotted-dashed and red dashed
figures are for +45◦ and −45◦ polarizations, respectively.

2) DISTRIBUTIONS OF THE PARAMETERS OF THE

LS-NORMAL MODEL

From the 48 measured EPSs, we find 358 clusters and each

cluster power spectrum provides a sample of µE,j, aE,j,

and σE,j. The histograms of parameter samples are plotted

in Fig. 8. The distributions of the model parameters are deter-

mined as follows. The selected distribution PDFs are plotted

in Fig. 8 and the distribution parameters are listed Table 2.

1) The histogram of the cluster numbers, JE , in the

48 measured EPSs in ±45◦ polarizations are plotted

in Fig. 8(a). Using the hypothesis test, we model JE
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by the normal distribution and obtain the distribution

parameters.

2) The distributions of the centers of the EPS clusters,

µE,j in ±45◦ polarizations, are plotted in Fig. 8(b).

The LOS direction is about 90◦. About 70% significant

clusters arrive in the EoA range from 60◦ to 120◦. This
distribution is similar with that of the APS clusters

but is more concentrated. Meanwhile, we can see that

more clusters arrive within the EoA of 90◦ to 180◦ than
from 0◦ to 60◦. The ground reflection is richer than the
ceiling reflection, because the TX was higher than the

RX in this O2I scenario. Similar with the model for

µA,j, we model µE,j with the LT-Normal distribution

in (10) where the EoA range is [0◦, 180◦].
3) The histograms of aE,j are plotted in Figs. 8(c) and (d).

Themeasurement results suggest that aE,j in both±45◦

polarizations has the lognormal distribution. Compar-

ing with the exponential distribution of aA,i in the

azimuth dimension, the EPS clusters tend to have more

power than the clusters in the APSs. This may be

because the significant MPCs (e.g., reflected by the

ground) are more concentrated in the elevation dimen-

sion.

4) The STD, σE,j, also follow the lognormal distribution,

as shown in Figs. 8(e) and (f). Most samples are smaller

than 5◦ and smaller than
√
2bA,i in the azimuth dimen-

sion. This comparison also indicates that the power

arrival in EPS clusters is more concentrated.

In summary, we have obtained the modeling function for

EPS and the distributions of the model parameters for the

UMa O2I scenario according to the measured 48 EPSs. The

model is given in (11) and the parameter distributions are

listed in Table 2.

E. STATISTICAL MODELS OF ASA AND ESA

Based on the measured APS and EPS in ±45◦ polarizations

at each RX position, we calculate an ASA and ESA value

utilizing (2). Thus we obtain 24 ASA and ESA samples in

either polarization. Fig. 9 presents the frequency histograms

of the samples in±45◦ polarizations. Suggested by the shapes
of the histograms, we consider five candidate distributions:

lognormal, Gamma, Rayleigh, Weibull, and Nakagami distri-

butions. According to the minimal RMSE criteria, we select

the lognormal distribution to model both ASA and ESA in

±45◦ polarizations. The PDF for ASA is

fASA(s) = 1√
2πsσASA

exp

[

− (ln s− µASA)
2

2σ 2
ASA

]

, (12)

where µASA and σASA are the mean and STD of ASA in the

logarithmic domain. The lognormal model for ESA is defined

similarly with the parameters of µESA and σESA. The value of

the distribution parameters are listed in Table 3.

As shown in Figs. 9(a) and (b), the measured ASA has a

high probability to be larger than 20◦. The average ASA in

this O2I scenario is larger than that of the outdoor NLOS

FIGURE 9. Frequency histograms and distribution PDFs of ASA and ESA.

TABLE 3. ASA and ESA modeling parameters.

scenario [22]. This is due to the rich reflections in the indoor

environment. The reflections from the ground and walls

behind the RX leads to a large angular spread. As shown

in Figs. 9(c) and (d), most of the ESA samples are in the range

from 10◦ to 20◦ which is similar with the results in [23]. This

is expected because of the similarity of the RX surrounding

environments.

In addition, the means and STDs of the lognormal models

for ASA and ESA in −45◦ polarization are both slightly

larger than those in +45◦ polarization, as listed in Table 3.

This indicates that the angular spread in the −45◦ polarized

channel is larger and the power arrival is more dispersive.

This phenomenon may be caused by the surfaces of the

reflectors and scatterers in the propagation environments and

the radio wave impinging directions on the objects. However,

the difference is minor and the statistical characteristics in the

cross-polarized channels are consistent.

VI. MEASUREMENT RESULTS AND STATISTICAL MODELS

FOR TEMPORAL PROPAGATION

A. MEASUREMENT RESULTS OF PDPS

In this section, we investigate the channel characteristics in

the time domain. Since we employed the PN-sequence of

1,023 chips to probe the channels, the sliding correlation of

the received sounding signals with the PN-sequence provides

the temporal CIR with 1,023 delay bins. It is observed that

almost all the significant MPCs are within the 24 delay bins

following the first significant MPC. Hence we choose the
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FIGURE 10. Measured PDPs and three-phase models at the 2nd RX
position on each floor.

MPCs in the 24 delay bins in one CIR and thus the duration is

24 × 6.25 = 150 ns. From the 24 RX positions, we obtained

48 PDPs in ±45◦ polarizations, as described in Sec. IV-C.

Fig. 10 presents the normalized PDPs at the 2nd RX position

on each floor. We have two important observations.

First, the PDPs do not show clear clustering behavior and

there is only a single decaying pattern in every PDP. The

clustering behavior is not obvious comparing with those in

the industrial scenario [24]. In addition, the APSs and EPSs

have distinct clusters, as presented in Sec. V. This may be

because in the O2I scenario, the RX is in a close space sur-

rounded by walls and ceilings near by the RX. The significant

MPCs arrive at the RX within a small excess delay range.

Without sufficient differences in time of arrival, the clusters

are overlapped with each other. Therefore we can distinguish

the clusters in the APSs and EPSs in the space domain but

cannot in the PDPs in the time domain.

Second, the largest power arrivals occur at about 20 to

25 ns in the PDPs. The first arriving MPC should be the

direct propagation path penetrating the obstacles. However,

some reflected MPCs arrive at the RX later and are super-

posed together, increasing the arrived power. Consequently,

the superposition of the significant reflected MPCs generates

power arrival that is larger than and lags behind the direct

path.

TABLE 4. Distribution parameters of the parameters in the three-phase
model.

B. MODELING OF PDPS

According to the profiles in Fig. 10, an PDP can be divided

into three phases: the rising, dropping, and trailing phases.

First, the raising phase is from the beginning to the highest

peak of the PDP (the maximum power arrival at about 25 ns).

The power arrival during this phase should be formed by the

MPCs through the direct propagation paths penetrating the

obstacles and by the reflections on nearby walls and ground.

Second, the arriving power begins to decrease quickly from

the highest peak to the second peak (approximately at 50 ns).

This period is the dropping phase during which the power is

mainly from the significant MPCs reflected by the objects

further away from the RX or reflected twice by nearby

objects. Finally, beginning from the second peak, the PDP

is in the trailing phase (approximately from 50 to 150 ns).

In this phase, the PDP mainly comprises the scattered MPCs

generated by the objects in the surrounding environment.

As suggested by themeasured PDPs, we propose to use two

linear functions to model the rising and dropping phases and

a power function for the trailing phase to describe the gradual

power attenuation. The segmented function of the three-phase

model is expressed as

pD(τ ) =











k1τ + c1, τ ∈ [0, τH )

k2τ + c2, τ ∈ [τH , τS )

k3τ
d , τ ∈ [τS , τmax]

(13)

where τH and τS are the excess delays of the highest and sec-

ond peaks in the PDP, respectively. The best-fit functions are

plotted in Fig. 10.

Since we collect 24 PDPs for one polarization at the

RX positions, we obtain 24 samples of the parameters k1,

k2, k3, c1, c2, and d for a polarization by fitting the PDPs.

According to the hypothesis test, the samples follow the

normal distribution well and the corresponding distribution

parameters are listed in Table 4.

C. MEASUREMENT RESULTS AND MODELING OF DS

The DS for every RX position is calculated form the PDP

as discussed in Sec. III. Fig. 11 presents the CDFs of the

DS samples in ±45◦ polarizations at the 24 RX positions.

In order to find the distribution of DS, we fit five CDFs of

the lognormal, Gamma, Rayleigh, Weibull, and Nakagami

distributions to the empirical CDFs.
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FIGURE 11. Empirical CDF and Candidate distributions for DS.

FIGURE 12. Correlation coefficients of the channel propagation profiles
in ±45◦ polarizations.

The results show that the Rayleigh distribution has the

minimum RMSEs in both ±45◦ polarizations. The PDF of

the Rayleigh distribution for DS is expressed as

fDS (s) = s

σ 2
DS

exp

[

− s2

2σ 2
DS

]

, (14)

where σDS is the distribution parameter. The value of σDS for

the +45◦ and −45◦ polarized channels is 15.87 and 15.48,

respectively. The DSs in ±45◦ polarizations both follow the

Rayleigh distribution and the parameters are quite similar.

VII. POLARIZATION CHARACTERISTICS OF THE UMA O2I

CHANNELS

As presented in Secs. V and VI, the models for APS, EPS,

and PDP are the same for ±45◦ polarizations and the model

parameters have similar distributions. These results indicate

that the clustering behaviors in the spatial and temporal prop-

agation are consistent in the ±45◦ polarized channels. The

models for ASA, ESA, and DS also indicate that polarization

does not make considerable impact on the angular and delay

spreads of the channels. Therefore, the statistical properties

in both the space and time domains are consistent in ±45◦

polarizations.

In this subsection, we further compare the cross-polarized

channels by evaluating the correlation between the APSs,

EPSs, and PDPs in ±45◦ polarizations. The correlation coef-
ficients at the 24 RX positions are calculated using (5) and

plotted in Fig. 12. We can see that the correlation coefficients

of the APSs and EPSs are from 0.6 to 0.9 and those of PDPs

are from 0.75 to 0.9. The large correlation coefficients further

indicate that the channel propagation profiles and statistical

properties are consistent in ±45◦ polarizations.

VIII. CONCLUSION

This paper presents a measurement campaign in a typical

UMa O2I scenario at 3.5 GHz. The small and large-scale

channel parameters and the multipath propagation profiles

are obtained. The APS and EPS are modeled by the proposed

LS-Laplace and LS-Normal functions, respectively, which

include the significant clusters and power floor. The PDP

is fitted by a three-phase model. The ASA and ESA follow

the lognormal distribution and the DS has the Rayleigh dis-

tribution. We have also analyzed the reflection process of

the MPC clusters in the O2I environment. The propagation

profiles and statistical characteristics in ±45◦ polarizations

are coincident, indicating that polarization does not make a

significant impact. The statistical propagation models pro-

posed in this paper are established based on the field channel

measurement data. Therefore the models can be a reference

for the design and deployment of the 5G network in the

UMa O2I scenario. The propagation characteristics in the 5G

spectrum in various scenarios are still less explored and more

field channel measurements are required in future works. We

also plan to apply our radio propagation model to 5G system

simulations and analyze the sensitivity of network coverage

performance to various channel parameters.

REFERENCES

[1] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, ‘‘Massive

MIMO for next generation wireless systems,’’ IEEE Commun. Mag.,

vol. 52, no. 2, pp. 186–195, Feb. 2014.

[2] R. Zhang, Z. Zhong, J. Zhao, B. Li, and K. Wang, ‘‘Channel measure-

ment and packet-level modeling for V2I spatial multiplexing uplinks

using massive MIMO,’’ IEEE Trans. Veh. Technol., vol. 65, no. 10,

pp. 7831–7843, Mar. 2016.

[3] Study on 3D Channel Model for LTE (Release 12), document TR 36.873

V12.4.0, 3GPP Technical Specification Group Radio Access Networks,

Mar. 2017.

[4] Y. Xiao, X. Du, J. Zhang, and S. Guizani, ‘‘Internet protocol television

(IPTV): The killer application for the next generation Internet,’’ IEEE

Commun. Mag., vol. 45, no. 11, pp. 126–134, Nov. 2007.

[5] A. Kammoun, H. Khanfir, Z. Altman, M. Debbah, and M. Kamoun, ‘‘Pre-

liminary results on 3D channel modeling: From theory to standardization,’’

IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1219–1229, Jun. 2014.

[6] V. Kristem, S. Sangodoyin, C. U. Bas, M. Kaske, J. Lee, C. Schneider,

G. Sommerkorn, J. Zhang, R. Thoma, and A. F. Molisch, ‘‘3D MIMO

outdoor to indoor macro/micro-cellular channel measurements and mod-

eling,’’ in Proc. IEEE Global Commun. Conf. (GLOBECOM), San Diego,

CA, USA, Dec. 2015, pp. 1–6.

[7] X.-Y. Wang, B. Li, X. Yuan, J.-W. Dou, and Y. Li, ‘‘Elevation angle

research in three-dimension channel model using ray-tracing,’’ in Proc.

URSI Gen. Assembly Sci. Symp. (URSI GASS), Beijing, China, Aug. 2014,

pp. 1–4.

[8] C. A. L. Diakhate, J.-M. Conrat, J.-C. Cousin, and A. Sibille, ‘‘Millimeter-

wave outdoor-to-indoor channel measurements at 3, 10, 17 and 60 GHz,’’

in Proc. Eur. Conf. Antennas Propag. (EuCAP), Paris, France, Mar. 2017,

pp. 1798–1802.

[9] R. Zhang, L. Cai, X. Lu, P. Yang, and J. Zhou, ‘‘Elevation domain measure-

ment and modeling of UMa uplink channel with UE on different floors,’’

in Proc. Int. Conf. Comput., Netw. Commun. (ICNC), Garden Grove, CA,

USA, Feb. 2015, pp. 679–684.

[10] R. He, O. Renaudin, V. Kolmonen, K. Haneda, Z. Zhong, B. Ai, and

C. Oestges, ‘‘A dynamic wideband directional channel model for vehicle-

to-vehicle communications,’’ IEEE Trans. Ind. Electron., vol. 62, no. 12,

pp. 7870–7882, Dec. 2015.

[11] P. Tang, J. Zhang, Y. Sun, M. Zeng, Z. Liu, and Y. Yu, ‘‘Clustering in

3D MIMO channel: Measurement-based results and improvements,’’ in

Proc. IEEE Veh. Technol. Conf. (VTC-Fall), Boston, MA, USA, Sep. 2015,

pp. 1–6.

123000 VOLUME 7, 2019



R. Zhang et al.: Dual-Polarized Spatial–Temporal Propagation Measurement and Modeling in UMa O2I Scenario at 3.5 GHz

[12] J. Huang, C.-X. Wang, R. Feng, J. Sun, W. Zhang, and Y. Yang, ‘‘Multi-

frequency mmWave massive MIMO channel measurements and charac-

terization for 5G wireless communication systems,’’ IEEE J. Sel. Areas

Commun., vol. 35, no. 7, pp. 1591–1605, Jul. 2017.

[13] J. Chen, X. Yin, X. Cai, and S. Wang, ‘‘Measurement-based massive

MIMO channel modeling for outdoor LoS and NLoS environments,’’ IEEE

Access, vol. 5, pp. 2126–2140, 2017.

[14] M. Shafi, M. Zhang, A. L. Moustakas, P. J. Smith, A. F. Molisch,

F. Tufvesson, and S. H. Simon, ‘‘Polarized MIMO channels in 3-D: Mod-

els, measurements and mutual information,’’ IEEE J. Sel. Areas Commun.,

vol. 24, no. 3, pp. 514–527, Mar. 2006.

[15] A. Karttunen, J. Järveläinen, S. L. H. Nguyen, and K. Haneda, ‘‘Modeling

the multipath cross-polarization ratio for above-6 GHz radio links,’’ 2018,

arXiv:1804.00847. [Online]. Available: https://arxiv.org/abs/1804.00847

[16] C. Ling, X. Yin, R. Müller, S. Häfner, D. Dupleich, C. Schneider, J. Luo,

H. Yan, and R. Thomä, ‘‘Double-directional dual-polarimetric cluster-

based characterization of 70–77 GHz indoor channels,’’ IEEE Trans.

Antennas Propag., vol. 66, no. 2, pp. 857–870, Feb. 2018.

[17] V. Degli-Esposti, V.-M. Kolmonen, E. M. Vitucci, and P. Vainikainen,

‘‘Analysis and modeling on co- and cross-polarized urban radio propaga-

tion for dual-polarized MIMO wireless Systems,’’ IEEE Trans. Antennas

Propag., vol. 59, no. 11, pp. 4247–4256, Nov. 2011.

[18] The Prediction of the Time and the Spatial Profile for Broadband Land

Mobile Services Using UHF and SHF Bands, document Rec. P.1816, ITU,

2015.

[19] A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Mater-

nia, O. Queseth, M. Schellmann, H. Schotten, H. Taoka, H. Tullberg,

M. A. Uusitalo, B. Timus, and M. Fallgren, ‘‘Scenarios for 5G mobile

and wireless communications: The vision of the METIS project,’’ IEEE

Commun. Mag., vol. 52, no. 5, pp. 26–35, May 2014.

[20] R. Zhang, S. Wang, X. Lu, W. Duan, and L. Cai, ‘‘Two-dimensional

DoA estimation for multipath propagation characterization using the array

response of PN-sequences,’’ IEEE Trans. Wireless Commun., vol. 15, no. 1,

pp. 341–356, Jan. 2016.

[21] R. O. Schmidt, ‘‘Multiple emitter location and signal parameter estima-

tion,’’ IEEE Trans. Antennas Propag., vol. AP-34, no. 3, pp. 276–280,

Mar. 1986.

[22] R. Zhang, X. Lu, J. Zhao, L. Cai, and J. Wang, ‘‘Measurement and model-

ing of angular spreads of three-dimensional urban street radio channels,’’

IEEE Trans. Veh. Technol., vol. 66, no. 5, pp. 3555–3570, May 2017.

[23] R. Zhang, H. Xu, B. Li, Z. Zhong, and C. Li, ‘‘Elevation power spectrum

measurement and interference analysis of UMa I2O uplink channels,’’ in

Proc. Int. Conf. Comput., Netw. Commun. (ICNC), Honolulu, HI, USA,

USA, Feb. 2019, pp. 936–942.

[24] Y. Ai, M. Cheffena, and Q. Li, ‘‘Power delay profile analysis and modeling

of industrial indoor channels,’’ in Proc. Eur. Conf. Antennas Propag.

(EuCAP), Lisbon, Portugal, Apr. 2015, pp. 1–5.

RUONAN ZHANG (S’09–M’10) received the

B.S. and M.Sc. degrees from Xi’an Jiaotong Uni-

versity, Xi’an, China, in 2000 and 2003, respec-

tively, and the Ph.D. degree from the University

of Victoria, Victoria, BC, Canada, in 2010, all in

electrical and electronics engineering.

He was an IC Design Engineer with Motorola

Inc., and Freescale Semiconductor Inc., Tianjin,

China, from 2003 to 2006. Since 2010, he has been

with the Department of Communication Engineer-

ing, Northwestern Polytechnical University, Xi’an, where he is currently a

Professor. His current research interests include wireless channel measure-

ment and modeling, architecture and protocol design of wireless networks,

and satellite communications.

Dr. Zhang was a recipient of the New Century Excellent Talent Grant from

the Ministry of Education of China. He has served as a Local Arrangement

Co-Chair for the IEEE/CIC International Conference on Communications

in China (ICCC), in 2013, and the Industry Track and Workshop Chair

for the IEEE International Conference on High Performance Switching and

Routing (HPSR), in 2019. He was an Associate Editor of the Journal of

Communications and Networks.

HAOCHEN XU received the B.S. degree in

communication engineering from Northwestern

Polytechnical University, Xi’an, China, in 2017,

where he is currently pursuing the master’s degree

with the Department of Communication Engi-

neering. His research interests include wireless

channel measurement and modeling, array sig-

nal processing, and machine learning in wireless

communications.

XIAOJIANG DU received the B.S. and M.S.

degrees from Tsinghua University, Beijing, China,

in 1996 and 1998, respectively, and the M.S. and

Ph.D. degrees from the University of Maryland,

College Park, in 2002 and 2003, respectively, all

in electrical engineering.

He is currently a Professor with the Depart-

ment of Computer and Information Sciences, Tem-

ple University, PA, USA. His research interests

include security, wireless networks, and systems.

He has authored over 250 journals and conference articles in his research

areas and a book published by Springer. He has been awarded more than five

million U.S. dollars research grants by the U.S. National Science Foundation

(NSF), Army Research Office, Air Force, NASA, PA, and Amazon. He

won the Best Paper Award from the IEEE GLOBECOM 2014 and the Best

Poster Runner-Up Award from ACM MobiHoc 2014. He has served as the

Lead Chair for the Communication and Information Security Symposium

at the IEEE International Communication Conference (ICC) 2015. He has

served as the Co-Chair for Mobile andWireless Networks Track of the IEEE

Wireless Communications and Networking Conference (WCNC) 2015. He

is a Life Member of the ACM.

DEYUN ZHOU received the B.S., M.S., and Ph.D.

degrees from Northwestern Polytechnical Uni-

versity, in 1985, 1988, and 1991, respectively.

His research interests include predictive control,

adaptive control, intelligent control theory and its

applications, complex system modeling and sim-

ulation, multi-objective optimization, information

fusion, and complex network modeling and its

applications.

MOHSEN GUIZANI (S’85–M’89–SM’99–F’09)

received the bachelor’s (Hons.) and master’s

degrees in electrical engineering, and the master’s

and Ph.D. degrees in computer engineering from

Syracuse University, Syracuse, NY, USA, in 1984,

1986, 1987, and 1990, respectively. He is currently

a Professor with the Department of Computer

Science and Engineering, Qatar University, Qatar.

Previously, he has served as the Associate Vice

President of graduate studies with Qatar Univer-

sity, the Chair for the Computer Science Department, Western Michigan

University, and the Chair for the Computer Science Department, University

of West Florida. He also served in academic positions at the University of

Missouri-Kansas City, University of Colorado Boulder, Syracuse University,

and Kuwait University. His research interests include wireless communica-

tions and mobile computing, computer networks, mobile cloud computing,

and security and smart grids. He currently serves on the editorial board of

several international technical journals, and the Founder and the Editor-in-

Chief of Wireless Communications and Mobile Computing journal (Wiley).

He is the author of nine books and more than 400 publications in refereed

journals and conferences. He was a Guest Editor for a number of special

issues in the IEEE journals and magazines. He also served as a member,

the Chair, and the General Chair for a number of international conferences.

He was selected as the Best Teaching Assistant by Syracuse University

for two consecutive years. He received the best research award from three

institutions. He was the Chair of the IEEE Communications SocietyWireless

Technical Committee and the TAOS Technical Committee. He has served as

a Distinguished Speaker for the IEEE Computer Society, from 2003 to 2005.

VOLUME 7, 2019 123001


