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The transcription factor β-catenin is able to induce tolerogenic/anti-inflammatory features

in different types of dendritic cells (DCs). Monocyte-derived dendritic cells (moDCs) have

been widely used in dendritic cell-based cancer therapy, but so far with limited clinical

efficacy. We wanted to investigate the hypothesis that aberrant differentiation or induction

of dual pro- and anti-inflammatory features may be β-catenin dependent in moDCs.

β-catenin was detectable in both immature and lipopolysaccharide (LPS)-stimulated

DCs. The β-catenin inhibitor ICG-001 dose-dependently increased the pro-inflammatory

signature cytokine IL-12p70 and decreased the anti-inflammatory signature molecule

IL-10. The β-catenin activator 6-bromoindirubin-3′-oxime (6-BIO) dose-dependently

increased total and nuclear β-catenin, and this was associated with decreased IL-12p70,

increased IL-10, and reduced surface expression of activation markers, such as CD80

and CD86, and increased expression of inhibitory markers, such as PD-L1. 6-BIO

and ICG-001 competed dose-dependently regarding these features. Genome-wide

mRNA expression analyses further underscored the dual development of pro- and

anti-inflammatory features of LPS-matured moDCs and suggest a role for β-catenin

inhibition in production of more potent therapeutic moDCs.
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INTRODUCTION

Dendritic cells (DCs) are the most efficient antigen-presenting cells of the immune system and play
a vital role in initiating the adaptive immune response and maintaining tolerance to self-antigens
(1). Immature DCs continually search their environment for antigens, while mature DCs migrate
to the lymph nodes and present processed antigens on their major histocompatibility (MHC)
molecules to T cells. Traditionally, three different types of DCs have been considered in peripheral
blood, plasmacytoid DCs (pDC) and classical or conventional DC type 1 (cDC1) and type 2 (cDC2)
(2–4). Recent high-resolution technologies have revealed additional types of human blood DCs and
progenitors (5, 6). Altogether, DCs comprise less than 1% of circulating blood leukocytes, and for
this reason, most DC-based therapies have relied on DCs generated in vitro from the more plentiful
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blood monocytes [reviewed in (2–4, 7, 8)]. Monocyte-derived
DCs (moDCs) are able to activate the immune system, but it
may be anticipated that there is a considerable potential for the
generation of more potent and robust DCs for cancer therapy.

Depending on their phenotype and type of secreted
cytokines, DCs may exert either pro-inflammatory or tolerogenic
function as their response to newly encountered antigens. The
transcription factor β-catenin can be activated to stimulate
tolerogenic features of DCs, such as cytokine, surface marker, and
metabolic profiles (9–12). Surface markers associated with pro-
inflammatory activation include CD80 and CD86, whereas PD-
L1 and PD-L2 are considered inhibitory or tolerogenic markers
(7). Interleukin 12 (IL-12p70) represents a pro-inflammatory
cytokine (13) and interleukin 10 (IL-10) an anti-inflammatory or
tolerogenic cytokine (14) that can be secreted from mature DCs.

Inhibiting β-catenin signaling could have a dual effect in
cancer therapy, as this pathway promotes tolerogenic features
of the local dendritic cells and is often activated in cancer and
cancer stem cells. In the present study, β-catenin activation was
achieved using a specific inhibitor of the β-catenin destruction
complex, 6-bromoindirubin-3′-oxime (6-BIO) that has been
found to increase β-catenin in the cell nucleus of different
cell types (15). In this way the central, final part of β-
catenin signaling downstream of the destruction complex can
be investigated. This approach has experimental advantages
because β-catenin activation is impacted by different up-stream
pathways with complicated cross-talks (16). Likewise, central
β-catenin inhibition was attempted using the small molecule
ICG-001 that binds CREB-binding protein (CBP) to disrupt
its interaction with β-catenin and inhibits CBP function as a
co-activator of β-catenin-mediated transcription at regulatory
genomic elements (17).

In the present study, moDCs derived from buffy coats of
healthy donors were investigated and revealed the potential
of mature moDCs to co-develop both pro-inflammatory
and tolerogenic features assayed by IL-12p70 and IL-
10 secretion, DC surface markers, and whole-genome
mRNA quantification.

MATERIALS AND METHODS

Generation of Monocyte-Derived Dendritic
Cells
Buffy coats of healthy blood donors at the Blood bank of
Haukeland University Hospital, Bergen, were used to generate
human monocyte-derived dendritic cells (moDCs). Informed
consents were obtained from all donors, and samples were
anonymized according to the approval by the Regional Ethical
Committee (#64205). Healthy donors were above 23 years of age.
Peripheral blood mononuclear cells (PBMCs) were isolated by
gradient centrifugation using LymphoprepTM (Cat. No. 1114545;
Axis-Shield). Pan Monocyte Isolation Kit (Cat. No. 130-096-537;
MiltenyiBiotec) with the addition of CD61 MicroBeads (Cat. No.
130-051-101; MiltenyiBiotec) and LS columns (Cat. No. 130-042-
401; MiltenyiBiotec) were used to separate untouched monocytes
from PBMCs by indirect magnetic labeling. Monocytes were

then cultured in CellGenix GMP DC medium (Cat. No. 20801-
0500; CellGenix) supplemented with 20 ng/ml of IL-4 (Cat. No.
11340047; Immunotools) and 100 ng/ml of GM-CSF (Cat. No.
11343128; Immunotools) at cell densities of 1.5 × 106 per 3
ml/well in six-well plates or 0.75 × 106 per 1.5 ml/well in 12-
well plates for 4 days. IL-4 and GM-CSF were replenished on
day 3. The fourth-day cultures were treated with compounds
at different concentrations, i.e., 6-bromoindirubin-3-oxime (6-
BIO; Cat. No. S7198; Selleckchem) 1 nM to 2µMand/or ICG-001
(Cat. No. S2662; Selleckchem) 0.5 to 8µM (for 24 h), and 1 h later
with 30 ng/ml of LPS (for 23 h). As controls, the vehicle DMSO
was added in LPS-treated and un-treated (iDC) populations. The
moDCs were harvested on day 5.

Western Blots
Western blots were performed as previously described (18).
moDCs were lysed in RIPA-buffer (Cat. No. ab156034; Abcam)
supplemented with 1:100 Protease Inhibitor Cocktail Set I
(Cat. No. 535142; Calbiochem). The protein concentration was
quantified using Direct Detect R© Infrared Spectrometer (EMD
Millipore) using Direct Detect R© Assay-free Cards (Cat. No.
DDAC00010-GR; Millipore). Twenty micrograms was used for
each sample loaded onto BoltTM Bis-Tris Plus Gels (Cat. No.
NW04120BOX; Novex; Life Technologies). The proteins were
separated by SDS electrophoresis and blotted on Amersham
Hybond P 0.45 PVDF blotting membrane (Cat. No. 10600069;
GE Healthcare). The primary antibodies used were anti-β-
catenin (Cat. No. 16051; Abcam) and anti-GAPDH (Cat. No.
MAI-16757 Invitrogen). The horseradish peroxidase (HRP)-
conjugated secondary antibodies used were anti-rabbit (dilution
1:2,000; Cat. No. NA934; Amersham) and anti-mouse (dilution
1:2,000; Cat. No. 170-501; Bio-RAD). SuperSignalTM West Pico
PLUS Chemiluminescent Substrate (Cat. No. 34580; Thermo
Scientific) was used for visualization with Chemidoc XRS, and
images were captured using Quantity One 4.6.5 software (Bio-
Rad). MagicMarkTM XP Western Protein Standard (Cat. No.
LC5602; Invitrogen) was used as molecular weight marker.
ImageJ 1.50i software (National Institutes of Health, Bethesda,
MD, USA) was used to quantify the band intensity of each protein
followed by normalization to its corresponding GAPDH control.

Indirect Immunofluorescence Assay
Indirect immunofluorescence assays were performed as
previously described (19). The primary antibody used was
anti-β-catenin (Cat. No. 16051; Abcam) at 1µg/ml dilution,
and FITC-conjugated PierceTM goat anti-rabbit IgG (H + L)
secondary antibody (Cat. No. 31635; Thermo Scientific) was
used at 1:50 dilution. Cells grown on coverslips were mounted
on glass slides in SlowFadeTM Gold Antifade Mountant w/DAPI
(Cat. No. S36939; Invitrogen). The images were captured on
Leica TCS SP8 STED 3× confocal microscope using Leica
Application Suite X 2.0.2.15022 software (Leica Microsystems).

Enzyme-Linked Immunosorbent Assay
(ELISA)
Secretion of IL-12p70 and IL-10 in the supernatant of moDC
cultures were measured using IL-12p70 Human Uncoated
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ELISA Kit (Cat. No. 88-7126-88; Invitrogen) and IL-10
Human Uncoated ELISA Kit (Cat. No. 88-7106-88; Invitrogen),
respectively. The absorbance was measured with Synergy H1
Hybrid Multi-Mode Reader and analyzed using Gen5 2.00.18
software (BioTek). Data are presented as fold change to DMSO-
treated control sample, as absolute levels of IL-10 and IL-12
secretion varied considerably between the donors.

Flow Cytometry
The phenotype of the generated moDC populations was
determined by flow cytometry as described previously (20). In
short, 1× 105 moDCs were incubated with FcR-blocking reagent
(Cat. No. 130-059-901; MiltenyiBiotec) before titrated amounts
of a panel of nine antibodies were added for 10min at room
temperature in the dark. The antibodies used were as follows:
CD83 PE-CF594 (Cat. No. 562631; BD Biosciences), HLA-DR
Horizon V500 (Cat. No. 561224; BD Biosciences), CD80 Brilliant
Violet 605 (Cat. No. 305225; Biolegend), CCR7 Brilliant Violet
421 (Cat. No. 353208; Biolegend), CD86 Alexa Fluor 647 (Cat.
No. 305416; Biolegend), CD274 PE-Cyanine7 (Cat. No. 46-5983-
42; eBioscience), CD273 PerCP-Fluor 710 (Cat. No. 46-5888-
42), CD14 FITC (Cat. No. 21620143; Immunotools), and CD1a
PE (Cat. No. 21270014; Immunotools). The cells were analyzed
on LSR Fortessa (BD Biosciences), and further analysis was
performed using FlowJo V10 software (FlowJo, LLC). Unstained
samples were used to set the gates, and 1% false-positive events
were accepted throughout the analysis. For each experiment, a
minimum of 5,000 single events were recorded.

Luminex Microbead Cytokine Assay
The cell-free supernatants collected from the MLR cultures were
thawed and measured for cytokines using Human Magnetic 25-
Plex Panel (Cat. No. LHC009M; Invitrogen) according to the
manufacturer’s instructions. We measured and analyzed seven
cytokines including interferon-α (IFN-α), interferon-γ (IFN-γ),
tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-2R, IL-
10, and IL-12. Luminex plates were read using the Luminex
100 System (Luminex Corporation, Austin, TX, USA) following
the manufacturer’s instructions. STarStation V3.0 (Build: 3810.0;
Applied Cytometry Systems, Sheffield, UK) was used to analyze
the data.

Mixed Leukocyte Reaction (MLR)
Allogeneic MLR was performed as previously described (20).
In short, 2 × 105 monocyte-depleted allogeneic PBMCs were
labeled with CFSE using VybrantTM CFDA SE Cell Tracer Kit
(Cat. No. V12883; Invitrogen) and co-cultured with 5 × 104

moDCs of different donors for 5 days in X-Vivo 20 medium
(Cat. No. 04-448Q; Lonza) supplemented with 50 U/ml of IL-2
(Cat. No. 11340023; Immunotools) and 10 ng/ml of IL-7 (Cat.
No. 11340073; Immunotools). The cells were harvested and
analyzed on Accuri C6 flow cytometer (BD Biosciences). For each
experiment, a minimum of 20,000 single events were recorded.

DNA Microarray Analyses
Genome-wide transcription profiling using Agilent microarrays
has been described previously (21). Total RNA was isolated

and tested for RNA integrity by 1% agarose gel electrophoresis,
then converted to Cy3-labeled cRNA targets and hybridized
to Agilent Whole Human Genome 44k Microarrays (Cat. No.
G4845A; Agilent Technologies). Raw data were imported and
analyzed in J-Express software (http://www.molmine.com) (22).
We used mean spot signals as intensity measure, normalized the
expression data over the entire arrays, and log2-transformed and
considered genes changed more than 1.5-fold with FDR value
<5% as differentially expressed genes. DNAmicroarray data have
been deposited into the ArrayExpress database under accession
number E-MTAB-8330.

RNA Sequencing and Analyses
All experiments were conducted at QIAGEN Genomic Services.
The library preparation was done using TruSeq R© Stranded
mRNA Sample preparation kit (Illumina Inc.). The starting
material (500 ng) of total RNA was mRNA enriched using the
oligodT bead system. The isolated mRNA was subsequently
enzymatically fragmented. Then first-strand synthesis and
second-strand synthesis were performed, and the double-
stranded cDNA was purified (AMPure XP, Beckman Coulter).
The cDNA was end repaired, 3′ adenylated and Illumina
sequencing adaptors ligated onto the fragments ends, and
the library was purified (AMPure XP). The mRNA stranded
libraries were pre-amplified with PCR and purified (AMPure
XP). The libraries’ size distribution was validated and quality
inspected on a Bioanalyzer 2100 or BioAnalyzer 4200tape Station
(Agilent Technologies). High-quality libraries were pooled
based in equimolar concentrations based on the Bioanalyzer
Smear Analysis tool (Agilent Technologies). The library pool(s)
were quantified using qPCR, and the optimal concentration
of the library pool was used to generate the clusters on
the surface of a flow cell before sequencing on a NextSeq
500 instrument (75 cycles) according to the manufacturer
instructions (Illumina Inc.).

Software Tools Used for RNA-Seq Analysis
NGS data analysis pipeline was based on the Tuxedo software
package, which is a combination of open-source software,
and implements peer-reviewed statistical methods. In addition,
specialized software developed internally at QIAGEN Genomic
Services was employed to interpret and improve the readability of
the final results. The components of NGS data analysis pipeline
for RNA-seq include Bowtie2 (v. 2.2.2), see (23), Tophat (v2.0.11),
see (24, 25), and Cufflinks (v2.2.1), see (26, 27).

To guide the assembly process, an existing transcript
annotation was used (RABT assembly). In addition, fragment
bias correction was used to correct for sequence bias during
library preparation (28). When comparing groups, Cuffdiff
was used to calculate the FPKM (number of fragments per
kilobase of transcript per million mapped fragments) and test for
differential expression.

Statistical Analysis
All data were analyzed using GraphPad Prism 8 (GraphPad
software). Statistical significance of the difference was calculated
using one-way analysis of variance (ANOVA) with Dunnett’s
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multiple comparisons test or two-way ANOVA with Tukey’s
multiple comparisons test, and 95% confidence interval. A value
of p ≤ 0.05 was considered statistically significant.

RESULTS

β-Catenin Accumulation in
Monocyte-Derived Dendritic Cells
β-catenin was detectable in immature moDCs (iDCs) by
Western blotting, and this concentration increased slightly in
moDCs matured for 23 h using LPS (Figure 1A). 6-BIO dose-
dependently increased the accumulation of β-catenin when
moDCs were treated with 6-BIO for 24 h and with concomitant
LPS for the last 23 h prior to cell harvesting according to
Western blot analyses (Figure 1A). Indirect fluorescent confocal
microscopy revealed β-catenin accumulation in the cell nuclei
of moDCs treated with 0.25 to 1µM 6-BIO (Figure 1B and
Supplementary Figure 1).

6-BIO Dose-Dependently Promoted
Anti-Inflammatory Features of moDCs
In order to further investigate possible immune-relevant
consequences of 6-BIO-induced β-catenin in mature moDCs, we
quantified IL-12p70 and IL-10 of cell culture supernatants using
ELISA. As exemplified in Figure 2A, the IL-12 concentration
decreased significantly with increasing 6-BIO concentrations
following LPS maturation for 23 h. 6-BIO concentrations down
to 1 nM decreased IL-12 levels compared to cultures with only
vehicle and with pronounced dose-dependent IL-12 decrease at
10, 100, and 250 nM. On the contrary, IL-10 secretion increased
dose dependently and significantly with increasing 6-BIO in LPS-
matured moDCs (Figure 2B). Absolute levels of IL-10 and IL-12
secretion varied considerably in moDCs of buffy coats donated
by different healthy persons, although the above trends were in
common, for which reason fold change was used for the Y-axis of
Figure 2. Quantitative levels in picogram/milliliter are shown in
Supplementary Figure 2.

ICG-001 Increased IL-12 and Decreased
IL-10 Secretion of Mature moDCs
In order to examine the possibility that β-catenin signaling
was activated in LPS-matured moDCs even without the use of
6-BIO, cells were treated with the commercially available β-
catenin inhibitor ICG-001 for 24 h and with LPS added for
the last 23 h before harvest of supernatants. ICG-001 between
1 and 8µM dose-dependently increased the secretion of IL-
12p70 (Figure 2C). In the same supernatants, a dose-dependent
decrease in IL-10 was found with significantly increasing effect
from 1 to 8µM ICG-001 (Figure 2D).

6-BIO and ICG-001 Competed Against
Each Other Regarding Pro- and
Anti-Inflammatory Features
To examine any direct competition between 6-BIO and ICG-001,
ELISA was used to quantify IL-12 and IL-10 secretion of LPS-
matured DCs (Figure 3). IL-12 induced by either LPS alone or

by LPS plus 8µM ICG-001 was dose-dependently competed by
6-BIO (Figure 3A). Correspondingly, IL-10 induced by either
LPS alone or by LPS plus 6-BIO was efficiently competed by
8µM ICG-001 (Figure 3B). Western blots showed that ICG-
001 did not significantly affect the 6-BIO-induced accumulation
of β-catenin (Figure 3C). Quantification of mRNA levels using
Agilent microarray and RNA-seq profiling showed that β-
catenin mRNA levels remained relatively unaffected by ICG-
001 treatment and was reduced by possible negative feedback
following 6-BIO treatment (Supplementary Figure 3).

Effect of 6-BIO and ICG-001 on Maturation
and Activation Markers of DCs
Flow cytometry was used to examine how relevant DC
surface markers were affected by β-catenin stimulation or
inhibition. A representative gating strategy is shown in
Supplementary Figure 4. Retained monocyte marker CD14,
along with decreased CD1a, suggests deviated maturation of
DCs (29). ICG-001 treatment decreased the percentage of LPS-
matured DCs that expressed CD14. 6-BIO (100 and 250 nM)
increased the CD14 expression, and this was counteracted by the
addition of 8µM ICG-001 (Figure 4). CD1a expression was not
affected by either treatment. The maturation markers HLA-DR
and CD83 showed, as expected, a clear upregulation following
LPS treatment for 23 h. HLA-DR was not strongly affected by
either ICG-001 or 6-BIO. 6-BIO was moderately inhibitory and
ICG-001 moderately stimulatory to CD83 expression at the
concentrations tested (Figure 4).

The activation markers CD80 and CD86 increased strongly
as expected when iDCs were stimulated for 23 h with LPS.
6-BIO clearly reduced expression of LPS-induced CD80 and
CD86, while the effect of ICG-001 was less clear (Figure 4).
The inhibitory marker PD-L1 increased strongly following LPS
maturation of iDC for 23 h with or without 6-BIO. ICG-001
(8µM) tended to decrease the LPS-induced PD-L1 with or
without 100 or 250 nM 6-BIO. The PD-L2 marker was not
increased by LPS, but was moderately decreased by 8µM
ICG-001 (Figure 4). The DC migration marker CCR7 was
upregulated during LPS maturation, as expected, and was
clearly reduced by 6-BIO treatment. ICG-001 increased CCR7
expression and competed the 6-BIO-associated downregulation
of CCR7.

Effect of 6-BIO and ICG-001 on Gene
Expression Patterns
In order to obtain a broader overview of potential pro- and
anti-inflammatory features of LPS-matured moDCs, mRNA
transcription was profiled using both Agilent 44k microarrays
and Illumina RNA-seq. Figure 5 shows a selection of 26
genes known to be relevant in pro- and anti-inflammatory
regulation. The performance of the model with gene expression
analyses was exemplified by the known β-catenin target gene
LRP5 (30). Both Agilent 44k microarrays and Illumina RNA-
seq showed a significant, but low level, iDC expression of
LRP5 mRNA, with almost 48-fold induction of LRP5 in
LPS-matured moDCs treated with 6-BIO. In contrast, LRP5
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FIGURE 1 | Monocyte-derived dendritic cells (moDCs) obtained from healthy donors were treated with indicated concentrations of 6-bromoindirubin-3′-oxime (6-BIO)

or DMSO (vehicle) for 24 h together with 30 ng/ml of lipopolysaccharide (LPS) for the last 23 h or left untreated as iDC. (A) β-catenin protein levels were measured by

Western blot in whole-cell lysates. Representative Western blot of three independent experiments is shown. (B) Fluorescein (FITC) indirect immunofluorescent

detection of β-catenin proteins according to confocal microscopy analyses.

was reduced in ICG-001-treated LPS-matured moDCs. The
classical β-catenin target gene AXIN2 was relatively weakly

expressed as mRNA, but with significant induction with
concomitant 6-BIO in LPS-matured moDCs (Figures 5A,B).
CTNNB1 (β-catenin) mRNA was relatively abundant and

was reduced by 6-BIO and little affected by ICG-001 in
LPS-matured moDCs.

Transcription Levels of Pro- and
Anti-Inflammatory Interleukins
According to Agilent 44k microarray data (Figure 5A) pro-
inflammatory interleukins, IL-6, IL-12B, and IL-18 were strongly
induced in LPS-matured moDCs compared to their immature
origins. RNA-seq data validated the increase in IL-6 and IL-12B
(Figure 5B). Parallel treatment with 1µM 6-BIO clearly reduced
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FIGURE 2 | moDCs obtained from healthy donors were treated with indicated concentrations of 6-BIO or ICG-001 or DMSO for 24 h with 30 ng/ml of LPS for the last

23 h or left untreated with those compounds as iDC. (A–D) The fold changes compared to DMSO controls of IL-12p70 and IL-10 in supernatants were measured by

enzyme-linked immunosorbent assay (ELISA). Each symbol represents a different donor, and lines represent the median. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤

0.0001 using one-way ANOVA with Dunnett’s multiple comparisons test and 95% confidence interval.

mRNA levels of all of IL-6, IL-12B, IL18, and IL-12A according to
bothmicroarray and RNA-seq analyses. ICG-001 (4µM) induced
the opposite effect and a clear increase in these pro-inflammatory
mRNA markers in LPS-matured moDCs according to both data
sets. The anti-inflammatory IL-10 mRNA was increased in LPS-
matured moDCs compared to iDCs according to microarray
data, but this was not validated by RNA-seq data. Concomitant
6-BIO-treatment, however, was associated with increased IL-
10 mRNA according to both data sets with less clear effect of
concomitant ICG-001 treatment.

Transcription Levels of Activating and
Inhibitory Membrane Markers
The DC activation markers CD40, CD80, and CD86 were clearly
increased in LPS-matured moDCs according to microarrays

(Figure 5A). These results were validated by RNA-seq data for
CD86, but not for CD40 and CD80. Concomitant 6-BIO and
LPS treatment showed consistently lower levels of all these
cell surface activation markers according to microarrays in
comparison with only LPS and, in particular, with concomitant
LPS and ICG-001 treatment. RNA-seq data validated the 6-
BIO results for CD40, CD80, and CD86 and showed clearly
higher expression levels when ICG-001 was used instead of
6-BIO in LPS-matured moDCs (Figure 5B). DC membrane
inhibitory markers PDCD1LG2 (PD-L1) and CD274 (PD-L2)
mRNAs were induced in LPS-matured moDCs according to
both data sets, while concomitant 6-BIO treatment reduced
transcription and ICG-001 increased transcription according
to RNA-seq data. TNFS4 (OX40 ligand) is typically expressed
on DCs and its receptor TNFRSF4 (OX40) typically on T
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FIGURE 3 | moDCs obtained from healthy donors were treated with 8µM ICG-001 and/or indicated concentrations of 6-BIO or DMSO (vehicle) for 24 h with 30 ng/ml

of LPS for the last 23 h or left untreated as iDC. (A,B) Each vertical box and whisker plot shows the fold change compared to untreated DMSO controls of IL-12p70

and IL-10, respectively, measured by ELISA. The lines represent the median, edges of the box represent 25th and 75th percentiles, and whiskers display the smallest

and highest value, n = 5. (C) β-catenin protein levels were measured by Western blot in whole-cell lysates. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001 using

two-way ANOVA with Tukey’s multiple comparisons test and 95% confidence interval.

lymphocytes (31). According to microarray data, TNFRSF4
increased substantially in LPS-matured DCs and was reduced
by concomitant 6-BIO and increased by ICG-001 according
to both microarrays and RNA-seq (Figures 5A,B). TNFSF9
(4-1BBL; CD137L) expressed on DCs activate lymphocytes
via binding to TNFRSF9 (CD137) (32). Microarray data

showed strongly induced expression of both TNFSF9 and
TNFRSF9 mRNAs in LPS-matured moDCs. Concomitant 6-BIO
treatment was associated with lower, and ICG-001 treatment
with higher, TNFSF9 expression (Figures 5A,B). CD70 is a
cell-membrane-bound TNF superfamily (TNFSR) member that
activates T lymphocytes via TNFRSF member CD27 (31).
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FIGURE 4 | moDCs obtained from healthy donors were treated with 8µM ICG-001 and/or indicated concentrations of 6-BIO or DMSO for 24 h with 30 ng/ml of LPS

for the last 23 h or left untreated as iDC. Flow cytometry analyses of cell surface markers were performed. Each symbol represents a different donor and lines

represent the median. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, using one-way ANOVA with Dunnett’s multiple comparisons test and 95% confidence interval. %,

percentage of positive cells; MFI, median fluorescence intensity.

According to microarray data, CD70 mRNA was strongly
induced by LPS maturation of moDCs, and this was reduced
by 6-BIO and increased by ICG-001 (Figures 5A,B). CD200
is a surface glycoprotein that can induce IDO expression
following engagement of pDC-expressed CD200R1. According
to microarray data, CD200 mRNA was strongly induced

in LPS-matured moDCs. According to both microarray and
RNA-seq data, CD200 expression is further increased by
concomitant ICG-001, but reduced by concomitant 6-BIO
(Figures 5A,B). CD200R1 was clearly reduced in LPS-matured
moDCs, but was increased by concomitant 6-BIO treatment
(Figures 5A,B).
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FIGURE 5 | moDCs obtained from healthy donor and treated with DMSO, 1µM 6-BIO or 8µM ICG-001 for 24 h with 30 ng/ml of LPS for the last 23 h, or left

untreated as iDC. (A) Total RNA was subjected to whole-genome microarray analysis. Heat map of selected gene expression data based on the supervised

hierarchical cluster analysis (J-ExpressTM software) of different treatments. (B) Total RNA (500 ng) was used to generate RNA-seq libraries. Values of the expression of

selected genes were based on fold change of normalized fragments per kilobase of transcript per million mapped fragments (FPKM) for each gene of each sample.

Fold change was compared to untreated DMSO (vehicle) controls.

Transcription Levels of Inhibitory Enzymes
and Secreted Proteins
Indoleamine 2,3-dioxygenase (IDO-1) activity, via enzymatic
catalysis of tryptophan metabolites, converts mature DCs into
tolerogenic antigen-presenting cells that suppress T effector cells
and promote T regulatory cells, thereby promoting tolerance
(33). IDO1 was found strongly upregulated in LPS-stimulated
moDCs. Concomitant 6-BIO reduced IDO1 (Figures 5A,B).

TGFB is a secreted immunomodulatory molecule of DCs

(10, 31). According to both microarray and RNA-seq data,
TGFB1 is reduced in LPS-stimulated moDCs compared to iDCs.

Concomitant 6-BIO treatment stimulated TGFB1 expression
(Figures 5A,B). VEGF expression and secretion are associated

both with aberrant DC maturation and anti-inflammatory DCs
(34), and both VEGFA and VEGFB increased strongly in LPS-
plus 6-BIO-treated moDCs (Figures 5A,B).
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Functional Effects of 6-BIO and ICG-001 in
the Allogeneic Mixed Leukocyte Reaction
(MLR)
Allogeneic MLRs were performed to analyze T-cell stimulatory
capacity of the generated DC populations. The cells were co-
cultured with monocyte-depleted allogeneic CFDA-SE-stained
PBMCs, and proliferation was determined by the reduction in
CFSE intensity. All DC populations showed T-cell stimulatory
capacity with LPS-matured moDCs inducing more proliferation
than iDC (Figure 6A). The addition of 6-BIO did not, however,
show any significant variation in T-cell proliferation compared
to DMSO control, although a slight decrease was observed
at 0.5 and 2µM 6-BIO. Neither did up to 8µM ICG-001
significantly affect the recorded T-cell proliferation (result not
shown). In order to examine further the apparent minimal
effect of β-catenin modulation of the MLR assay, co-culture
supernatants were investigated for cytokines using the Luminex
microbead assay (Figure 6B). There was a trend toward 6-
BIO dose-dependent reduction in pro-inflammatory cytokines
IFN-γ, TNF-α, and IL-6. Among those cytokines, only IL-
6 level reached statistical significance. Soluble IL-2R showed
a statistically significant and dose-dependent decrease with
increasing 6-BIO. It was additionally noted that the 6-BIO
dose-dependent effects on IL-10 and IL-12 that we found in
pure DC cultures seemed to be abrogated in co-cultures with
allogeneic lymphocytes.

DISCUSSION

Improved DCs are much needed for next-generation cancer
immunotherapy (2, 7, 8, 35). One attractive possibility is that β-
catenin signaling can be exploited to generate more robust and
potent therapeutic DCs. The transcription factor β-catenin is an
important immune regulator that can affect pro-inflammatory
and anti-inflammatory/tolerogenic features of mouse and human
DCs of different subtypes (11, 12, 36–40), but the therapeutic
potential of β-catenin inhibition in moDCs needs further
clarification (41–47).

In the present work, we established a model system of moDCs
derived from buffy coats of healthy blood donors. Monocytes
were induced to become immature DCs (iDCs) using GM-CSF
and IL-4 for 4 days. Thereafter, small molecular compounds were
added to iDCs for 24 h with concomitant LPS for the last 23
hours, followed by assays of secreted IL-10 and IL-12p70 and
surface markers of maturation, activation, and inhibition.

In order to investigate the possibility that a basal β-
catenin activation was present in LPS-matured moDCs
(48), even in the absence of 6-BIO, we tested our model
with the β-catenin inhibitor ICG-001, previously found to
inhibit β-catenin-stimulated transcription in both cancer
cells (49) and dendritic cells (42). A pronounced ICG-001
dose-dependent increase in IL-12p70 and a corresponding
dose-dependent decrease in IL-10 secretion was observed
when iDCs were treated for 24 h with ICG-001. This suggested
that β-catenin is activated in mature moDCs to promote
anti-inflammatory features and, furthermore, is accessible to

β-catenin inhibition, even in the absence of Wnt ligands or other
specific activators of Wnt or β-catenin signaling added to the
culture medium.

Addition of the small molecular compound 6-BIO indicated,
however, that the basal β-catenin activity of LPS-maturedmoDCs
can be augmented by external stimulation. Western blot analyses
of moDC whole-cell lysates detected β-catenin both in iDCs
and LPS-matured moDCs with dose-dependent increase in β-
catenin accumulation detectable from low 6-BIO concentrations.
Confocal microscopy revealed obvious nuclear accumulation
of β-catenin at 250 nM and higher concentrations of 6-BIO.
This in situ localization method was preferred over nuclear
and cytoplasmic fractionation, consistent with our previous
results that fractionation is associated with loss of labile nuclear
proteins due to the drop of colloid osmotic pressure during
fractionation (50).

The small molecule ICG-001 binds CREB-binding protein
(CBP) to disrupt its interaction with β-catenin and inhibits
CBP function as a co-activator of Wnt/β-catenin-mediated
transcription (17). This mechanism of β-catenin inhibition
is consistent with our present findings. According to our
Western blot assays, ICG-001 did not affect β-catenin at the
protein synthesis/stability level. According to microarray
and RNA-seq data, β-catenin (CTNNB1) mRNA levels were
similar in ICG-treated and non-treated moDCs. ICG-001
was consequently used to examine further the association
between β-catenin inhibition and anti-inflammatory features
of mature moDCs. Competition assays between 6-BIO and
ICG-001 showed that these compounds had inverse effects
on IL-10 and IL-12p70 secretion and on dendritic cell
markers of activation, inhibition, and migration. 6-BIO
dose-dependently promoted anti-inflammatory patterns of
the examined cytokines and several surface markers. ICG-001
exhibited the opposite and the competing effect on cytokine
and several surface markers. The pronounced upregulation
of the β-catenin target gene LRP5 in 6-BIO-treated and
downregulation in ICG-001-treated LPS-matured moDCs
additionally support the existence of a basal and dynamic
β-catenin activation status.

IL-10 is considered an anti-inflammatory cytokine that is
induced by β-catenin signaling (11) and by non-canonical Wnt5a
signaling in mouse DCs (39). Stimulation of toll-like-receptors
(TLR2, TLR4, TLR5, TLR7, and TLR9) has been shown to
induce IL-10 production of DCs [reviewed in (14)]. The TLR4
stimulator LPS induced dual production of IL-10 and IL-12 in
human moDCs, but with significant donor-to-donor variation
(13, 51), consistent with our present findings. In the LPS-
matured moDCs, the level of β-catenin was dose-dependently
increased by 6-BIO. It may offer experimental advantages to
activate β-catenin downstream of the cytoplasmic destruction
complex because several upstream and parallel pathways, such
as WNTs, tankyrases (52, 53), and TLR2 stimulation via PI3
kinase and ERK in moDCs (54, 55) may activate nuclear β-
catenin signaling. In parallel with increasing β-catenin levels,
6-BIO dose-dependently increased IL-10 and dose-dependently
decreased IL-12p70. These experiments, therefore, reveal the
potential of β-catenin signaling to modulate important pro-
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FIGURE 6 | Mixed leukocyte reaction (MLR) between moDCs and allogeneic peripheral blood mononuclear cells (PBMCs) obtained from healthy donors. moDCs

were treated with indicated concentrations of 6-BIO or DMSO for 24 h with 30 ng/ml of LPS treatment for 23 h, or left untreated as iDC. Allogeneic PBMCs were

pre-labeled with CFSE and co-cultured with treated moDCs for 5 days. (A) Percentage proliferated cells was measured by reduction in CFSE intensity. (B) The amount

of secreted cytokines was analyzed using 25-Plex Panel, and the concentrations are given in pg/ml. Each symbol represents a different donor, and lines represent the

median. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, using one-way ANOVA with Dunnett’s multiple comparisons test and 95% confidence interval.

and anti-inflammatory cytokine production of moDCs. The
IL-10 promoter has been shown to contain several response
elements that can bind β-catenin to activate IL-10 transcription

(56). Both microarray and RNA-seq data showed increased
IL-10 mRNA in 6-BIO-treated moDCs. The relationship between
β-catenin signaling and IL-12 stimulation is additionally complex
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due to the ability of IL-10 to decrease IL-12 production in
DCs (13).

In mice, DC-specific deletion of the Wnt co-receptors LRP5/6
or β-catenin led to an increased expression of IL-6, TNF-α,
IL-1β, IL-12p40, and IL-12p70 with diminished production of
IL-10 and TGF-β (57). In another study on mouse splenic
DC precursors, CD11c-specific constitutive β-catenin activation
upregulated Irf8 through targeting of the Irf8 promoter, β-
catenin-stabilized CD8a + DCs secreted elevated IL-12 upon
in vitro microbial stimulation, and pharmacological β-catenin
inhibition using ICG-001 blocked this response in wild-type cells
(42). Also, knock-down of the non-canonical Wnt5a in human
moDCs, presumed not to signal via β-catenin, compromised
IL-12 secretion (58).

In order to obtain an additional impression of potential
pro- and anti-inflammatory features of LPS-matured moDCs,
whole-genome mRNA analyses of moDCs was done, using both
Agilent microarray and Illumina RNA sequence quantifications.
Recently, it was published that β-catenin directly stimulates the
IDO1 transcription and additionally the peroxisome proliferator-
activated receptor-γ (PPAR-γ), thus, causing the metabolic shift
required for protoporphyrin X synthesis, the heme prosthetic
group required for full IDO1 enzymatic activity in DCs (12).
According to our mRNA expression data, IDO1 was strongly
induced and abundantly expressed in LPS-matured moDCs,
while PPARG was relatively abundantly expressed in both
immature and LPS-matured DCs (ArrayExpress E-MTAB-8330).
Surprisingly, 6-BIO dose-dependently reduced IDO1 mRNA
levels in our LPS-matured moDCs, although significant IDO1
mRNA was still expressed even at high 6-BIO concentrations.
Interestingly, CD200 binding to CD200R1 on murine pDCs
has been reported among stimulators of IDO1 expression (59).
Expressions of CD200 and CD200R1 were strongly affected
during LPS maturation and by concomitant 6-BIO and ICG-001
treatment. These findings have to be followed up separately.

It has been shown in both murine and human models that
Wnt5a from melanomas affects the local DCs to express
indoleamine 2,3-dioxygenase-1 (IDO1) that stimulates
development of T regulatory cells (TRegs) through kynurenine
(60). Wnt5a has been considered to be a ligand of the non-
canonical Wnt pathway (β-catenin independent), but appears to
be able to context-dependent stimulation of β-catenin signaling,
in some cases stronger than the “canonical” Wnt3a stimulation
(12, 60).

TGF-β induces T regulatory cells and thereby promotes
tolerance when secreted from antigen-presenting cells [(10, 31,
48) and references therein]. It has been reported that TGF-β
antagonizes β-catenin in DCs, thereby selectively suppressing
signaling associated with tolerogenic DC activation while
having no impact on LPS-induced, β-catenin-independent
immunogenic activation (61). According to our microarray and
RNA-seq data, TGFB1 was clearly reduced during LPS-mediated
maturation of moDCs, but this decrease was counteracted by
both concomitant 6-BIO and ICG-001 treatment. This could
represent indirect effects of β-catenin, also because TGFB1 is not
a known β-catenin target gene.

VEGF has been shown to be a direct β-catenin target
gene in different cell types (62). The strong 6-BIO-enhanced
expression of both VEGFA and VEGFB would suggest this to
be the case in LPS-matured moDCs. VEGF has been shown
to be immunosuppressive in different ways: it can inhibit the
function of T cells, increase the recruitment of T regulatory cells
and myeloid-derived suppressor cells (MDSCs), and hinder the
differentiation and activation of DCs (34).

Additional transcriptional determinants of tolerogenic and
immunogenic states during dendritic cell maturation have been
published (63). All our genome-wide Agilent microarray and
Illumina RNA-seq data have been made publicly available and
can be further explored regarding β-catenin targets and pro- and
anti-inflammatory transcription of LPS-matured moDCs.

Mixed leukocyte reaction (MLR) was employed for the
assessment of T-cell stimulatory capacity of the generated cell
populations and showed the ability of the LPS-stimulatedmoDCs
to induce allogeneic T-cell proliferation. The minor effects of
either 6-BIO or ICG-001 in the MLR assay could reflect that the
outcome of conflicting pro- and anti-inflammatory cues could
be complex. It is possible that negative feedback effects due to
moDC and allogeneic cross-talk could result in the abrogation of
the pronounced dose-dependent effects on both IL-10 and IL-12
secretion by either 6-BIO or ICG-001 in pure moDC. Expanded
cytokine profiling of MLR culture supernatants showed 6-
BIO dose-dependent decreases of several relevant cytokines.
Presently, this is a reminder of increased complexity once
different immune cells are brought into interaction. Future work
will address such interactions in MLR assays and in DC and
patient-derived cell co-cultures with expanded assays including
parallel multi-variable mass cytometric analyses of supernatants
and cells.

Much understanding is lacking regarding β-catenin signaling
in moDCs, although a critical role of β-catenin signaling in
DC function and differentiation of pro- and anti-inflammatory
features in vivo is already established [reviewed in (37, 46)].
In both freshly isolated and Flt3-stimulated CD11c+ DCs
from mouse lymph nodes, the main conclusion was that Wnts
upregulate immune suppressive cytokines (IL-10, VEGF, TGF-
β) without inhibiting LPS-induced maturation and activation,
thus allowing development of a mature tolerogenic phenotype
(39). Minimal effects were detected on the MHCII maturation
marker or CD80 or CD86 activation markers or the migration
marker CCR7 (39). IL-12p70 secretion was additionally found to
be little affected by either canonical (Wnt3a) or non-canonical
(Wnt5a) signaling in that study (39). In another study, however,
deletion of β-catenin in a mouse model was found to increase
expression of DC co-stimulatory markers (CD40, CD80, CD86)
and to decrease the inhibitory markers PD-L1 and PD-L2 (64).
Different murine tumor models have documented the ability of
Wnt ligands to stimulate DCs to produce tolerogenic factors,
such as IL-10, Raldh, and Ido-1 [reviewed in (11)]. In one study
of human cancer, melanoma-intrinsic β-catenin signaling was
found to inhibit DC migration and lead to immune evasion
(65). The important mechanisms involved have been reviewed
(38, 40, 66, 67).
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CONCLUSION

LPS-matured moDCs co-developed pro- and anti-inflammatory
surface and secretory markers with considerable quantitative
person-to-person variation. A basal β-catenin activation was
present in LPS-matured moDCs and could be boosted dose
dependently by the β-catenin activator 6-BIO and counter-
acted dose-dependently by the β-catenin transcription complex
inhibitor ICG-001 with inverse effects on IL-10 and IL-12
secretion. These observations should be taken into consideration
for the production of more potent and robust therapeutic DCs.
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