
 Open access  Journal Article  DOI:10.1109/T-WC.2008.070540

Dual-polarized wireless communications: from propagation models to system
performance evaluation — Source link 

Claude Oestges, Bruno Clerckx, Maxime Guillaud, Merouane Debbah

Institutions: Université catholique de Louvain, Samsung, Alcatel-Lucent

Published on: 01 Oct 2008 - IEEE Transactions on Wireless Communications (IEEE)

Topics: Spatial multiplexing, MIMO, Fading, Multiplexing and Rayleigh fading

Related papers:

 Performance of multiantenna signaling techniques in the presence of polarization diversity

 Modeling and Capacity of Polarized MIMO Channels

 Polarized MIMO channels in 3-D: models, measurements and mutual information

 Polarization diversity in mobile communications

 Propagation modeling of MIMO multipolarized fixed wireless channels

Share this paper:    

View more about this paper here: https://typeset.io/papers/dual-polarized-wireless-communications-from-propagation-
30whcrwgp5

https://typeset.io/
https://www.doi.org/10.1109/T-WC.2008.070540
https://typeset.io/papers/dual-polarized-wireless-communications-from-propagation-30whcrwgp5
https://typeset.io/authors/claude-oestges-4mozebx2xh
https://typeset.io/authors/bruno-clerckx-3pyp47h84e
https://typeset.io/authors/maxime-guillaud-3hyf5dyza4
https://typeset.io/authors/merouane-debbah-39mh1tw4yr
https://typeset.io/institutions/universite-catholique-de-louvain-2abwpwl8
https://typeset.io/institutions/samsung-thaomp2z
https://typeset.io/institutions/alcatel-lucent-2bmvvq5s
https://typeset.io/journals/ieee-transactions-on-wireless-communications-17i0pt4f
https://typeset.io/topics/spatial-multiplexing-2l9d618e
https://typeset.io/topics/mimo-3diwujtl
https://typeset.io/topics/fading-90jrdub3
https://typeset.io/topics/multiplexing-3lvoe0f7
https://typeset.io/topics/rayleigh-fading-ti2dxgpn
https://typeset.io/papers/performance-of-multiantenna-signaling-techniques-in-the-51esiono45
https://typeset.io/papers/modeling-and-capacity-of-polarized-mimo-channels-4v0nwojiwf
https://typeset.io/papers/polarized-mimo-channels-in-3-d-models-measurements-and-4ruy7ye6ms
https://typeset.io/papers/polarization-diversity-in-mobile-communications-34d1s1rb9i
https://typeset.io/papers/propagation-modeling-of-mimo-multipolarized-fixed-wireless-4nhb9pj7de
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/dual-polarized-wireless-communications-from-propagation-30whcrwgp5
https://twitter.com/intent/tweet?text=Dual-polarized%20wireless%20communications:%20from%20propagation%20models%20to%20system%20performance%20evaluation&url=https://typeset.io/papers/dual-polarized-wireless-communications-from-propagation-30whcrwgp5
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/dual-polarized-wireless-communications-from-propagation-30whcrwgp5
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/dual-polarized-wireless-communications-from-propagation-30whcrwgp5
https://typeset.io/papers/dual-polarized-wireless-communications-from-propagation-30whcrwgp5


IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 10, OCTOBER 2008 1

Dual-Polarized Wireless Communications:
From Propagation Models to

System Performance Evaluation
Claude Oestges, Bruno Clerckx, Maxime Guillaud, and Mérouane Debbah

Abstract—In this paper, we address the potential benefits of
dual-polarized arrays in multi-antenna wireless systems. After an
extensive literature overview of experimental data, we present a
new and simple analytical framework to model dual-polarized
Rayleigh and Ricean fading channels for arbitrary array sizes.
The model relies on a limited number of physical parameters,
such as the channel spatial correlations, the channel co-polar and
the cross-polar ratios and the antenna cross-polar discrimination.
Then, we investigate the multiplexing advantage of dual-polarized
transmissions through the evaluation of the ergodic mutual
information, for both TITO and MIMO systems. Finally, the
performance of two space-time coding schemes (Alamouti O-
STBC and uncoded Spatial Multiplexing) is evaluated via a
detailed analysis of the pairwise error probability.

Index Terms—MIMO, polarization, propagation, mutual in-
formation.

I. INTRODUCTION

IN RECENT years, increasing attention has been paid to

Multiple-Input Multiple-Output (MIMO) broadband wire-

less communication systems. However, antenna spacings of

at least half a wavelength at the subscriber unit and ten

wavelengths at the base station are usually required for achiev-

ing significant multiplexing and/or diversity gains. Hence,

the use of possibly co-located orthogonally-polarized anten-

nas appears as a space- and cost-effective alternative [1].

Indeed, orthogonal polarizations ideally offer a much better

separation between channels, through a large decorrelation at

both transmit (Tx) and receive (Rx) sides. In this paper, we

consider both Two-Input Two-Output (TITO) and MIMO dual-

polarized systems, and we use as a reference the corresponding
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TITO or MIMO uni-polarized system. In the TITO case, both

the transmit and receive arrays are made of two spatially

separated antennas with orthogonal polarizations, in order to

combine both spatial and polarization diversity/multiplexing.

The reference scenario is then a TITO configuration with simi-

larly separated uni-polarized antennas. MIMO nr×nt schemes

(for even values of nt and nr) are modeled by considering

that the transmit (resp. receive) array is made of nt/2 (resp.

nr/2) dual-polarized sub-arrays, extending over a given length

Lt (resp. Lr). The reference scenario is then a nr × nt uni-

polarized scheme based on antenna arrays extending over the

same lengths. As can be noticed, we carry out comparisons

by keeping constant the dimensions of the MIMO matrix.

Indeed, these dimensions equal the number of required RF

chains, which are the most expensive components in a system.

Note that using two co-located antennas with orthogonal

polarizations at both ends of the link already constitute a

2 × 2 system. Another definition, motivated by the spatial

extension of the antenna arrays, consists in considering the

above scenario as a Single-Input Single-Output (SISO) system

with dual-polarized antennas. This last definition, which has

often been used in the literature, however leads to unfairly

comparing a uni-polarized 2×2 system with a so-called 2×2×
two-polarization system, although the latter is actually a 4×4
scheme, which needs to be compared with a uni-polarized 4×4
system if we want to keep the number of RF chains equal.

Despite a number of recent studies focusing on spatial chan-

nel models, only a limited number of papers have addressed

the polarization issue [1]–[9], theoretically or experimentally,

mainly because the (de-)coupling effect between orthogonal

polarizations is a complex mechanism. On the one hand, a

number of geometry-based models are available for simulating

dual-polarized transmissions, the most recent model being

used by the 3GPP group [6]. Although these models are

very useful in simulating signal processing techniques, they

do not allow for analytical manipulations (e.g. in expresions

of the mutual information or the error probability). One

the other hand, analytical formalisms are needed to design

space-time coding and precoding schemes. One can make a

comparison with single-polarized schemes: whereas geometry-

based models (e.g. the one-ring model of [10]) have been

heavily used in simulations, analytical approaches such as

the Kronecker [11] or eigenbeam [12] models have proved

very useful in code design. Hence, there is an obvious appeal

to develop an analytical formalism to model dual-polarized

1536-1276/08$25.00 c© 2008 IEEE
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multi-antenna channels. The first goal of this paper is precisely

to provide a sufficiently general analytical framework using

a reduced number of physically sound parameters. Based on

this model, it is then possible to clearly identify the benefits

of multiple polarizations from a performance point of view.

This constitutes the second objective of this paper.

In Section II, we carry out a thorough literature overview

of experimental or electromagnetic results regarding dual-

polarized channels. These results are then used in Section III

to build an analytical model combining the effects of space

and polarization separations. In Section IV, we investigate

whether dual-polarized systems may possibly increase the

system throughput. Finally, in Section V, we analyze the

performance of Orthogonal Space-Time Block Coding (O-

STBC) and Spatial Multiplexing from an error probability

viewpoint.

In this paper, E{x} = x̄ represents the expectation of

random variable x, ∗ stands for element-wise conjugation, H ,

for conjugate transpose, x → a indicates that x tends toward

a, vec(A) is the operator that forms a vector from successive

columns of matrix A, |x| is the absolute value of x, ‖A‖F

is the Frobenius norm of A, det {A} is the determinant of

matrix A, Tr {A} is the trace of matrix A, ⊙ is the Hadamard

product, ⊗ is the Kronecker product, In stands for the n× n
identity matrix, and 1n×m denotes a n × m matrix with unit

entries.

II. CHANNEL CHARACTERIZATION OF DUAL-POLARIZED

SYSTEMS

A. Mechanisms and Parameters

Ideally, the cross-polar transmissions (e.g. from a vertically-

polarized Tx antenna to a horizontally-polarized Rx antenna)

should be equal to zero. This is actually not the case owing to

two depolarization mechanisms: the use of imperfect antenna

cross-polar isolation (XPI) and the existence of a cross-polar

ratio (XPR) in the propagation channel. Both effects combine

to yield a global cross-polar discrimination (XPD).

The first mechanism is well-known in antenna theory and

is easily accounted for by means of the cross-polar antenna

pattern. Analytically, this can be approximated by a coupling

matrix at transmit or receive sides

Mt =

[
1

√
χa,t√

χa,t 1

]

and Mr =

[
1

√
χa,r√

χa,r 1

]

,

where the scalar antenna XPI is defined as χ−1
a,t and χ−1

a,r

at Tx and Rx respectively. Note that antenna XPI is the

only mechanism affecting line-of-sight (LOS) components.

Scattered components (either coherent or non coherent) are

affected by both XPI and XPR, although these are well

separated effects if the antenna cross-coupling is represented

by Mt and Mr.

Throughout this paper, channel matrices are denoted differ-

ently, depending on the scenario and the antenna quality, as

detailed below:

1) H× designates the dual-polarized channel matrix com-

bining spatial separation, dual-polarized arrays using

antennas with infinite XPI;

2) H×,a = MrH×Mt designates the dual-polarized chan-

nel matrix combining spatial separation, dual-polarized

arrays and finite antenna cross-polar isolation (the sub-

script a means that antenna XPIs are accounted for);

3) H designates the uni-polarized channel matrix (all an-

tennas are identically polarized) accounting only for

spatial correlations at both ends,

4) G is the 2 × 2 matrix representing the dual-polarized

TITO channel for orthogonally-polarized co-located an-

tennas (there are no spatial correlation effects) with

infinite XPI, whereas Ga = MrGMt is the equivalent

matrix, but for antennas with finite XPI.

Furthermore, for Ricean fading channels, the above matrices

can be decomposed into a coherent part (we then write H̄×,

H̄, Ḡ, etc. in agreement with our notation) and a non-coherent

Rayleigh-fading part, proportional to H̃×, H̃, G̃, etc.

Quite arbitrarily, we decided to model the downlink channel

(from the base station to the user terminal). Naturally, the up-

link channel matrix (from the user terminal to the base station)

is simply obtained by transposition of the downlink channel

matrix. For dual-polarized arrays with co-located vertically

and horizontally-polarized (abbreviated as VH) antennas, we

write the downlink channel matrix as

G =

[
gvv gvh

ghv ghh

]

. (1)

Denoting by pij = |gij |2 the instantaneous gain on channel

ij, we may define various cross-polar ratios [1] (XPDs could

be similarly defined based on Ga rather than G):

1) uplink cross-polar ratios (uplink XPR)

XPRUv = pvv/pvh (2)

XPRUh = phh/phv (3)

2) downlink cross-polar ratios (downlink XPR),

XPRDv = pvv/phv (4)

XPRDh = phh/pvh. (5)

We may also define a unique co-polar ratio as

CPR = pvv/phh. (6)

Clearly, all these parameters are not independent. In particular,

the following relationships hold true:

CPR =
XPRUv

XPRDh

=
XPRDv

XPRUh

. (7)

The above definitions only concern channel gains. To de-

fine the phase relationships, G can be characterized by its

correlation matrix, given by E
{

vec
(
G

H
)
vec

(
G

H
)H

}

. The

diagonal elements of this 4×4 matrix are the various average

gains E{pij}, while the off-diagonal elements express the

different co-, cross- and anti-polar correlations. The cross-

polar correlations (XPC) correspond to the classical transmit

and receive correlations, the correlation between gvv and ghh

is defined here as the co-polar correlation (CPC), and the

correlation between gvh and ghv, as the anti-polar correlation

(APC).
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B. Overview of Experimental Results

Most experimental results provide a partial characterization

of Ga, or even of H×,a, providing values of the global XPD

on the up- or downlink, and rarely of the CPR.1 Hence,

it is sometimes difficult to isolate the various contributions

(antenna XPI, channel XPR and spatial correlations). However,

in most cases, one may expect that experimental arrays are

made of co-located antennas with a large XPI, and that only

significant results (i.e. with XPD lower than the XPI) are

reported in these papers. Hence, this implies that for these

values, XPD ≈ XPR, and it should be possible to characterize

G, at least partially, from the results summarized below. This

is the reason why we use XPR denominations in the following,

but it should be reminded that these are formally XPD values.

1) Outdoor Scenarios: As far as uplink single-input

multiple-output (SIMO) results are concerned, these usually

consider a vertically polarized transmitter and a base sta-

tion using an orthogonally-polarized array with vertical and

horizontal polarizations (VH) or 45-degree tilted polarization

(slant scheme). For a VH reception, the measured parameters

are therefore XPRUv and the receive cross-polar correlation:

• the experimental uplink XPR in [13] reaches values of

6 dB and 7.4 dB respectively in macro- and microcells

(at 900 MHz), with mean envelope cross-polar (receive)

correlation coefficients around 0.1;

• in [14], the uplink XPR is about 12 dB in suburban areas

and 7 dB in urban areas at 463 MHz, while the power

receive correlation is quasi zero;

• in [15], at 1800 MHz, the power receive correlations are

below 0.3 and the uplink XPR values are around 7 to 9

dB in various urban and suburban non-LOS scenarios.

In [16], experimental data recorded at 1800 MHz in urban and

suburban microcells with handheld terminals highlight that

• the uplink XPR levels approximately equal 7 dB in urban

areas and vary from 8 to 16 dB in suburban areas for

vertical Tx polarization, whereas XPRUh varies from -4

to -1 dB in urban areas and from 2 to -6 dB in suburban

areas,

• the estimated corresponding CPR levels vary between 5.5

and 4 dB in urban areas and from 3 to 11 dB in suburban

areas,

• the estimated downlink XPR values are independent from

the Tx polarization, and equal approximately 1.5 dB and

5 dB respectively in urban and suburban areas.

For ±45 degree reception scheme, it is found [14] that the

XPR is reduced to 0 dB, but at the expense of a larger receive

power correlation (≈ 0.44).

Other experiments have dealt with handheld terminals [17]

and have yielded XPR values as low as 2 dB, with mean

correlation levels below 0.1 for a VH reception scheme, and

around 0.15 for a slant reception scheme. The low measured

XPR is explained in the paper by interaction between the

antenna and the human head.

Let us now consider dual-polarized (MIMO) results. In [1],

non-LOS picocell scenarios have been investigated at 1900

1Many denominations also exist: some papers define XPD/XPR values as
horizontal-to-vertical ratios, etc. In all cases, we translated the denominations
used in these papers into our own denominations.

MHz. However, the use of directional antenna patterns has

resulted in different results depending on the array orientation

(the orthogonal arrays were placed along a vertical or a

horizontal baseline). For the former case, we have that

XPRUv ≈ XPRDh >> XPRDv ≈ XPRUh , (8)

implying that the CPR is close to 0 dB via (7), and that, on the

average, pvh << phv. For the horizontal baseline, the situation

is as follows:

XPRUv ≈ XPRDv >> XPRUh ≈ XPRDh , (9)

implying a large CPR and pvh ≈ phv on the average.
In [18], downlink measurement results are presented for a

VH-to-VH array scheme at 5.3 GHz in various non-line-of-

sight urban environments (corresponding to Rayleigh fading

situations). Values of XPRUv range from 7.6 (macrocells) to

8 dB (microcells) while the values of XPRUh range from

2.3 (macrocells) to 6.9 dB (microcells). Meanwhile, corre-

sponding CPR values range from 1.6 (macrocells) to 0.4 dB

(microcells). Surprisingly, that translates approximately into

downlink XPR values quasi-independent of the Tx polariza-

tion, especially in microcells (the agreement in microcells is

almost perfect). Estimated values of XPRDv = XPRDh range

from 4 to 6 dB in macrocells and equal 7.5 dB in microcells.

Transmit and receive cross-polar correlations are almost all

equal to 0.3, but no indication is given about the co- and anti-

polar correlations.
Results in [19] concern rural areas at 2.5 GHz. The XPR

averaged over XPRDv and XPRDh (in dB scale) varies from

2 to 19 dB, with a median of 8.5 dB.
In [9], macrocell propagation data at 1.9 GHz suggest that

the ratio between the mean values of pvv and phh (averaged

over the small scale fading) is close to 0 dB, with a standard

deviation of 3 dB. Note that this ratio is different from the

average ratio between the instantaneous values of pvv and

phh. As an example, it is observed that the instantaneous

CPR can be as significant as ±15 dB, due to spatial fading

decorrelation. The downlink XPR varies from 5 to 15 dB,

with an average value of 9 dB, and decreases with the path-

loss, reflecting higher XPR in LOS than in NLOS scenarios.

The co-, anti-, and cross-polar correlations are very low, but

one must mention that co- and anti-polar correlations include a

spatial decorrelation effect, as antennas are not all co- located.
2) Indoor Scenarios: In [1], in non-LOS picocells at 1800

MHz, downlink XPR values are about 6.5 dB, irrespective

of the Rx polarization, and CPR levels range from -4 to 4

dB. That implies that uplink XPR levels clearly depend on

the Tx polarization. In [20], XPR values as low as 3 dB are

measured in an office environment at 2.4 GHz. In [21], cross-

polar correlations are found to be very small in a typical indoor

environment.
In [22], uplink XPR values at 5.2 GHz vary between 7

and 15.7 dB (for XPRUv ) and 8.6 to 14.4 (for XPRUh ). Fur-

thermore, the difference XPRUv − XPRUh is not necessarily

positive, but may vary from -3 to +3 dB.
In [7], [8], measurements have been carried out at 5.1

GHz using a VH scheme at both link ends. The CPR

varies from 2 to 6 dB, and the vertical XPR levels are

higher than the horizontal XPR values, although the difference
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[XPRUv − XPRUh ], which can be as high as 8 dB, is sensibly

higher than [XPRDv − XPRDh ], which varies between 1 and

4 dB. All correlation coefficients are on average below 0.6,

but show a large standard deviation. Finally, indoor results of

[9] are very similar to their outdoor results reported above,

but with average downlink XPR around 7 dB.

3) Summary: Table I, which summarizes the most complete

results, reveals that there is a clear lack of data for dual-

polarized channels. Hence, it is somehow not straightforward

to infer general conclusions from the above analysis. Yet, some

results ( [7], [8], [15], [16], [18], [20], [21] and [1]-indoor)

share, at least approximately, the following properties:

• the average CPR usually varies between 0 and 6 dB in

outdoor environments (with maximum values of 11 dB in

suburban areas), and between -4 and 6 dB indoors; this

non-zero value can be easily explained by the polarization

selectivity of the reflection and diffraction processes [4],

[20],

• there is a clear difference between the vertical and

horizontal uplink XPR levels, which are given according

to (7) once the downlink XPR and CPR are known,

• from the data, the downlink XPR levels XPRDv and

XPRDh are often equal (or at least close), with measured

values of 4 to 8 dB in NLOS outdoor cases, up to 15 to

19 dB in LOS urban and rural areas; 3 to 8 dB in NLOS

indoor cases, and up to 15 dB in LOS indoor scenarios

(note that when the downlink XPR values have not been

measured, we have estimated them based on (7)),

• the cross-polar correlations (XPC) are usually small,

• the co- and anti-polar correlations (CPC/APC) seem to

be small (but the results are really scarce).

C. Output from Theoretical Models

Electromagnetic models yield some precious insight into

dual-polarized propagation. As an example, a ray-tracing tool

[23] has been applied in a macrocellular urban environment at

2.4 GHz, with the receiver moving along a street perpendicular

to the link axis. The ray-tracing tool accounts for reflections up

to the third order, as well as wedge and corner diffraction. It is

found that the narrowband channel for a 2× 2 dual-polarized

VH-to-VH transmission has the following properties:

• the CPR is lognormally distributed with an average value

of 4 to 7 dB,

• the downlink XPRs are identical for both v and h polar-

izations, being lognormally distributed with an average

value of 12 dB,

• the transmit and receive cross-polar correlations are

small,

• the co-polar and anti-polar correlations vary between 0.8

and 0.9.

Naturally, ray-tracing cannot account for smaller and non-

specular obstacles, which are expected to provide lower CPR

and XPR levels. Other papers have reached similar conclu-

sions, using rough scattering models [24]. Note that the first

three properties are in line with the experimental campaigns,

while the last one is not (but there are only a few available

data to compare with).

III. CHANNEL MODELS FOR DUAL-POLARIZED SYSTEMS

A. Dual-Polarized TITO Rayleigh Fading Channels

In Rayleigh fading, it has been observed [25, p. 109] that

the spatial correlation properties (modeled by H̃ and R )

are independent of the polarization, especially in macro- and

microcells, provided that the direction spectra are similar

for all antennas. This namely implies that, if antennas are

directional, they should be similarly oriented. In other words,

the CPR (resp. XPR) measured on H̃× should be equal to

the CPR (resp. XPR) measured on G̃. If this assumption

holds true, the dual-polarized Rayleigh channel matrix with

spatially-separated antennas may be rewritten as

H̃× = H̃⊙ X̃. (10)

In (10), H̃ is modeled as a uni-polarized correlated Rayleigh

channel, while X̃ models both the correlation and power im-

balance impacts of the channel depolarization. It is important

to note that it would be incorrect to write H̃× = H̃ ⊙ G̃.

Indeed, this expression contains twice a fading term, in both

H̃ and G̃. Hence, we have introduced a new matrix X̃, whose

goal is to model only the power imbalance and the phase-shifts

between the four channels. The relationship between X̃ and

G̃ is however very simple, as G̃ = g X̃, where g is a scalar

complex Gaussian term representing fading.

In (10), multipath fading is entirely modeled by H̃, using

the classical expression [26]

vec(H̃H) = R
1/2 vec(H̃H

w ), (11)

where H̃w is the classical i.i.d. complex Gaussian matrix and

R = E{vec(H̃H)vec(H̃H)H} is a 4 × 4 spatial correlation

matrix,

R =

⎡

⎢
⎢
⎣

1 t∗ r∗ s∗1
t 1 s∗2 r∗

r s2 1 t∗

s1 r t 1

⎤

⎥
⎥
⎦

(12)

with t and r being the transmit and receive antenna

correlations, and s1 = E
{

H̃(1, 1)H̃∗(2, 2)
}

and s2 =

E
{

H̃(1, 2)H̃∗(2, 1)
}

being the cross-channel correlations

[27].

To model X̃ for VH-to-VH downlink transmissions, we

resort to the results of Section II. Hence, a fairly general model

accounting for the generally observed trends summarized

above and satisfying (7) is given by

vec
(
X̃

H
)

=
⎡

⎢
⎢
⎣

1
√

µχϑ∗ √
χσ∗ √

µδ∗1√
µχϑ µχ

√
µχδ∗2 µ

√
χσ∗

√
χσ

√
µχδ2 χ

√
µχϑ∗

√
µδ1 µ

√
χσ

√
µχϑ µ

⎤

⎥
⎥
⎦

1/2

vec
(
X̃

H
w

)
,

(13)

where

• µ and χ represent the inverse of, respectively, the co-polar

and the downlink cross-polar ratios (CPR and XPRDv =
XPRDh) and are assumed to be constant in this paper,

• σ and ϑ are the receive and transmit correlation co-

efficients for co-located antennas (i.e. the correlation
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TABLE I
OVERVIEW OF EXPERIMENTAL RESULTS (XPR AND CPR VALUES ARE EXPRESSED IN DECIBELS)

Scenario Freq. [GHz] XPRUv XPRUh CPR XPRD XPC CPC/APC

Suburban [14] 0.46 12 - - - ≈ 0 -

Urban [14] 0.46 7 - - - ≈ 0 -

Macrocell [13] 0.9 6 - - - 0.1 -

Microcell [13] 0.9 7.4 - - - 0.1 -

Suburban/urban NLOS [15] 1.8 7 to 9 - - - ≤ 0.3 -

Urban microcell [16] 1.8 7 -4 to -1 4 to 5.5 1.5 - -

Suburban microcell [16] 1.8 8 to 16 -6 to -2 3 to 11 5 - -

Urban NLOS microcell [18] 5.3 8 2.3 1.6 7.5 ≈ 0.3 -

Urban NLOS macrocell [18] 5.3 7.6 6.9 0.4 4 to 6 ≈ 0.3 -

Urban macrocell [9] 1.9 9 9 0 9 ≈ 0 ≈ 0
Indoor [9] 1.9 7 7 0 7 ≈ 0 ≈ 0

Indoor NLOS picocell [1] 1.8 2.5 to 10.5 - -4 to 4 6.5 - -

Indoor picocell [22] 5.2 7 to 15.7 8.6 to 14.4 - - - -

Indoor corridor/hall [7], [8] 5.1 7 to 9.5 1.5 to 6.7 2.5 to 6 8 to 11 (v) ≤ 0.6 ≤ 0.6

2 to 6 (h)

coefficients between vv and hv, hh and hv, vv and vh
or hh and vh),

• δ1 and δ2 are the co- and anti-polar correlation coeffi-

cients,

• X̃w is a 2×2 matrix whose four elements are independent

circularly symmetric complex exponentials of unit ampli-

tude, ejφk , k = 1, . . . , 4, the angles φk being uniformly

distributed over [0, 2π).

Note that this model does not make any simplification on

the polarization-induced correlations, but only assumes that

the downlink XPD levels are independent from the transmit

polarization. Values of µ and χ naturally depend on the

considered environment, as outlined in Section II.

In the performance analysis, we consider (only for sim-

plicity) that the cross-polar correlation coefficients σ and ϑ
are equal to zero, as often observed experimentally. As far as

δ1 and δ2 are concerned, our overview does not allow us to

assign definite values. Hence, we will consider only two cases

in this paper, which seem both reasonable assumptions from

the literature overview: |δ1| = 1, |δ2| = 1, as found by the

ray-tracing simulations [23], or δ1 = δ2 = 0, as suggested by

a few results as well as some recent studies [28] (note that the

system performance is usually not very sensitive to correlation

for correlations lower than 0.6).

Since X̃ is a random matrix, the two eigenvalues of X̃X̃
H ,

denoted as η1 and η2 are also random, and can be explicitly

written as a function of the deterministic parameters µ, χ,

δ1 and δ2 on the one hand, and of the random phase shifts

φ1 to φ4 on the other hand. As an example, if µ = 1, these

eigenvalues read as

η1,2 = A ±
√

A2 + B, (14)

where

A = 1 + χ + χ|δ2|
√

1 − |δ2|2 cos
(
φ2 − φ3 + arg{δ2}

)

+ |δ1|
√

1 − |δ1|2 cos
(
φ1 − φ4 + arg{δ1}

)
, (15)

and

B = 2χ|δ2||δ1| cos
(
2φ1 − 2φ2 + arg{δ1} − arg{δ2}

)

+ χ2|δ1|
√

1 − |δ2|2 cos
(
2φ1 − φ2 − φ3 + arg{δ1}

)

+ 2χ|δ2|
√

1 − |δ1|2 cos
(
φ1 − 2φ2 + φ4 − arg{δ2}

)

+ 2χ2
√

1 − |δ2|2
√

1 − |δ1|2 cos
(
φ1 − φ2 − φ3 + φ4

)

− 2|δ1|
√

1 − |δ1|2 cos
(
φ1 − φ4 + arg{δ1}

)
− 1 − χ2

− 2χ2|δ2|
√

1 − |δ2| cos
(
φ2 − φ3 + arg{δ2}

)
. (16)

Note that if δ1 = δ2 = 0, the eigenvalues further simplify into

η1,2 = 1 + χ ±
√

2χ(1 + cosψ), (17)

where ψ = φ1 − φ2 − φ3 + φ4 is defined as a random angle

uniformly distributed over [0, 2π).
Interestingly, the model of (10) differs from the model used

in [29], where H̃× is decomposed by extracting the impact of

depolarization on the channel gains, yielding

H̃× = Ĥ ⊙
∣
∣X̃

∣
∣, (18)

where
∣
∣X̃

∣
∣ depends on the polarization scheme. What is

important to notice is that Ĥ still includes two correlation

mechanisms (space and polarization). Hence, it is generally

not equal to an equivalent uni-polarized transmission matrix

H̃ (i.e. with the same antenna spacings, all polarizations being

then identical). As a result, Ĥ is some hybrid matrix, modeling

the correlation aspects of both spacing and polarization. In

that sense, it is impossible to use this model to compare uni-

and dual-polarized schemes. By contrast, our model operates

the decomposition into two matrices based on the physical

mechanisms (space versus polarization) rather than on their

impact (gain versus correlation).

B. Dual-Polarized TITO Ricean Fading Channels

Defining the Ricean K-factor on the vv reference trans-

mission as K , and assuming the LOS is the only coherent

contribution (typically, in mobile scenarios), the global Ricean

fading channel matrix, also accounting for antenna XPIs, is
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given by

H×,a = MrH̄×Mt
︸ ︷︷ ︸

H̄×,a

+

√

1

1 + K
MrH̃×Mt
︸ ︷︷ ︸

H̃×,a

(19)

where H̄× reads, for a system having the same VH polariza-

tion scheme at both Tx and Rx, as

H̄× � X̄ =

√

K

1 + K

[
ejςvv 0

0 ejςhh

]

, (20)

with ςvv and ςhh related to the baseline array orientation

(e.g. ςvv = ςhh = 0 for broadside arrays at both ends, so

X̄ =
√

K
1+K I2 in such cases). Note that (19) does not

result in equal K-factors for all channels, as the powers of

the individual Rayleigh channels are not equal via (13).

C. Dual-Polarized MIMO Fading Channels

As already mentioned, we analyze particular nr × nt

schemes (for even values of nt and nr) for which the Tx

and Rx array are made of nt/2 and nr/2 dual-polarized

sub-arrays (each sub-array is identical and is made of two

co-located antennas with orthogonal polarizations). If we

further assume that all sub-arrays are identically oriented, the

Rayleigh channel matrix is easily written as

H̃×,nr×nt
= H̃nr/2×nt/2 ⊗ X̃, (21)

where the covariance of H̃nr/2×nt/2 is the spatial covariance

related to the spacing between the sub-arrays, and X̃ is the

2 × 2 dual-polarized matrix modeled by (13). Again, X̃ only

models the differential attenuation and the correlated phase-

shifts between the four dual-polarized channels. Note that

(21) is valid if and only if the joint transmit-receive direction

spectrum is identical for all sub-arrays (they “see” the same

scattering environment). This implies e.g. that the channel as

seen by PIFA-like designs [30] cannot be modeled by (21).
The Ricean contribution is represented (for a LOS compo-

nent and broadside linear arrays) by

H̄×,nr×nt
= 1nr/2×nt/2 ⊗ X̄. (22)

Eventually, antenna XPIs are included in the above model as

follows

H×,a,nr×nt
= 1nr/2×nt/2 ⊗ MrX̄Mt

+

√

1

1 + K
H̃nr/2×nt/2 ⊗ MrX̃Mt.(23)

Finally, a few words about power normalization [28]. The

above channel models consider that the channel energy on

the vv link is one, so that the receive SNR does not depend

on the amount of depolarization. If we use a fixed transmit

power constraint, we define the so-called transmit SNR on the

vv reference link as ρ0, so that the receive SNR is equal to

ρ = ρ0
1

1 + χa,r

K + 1

K + χ + 1

1

1 + χa,t
, (24)

which expresses that if the transmit power is fixed, the receive

SNR will decrease for smaller XPI and/or XPR. Naturally,

this normalization issue only appears when comparing dual-

polarized transmissions with different XPI and/or XPR.

IV. MUTUAL INFORMATION OF DUAL-POLARIZED

CHANNELS

A. TITO Channels

For very high K-factors, the channel matrix only depends on

the Ricean component. Assuming that the Tx antennas have a

perfect cross-polar isolation (χa,t = 0), we have that

H×,a ≈ MrH̄× =

[
1

√
χa,r√

χa,r 1

]

. (25)

Let us consider two particular cases, i.e. χa,r = 0 (infinite

XPI) and χa,r = 1 (no isolation). The mutual information

with equal power allocation and fixed transmit power is then

given by

I×(χa,r = 0) = 2 log2

(

1 +
ρ0

2

)

(26)

I(χa,r = 0) = log2(1 + 2ρ0) (27)

I×(χa,r = 1) = I(χa,r = 1) = log2(1 + ρ0), (28)

where I× refers to dual-polarized schemes, and I, to uni-

polarized schemes. It is clear that, for both uni- and dual-

polarized schemes, the mutual information increases with

antenna XPI, as a small XPI means a constant channel energy

but a lower rank for dual-polarized schemes, a and a constant

rank (of one) but a lower channel energy for uni-polarized

schemes. This also implies that for large XPI (i.e. χa,r → 0),

the mutual information is larger for dual-polarized schemes

than for uni-polarized schemes when the SNR is larger than

a given threshold [26].

We assume now a finite K-factor, and use the model of

(13) to highlight the impact of co- and cross-polar ratios on

a mutual information upper bound. For convenience, we take

χa,t = χa,r = 0 and consider two scenarios:

• spatially correlated antennas and δ1 = 1, |δ2| = 1,

H̄× =
√

K
K+1 I2

H̃× =

[
1

√
µχ ej(φ+arg{δ2})

√
χ ejφ √

µ

]

⊙ H̃

(29)

where H̃ is given by (11) and φ is a random angle

uniformly distributed over [0, 2π),
• well separated (uncorrelated) antennas,

H̄× =
√

K
K+1 I2

H̃× =

[
1

√
µχ√

χ
√

µ

]

⊙ H̃w

(30)

which is valid irrespective of δ1 and δ2.

Two alternative scenarios (i.e. δ1 = δ2 = 0 with close or well

separated antennas) do not need being considered, as they are

indeed both covered by the second scenario (all three scenarios

cause elements of H̃× to become fully uncorrelated). For both

analyzed scenarios, we resort to an upper bound [27] of the

ergodic mutual information with equal power allocation Ī,

outlined by

Ī ≤ log2(κ̄) = log2

(

E
{

det

[

I2 +
ρ

2
H×H

H
×

]})

, (31)

where the receive SNR is given by ρ = ρ0(K+1)/(K+χ+1).
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Fig. 1. Mutual information of uni- and dual-polarized 2 × 2 channels for
different K-factors, correlations and cross-polar ratios

In the considered cases, the upper bounds become

log2(κ̄) = log2

{

1 +
ρ

2

[
2K + (1 + µ)(1 + χ)

K + 1

]

+

(
ρ

2

)2
1

(K + 1)2

[

K
(

K + 2ℜ[s1δ1]
√

µ + µ + 1
)

+ µ
(

1 + |s1δ1|2 + χ2(1 + |s2δ2|2)
)]
}

. (32)

We first observe that if K → ∞, (32) approaches the result

of (26) in both considered cases. Then we also note that the

mutual information is higher in the first scenario (i.e. |δ1| =
1, |δ2| = 1). Indeed, in the latter, the channel matrix behaves

as a diagonal channel (for µ = χ = 1 and K = 0, H× = H̃×

is exactly a 2 × 2 diagonal channel [31]). Note however that

the difference between achieved mutual informations in both

scenarios remains limited. Finally, for a fixed transmit SNR ρ0,

the ergodic mutual information of Rayleigh channels decreases

in (32) as µ and χ increase, as illustrated in Figure 1 as far as

χ is concerned (taking µ = 0.5 and close antennas with |δ1| =
|δ2| = 1). This is caused by the fixed transmit power constraint

(the opposite result is found when keeping the receive SNR

constant). We also observe that dual-polarized transmissions

only offer a larger mutual information for Ricean or highly

correlated Rayleigh fading channels.

B. MIMO Channels

When considering an arbitrary array size, the number of

parameters of the spatial correlation matrix rapidly increases.

To obtain meaningful results, we therefore make the following

simplifications:

• we use the same number of antennas on both sides (nt =
nr = n),

• we restrict our analysis to uniform linear arrays of lengths

Lt and Lr (respectively for the transmit and receive

arrays), with antenna correlations being exponential func-

tions of the spacings (dt and dr) [32], i.e. they are

proportional to e−dt/∆t at the Tx side, and e−dr/∆r

at the Rx side (∆t and ∆r are characteristic distances

proportional to the spatial coherence distance at each

side),

• we take K = 0,

• we finally assume that the spatial correlation matrix R is

separable (i.e. the well-known Kronecker model may be

used to represent R).

As a consequence of the above assumptions, the Tx and Rx

correlation matrices are respectively expressed as

Θt =
⎡

⎢
⎢
⎢
⎣

1 e−dt/∆t . . . e−(n−1)dt/∆t

e−dt/∆t 1 . . . e−(n−2)dt/∆t

...
. . .

e−(n−1)dt/∆t e−(n−2)dt/∆t . . . 1

⎤

⎥
⎥
⎥
⎦

(33)

Θr =
⎡

⎢
⎢
⎢
⎣

1 e−dr/∆r . . . e−(n−1)dr/∆r

e−dr/∆r 1 . . . e−(n−2)dr/∆r

...
. . .

e−(n−1)dr/∆r e−(n−2)dr/∆r . . . 1

⎤

⎥
⎥
⎥
⎦

,

(34)

while the full correlation matrix simply reads as R = Θr⊗Θt.

It can also be shown that the determinant of, say, Θt reads as

detΘt =

(

1− e−2dt/∆t

)n−1

=

(

1− e−
2Lt

(n−1)∆t

)n−1

, (35)

where dt = Lt/(n− 1) is the element spacing for n antennas

over a length Lt.

Since our goal is to compare uni-polarized with dual-

polarized systems, we consider two systems: the reference

system is made of uni-polarized arrays with n equi-spaced

antennas whereas the second system is made of n/2 dual-

polarized equi-spaced sub-arrays. The channel matrices there-

fore read as

• for the first system,

H̃ = Θ
1/2
r H̃wΘ

1/2
t , (36)

• for the second system,

H̃× = Θ
′1/2
r H̃

′
wΘ

′1/2
t

︸ ︷︷ ︸

H̃′

⊗X̃, (37)

Note that Θr, H̃w and Θt are n × n matrices, while Θ
′
r,

H̃′
w and Θ

′
t are n/2×n/2. It is also interesting to note that

H̃×H̃
H
× = H̃′H̃′

H ⊗ X̃X̃
H (38)

Finally, we may arbitrarily use a fixed receive or transmit

power constraint, as our goal is to compare uni- and dual-

polarized schemes with given χ and µ.

1) High SNR Analysis: The mutual information of channel

H using an identity transmit covariance is well approximated
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at high SNR [26] by

I ≈ log2det

[
ρ

n
HH

H

]

. (39)

For uni-polarized systems, (39) can be developed as follows:

I ≈ log2

{(
ρ

n

)n

det

[

H̃H̃
H

]}

, (40)

= n log2

(
ρ

n

)

+ log2 detΘr + log2 detΘt

+ log2 det

[

H̃wH̃
H
w

]

(41)

= n log2

(
ρ

n

)

+ (n − 1) log2

[

1 − e−
2Lt

(n−1)∆t

]

+ (n − 1) log2

[

1 − e−
2Lr

(n−1)∆r

]

+ log2 det

[

H̃wH̃
H
w

]

. (42)

The ergodic mutual information is then given by

Ī = E{I} = n log2

(
ρ

n

)

+ (n − 1) log2

[
(
1 − e−

2Lt
(n−1)∆t

)(
1 − e−

2Lr
(n−1)∆r

)
]

+
1

log 2

( n∑

k=1

n−k∑

l=1

1

l
− nγ

)

, (43)

where γ ≈ 0.57721566 is Euler’s constant. For dual-polarized

systems in the high SNR regime, we have:

I× ≈ n log2

(
ρ

n

)

+
n

2
log2

(
η1η2

)

+ 2 log2 det

[

H̃
′
w

(

H̃
′
w

)H
]

+ 2

(
n

2
− 1

)

log2

[

1 − e−
4Lt

(n−2)∆t

]

+ 2

(
n

2
− 1

)

log2

[

1 − e−
4Lr

(n−2)∆r

]

, (44)

so that the ergodic mutual information becomes

Ī× = E{I×} = n log2

(
ρ

n

)

+
n

2
E
{

log2

(
η1η2

)}

+
2

log 2

( n/2
∑

k=1

n/2−k
∑

l=1

1

l
− n

2
γ

)

+ 2

(
n

2
− 1

)

log2

[

1 − e−
4Lt

(n−2)∆t

]

+ 2

(
n

2
− 1

)

log2

[

1 − e−
4Lr

(n−2)∆r

]

. (45)

We are now able to calculate the normalized difference

∆Ī/n = (Ī× − Ī)/n assuming that n is large. To simplify

the notations, let us define ξt = n∆t/Lt and ξr = n∆r/Lr,

which can be thought of as normalized antenna densities at

Tx and Rx. This yields

∆Ī/n ≈ 1 + log2

[

1 − e−4/ξt

1 − e−2/ξt

]

+ log2

[

1 − e−4/ξr

1 − e−2/ξr

]

+
1

2
E
{

log2

(
η1η2

)}

. (46)

Furthermore, if δ1 and δ2 are sufficiently small (typi-

cally, lower than 0.25), numerical evaluations show that

E
{

log2

(
η1η2

)}

≈ 0, irrespective of χ and µ. As an example,

if δ1 = δ2 = 0 and µ = 1, the term
∣
∣
∣0.5 E

{

log2

(
η1η2

)}
∣
∣
∣ is

always lower2 than 7 · 10−3 for 0 ≤ χ < 1: it can therefore

be neglected with respect to the first term in (46), which is

always equal to 1. For low δ1 and δ2, (46) is therefore well

approximated by

∆Ī/n ≈ 1 + log2

[

1 − e−4/ξt

1 − e−2/ξt

]

+ log2

[

1 − e−4/ξr

1 − e−2/ξr

]

(47)

2) Arbitrary SNR Analysis: At arbitrary SNR, the asymp-

totic mutual information of uni-polarized spatially correlated

channels is well-known, and can be calculated using the

Stieltjes transform [33]. Alternative methods can also be used

(see [32] as an example). We eventually obtain that the

asymptotic average mutual information per receive antenna

Ī/n is given by

Ī
n

=
1

n
log2 det(In+βtΘr)+

1

n
log2 det(In+βrΘt)−

1

ρ
βtβr,

(48)

where βt and βr are the solutions of
⎧

⎨

⎩

βt = ρ
nTr

[

ΛΘt

(
In + βrΛΘt

)−1
]

βr = ρ
nTr

[

ΛΘr

(
In + βtΛΘr

)−1
] (49)

and ΛΘt
and ΛΘr

are diagonal matrices containing the

eigenvalues of Θt and Θr. Both correlation matrices have

the form

Θ =

⎛

⎜
⎜
⎜
⎝

1 ̟ . . . ̟n−1

̟ 1 . . . ̟n−2

...
...

. . .
...

̟n−1 ̟n−2 . . . 1

⎞

⎟
⎟
⎟
⎠

, (50)

and it is known (see [34, p. 38]) that the eigenvalues of Θ

converge uniformly (as n → ∞) to

λΘ(x) =

∞∑

k=0

̟kejk2πx +

∞∑

k=1

̟ke−jk2πx (51)

=
1

1 − ̟ej2πx
+

̟e−j2πx

1 − ̟e−j2πx
(52)

for x ∈ [0, 1] and ̟ = e−
dt
∆t or e−

dr
∆r . Therefore, the

asymptotic ergodic mutual information per antenna is given

2Using Jensen’s inequality to obtain an analytical upper-bound is not
adequate here, as the upper-bound is very loose.
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by limn→∞ Ī/n

=

∫ 1

0

log2

[

1 +
αt

1 − e−
dr
∆r ej2πx

+
e−

dr
∆r αte

−j2πx

1 − e−
dr
∆r e−j2πx

]

dx

+

∫ 1

0

log2

[

1 +
αr

1 − e−
dt
∆t ej2πx

+
e−

dt
∆t αre

−j2πx

1 − e−
dt
∆t e−j2πx

]

dx

− 1

ρ
αtαr, (53)

where αt and αr are solutions of

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αt = ρ

∫ 1

0

1

1−e
−

dt
∆t ej2πx

+ e
−

dt
∆t e−j2πx

1−e
−

dt
∆t e−j2πx

1 + αr

1−e
−

dt
∆t ej2πx

+ αre
−

dt
∆t e−j2πx

1−e
−

dt
∆t e−j2πx

dx

αr = ρ

∫ 1

0

1

1−e
−

dr
∆r ej2πx

+ e
−

dr
∆r e−j2πx

1−e
−

dr
∆r e−j2πx

1 + αt

1−e
−

dr
∆r ej2πx

+ αte
−

dr
∆r e−j2πx

1−e
−

dr
∆r e−j2πx

dx.

(54)

For dual-polarized schemes, assume first that the eigen-

values of X̃X̃
H are fixed. In this case, the n eigenvalues

of H̃×H̃
H
× can be expressed as the product of the n/2

eigenvalues of H̃′H̃′
H

by η1 and η2 respectively. Hence, we

may decompose the conditional ergodic mutual information

per antenna as

Ī×
n

∣
∣
∣
∣
η1,η2

=
1

2

∫

log2

[

1 + ρη1λ
]

pλ(λ) dλ

+
1

2

∫

log2

[

1 + ρη2λ
]

pλ(λ) dλ, (55)

where λ designates the eigenvalues of H̃′H̃′
H

/n and pλ(λ) is

the limit probability density of λ when n → ∞. The latter can

be quite easily evaluated, e.g. as described in [32]. When η1

and η2 are random, the quantities ρη1 and ρη2 can be thought

of as randomly varying effective SNRs. The randomness is

represented by the four phase-shifts φk , k = 1, . . . , 4, which

are uniformly distributed over [0, 2π). The ergodic mutual

information per antenna is finally given by

Ī×
n

=
1

32π4

∫ 2π

0

. . .

∫ 2π

0
2∑

k=1

{
∫

log2

[

1 + ρηkλ
]

pλ(λ) dλ

}

dφ1 . . . dφ4. (56)

Simulation results are illustrated in Figure 2, which assumes

that ξt = ξr = ξ and that δ1 = δ2 = 0. The minimum

normalized antenna density ξmin for which ∆Ī/n ≥ 0 is

plotted for various values of χ (ranging from 0 to 0.9). The

value of ξmin decreases as the SNR increases, and reaches

its asymptotic value of 2.27 at high SNR. Note that the

approximation of (47) is indeed well verified, in the sense that

ξmin is quasi-independent of χ at high SNR. The impact of

χ is also pretty intuitive: for small XPR values, uni-polarized

schemes remain attractive for larger densities, as the dual-

polarized transmissions are heavily penalized by the energy

loss, especially at low SNR levels. At low SNR, it is indeed

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

18

SNR [dB]

ξ
m

in

increasing χ

Fig. 2. Normalized antenna density ξmin above which dual-polarization
should be favored as a function of the SNR (χ−1 is the channel XPR, χ ∈
{0, 0.1, 0.3, 0.5, 0.7, 0.9} and δ1 = δ2 = 0).

well known that the mutual information is essentially linked to

the channel energy [26]. Finally, note that the above discussion

would yield the same values if one had considered the transmit

SNR.

V. AVERAGE PAIRWISE ERROR PROBABILITY IN

DUAL-POLARIZED TITO CHANNELS

We are now interested in the average pairwise error prob-

ability (PEP) as a function of the SNR ρ, i.e. P (C,E) rep-

resents the probability that the receiver decodes the codeword

E = [e0 . . . eT−1] instead of codeword C = [c0 . . . cT−1] (T
is the duration of the space-time block code). In 2 × 2 dual-

polarized Rayleigh and LOS Ricean slow fading channels, the

expressions of the PEP [35] are given by

P (C,E) =
1

π

∫ π/2

0

r(CR
×,a)∏

i=1

(
1 + Ξλi

(
CR×,a

))−1
exp

[

−ΞKvec
(
H̄

H
×,a

)H

(
Inr

⊗ Ë
) (

Inrnt
+ ΞCR×,a

)−1
vec

(
H̄

H
×,a

)]

dβ (57)

where Ξ = ρ/(4(1 + K) sin2 β), CR×,a
= R×,a

(
Inr

⊗ Ë
)
,

R×,a is the correlation matrix of vec
(

H̃×,a

)

and Ë =

(C− E) (C − E)H
. In this paper, we restrict our analysis to

two simple schemes:

• the Alamouti O-STBC (T = 2), which extends the

principle of transmit/receive diversity,

• the Spatial Multiplexing scheme, which consists in send-

ing different data streams over each antenna, thereby

increasing the system throughput.

In Rayleigh fading channels with vertical and horizontal an-

tennas at both ends, neglecting antenna XPI (χa,t = χa,r ≈ 0)
and using the same models as those used when estimating the

mutual information (see Section IV), we may write the dual-
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polarized correlation matrix as

R× =

⎡

⎢
⎢
⎣

1 0 0 s∗1δ
∗
1

√
µ

0 µχ s∗2δ
∗
2
√

µχ 0
0 s2δ2

√
µχ χ 0

s1δ1
√

µ 0 0 µ

⎤

⎥
⎥
⎦

.

(58)

A. Performance of Orthogonal Space-Time Block Coding

Restricting our analysis to the Alamouti scheme, the code-

word matrix is given by

C =
1√
2

[
c0 −c∗1
c1 c∗0

]

(59)

where c0 and c1 are two symbols of a given constellation,

and we denote the codeword errors as d0 = (c0−e0)/
√

2 and

d1 = (c1 − e1)/
√

2.
1) Rayleigh Fading Channels: In Rayleigh fading channels,

the matrix CR(×)
is rewritten for O-STBC as

CR(×)
= R(×)

[
|d0|2 + |d1|2

]
(60)

where the notation R(×) means that the relationship is valid

for both R in (12) and R× in (58). Therefore, the impact

of the propagation channel on the error probability is directly

given by the four eigenvalues of the correlation matrix. To

minimize the average PEP, it is sufficient to maximize the

following Chernoff bound [35],

det
(

I4 +
ρ

4
CR(×)

)

= det
(
I4 + ρeR(×)

)

where we define for better legibility an effective SNR as ρe =
ρ
[
|d0|2 + |d1|2

]
/4. Dual-polarization is then preferred when

det (Inrnt
+ ρeR×) > det (Inrnt

+ ρeR) . (61)

In the high SNR regime, the condition simply becomes

det (R×) > det (R) . (62)

Note however that the SNR level for which one reaches the

so-called high SNR regime depends on the eigenvalues of R×.

Hence, the high SNR regime assumption might not be realistic

when χ and/or µ are small, i.e. when some eigenvalues of

R× are small. The above conditions are easily expressed in

terms of the correlation coefficients, as well as µ and χ. As

an example, let us consider a Kronecker-structured channel

uncorrelated at the receiver (hence, r = s1 = s2 = 0). When

µ = 1 (i.e. when co-polarized waves are equally attenuated),

the above conditions are respectively rewritten as

(1 + ρe)
2(1 + χρe)

2 >

(1 + ρe)
4 + ρ2

e|t|2
[

ρ2
e|t|2 − 2(1 + ρe)

2
]

(63)

and

|t| >
√

1 − χ2. (64)

A similar condition on |r| would be found for Kronecker-

structured channels uncorrelated at the transmitter. This in-

dicates that dual-polarization can increase the performance

at high spatial transmit/receive correlation levels, despite the

reduction of the average energy of the channel caused by

χ. Naturally, the higher χ, the lower the transmit/receive

correlation for which dual-polarized schemes outperform uni-

polarized schemes. Note also that transmit and receive corre-

lations equally affect the performance of diversity schemes. It

might also seem sensible to use the effective diversity order

Ndiv as a natural metric to decide whether dual-polarized

systems should be preferred to uni-polarized systems [36].

Defining

Ndiv =

[

Tr
{
R
}

‖R‖F

]2

, (65)

the condition under which dual-polarized transmissions (with

same polarization scheme at both Tx and Rx) perform better

than uni-polarized transmissions is given

• if δ1 = 1 and |δ2| = 1 by

(1 + µ + µχ + χ)2

1 + µ2 + µ2χ2 + χ2 + 2µ(|s1|2 + χ2|s2|2)
>

4

1 + |t|2 + |r|2 + |s1|2+|s2|2

2

, (66)

• if δ1 = δ2 = 0 by

(1 + µ + µχ + χ)2

1 + µ2 + µ2χ2 + χ2
>

4

1 + |t|2 + |r|2 + |s1|2+|s2|2

2

.

(67)

If we consider the same example as above (r = s1 = s2 = 0
and µ = 1), (66) and (67) are both rewritten as

|t| >
1 − χ

1 + χ
. (68)

This condition is actually looser than (64) with respect to

favoring dual-polarized transmissions, as it only implies that

the number of degrees of freedom offered by dual-polarized

channels be higher than that offered by uni-polarized channels.

It does not imply that the error probabililty is lower. When
1−χ
1+χ < |t| ≤

√

1 − χ2, dual-polarized schemes exhibit a

larger diversity order, but are still penalized by the energy

loss since Tr{R×} < Tr{R}.
2) Ricean Fading Channels: We analyze this case assuming

that the Ricean component is the LOS, that the K-factor is

high (so that the Rayleigh component can be neglected) and

that the transmit antenna XPI is large enough to be neglected.

The performance solely depends on the Frobenius norm of the

coherent component. Naturally, this norm is always smaller

for dual-polarized schemes (since χa,r ≤ 1). The same

conclusion is reached if we consider the effective diversity

order (neglecting the Rayleigh component): Ndiv = 2K for

uni-polarized transmissions, while Ndiv = (2 + χa,r)K/2 for

dual-polarized systems. Therefore, the use of dual-polarized

transmissions is not recommended for diversity schemes in

Ricean channels.

B. Performance of Spatial Multiplexing

For a simple uncoded spatial multiplexing scheme, we have

(C − E) (C− E)H =

[
|d2

0| d0d
∗
1

d∗0d1 |d1|2
]

(69)

1) Rayleigh Fading Channels: Given (69), the rank of both

CR and CR×
is two, with their two non-zero eigenvalues λ1,2
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Fig. 3. Performance of QPSK Spatial Multiplexing for uni- (solid lines) and
dual-polarized (dashed lines) transmissions as a function of t or r.

reading as

λ1,2 =
a + d ±

√

(a − d)2 + 4|b|2
2

(70)

with

• for uni-polarized schemes

a = |d0|2 + |d1|2 + 2ℜ[td0d
∗
1] (71)

b = r(|d0|2 + |d1|2) + s1 d0d
∗
1 + s2 d∗0d1 (72)

d = a, (73)

• for dual-polarized schemes

a = |d0|2 + µχ|d1|2 (74)

b =
√

µ(s1δ1 d0d
∗
1 + s2δ2 χ d∗0d1) (75)

d = χ|d0|2 + µ|d1|2. (76)

An estimate of the average symbol error rate may be easily

obtained by weighting the average PEP over the different

possible symbols, using a union bound approximation. Various

simulation results are illustrated in Figure 3 for a QPSK modu-

lation, as a function of t (assuming that r = s1 = s2 = 0) or as

a function of r (assuming that t = s1 = s2 = 0), for a constant

receive SNR ρ = 15 dB. Note that the comparison between

various dual-polarized channels should be made with care, as

a fixed transmit power constraint would vary the receive SNR.

Yet, the comparison between each uni-polarized channel and

each dual-polarized channel does not depend on the power

constraint, as the channel depolarization is constant for each

comparison.

Considering first uni-polarized systems (solid lines), we

observe that transmit correlation is more harmful than receive

correlation, as already noticed in [37]. As for the use of

dual-polarized arrays (dashed lines), it is clear that these are

only beneficial with respect to uni-polarized schemes when

the transmit and/or receive correlations are higher than a

certain level. This level is directly related to the CPR and

XPR. The smaller µ and/or χ, the larger this correlation level.
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Fig. 4. Performance of QPSK Spatial Multiplexing in various Ricean
channels as a function of Rx antenna XPI for a transmit SNR ρ0 = 10 dB.

Naturally, when both µ and χ are equal to one, dual-polarized

systems always perform better than uni-polarized systems,

as the decorrelation effect is not hampered by a decrease

of power. For µ and/or χ smaller than one, the required

correlation increases rapidly. As a consequence, dual-polarized

spatial multiplexing schemes perform well in Rayleigh fading

channels when the uni-polarized spatial correlations are high

enough.

2) Ricean Fading Channels: In LOS Ricean fading chan-

nels, the error probability is obtained through (57). Simulation

results are displayed in Figure 4 for χ = 0.1, µ = 1,

δ1 = δ2 = 0 and ρ0 = 10 dB. The cases of uni-polarized

transmissions approximately correspond here to χa,r = 1 (the

higher the K-factor, the better the approximation). Clearly, the

use of dual-polarized antennas with large XPI significantly

increases the performance, even when considering a constant

transmit power.

VI. CONCLUSIONS

In this paper, we have presented a simple analytical model

of dual-polarized TITO and MIMO transmissions. The channel

model efficiently separates the spatial and polarization effects,

which makes it particularly easy to parametrize, thanks to a

thorough overview of the literature, whose conclusions are

summarized at the end of Section II.B.

As far as the benefits from dual-polarized arrays are con-

cerned, the derivations point out that large multiplexing (i.e.

capacity) gains are achievable in Ricean or highly correlated

Rayleigh fading channels, but that diversity gains are only

possible in highly correlated Rayleigh fading channels (and

not in Ricean channels). Furthermore, our derivations have

highlighted that there is a fundamental trade-off between the

array density and the capacity gain, i.e. for a given array

geometrical extension, there is a critical antenna density above

which dual-polarized arrays should be preferred. Finally, our

analysis identifies quantitatively for which channels (corre-

lations, K-factor), schemes (O-SBTC or Spatial Multiplexing)
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and SNR levels the use of multiple polarizations might become

beneficial.
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