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Christian Bender1
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Abstract

In this paper we study the pricing problem of multi-exercise op-
tions under volume constraints. The volume constraint is modeled by
an adapted process with values in the positive integers, which describes
the maximal number of rights to be exercised at a given time. We de-
rive a representation of the marginal value of an additional nth right as
a standard single stopping problem with a modified cash-flow process.
This representation then leads to a dual pricing formula, which gener-
alizes a result by Meinshausen and Hambly (2004) from the standard
multi-exercise option (with at most one right per time step) to gen-
eral constraints. We also state an explicit Monte Carlo algorithm for
computing confidence intervals for the price of multi-exercise options
under volume constraints and present numerical results for the pricing
of a swing contract in an electricity market.

Keywords: duality, option pricing, Monte Carlo simulation, multi-
exercise options, swing options.

AMS classification: 91B28, 60G40, 62L15, 65C05.

1 Introduction

Motivated by the pricing problem of swing contracts in energy markets,
several numerical algorithms for solving multiple stopping problems by sim-
ulation have been developed during the last years. One class of algorithms
tries to solve the corresponding backward dynamic program approximatively.
Carmona and Touzi (2008) estimate the conditional expectations within the
dynamic program by a Malliavin calculus approach, which originates in Li-
ons and Regnier (2001) and was further developed in Bouchard et al. (2004).
Meinshausen and Hambly (2004) approximate the dynamic program by the
least-squares Monte-Carlo method, which was applied for American options
by Longstaff and Schwartz (2001) and Tsitsiklis and Van Roy (2001) and

1Saarland University, Department of Mathematics, PO Box 151150, D-66041 Saar-
brücken, Germany. bender@math.uni-sb.de.
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can be traced back to Carrière (1996). The paper of Meinshausen and Ham-
bly (2004) contains, however, as its main result a generalization of the dual
pricing approach to multi-exercise options. While the approximate dynamic
programming approach naturally leads to close-to-optimal exercise rules and,
thus, to lower price bounds, the dual approach can be applied to calculate
upper price bounds. The basic ideas of this dual approach for a single stop-
ping problem (and hence for the pricing of American options) can already
be found in a paper by Davis and Karatzas (1994). The value of these ideas
for numerical option pricing was however first discovered independently by
Rogers (2002) and Haugh and Kogan (2004). Finally, we mention the sim-
ulation approach by Ibáñez (2004), who approximates the early exercise
frontier for some particular pay-off functions by simulation, and the policy
improvement method by Bender and Schoenmakers (2006). For options on
a low-dimensional underlying one can also apply trinomial forests to solve
the backward dynamic program, see e.g. the paper by Jaillet et al. (2004).

A main drawback of the algorithms, mentioned so far, is that they are
mostly designed for options which can be exercised several times throughout
the lifetime of the option, but at most once per time point (e.g. per day).
However, in practice, for many swing options the number of exercise rights,
which is admitted per day, is not constant. For instance, in an off-peak
swing option the holder can buy electricity in off-peak hours only, which
yields twice as many rights on holidays or weekends than on business days.

The scope of the present paper is twofold. Firstly, we study the mul-
tiple stopping problem in discrete time under general volume constraints.
Precisely, the volume constraint can be any non-anticipative stochastic pro-
cess taking values in thepositive integers. We derive a representation of the
marginal value for an additional nth right as a single stopping problem with
a modified cash-flow. The representation implies a recursive description of
the multiple stopping problem under volume constraints in terms of optimal
stopping times. To the best of our knowledge, this formulation is novel even
in the case of a standard multiple stopping problem with at most one right
per day. In particular, it is different from the standard recursion for mul-
tiple stopping problems in terms of the value functions, which dates back
to Haggstrom (1967), i.e.: The holder decides between a) exercising a right
and entering a contract with one less right tomorrow and b) entering a con-
tract with the same number of rights tomorrow. Having the representation
of the marginal value of the multi-exercise option under volume constraints
as a modified single stopping problem at hand, we can apply the duality
theory for single stopping problems. In this way we obtain a dual pricing
formula for multi-exercise options. In the standard setting with at most one
right per day, we show that the formula coincides with the one derived by
Meinshausen and Hambly (2004). We believe, however, that our approach
sheds new light on the connection between single and multiple stopping
problems even in this situation. For general volume constraints the formula
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appears to be new. Secondly, we explain how the theoretical results lead
to a Monte Carlo algorithm for computing confidence intervals on the price
of multi-exercise options under general volume constraints. The algorithm
can, again, be interpreted as a generalization of the one by Meinshausen
and Hambly (2004). We also present some numerical experiments for swing
options in the context of an electricity market.

The paper is organized as follows: In Section 2 we discuss the theoretical
main results of the paper. Section 3 is devoted to the conception of a Monte
Carlo pricing algorithm, while Section 4 contains the numerical experiments.
The proofs of the main results are postponed to Sections 5–7.

2 Discussion of the main results

In this section we state and discuss the main results of the present paper.
To this end we first fix some notations. Let (Ω,F, (Fi)i=0,...,I , P ) denote a
filtered probability space in discrete time. From a financial point of view we
assume that P is already a fixed pricing measure for some given discounted
market of tradable securities. We denote by Z(i) an adapted stochastic
process, which we consider a cash-flow. We assume that E[|Z(i)|] < ∞ for
all i and that Z(I) is bounded from below, and denote a strict lower bound
by bmin, i.e.

Z(I) > bmin, P -a.s. (1)

The holder of the multi-exercise option with n rights is entitled to exercise
the cash-flow n times. She may exercise several rights at the same time, but
is subjected to some volume constraint. The constraint is modeled by an
adapted, positive, integer-valued stochastic process c(i), which describes the
number of exercises which are allowed at time i.

We fix a positive integer N and presume that we are only interested
in contracts with n ≤ N total exercise rights. Moreover we suppose that
c(I) = N , i.e. one is allowed to exercise all rights at the final time. In fact,
if we set Z(I) = 0, then we may think of the time I as an additional ‘virtual’
time point and ‘exercising’ a right at time I then means that the investor
decides not to exercise this right. Similarly, negative values at Z(I) can be
imposed in order to penalize not-exercising some rights. We shall say that c
is the unit volume constraint, if c(i) = 1 for all i = 1, . . . , I−1. This situation
corresponds to the standard multiple stopping problem in discrete time as
considered e.g. in Bender and Schoenmakers (2006) and Meinshausen and
Hambly (2004).

We exemplify this setup by swing options which are important derivatives
in energy markets.

Example 2.1. We consider the following stylized version of a swing option.
The holder of the swing option can buy between Nmin and Nmax packages of
energy for a strike price K per package over a time period i = 0, . . . , I. She
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can choose the number of packages, she buys, within the above limits and
the time points, at which she buys the packages. At each time i the holder
is allowed to buy at most c(i) packages. The constraint c(i) is fixed in the
contract. A typical example is that one is only entitled to exercise a right in
off-peak hours. In a somewhat simplified framework this means that twice
as many rights can be exercised on weekends or holidays than on business
days, which leads to a time-dependent but deterministic choice of c. This
contract can be cast into our framework as follows: Suppose that an adapted
stochastic process S(i) > 0 models the average off-peak price for one package
of energy at day i, whence the cash-flow is given by Z(i) = S(i) −K. We
consider the multi-exercise option with up to N = Nmax exercise rights and
extend the time grid by two points, i.e. we set I = I+2. Moreover we define

Z(I + 1) = 0, c(I + 1) = Nmax −Nmin

Z(I + 2) = −K, c(I + 1) = Nmax.

This means that up to Nmax−Nmin rights can be left not-exercised without
any cost. If more than Nmax −Nmin are not exercised the holder must pay
a penalty of K per additional not-exercised right. If we presume that the
holder behaves rationally, then she will never leave more than Nmax −Nmin

not-exercised, because exercising at any time i yields S(i)−K > −K. Hence,
‘exercising’ at time I = I + 2 will never be optimal and so the holder will
always exercise at least Nmin rights, i.e. will buy at least Nmin packages. We
emphasize that this formulation of a swing option is much closer to reality
than the formulation as a standard multiple stopping problem, which is
considered e.g. by Carmona and Dayanik (2008), Carmona and Touzi (2008)
and Meinshausen and Hambly (2004). In the latter formulation the holder
is restricted to buying at most one package per time.

We denote by Si the set of {i, . . . , I}-valued stopping times. Given a
fixed constraint c and a number n of exercise rights we define Sn

i to be the
set of all n-tuples (τ1, . . . , τn) ⊂ Si such that

n∑

ν=1

1{τν=j} ≤ c(j)

for all j = i, . . . , I. Hence, Sn
i contains all exercise policies (τ1, . . . , τn) which

obey the constraint c at time i and later, if n rights are left to be exercised
at time i. This set is always nonempty, because the strategy τν = I for all
ν = 1, . . . , n belongs to this set. A fair price of this multi-exercise option
under the volume constraint c with n exercise rights at time i can then be
represented by the stopping problem

Y ∗,n(i) := esssup
(τ1,...,τn)∈Sn

1

n∑

ν=1

E[Z(τν)|Fi].

4



Consequently, the marginal value for receiving an additional nth exercise
right at time i is

∆nY ∗(i) = Y ∗,n(i)− Y ∗,n−1(i),

with the convention Y ∗,0(i) = 0 As a first result we give a recursive con-
struction of the optimal policy for n exercise rights under the constraint and
thereby show that the marginal value ∆nY ∗(i) can be represented by a stan-
dard optimal stopping problem (with a single exercise right) with respect to
a modified cash-flow.

Given an adapted stochastic process X and stopping times (τ1, . . . , τn) ∈
Sn

i we define a modified adapted process

X [τ1,...,τn](j) =
{
X(j),

∑n
ν=1 1{τν=j} < c(j)

bmin, otherwise
, j = i, . . . , I.

We will apply the convention that X [τ1,...,τn](j) = X(j) for n = 0. More-
over, Y∗(j;X) denotes the Snell envelope for the standard optimal stopping
problem with one exercise right with respect to the process X.

We then define recursively, for n = 1, . . . , N and i = 0, . . . , I

τ∗n(i) = inf
{
j = i, . . . , I; Z [τ∗1 (i),...,τ∗n−1(i)](j) ≥ Y∗(j;Z [τ∗1 (i),...,τ∗n−1(i)])

}
.

Note that, by standard results on optimal stopping,

E[Z [τ∗1 (i),...,τ∗n−1(i)](τ∗n(i))|Fi] = esssup
τ∈Si

E[Z [τ∗1 (i),...,τ∗n−1(i)](τ)|Fi],

and τ∗n(i) is the smallest stopping time with this optimality property. More-
over,

Z [τ∗1 (i),...,τ∗n−1(i)](τ∗n(i)) = Z(τ∗n(i)),

as it can never be optimal to exercise the modified cash-flow Z [τ∗1 (i),...,τ∗n−1(i)],
if it takes value bmin thanks to assumption (1). Hence, it is evident that the
family (τ∗1 (i), . . . , τ∗n(i)) belongs to Sn

i . The following theorem states that
it is optimal for the original multiple stopping problem with n rights under
the constraint c.

Theorem 2.2. For all n = 1, . . . , N , i = 0, . . . , I, we have (τ∗1 (i), . . . , τ∗n(i)) ∈
Sn

i , and this exercise strategy is optimal in the sense that

Y ∗,n(i) =
n∑

ν=1

E[Z(τ∗ν (i))|Fi]

In particular, the marginal value satisfies

∆nY ∗(i) = E[Z(τ∗n(i))|Fi] = esssup
τ∈Si

E[Z [τ∗1 (i),...,τ∗n−1(i)](τ)|Fi].
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The theorem validates the basic intuition that optimal exercise times for
n rights are also optimal for n+1 rights and then only the additional (n+1)th
right must be chosen in an optimal way at a still-allowed time point. The
proof is given in Section 5 for the case of the unit volume constraint and in
Section 6 for general constraints.

Now recall that the cash-flow Z [τ1,...,τn](i) becomes unattractive for the
investor at time i when all available exercise rights at time i are already used
by the policy (τ1, . . . , τn). As such strategy will typically be suboptimal,
one expects that the (n + 1)th right can be used in a more profitable way
than when the first n rights were exercised optimally. This is stated in the
following theorem.

Theorem 2.3. For all n = 1, . . . , N ,i = 0, . . . , I, it holds that

∆nY ∗(i) ≤ esssup
τ∈Si

E[Z [τ1,...,τn−1](τ)|Fi]

for all (τ1, . . . , τn−1) ∈ Sn−1
i .

For the proof we refer again to Section 5 for the unit constraint and
Section 6 for the general case.

By combining Theorems 2.2 and 2.3 with the dual formulation for stan-
dard stopping problems due to Rogers (2002) and Haugh and Kogan (2004),
we obtain the following dual representation for the marginal value of the
multi-exercise option under volume constraints.

Theorem 2.4. For all n = 1, . . . , N , it holds that

∆nY ∗(0) = inf
(τ1,...,τn−1)∈Sn−1

0

inf
M∈H0

E[ max
i=0,...,I

(Z [τ1,...,τn−1](i)−M(i))].

where H0 denotes the set of all martingales M with M(0) = 0. Moreover,
the minimizer is given by (τ1, . . . , τn−1) = (τ∗1 (0), . . . , τ∗n−1(0)) as constructed
above and M(i) = M∗,n(i), where M∗,n(i) is the martingale part of the Doob
decomposition of Y∗(i;Z [τ∗1 (0),...,τ∗n−1(0)]).

Proof. On the one hand we have,

∆nY ∗(0) ≤ sup
τ∈S0

E[Z [τ1,...,τn−1](τ)] ≤ E[ max
i=0,...,I

(Z [τ1,...,τn−1](i)−M(i))]

for all (τ1, . . . , τn−1) ∈ Sn−1
i and M ∈ H0 by Theorem 2.3 above and

Theorem 2.1 in Rogers (2002) applied to the cash-flow Z [τ1,...,τn−1]. On
the other hand, applying Theorem 2.1 in Rogers (2002) to the cash-flow
Z [τ∗1 (0),...,τ∗n−1(0)], we obtain from Theorem 2.2 that

∆nY ∗(0) = sup
τ∈S0

E[Z [τ∗1 (0),...,τ∗n−1(0)](τ)]

= E[ max
i=0,...,I

(Z [τ∗1 (0),...,τ∗n−1(0)](i)−M∗,n(i))],
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where M∗,n(i) is, as defined above, the martingale part of the Doob decom-
position of Y∗(i;Z [τ∗1 (0),...,τ∗n−1(0)]).

In the case of the unit volume constraint basically the same dual for-
mulation is due to Meinshausen and Hambly (2004). The only difference is
their representation of an optimal martingale. The following theorem links
the Snell envelope Y∗(i;Z [τ∗1 (0),...,τ∗n−1(0)]) to the marginal value of the multi-
exercise option under volume constraints. On the one hand this result is
useful for a numerical implementation in a Markovian setting as we shall
explain in the next section. On the other hand it demonstrates that, for the
unit constraint, the optimal martingale in Theorem 2.4 actually coincides
with the one in the paper by Meinshausen and Hambly (2004).

Theorem 2.5. For all n = 1, . . . , N − 1, 0 ≤ i ≤ j ≤ I, it holds that

Y∗(j;Z [τ∗1 (i),...,τ∗n(i)]) = ∆n+1−E∗n(j−1;i)Y ∗(j)

where

E∗n(j; i) =
n∑

ν=0

1{τ∗ν (i)≤j}

is the number of optimal stopping times (starting at time i) under n exercise
rights which occur no later than time j.

The proof will be given in Section 7.

3 A Monte Carlo algorithm

We now explain how the results from the previous section can be applied to
devise a numerical algorithm for computing lower and upper price bounds
in a Markovian setting. The procedure generalizes the algorithm by Mein-
shausen and Hambly (2004) from the unit constraint to general volume con-
straints.

To this end suppose that (X(i),Fi) is a Markovian process with values
in RD and

Z(i) = h(i,X(i)), c(i) = a(i,X(i))

for deterministic functions h, a. From a straightforward dynamic program-
ming formulation1

Y ∗,n(I) = nh(I,X(I))
Y ∗,n(i) = max

0≤ν≤a(i,X(i))∧n
νh(i,X(i)) + E[Y ∗,n−ν(i+ 1)|Fi],

1This dynamic programming formulation and an algorithm for computing lower price
bounds, similar to the one we present below, can already be found in the slides entitled
‘Modelling and Pricing in Electricity Markets’ by Ben Hambly, November 27, 2006.
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for n = 1, . . . , N , we obtain by induction that

Y ∗,n(i) = y∗,n(i,X(i))

with

y∗,n(I, x) = nh(I, x)
y∗,n(i, x) = max

0≤ν≤a(i,x)∧n
νh(i, x) + E[y∗,n−ν(i+ 1, X(i+ 1))|X(i) = x].

We denote, for n = 1, . . . , N and i = 0, . . . , I − 1,

q∗,n(i, x) = E[y∗,n(i+ 1, X(i+ 1))|X(i) = x],
∆nq∗(i, x) = q∗,n(i, x)− q∗,n−1(i, x).

Thanks to Theorem 2.5 we obtain that

τ∗n(0) = inf{i ≥ 0; [h(i,X(i)) ≥ ∆n−E∗n−1(i)q∗(i,X(i))]
and [E∗n−1(i)− E∗n−1(i− 1) < a(i,X(i))]}.

Here and in the remainder of the section, we apply the convention E∗n−1(i) =
E∗n−1(i; 0).

Similarly, setting,

∆ny∗(i, x) = y∗,n(i, x)− y∗,n−1(i, x),

we get

M∗,n(i) =
i∑

j=1

∆n−E∗n−1(j−1)y∗(j,X(j))−∆n−E∗n−1(j−1)q∗(j − 1, X(j − 1)).

We now suppose that we have Λ independent copies (simulated paths)
(Xλ(i), i = 0, . . . , I), λ = 1, . . . ,Λ, of the Markovian process (X(i), i =
0, . . . , I) at our disposal. Moreover, we assume that we are given an approx-
imation q̂∗,n(i, x) of q∗,n(i, x). This approximation can e.g. be pre-calculated
by applying least-squares Monte Carlo with a different set of paths to the dy-
namic program as suggested by Tsitsiklis and Van Roy (2001) and Longstaff
and Schwartz (2001) in the context of a single exercise right.

Then, we can define, recursively for n = 1, . . . , N , starting with Ê∗0,λ(i) =
0,

τ̂∗n,λ = inf{i ≥ 0; [h(i,Xλ(i)) ≥ ∆n−Ê∗n−1,λ(i)q̂∗(i,Xλ(i))]

and [Ê∗n−1,λ(i)− Ê∗n−1,λ(i− 1) < a(i,Xλ(i))]}

Ê∗n,λ(i) =
n∑

ν=0

1{τ̂∗ν,λ≤i}.
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A lower biased estimator for the multi-exercise option with n rights under
the volume constraint c is then given by

Ŷ n
low =

1
Λ

Λ∑

λ=1

n∑

ν=1

h(τ̂∗ν,λ, Xλ(τ̂∗ν,λ)).

In order to construct an upper biased estimator we define ŷ∗,n(i, x) via

ŷ∗,n(I, x) = nh(I, x)
ŷ∗,n(i, x) = max

0≤ν≤a(i,x)∧n
νh(i, x) + q̂∗,n−ν(i, x),

and set
∆nŷ∗(i, x) = ŷ∗,n(i, x)− ŷ∗,n−1(i, x).

We now simulate Λ′ new independent copies of X, which we denote, for
notational simplicity, again by Xλ. As described above, one constructs τ̂∗n,λ

and Ê∗n,λ(i) along each path. For every λ = 1, . . . ,Λ′ and i = 0, . . . , I − 1,
one then generates M independent copies Xλ,µ(i + 1), µ = 1, . . . ,M , with
the law of X(i+ 1) conditional on {X(i) = Xλ(i)}. Then, an estimator for
∆nq∗(i,Xλ(i)) is given by

∆nQ̂∗λ(i) =
1
M

M∑

µ=1

∆nŷ∗(i+ 1, Xλ,µ(i+ 1)), λ = 1, . . . ,Λ′.

Hence, we obtain

M̂∗,n,λ(i) =
i∑

j=1

∆n−Ê∗n−1,λ(j−1)ŷ∗(j,Xλ(j))−∆n−Ê∗n−1,λ(j−1)Q̂∗λ(j − 1)

as estimator for M∗,n(i) along the path Xλ for λ = 1, . . . ,Λ′. Then we
consider the estimator

Ŷ n
up =

1
Λ′

Λ′∑

λ=1

n∑

ν=1

max
i=0,...,I

(Z
[τ̂∗1,λ,...,τ̂∗ν−1,λ]

λ (i)− M̂∗,ν,λ(i)),

where, of course,

Z
[τ̂∗1,λ,...,τ̂∗n−1,λ]

λ (i) =
{
h(i,Xλ(i)), Ê∗n−1,λ(i)− Ê∗n−1,λ(i− 1) < a(i,Xλ(i))

bmin, otherwise.

Note that the use of nested simulation for estimating the martingale in
the dual approach is originally due to Andersen and Broadie (2004) in the
context of a single exercise right. It ensures that the estimator Ŷ n

up for the
price of the multi-exercise option with n rights has a positive bias.
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Remark 3.1. When the original filtration (Fi) satisfies Fi = Gti and (Gt)
is the filtration generated by a Brownian motion, the use of nested simu-
lation can be avoided. Instead one can apply the estimator by Belomestny
et al. (2008), which is based upon the martingale representation property
of the Brownian motion and least-squares Monte-Carlo, and preserves the
martingale property.

4 Numerical experiments

We apply the numerical algorithm to an off-peak swing contract in an elec-
tricity market as described in Example 2.1 above. For simplicity we assume
that no minimum number of rights must be exercised, i.e. we set Nmin = 0.
As in Meinshausen and Hambly (2004) we choose a toy model of AR(1)-type
for the logarithmic off-peak spot price S(i) for a package of electricity, i.e.

log(S(i)) = (1− k)(log(S(i− 1))− µ) + µ+ σε(i), S(0) = 1,

where ε(i) are i.i.d standard Gaussian random variables. We consider a
period of 1000 days (i.e. I = 999) and the parameters

σ = 0.5, k = 0.9, µ = 0, K = 0.

This very simplistic model is a discrete version of the exponential Gaussian
Ornstein-Uhlenbeck process which was suggested as a model for electricity
prices by Lucia and Schwartz (2002). It is however a main advantage of
the proposed algorithm that it can be generically applied to any Marko-
vian model. In particular, it is applicable to the non-Gaussian exponential
Ornstein-Uhlenbeck models which have been proposed by Benth et al. (2007)
and Hambly et al. (2008). For more information on the modeling of elec-
tricity prices we refer to the recent monograph by Benth et al. (2008).

In order to obtain the numerical results, reported below, we proceed as
follows: The approximation of the continuation values within the dynamic
program are pre-calculated by a least-squares regression with 1000 paths and
the two basis functions ψ1(s) = 1 and ψ2(s) = s. The lower biased estimator
is calculated with Λ = 20000 simulated paths. For the upper estimator we
apply Λ′ = 2000 outer paths and M = 50 inner paths.

Table 1 reports bounds for the marginal price of the nth exercise right
for up to 50 rights for an off-peak swing option, i.e. in a situation, where
one right may be exercised on business days and two rights on Saturdays or
Sundays. Precisely, Table 1 shows the lower and upper estimators

∆nŶlow =
1
Λ

Λ∑

λ=1

h(τ̂∗n,λ, Xλ(τ̂∗n,λ)),

∆nŶup =
1
Λ′

Λ′∑

λ=1

max
i=0,...,I

(Z
[τ̂∗1,λ,...,τ̂∗n−1,λ]

λ (i)− M̂∗,n,λ(i)),
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Table 1: Numerical results for the marginal price for the nth right of a
off-peak swing option

95% confidence
n ∆nŶlow ∆nŶup interval

1 4.768 4.788 [4.755, 4.797]
2 4.380 4.403 [4.370, 4.411]
3 4.118 4.136 [4.109, 4.143]
4 3.945 3.961 [3.937, 3.968]
5 3.798 3.820 [3.791, 3.826]
10 3.368 3.393 [3.362, 3.397]
15 3.126 3.148 [3.121, 3.152]
20 2.952 2.977 [2.947, 2.981]
25 2.824 2.845 [2.821, 2.849]
30 2.713 2.739 [2.710, 2.743]
35 2.630 2.650 [2.627, 2.653]
40 2.551 2.575 [2.548, 2.579]
45 2.486 2.510 [2.483, 2.513]
50 2.424 2.450 [2.421, 2.454]

for the marginal values and a 95% confidence interval. We observe that,
despite the large number of time steps (1000) and the large number of exer-
cise rights, the relative difference between the negative- and positive-biased
estimator does not exceed 1% (except for the case n = 50, where it is 1.1%).
Note that the confidence interval could easily be shrunken further by in-
creasing the number of outer paths Λ and Λ′. However, no matter how large
the number of simulated outer paths is, there will remain a bias between
negative- and positive biased estimator due to the error of approximating
the continuation values by regression. Figure 1 compares the marginal price
of the off-peak swing option with the unit constraint case, which was consid-
ered by Meinshausen and Hambly (2004). As expected, the marginal prices
under the unit constraint decrease significantly faster than the marginal
prices, when a second right can be exercised at weekends.
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Figure 1: Comparison of the 95% confidence interval for the marginal price
of the swing option under unit constraint (dashed lines) and with a second
exercise right at weekends (solid lines).

5 Proof of Theorems 2.2 and 2.3 under the unit
volume constraint

In this section we consider the case of the unit volume constraint

c(i) = 1, i = 0, . . . , I − 1, c(i) = N,

hence at most one right can be exercised at a time (with exception of the
terminal time) and the problem reduces to a standard multiple stopping
problem as studied e.g. by Meinshausen and Hambly (2004).

It is well known that the Snell envelope Y ∗,n(i) satisfies in this situation

Y ∗,n(i) =
n∑

ν=1

E[Z(σ∗,nν (i))|Fi]

where

σ∗,n0 (i) = i− 1
σ∗,nν (i) = inf{j ≥ σ∗,nν−1(i) + 1; Z(j) ≥ E[∆n+1−νY ∗(j + 1)|Fj ]},

see e.g. Haggstrom (1967). Here we apply the convention that all time
indices and stopping times are always truncated at I, e.g. j is to be read
as min{j, I}. In fact, σ∗,nν (i) is the smallest stopping time, at which it can

12



be optimal to exercise the νth of n rights, where n is the number of rights
remaining at time i. Consequently, {σ∗,n1 (i), . . . , σ∗,nn (i)} is the ‘smallest’
optimal family for exercising the cash-flow Z(j) n times starting from time
i.

We shall first study some properties of the stopping times σ∗,nν (i).

Proposition 5.1. In the case of unit volume constraint we have, for all
n = 1, . . . , N and i = 0, . . . , I,

{σ∗,n−1
1 (i), . . . , σ∗,n−1

n−1 (i)} ⊂ {σ∗,n1 (i), . . . , σ∗,nn (i)},

i.e. whenever it is optimal to exercise one of (n − 1) rights, it will also be
optimal to exercise one of n rights.

For the proof we require the following straightforward lemma.

Lemma 5.2. (i) For all 1 ≤ ν ≤ n ≤ N it holds that

σ∗,nν (i) = σ∗,n+1−ν
1 (σ∗,nν−1(i) + 1)

(ii) For all 0 ≤ ν ≤ n ≤ N − 1 it holds that

σ∗,nν (i) ≤ σ∗,n+1
ν+1 (i).

Proof. (i) is a direct consequence of the definition, since

σ∗,nν (i) = inf{j ≥ σ∗,nν−1(i) + 1; Z(j) ≥ E[∆n+1−νY ∗(j + 1)|Fj ]}
= inf{j ≥ σ∗,nν−1(i) + 1; Z(j) ≥ E[∆(n+1−ν)+1−1Y ∗(j + 1)|Fj ]}
= σ∗,n+1−ν

1 (σ∗,nν−1(i) + 1).

(ii) is proved by induction on ν = 0, . . . , n. For ν = 0 we clearly have,

σ∗,n0 (i) = i− 1 < i ≤ σ∗,n+1
1 (i).

Now suppose the assertion is already proved for ν−1. As σ∗,n1 (i) is increasing
in i for all n, we obtain from (i) and the inductive hypothesis,

σ∗,nν (i) = σ∗,n+1−ν
1 (σ∗,nν−1(i) + 1) ≤ σ∗,n+1−ν

1 (σ∗,n+1
ν (i) + 1) = σ∗,n+1

ν+1 (i).

We now give the

Proof of Proposition 5.1. It suffices to show the following two assertions:

(a) σ∗,n+1
ν (i) ≤ σ∗,nν (i), i.e. the νth of (n + 1) rights is never exercised

later than the νth of n rights.
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(b) If σ∗,n+1
ν (i) < σ∗,nν (i), then σ∗,n+1

ν+1 (i) = σ∗,nν (i). I.e., if the νth of
(n+1) rights is exercised strictly earlier than the νth of n rights, then
the (ν + 1)th of (n + 1) rights will be exercised at the same time as
the νth of n rights.

We first prove (a) by induction on ν. For ν = 0 the claim is obvious. Now
suppose that it is already shown for some ν ≤ n−1. Using the fact that the
marginal value ∆nY (i) is decreasing in n by Proposition 5.2 in Meinshausen
and Hambly (2004), we obtain from the inductive hypothesis

σ∗,n+1
ν+1 (i) = inf{j ≥ σ∗,n+1

ν (i) + 1; Z(j) ≥ E[∆n+1−νY ∗(j + 1)|Fj ]}
≤ inf{j ≥ σ∗,nν (i) + 1; Z(j) ≥ E[∆n+1−νY ∗(j + 1)|Fj ]}
≤ inf{j ≥ σ∗,nν (i) + 1; Z(j) ≥ E[∆n−νY ∗(j + 1)|Fj ]}
= σ∗,nν+1(i).

We now show assertion (b). Hence, we assume that σ∗,n+1
ν (i) < σ∗,nν (i).

Lemma 5.2 yields,

σ∗,nν−1(i) + 1 ≤ σ∗,n+1
ν (i) + 1 ≤ σ∗,nν (i) = σ∗,n+1−ν

1 (σ∗,nν−1(i) + 1).

We now apply the operator σ∗,n+1−ν
1 (·) to this inequality. As σ∗,n+1−ν

1 (j) is
increasing in j and σ∗,n+1−ν

1 (j) = σ∗,n+1−ν
1 (σ∗,n+1−ν

1 (j)) we get

σ∗,n+1−ν
1 (σ∗,n+1

ν (i) + 1) = σ∗,n+1−ν
1 (σ∗,nν−1(i) + 1).

Now the left-hand side coincides with σ∗,n+1
ν+1 (i) and the right-hand side co-

incides with σ∗,nν (i) by Lemma 5.2, (i). Thus, the proof is complete.

We are now in a position to state and prove a version of Theorem 2.2
for the case of the unit volume constraint.

Theorem 5.3. In the case of the unit volume constraint, we have for all
n = 1, . . . , N , i = 1, . . . , I,

{σ∗,n1 (i), . . . , σ∗,nn (i)} = {τ∗1 (i), . . . , τ∗n(i)}.

In particular,

Y ∗,n(i) =
n∑

ν=1

E[Z(τ∗ν (i))|Fi] =
n∑

ν=1

esssup
τν∈Si

E[Z [τ∗1 (i),...,τ∗ν−1(i)](τν)|Fi].

Proof. The proof is by induction on n. Recall that τ∗1 (i) = σ∗,11 (i) by defi-
nition. Now assume that the assertions are already proved for some n < N .
We define a new stopping time by

σ∗,nn+1(i) = inf{j ≥ i; (∀ν=1,...,n σ
∗,n
ν (i) 6= j) and (∃µ=1,...,n+1 σ

∗,n+1
µ (i) = j)}.
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Then Proposition 5.1 implies

{σ∗,n1 (i), . . . , σ∗,nn+1(i)} = {σ∗,n+1
1 (i), . . . , σ∗,n+1

n+1 (i)}.
Consequently, by the inductive hypothesis and the definition of τ∗n+1(i)

Y ∗,n+1(i) =
n+1∑

ν=1

E[Z(σ∗,n+1
ν (i))|Fi] =

n+1∑

ν=1

E[Z(σ∗,nν (i))|Fi]

= Y ∗,n(i) + E[Z [σ∗,n
1 (i),...,σ∗,n

n (i)](σ∗,nn+1(i))|Fi]

= Y ∗,n(i) + E[Z [τ∗1 (i),...,τ∗n(i)](σ∗,nn+1(i))|Fi]

≤ Y ∗,n(i) + esssup
τ∈Si

E[Z [τ∗1 (i),...,τ∗n(i)](τ)|Fi]

=
n∑

ν=1

E[Z(τ∗ν (i))|Fi] + E[Z [τ∗1 (i),...,τ∗n(i)](τ∗n+1(i))|Fi]

=
n+1∑

ν=1

E[Z(τ∗ν (i))|Fi].

In particular, the inequality turns into an identity and we get

Y ∗,n+1(i) =
n+1∑

ν=1

E[Z(τ∗ν (i))|Fi] =
n+1∑

ν=1

esssup
τν∈Si

E[Z [τ∗1 (i),...,τ∗ν−1(i)](τν)|Fi]

and

E[Z [τ∗1 (i),...,τ∗n(i)](σ∗,nn+1(i))|Fi] = esssup
τ∈Si

E[Z [τ∗1 (i),...,τ∗n(i)](τ)|Fi].

As τ∗n+1(i) is the smallest optimizer for this stopping problem, we obtain,
τ∗n+1(i) ≤ σ∗,nn+1(i). Now note that (using the inductive hypothesis again)

{σ∗,n1 (i), . . . , σ∗,nn (i), τ∗n+1(i)} = {τ∗1 (i), . . . , τ∗n+1(i)}
is an optimal stopping family for the multiple stopping problem with (n+1)
rights and {σ∗,n1 (i), . . . , σ∗,nn+1(i)} = {σ∗,n+1

1 (i), . . . , σ∗,n+1
n+1 (i)} is the smallest

optimal one for the same problem. Hence, τ∗n+1(i) ≥ σ∗,nn+1(i). Consequently,
we have τ∗n+1(i) = σ∗,nn+1(i), which completes the proof.

We now turn to the proof of Theorem 2.3 in the case of the unit volume
constraint. The following proposition covers the special case n = 2.

Proposition 5.4. Under the unit volume constraint, it holds that

esssup
σ∈Si

E[Z [τ∗1 (i)](σ)|Fi] ≤ esssup
σ∈Si

E[Z [τ ](σ)|Fi]

for all i = 0, . . . , I and τ ∈ Si.
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Proof. We fix an i = 0, . . . , I and a stopping time τ ∈ Si. Then we consider
a new stopping time σ̄ ∈ Si defined by

σ̄ = inf{j ≥ i; ((τ∗2 (i) = j) and (τ 6= j)) or ((τ∗1 (i) = j) and (τ 6= j))}.
Then, Z [τ ](σ̄) = Z(σ̄) and σ̄ ∈ {τ∗1 (i), τ∗2 (i)}. Hence,

E[Z [τ ](σ̄)|Fi] = E[Z(σ̄)|Fi]
= E[1{τ∗2 (i)=σ̄}Z(τ∗2 (i))|Fi] + E[1{τ∗2 (i)6=σ̄}Z(τ∗1 (i))|Fi]
= (I) + (II).

As {τ∗2 (i) 6= σ̄} = {τ∗1 (i) = σ̄} ∩ {τ∗1 (i) 6= τ∗2 (i)} ∈ Fτ∗1 (i) ∩ Fτ∗2 (i), we obtain
from the optimality of τ∗1 (j),

(II) = E[1{τ∗2 (i)6=σ̄}1{τ∗2 (i)≤τ∗1 (i)}E[Z(τ∗1 (i))|Fτ∗2 (i)]|Fi]
+E[1{τ∗2 (i)6=σ̄}1{τ∗2 (i)>τ∗1 (i)}E[Z(τ∗1 (i))|Fτ∗1 (i)]|Fi]

= E[1{τ∗2 (i)6=σ̄}1{τ∗2 (i)≤τ∗1 (i)}E[Z(τ∗1 (τ∗2 (i)))|Fτ∗2 (i)]|Fi]
+E[1{τ∗2 (i)6=σ̄}1{τ∗2 (i)>τ∗1 (i)}E[Z(τ∗1 (τ∗1 (i)))|Fτ∗1 (i)]|Fi]

≥ E[1{τ∗2 (i)6=σ̄}1{τ∗2 (i)≤τ∗1 (i)}E[Z(τ∗2 (i))|Fτ∗2 (i)]|Fi]
+E[1{τ∗2 (i)6=σ̄}1{τ∗2 (i)>τ∗1 (i)}E[Z(τ∗2 (i))|Fτ∗1 (i)]|Fi]

= E[1{τ∗2 (i)6=σ̄}Z(τ∗2 (i))|Fi].

Therefore,

E[Z [τ ](σ̄)|Fi] ≥ E[Z(τ∗2 (i))|Fi] = E[Z [τ∗1 (i)](τ∗2 (i))|Fi]
= esssup

σ∈Si

E[Z [τ∗1 (i)](σ)|Fi].

For general n we obtain:

Theorem 5.5. Under the unit volume constraint, it holds that

esssup
σ∈Si

E[Z [τ∗1 (i),...,τ∗n−1(i)](σ)|Fi] ≤ esssup
σ∈Si

E[Z [τ1,...,τn−1](σ)|Fi]

for all n = 2, . . . , N , i = 0, . . . , I and (τ1, . . . , τn−1) ∈ Sn−1
i .

Proof. The proof is by induction on n with the case n = 2 already treated
in the previous proposition. Now suppose that (τ1, . . . , τn) ∈ Sn

i . We can
assume without loss of generality that

τ1 ∈ {τ∗1 (i), . . . , τ∗n−1(i)} ⇒ τ1 = I. (2)

Otherwise we can construct stopping times

τ̃1 = inf{j ≥ i; (∃ν=1,...,n τν = j) and (∀µ=1,...,n−1 τ
∗
µ(i) 6= j)},

τ̃d = inf{j ≥ i; (∃ν=1,...,n τν = j) and (∀µ=1,...,d−1 τ̃µ 6= j)}, d = 2, . . . , n.
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Then,
τ̃1 ∈ {τ∗1 (i), . . . , τ∗n−1(i)} ⇒ τ̃1 = I,

and, for all j = i, . . . , I,

Z [τ1,...,τn](j) = Z [τ̃1,...,τ̃n](j).

Assuming (2) we have

Z [τ1](τ∗ν (i)) = Z(τ∗ν (i))

for all ν = 1, . . . , n − 1. Thus, we easily observe that (τ∗1 (i), . . . , τ∗n−1(i)) is
also the smallest family of optimal stopping times for exercising the cash-
flow Z [τ1](j) (n − 1) times starting from time i. Applying the inductive
hypothesis to the cash-flow Z [τ1](j) yields

esssup
σ∈Si

E[(Z [τ∗1 (i),...,τ∗n−1(i)])[τ1](σ)|Fi]

= esssup
σ∈Si

E[(Z [τ1])[τ
∗
1 (i),...,τ∗n−1(i)](σ)|Fi]

≤ esssup
σ∈Si

E[(Z [τ1])[τ2,...,τn](σ)|Fi]

= esssup
σ∈Si

E[(Z [τ1,...,τn](σ)|Fi]. (3)

Finally, we can apply the Proposition 5.4 to the cash-flow Z [τ∗1 (i),...,τ∗n−1(i)](j)
and obtain from the optimality of τ∗n(i) for the single stopping problem with
this cash-flow,

esssup
σ∈Si

E[Z [τ∗1 (i),...,τ∗n(i)](σ)|Fi]

= esssup
σ∈Si

E[(Z [τ∗1 (i),...,τ∗n−1(i)])[τ
∗
n(i)](σ)|Fi]

≤ esssup
σ∈Si

E[(Z [τ∗1 (i),...,τ∗n−1(i)])[τ1](σ)|Fi].

Combining this estimate with (3) yields the assertion.

6 Proofs of Theorems 2.2 and 2.3 in the general
case

In this section we explain how Theorems 2.2 and 2.3 in the general case can
be reduced to the unit volume constraint case, which was considered in the
previous section. Recall, that we are interested in the price of the multi-
exercise option for n = 1, . . . , N exercise rights under the volume constraint
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c(i). Hence, we can and shall assume without loss of generality that the
Fi-adapted, positive, integer-valued process c is bounded by N .

We next construct an auxiliary multiple stopping problem with unit vol-
ume constraint. We define

K(j) = {jN, . . . , (j + 1)N − 1}, j = 0, . . . , I − 1, K(I) = {IN},
F̂i = Fj for i ∈ K(j), j = 0, . . . , I,

Ẑ(i) =
{
Z(j), i ∈ K(j) and i ≤ c(j) + jN − 1
bmin, i ∈ K(j) and i > c(j) + jN − 1,

ĉ(i) =
{

1, i = 0, . . . , IN − 1
N, i = IN.

Obviously, the process (Ẑ(i), i = 0, . . . , IN) is F̂i-adapted. We denote by
Ŝi the set of all {i, . . . , IN}-valued F̂i-stopping times, and by Ŝn

i the set of
n-tuples (σ1, . . . , σn) ⊂ Ŝi, which satisfy the unit volume constraint ĉ(i), i.e

σν = σd for some ν 6= d ⇒ σν = IN. (4)

We will now examine the relationship between the original multiple stopping
problem with constraint c

esssup
(τ1,...,τn)∈Sn

i

n∑

ν=1

E[Z(τν)|Fi]

and the multiple stopping problem under the unit volume constraint ĉ

esssup
(σ1,...,σn)∈Ŝn

i

n∑

ν=1

E[Ẑ(σν)|F̂i].

To this end we first explore how to map stopping rules in Sn
i into stopping

rules in Ŝn
iN . Suppose T = (τ1, . . . , τn) ∈ Sn

i . We then define a family of
random times S = (σT

1 , . . . , σ
T
n ) via

σT
ν = min{k ∈ K(τν); ∀d<ν σ

T
d 6= k} ∧ IN.

Clearly, the family S satisfies (4) and by construction σT
ν ≥ iN for all

ν = 1, . . . , n. We claim that S ∈ Ŝn
iN , for which it remains to verify that σT

ν

are F̂j-stopping times. This follows by observing that the right-hand side of
the decomposition (j = i, . . . , I − 1; k = 0, . . . , N − 1)

{σT
ν = jN + k} = {τν = j} ∩

k−1⋂

κ=0

ν−1⋃

d=1

{σT
d = jN + κ}

belongs to F̂jN+k by induction on ν and taking into account that τν is a
Fj-stopping time.

The next proposition states that the original and the auxiliary stopping
problems are basically equivalent.
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Proposition 6.1. For all i =, . . . , I and n = 1, . . . , N we have,

esssup
(τ1,...,τn)∈Sn

i

n∑

ν=1

E[Z(τν)|Fi] = esssup
(σ1,...,σn)∈Ŝn

iN

n∑

ν=1

E[Ẑ(σν)|F̂iN ].

Proof. Suppose T = (τ1, . . . , τn) ∈ Sn
i is arbitrary but fixed. By the admis-

sibility of this stopping family we know that the number of stopping times
in S = (σT

1 , . . . , σ
T
n ) such that σT

ν ∈ K(j) is less or equal to c(j) for all
j = i, . . . , I. Hence, from the construction of S and the definition of Ẑ we
deduce that Z(τν) = Ẑ(σT

ν ) for all ν = 1, . . . , n. Consequently,
n∑

ν=1

E[Z(τν)|Fi] =
n∑

ν=1

E[Ẑ(σT
ν )|F̂iN ]. (5)

As T ∈ Sn
i was arbitrary, the left-hand side of the asserted inequality is

dominated by the right-hand side.
For proving the reverse inequality let us assume that S∗ = (σ̂∗1, . . . , σ̂

∗
n) ∈

Ŝn
iN is an optimizer for the problem on the right-hand side of the assertion.

By the optimality of S∗ we obtain that Ẑ(σ̂∗ν) > bmin and, thus,

Ẑ(σ̂∗ν) = Z(j) on {σ̂∗ν ∈ K(j)}.
Moreover, the number of stopping times in S∗ = (σ̂∗1, . . . , σ̂

∗
n) such that

σ̂∗ν ∈ K(j) is less or equal to c(j) for all j = i, . . . , I. We now define random
times τν with values in {j = i, . . . , I} by

τν = j ⇔ σ∗ν ∈ K(j).

By the previous considerations, it is obvious that (τ1, . . . , τν) ∈ Sn
i and

Ẑ(σ̂∗ν) = Z(τν) for all ν = 1, . . . , N . Hence,
n∑

ν=1

E[Z(τν)|Fi] =
n∑

ν=1

E[Ẑ(σ̂∗ν)|F̂iN ],

which proves, by the optimality of (σ̂∗1, . . . , σ̂
∗
n), the reverse inequality.

Suppose now that T = (τ1, . . . , τn) ∈ Sn
i for some n < N , and recall that,

for j = i, . . . , I,

Z [τ1,...,τn](j) =
{
Z(j),

∑n
ν=1 1{τν=j} < c(j)

bmin, otherwise.

We set S = (σT
1 , . . . , σ

T
n ) ∈ Ŝn

iN and, for j = iN, . . . , IN ,

Ẑ [σT
1 ,...,σT

n ](j) =
{
Ẑ(j),

∑n
ν=1 1{σT

ν =j} < ĉ(j)
bmin, otherwise

=
{
Ẑ(j), ∀ν=1,...,n σ

T
ν 6= j or j = IN

bmin, otherwise.
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Note that Ẑ [σT
1 ,...,σT

n ](IN) = Z(I) = Z [τ1,...,τn](I) and, for j = i, . . . , I − 1
and k ∈ K(j)

Ẑ [σT
1 ,...,σT

n ](k) =
{
Z(j), k ≤ c(j) + jN − 1 and ∀ν=1,...,n σ

T
ν 6= k

bmin, otherwise

=
{
Z(j),

∑n
ν=1 1{τν=j} + jN ≤ k ≤ c(j) + jN − 1

bmin, otherwise.
(6)

Hence Ẑ [σT
1 ,...,σT

n ](k) = Z(j) implies
∑n

ν=1 1{τν=j} < c(j) and, thus, we get
Z [τ1,...,τn](j) = Z(j). In particular,

Ẑ [σT
1 ,...,σT

n ](k) ≤ Z [τ1,...,τn](j), k ∈ K(j). (7)

Moreover, if Ẑ [σT
1 ,...,σT

n ](c(j) + jN − 1) = bmin, then
∑n

ν=1 1{τν=j} ≥ c(j),
and consequently Z [τ1,...,τn](j) = bmin. Therefore,

Ẑ [σT
1 ,...,σT

n ](c(j) + jN − 1) = Z [τ1,...,τn](j). (8)

We now denote by Ŷ∗(j; Ẑ [σT
1 ,...,σT

n ]), j = iN, . . . , IN , the Snell envelope for
the single optimal stopping problem with cash-flow Ẑ [σT

1 ,...,σT
n ] with respect

to the set of stopping times Ŝn
iN . As before, Y∗(j;Z [τ1,...,τn]) is the Snell

envelope for the cash-flow Z [τ1,...,τn] in the original setting.
The following proposition is the key observation in order to transfer the

results from the previous section to the general case.

Proposition 6.2. Suppose that T = (τ1, . . . , τn) ∈ Sn
i for n = 0, . . . , N − 1

and i = 0, . . . , I. Then, for all j = i, . . . , I and k ∈ K(j),

Ŷ∗(k; Ẑ [σT
1 ,...,σT

n ]) =
{

Y∗(j;Z [τ1,...,τn]), k ≤ c(j) + jN − 1
E[Y∗(j + 1;Z [τ1,...,τn])|Fj ], k > c(j) + jN − 1.

In particular,
Ŷ∗(jN ; Ẑ [σT

1 ,...,σT
n ]) = Y∗(j;Z [τ1,...,τn]).

Proof. The proof is by backward induction on j. For j = I, we have K(I) =
{IN} and

Ŷ∗(IN ; Ẑ [σT
1 ,...,σT

n ]) = Ẑ [σT
1 ,...,σT

n ](IN) = Z(I) = Z [τ1,...,τn](I)
= Y∗(I;Z [τ1,...,τn]).

Suppose now that the assertion is already proved on the time segment K(j)
for some j = i + 1, . . . , I. We show the assertion on the segment K(j − 1)
by backward induction on k = jN − 1, . . . , (j − 1)N .

For k = jN − 1 we obtain from (6) and (8) that

Ẑ [σT
1 ,...,σT

n ](jN − 1) =
{
Z [τ1,...,τn](j − 1), c(j − 1) = N

bmin, otherwise.
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Thus,

Ŷ∗(jN − 1; Ẑ [σT
1 ,...,σT

n ])

= max
{
Ẑ [σT

1 ,...,σT
n ](jN − 1), E[Ŷ∗(jN ; Ẑ [σT

1 ,...,σT
n ])|F̂jN−1]

}

=
{

max
{
Z [τ1,...,τn](j − 1), E[Y∗(j;Z [τ1,...,τn])|Fj−1]

}
, c(j − 1) = N

max
{
bmin, E[Y∗(j;Z [τ1,...,τn])|Fj−1]

}
, c(j − 1) < N

=
{

Y∗(j − 1;Z [τ1,...,τn]), jN − 1 ≤ c(j − 1) + (j − 1)N − 1
E[Y∗(j;Z [τ1,...,τn])|Fj−1], jN − 1 > c(j − 1) + (j − 1)N − 1.

We now assume that the assertion is already verified for some k ∈ K(j − 1)
and k > (j − 1)N . Then,

Ŷ∗(k − 1; Ẑ [σT
1 ,...,σT

n ])

= max
{
Ẑ [σT

1 ,...,σT
n ](k − 1), E[Ŷ∗(k; Ẑ [σT

1 ,...,σT
n ])|F̂k−1]

}

= max
{
Ẑ [σT

1 ,...,σT
n ](k − 1), Ŷ∗(k; Ẑ [σT

1 ,...,σT
n ])

}
.

We shall distinguish three cases. On the set {k > c(j − 1) + (j − 1)N} we
get

Ŷ∗(k − 1; Ẑ [σT
1 ,...,σT

n ]) = max
{
bmin, E[Y∗(j;Z [τ1,...,τn])|Fj−1]

}

= E[Y∗(j;Z [τ1,...,τn])|Fj−1]

by the inductive hypothesis and (6). On the set {k = c(j − 1) + (j − 1)N}
we have, by the inductive hypothesis and (8),

Ŷ∗(k − 1; Ẑ [σT
1 ,...,σT

n ]) = max
{
Z [τ1,...,τn](j − 1), E[Y∗(j;Z [τ1,...,τn])|Fj−1]

}

= Y∗(j − 1;Z [τ1,...,τn]).

Finally, on {k < c(j−1)+(j−1)N}, the inductive hypothesis and (7) imply

Z [σT
1 ,...,σT

n ](k − 1) ≤ Z [τ1,...,τn](j − 1) ≤ Y∗(j − 1;Z [τ1,...,τn])

= Ŷ∗(k; Ẑ [σT
1 ,...,σT

n ]),

whence

Ŷ∗(k − 1; Ẑ [σT
1 ,...,σT

n ]) = Ŷ∗(k; Ẑ [σT
1 ,...,σT

n ]) = Y∗(j − 1;Z [τ1,...,τn]).

As a corollary we can relate the smallest optimal stopping times for both
problems.
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Corollary 6.3. Under the assumptions of Proposition 6.2 let

τ∗ = inf{j = i, . . . , I; Z [τ1,...,τn](j) ≥ Y∗(j;Z [τ1,...,τn])}
σ∗ = inf{j = iN, . . . , IN ; Ẑ [σT

1 ,...,σT
n ](j) ≥ Ŷ∗(j; Ẑ [σT

1 ,...,σT
n ])}.

Then,

σ∗ = Nτ∗ +
n∑

ν=1

1{σT
ν ∈K(τ∗)}.

In particular, denoting T∗ = (τ1, . . . , τn, τ∗), we have

(σT
1 , . . . , σ

T
n , σ

∗) = (σT∗
1 , . . . , σT∗

n+1).

Proof. Fix some k = iN, . . . , IN and choose j such that k ∈ K(j). Then,
by (6), (7) and Proposition 6.2,

Ẑ [σT
1 ,...,σT

n ](k) ≥ Ŷ∗(k; Ẑ [σT
1 ,...,σT

n ])

⇔
(

n∑

ν=1

1{τν=j} + jN ≤ k ≤ c(j) + jN − 1

)

and
(
Z [τ1,...,τn](j) ≥ Y∗(j;Z [τ1,...,τn])

)
.

As
n∑

ν=1

1{τν=j} =
n∑

ν=1

1{σT
ν ∈K(j)},

we observe that σ∗ = Nτ∗ +
∑n

ν=1 1{σT
ν ∈K(τ∗)}.

Corollary 6.4. For n = 1, . . . , N and i = 0, . . . , I we define T∗,n(i) =
(τ∗1 (i), . . . , τ∗n(i)) . Then, (σ∗1(i), . . . , σ

∗
N (i)) given by

σ∗n(i) = inf{j = iN, . . . , IN ; Ẑ [σ∗1(i),...,σ∗n−1(i)](j) ≥ Ŷ∗(j; Ẑ [σ∗1(i),...,σ∗n−1(i)])},

satisfy σ∗ν(i) = σ
T∗,n(i)
ν for all 1 ≤ ν ≤ n ≤ N .

Proof. The proof is by induction on n. For n = 1 it directly follows from
the previous corollary. Using the inductive hypothesis we obtain

σ∗n+1(i)

= inf{j = iN, . . . , IN ; Ẑ [σ∗1(i),...,σ∗n(i)](j) ≥ Ŷ∗(j; Ẑ [σ∗1(i),...,σ∗n(i)])}
= inf{j = iN, . . . , IN ; Ẑ [σ

T∗,n(i)
1 ,...,σ

T∗,n(i)
n ](j) ≥ Ŷ∗(j; Ẑ [σ

T∗,n(i)
1 ,...,σ

T∗,n(i)
n ])}.

Now the inductive hypothesis and the previous corollary imply

(σ∗1(i), . . . , σ
∗
n+1(i)) = (σT∗,n(i)

1 , . . . , σT∗,n(i)
n , σ∗n+1(i))

= (σT∗,n+1(i)
1 , . . . , σ

T∗,n+1(i)
n+1 ).
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We are now in the position to prove Theorems 2.2 and 2.3 in the general
case.

Proof of Theorem 2.2. With the notation from the previous corollary, we
obtain from Proposition 6.1, Theorem 5.3, Corollary 6.4, and (5) that

esssup
(τ1,...,τn)∈Sn

i

n∑

ν=1

E[Z(τν)|Fi] = esssup
(σ1,...,σn)∈Ŝn

iN

n∑

ν=1

E[Ẑ(σν)|F̂iN ]

=
n∑

ν=1

E[Ẑ(σT∗,n(i)
ν )|F̂iN ] =

n∑

ν=1

E[Z(τ∗ν (i))|Fi].

Proof of Theorem 2.3. Suppose T = (τ1, . . . , τn) ∈ Sn
i . Proposition 6.2, The-

orem 5.5 and Corollary 6.4 yield

esssup
τ∈Si

E[Z [τ1,...,τn](τ)|Fi] = esssup
σ∈ŜiN

E[Ẑ [σT
1 ,...,σT

n ](σ)|F̂iN ]

≥ esssup
σ∈ŜiN

E[Ẑ [σ
T∗,n(i)
1 ,...,σ

T∗,n+1(i)
n ](σ)|F̂iN ]

= esssup
τ∈Si

E[Z [τ∗1 (i),...,τ∗n(i)](τ)|Fi].

7 Proof of Theorem 2.5

In this section we prove the alternative representation of the Snell envelope
Y∗(j;Z [τ∗1 (i),...,τ∗n(i)]), which is stated in Theorem 2.5.

As a preparation, we reorder for a given n = 1, . . . , N , the stopping times
(τ∗1 (i), . . . , τ∗n(i)). Precisely, we define a stopping family (τ∗,n1 (i), . . . , τ∗,nn (i))
by the properties

{τ∗1 (i), . . . , τ∗n(i)} = {τ∗,n1 (i), . . . , τ∗,nn (i)} (9)

and τ∗,nν (i) ≤ τ∗,nν+1(i).

Lemma 7.1. For every n = 1, . . . , N , it holds that (τ∗,n1 (i), . . . , τ∗,nn (i))
is the smallest optimal exercise rule for the multi-exercise option under
constraints, starting at time i, i.e. if (τ̃∗,n1 (i), . . . , τ̃∗,nn (i)) is another op-
timal exercise rule with τ̃∗,nν (i) ≤ τ̃∗,nν+1(i) for all ν = 1, . . . , n − 1, then
τ∗,nν (i) ≤ τ̃∗,nν (i) for all ν = 1, . . . , n.
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Proof. We define, with the notation of the previous section,

S∗,n = (σT∗n
1 , . . . , σT∗n

n )

and
S̃∗,n = (σT̃∗n

1 , . . . , σT̃∗n
n ),

where T∗n = (τ∗,n1 (i), . . . , τ∗,nn (i)) and analogously for the tilded expressions.
By the proof of Proposition 6.1 we observe that the families S∗,n and S∗,n

are optimal for the auxiliary multiple stopping problem under the unit con-
straint. Thanks to (9) and Corollary 6.4 we know that S∗,n is the smallest
optimal exercise policy for the auxiliary problem, whence

σT∗n
ν ≤ σT̃∗n

ν

for all ν = 1, . . . , n. The construction of these stopping times immediately
implies that τ∗,nν (i) ≤ τ̃∗,nν (i) for all ν = 1, . . . , n as well.

Lemma 7.2. Suppose n = 1, . . . , N and 0 ≤ i ≤ j ≤ I. Then,

τ∗,nν+k(i) = τ∗,n−ν
k (j) on {τ∗,nν (i) < j ≤ τ∗,nν+1(i)}

for all k = 1, . . . , n− ν.

Proof. For fixed (n, i, j) we consider the stopping rules

σk =
{

τ∗,nk (i), τ∗,nk (i) < j

τ∗,n−ν
k (j), τ∗,nk (i) ≥ j and τ∗,nν (i) < j ≤ τ∗,nν+1(i)

for k = 1, . . . , n. Then,

E[
n∑

k=1

Z(σk)|Fi]

= E[
n∑

ν=1

1{τ∗,n
ν (i)<j≤τ∗,n

ν+1(i)}(
n−ν∑

k=1

E[Z(τ∗,n−ν
k (j))|Fj ] +

ν∑

l=1

Z(τ∗,nl (i)))|Fi]

≥ E[
n∑

ν=1

1{τ∗,n
ν (i)<j≤τ∗,n

ν+1(i)}(
n−ν∑

k=1

E[Z(τ∗,nν+k(i))|Fj ] +
ν∑

l=1

Z(τ∗,nl (i)))|Fi]

= E[
n∑

k=1

Z(τ∗,nk (i))|Fi] (10)

Hence, the inequality in (10) turns into an identity and the family (σ1, . . . , σn)
is optimal for the multi-exercise option under constraints, starting from
time i. In view of the previous lemma we deduce that σk ≥ τ∗,nk for all
k = 1, . . . , n. In particular,

τ∗,nν+k(i) ≤ τ∗,n−ν
k (j) on {τ∗,nν (i) < j ≤ τ∗,nν+1(i)}
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for all k = 1, . . . , n−ν. Since identity holds in (10), we obtain, on {τ∗,nν (i) <
j ≤ τ∗,nν+1(i)}

n−ν∑

k=1

E[Z(τ∗,n−ν
k (j))|Fj ] =

n−ν∑

k=1

E[Z(τ∗,nν+k(i))|Fj ].

Hence, the previous lemma yields

τ∗,nν+k(i) ≥ τ∗,n−ν
k (j) on {τ∗,nν (i) < j ≤ τ∗,nν+1(i)}

for all k = 1, . . . , n− ν, and the proof is complete.

We are now ready to give the proof of Theorem 2.5.

Proof of Theorem 2.5. Thanks to the previous lemma, (9) and Theorem 2.2
we get

Y∗(j;Z [τ∗1 (i),...,τ∗n(i)]) = esssup
τ∈Sj

E[Z [τ∗1 (i),...,τ∗n(i)](τ)|Fj ]

= esssup
τ∈Sj

n∑

ν=1

1{τ∗,n
ν (i)<j≤τ∗,n

ν+1(i)}E[Z [τ∗,n
ν+1(i),...,τ

∗,n
n (i)](τ)|Fj ]

=
n∑

ν=1

1{τ∗,n
ν (i)<j≤τ∗,n

ν+1(i)} esssup
τ∈Sj

E[Z [τ∗,n
ν+1(i),...,τ

∗,n
n (i)](τ)|Fj ]

=
n∑

ν=1

1{τ∗,n
ν (i)<j≤τ∗,n

ν+1(i)} esssup
τ∈Sj

E[Z [τ∗,n−ν
1 (j),...,τ∗,n−ν

n−ν (j)](τ)|Fj ]

=
n∑

ν=1

1{τ∗,n
ν (i)<j≤τ∗,n

ν+1(i)} esssup
τ∈Sj

E[Z [τ∗1 (j),...,τ∗n−ν(j)](τ)|Fj ]

=
n∑

ν=1

1{τ∗,n
ν (i)<j≤τ∗,n

ν+1(i)}∆
n+1−νY ∗(j).

As 1{τ∗,n
ν (i)<j≤τ∗,n

ν+1(i)} = 1{E∗n(j−1;i)=ν}, the assertion is proved.
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