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Abstract: Artificial Neural Networks have become a common solution for many real world 

problems. Many industrial, commercial and research applications need hardware 

implementation due to issues regarding stability, speed, price and size. This paper presents 

the implementation of a feed forward Artificial Neural Network in FPGA using two 

embedded processors. The processors used are Xilinx hardcore PowerPCs. To verify the 

implementation developed, a control loop of Direct Inverse Control was simulated using a 

Personal Computer and a FPGA, thereby implementing a direct and an inverse model of a 

system, respectively. The results obtained show that the hardware implementation works 

properly and introduces no additional error. Copyright CONTROLO2012. 
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1. INTRODUCTION 

Nervous cells, or neurons, are excitable cells 

specialized in receiving and sending electrical and 

chemical impulses. These cells are constituted by a 

nucleus, axons and dendrites. The nucleus controls 

the impulses originating from other neurons and 

generates a response. Axons are responsible for the 

propagation of the message to other neurons. 

Finally, dendrites act like bridges, by connecting 

the nucleus of one neuron to various axons from 

other neurons (ADEAR, 2010). The natural neuron 

is represented in figure 1. 
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Fig. 1. Representation of a natural neuron (Dias, 

2005). 

This behavior can be mimicked by a computer, 

thus originating in a simplified neuron which is 

known as an artificial neuron. Artificial neurons 

can be modeled as shown in figure 2, in which 

inputs are multiplied by their respective weights 

(w), thereby simulating an inhibition or stimulation 

behavior. A polarization signal, or bias, is then 

added to these inputs, which are then fed into an 

activation function, whether it be linear or not, thus 

providing the output result. 

Artificial Neural Networks (ANN) are composed 

of these artificial neurons, usually disposed in 

layers and connected so as to form networks. 
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Fig. 2. Neuron structure. 

The Perceptron or Feed-forward Neural 

Network (FNN) was the first neural network to be 

built. It was a feed forward type network. Figure 3 

shows one network of this kind, where it is 



 

 

possible to see that there are no lateral or feedback 

connections (Dias, 2005). 
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Fig. 3. Example of a FNN. 

The neuron implements the general equation: 
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where usual functions for F are sigmoidal, linear 

and hard limit.  

A FNN is composed of an input layer, one or more 

hidden layers, with one or more neurons, and an 

output layer, where the neurons are frequently 

linear.  

The Multi Input Single Output FNN in figure 3 

implements the following general equation: 
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2. HARDWARE IMPLEMENTATION 

ANN have become a common solution for many 

real world problems. Many industrial, commercial 

and research applications need hardware 

implementation due to issues regarding stability, 

speed, price and size.  Connecting a Personal 

Computer to each application is not a solution in 

many situations outside the academic environment: 

the operating system is frequently not stable 

enough for industrial application; the sequential 

processing does not provide the speed and the 

parallelism which are required by some 

implementations; the price is still high for some 

implementations; and the size can be too large for 

reduced scale applications. 

In order to choose a platform for hardware 

implementation in one specific application, one 

needs to consider many factors such as the price, 

performance and accuracy.  

Developing an Application Specific Integrated 

Circuit (ASIC) is the best solution as the user can 

specify all the characteristics, meeting the needs of 

the application. This solution is, nevertheless, too 

expensive to be considered in most applications. 

An acceptable compromise between price and 

performance can be obtained using a Field 

Programmable Gate Array (FPGA). 

FPGAs also offer the advantage of being 

reprogrammable, thereby eliminating or reducing 

the costs of prototypes.  

In the review of the literature it is possible to find 

many implementations of ANN using FPGAs as 

platforms, but only a few use the embedded 

processors as the main element in the 

implementation (Hoelzle, 2009)(Tabari, 2006). 

The embedded processor presents the advantage of 

being easy to program, thereby allowing a fast 

implementation. This is an advantage over the 

traditional hardware configuration possibility of 

FPGAs. 

In this paper, an implementation was developed 

using the embedded processors available in the 

FPGA. This research is part of a larger project 

which includes testing other solutions for the 

hardware implementation of ANN. 

 

3. MICROBLAZE VS. POWERPC 

The Xilinx company provides three embedded 

microprocessors: PowerPc, MicroBlaze, and 

PicoBlaze. The last alternative was not tested, 

since it is the one which provides the lowest 

performance. The characteristics of the first two 

alternatives are summarized in the following 

paragraphs. 

The Xilinx MicroBlaze processor, on the one hand, 

is a 32 bit Reduced Instruction Set Computer 

(RISC) architecture, with a maximum processing 

frequency of 100 MHz, which originates a 

processing performance of 280 DMIPS (Dhrystone 

Million Instructions per Second). Furthermore, it 

has Harvard architecture with a 32 bit bus and 

cache memory for faster access to data and 

instructions. It has a level 3 or 5 pipelining 

architecture, depending on the MicroBlaze’s 

architecture. This means that it is capable of 

executing 3 or 5 instructions on a single clock 

cycle (Xilinx, 2010a). 

On the other hand, the Apple/IBM/Motorola 

PowerPC is a third generation 32 bit RISC 

processor with a level 7 pipelining architecture. It 

has a processing frequency of 400 MHz, resulting 

in a processing performance of 700 DMIPS, which 

is almost three times the performance of the 

MicroBlaze (Xilinx. 2010b). 

These characteristics result from the fact that 

MicroBlaze is a softcore processor, i.e., a 

processor which is built on the assemblage of the 



 

 

logical blocks composing the FPGA, while 

PowerPC is a hardcore processor drawn in the 

wafer which constitutes the FPGA. 

 

4. SYSTEM AND HARDWARE 

SPECIFICATION 

Using the development software provided by 

Xilinx, namely the Xilinx Platform Studio (XPS) 

for hardware configuration of the blocks, such as 

the processor and peripherals, and the Software 

Development Kit (SDK) for creation/compilation 

of C/C++ programs, the system which will be 

described in the following section was created on a 

Virtex-5 ML510 XC5VFX130T. 

Regarding the hardware, using XPS, several 

configurations were tested. The configuration with 

the largest set of resources used two PowerPCs 

with a clock frequency of 300 MHz, bus frequency 

of 100 MHz, JTAG interface and a Floating Point 

Unit (FPU) with double precision. These 

processors had as peripherals a Block Random-

Access Memory (BRAM) with 128 kB, a timer to 

verify the time needed for the calculations and a 

serial interface (RS232) with baudrate of 230400 

bits per second, using 8 bit words with no parity 

and one stop bit. In addition to this, both 

processors shared the DIMM memory, and a 

mutex. 

Concerning the SDK, after exporting the hardware 

from XPS, it was necessary to create a software 

platform for each processor in which the xilkernel, 

which is a simple operating system that provides 

several functionalities (i.e. threading, semaphores, 

timers, etc.), was activated, since the use of a timer 

was found to be necessary. Then, in order to avoid 

data being corrupted in the BRAM, the heap and 

stack sizes were increased to 0x2000 bytes each. 

5. PROCESSING SPEED COMPARISON 

BETWEEN MICROBLAZE AND POWERPC 

As stated in the previous section, the processing 

speeds of both processors in the test are quite 

different. Nevertheless, it is interesting to run the 

same code in both processors and analyze the 

results obtained in terms of speed. 

For this analysis, it was necessary to create a C 

program which would be tested in the FPGA with 

a single processor (MicroBlaze or PowerPC), in 

order to register the network’s processing time for 

these two processors. To ensure that both 

processors would be on even terms, they were both 

configured with a processor frequency of 125 MHz 

(this is the most important parameter concerning 

the network processing time). 

The single processor C program is exemplified by 

the flowchart present in figure 4. 

The activation function used was the hyperbolic 

tangent in its simplified form, expressed as 

follows: 
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Furthermore, the values are expressed in double 

floating point, which is 64bits of precision. 

For testing purposes, two neural network models 

were used. The first, FORG6700, consisted of 5 

inputs, 3 hidden neurons and 1 output neuron, a 5-

3-1 configuration; and the second, FORGA001, 

was composed of 5 inputs, 8 hidden neurons and 1 

output neuron, a 5-8-1 configuration. 

 

Fig. 4. Flowchart of the single processor’s 

program. 

Figure 5 accounts for the difference in processing 

time of both neural networks for the two 

processors analyzed in the initial test. Note that the 

values expressed only represent the time necessary 

to calculate the ANN’s output. Network 

configuration is not taken into account.  

Taking into consideration figure 5, it is visible that 

the PowerPC can perform the same calculations as 

the MicroBlaze in approximately seven hundred 

times less time. Note that since PowerPC 

processing times are much shorter, they are almost 

unnoticeable in figure 5.  

 



 

 

 
Fig. 5. Comparison between MicroBlaze and 

PowerPC 

This result demonstrates a much bigger difference 

between MicroBlaze and PowerPC than would be 

expected from the DMIPS information. Probably 

due to the complexity of the instructions used in 

the calculation of the ANN’s output, PowerPC can 

make better use of its higher level pipeline when 

compared to MicroBlaze.  

 

6. PROCESSING SPEED RESULTS OF THE 

SINGLE-POWERPC AND DUAL-POWERPC 

SOLUTIONS 

As one of the main objectives of this project was to 

implement an ANN using two processors, and 

taking into consideration the results previously 

obtained, an obvious choice to achieve this 

objective would be to use two PowerPCs. 

In order to perform the tests with both PowerPCs 

sharing information, another C program had to be 

developed, although the main characteristics were 

the same as for the single processor. Since the 

memory posed some synchronization problems 

when using the maximum frequency of the 

PowerPCs, these had to be trimmed down do 300 

MHz.  

Using two processors, the ANN needs to be 

divided into two sub-networks. This allows for the 

splitting of the calculations between the 

processors, in which one will calculate the top half 

of the neurons and the other will calculate the 

bottom half of the neurons of the ANN (consider 

figure 3 as an example), reducing the overall 

processing time. Figure 6 shows the flowchart of 

this new implementation.  

Figure 7 is obtained from the Integrated Software 

Environment (ISE) from Xilinx and illustrates the 

connection of the two PowerPc processors and 

their peripherals. 

As can be seen in figure 8, it is evident that, 

although the processing time with two processors 

does not reach half of the time achieved with one 

processor at 300 MHz, it does have quite a 

significant improvement.  

 

 

Fig. 6. Flowchart of dual processor program. 

It is not possible to obtain a reduction of the 

processing time by half, due to the fact that one of 

the processors needs to control the communication 

and sharing of data.  

 
Fig. 8. Comparison between single and dual 

PowerPc implementation. 
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Fig. 7. Block diagram of the two PowerPCs and 

peripherals. 

7. CONTROL LOOP SIMULATION 

Once the analysis of the best solution in terms of 

processors was completed, a testing scenario was 

developed in which there would be a system to 

control, an oven and a controller. Further 

information on this system can be found in (Vieira, 

2004). 

The controller and the controlled system were 

implemented in a computer, using Matlab, and the 

FPGA, respectively. The connection between them 

was established via a serial interface at a baudrate 

of 230400 bits per second or 28800 bytes per 

second. 

In order to maintain a centralized supervision over 

the loop, a Graphic User Interface (GUI) was 

created in Matlab. This GUI allowed sending the 

ANN’s configuration files to the FPGA, so that it 

could implement the controller for one particular 

network. Furthermore, the GUI would receive the 

values calculated by the controller, feed them to 

the system which was to be controlled and display 

a chart which would allow for the comparison of 

the actual values of the system with the desired 

reference values (i.e. those which the researchers 

wanted the system to yield). 

In order to make the loop work properly, the 

models were trained in pairs. This meant that, for 

every system to be controlled (represented by a 

direct model), there would be a controller (inverse 

model). In table 1 it is possible to view the models 

used and their configurations. 

The control results for the three ANN loops can be 

seen in figure 9.  

If a comparison is made between the results of the 

various networks, it is possible to assert that the 

loop which uses the model 6700, on the one hand, 

has values which are very similar to the reference 

ones, though they have some oscillations in the 

transitions. The 25F01 model, on the other hand, 

does not change fast enough to follow the 

reference values, thus showing that the number of 

hidden neurons in the direct model has a great 

influence on the settling time of an ANN. 

Regarding the 25FMD model, it has the fastest 

approximation on the transitions in relation to the 

reference values.  

(a) 

 

(b) 

 

(c) 

 

Fig. 9. Control results for a) Model 6700; b) Model 

25F01; c) Model 25FMD. 



 

 

Table 1. Models and direct/inverse ANN 

configurations 

Model FPGA (Inv) Matlab (Dir) 

6700 5-4-1 5-3-1 

25F01 9-4-1 8-2-1 

25FMD 5-8-1 5-8-1 

 

The analysis of the previous paragraph is 

confirmed by table 2 which illustrates the mean 

square error of the models using the control loop 

and a simulation performed solely on Matlab 

(controller + system). 

These values display a very small difference of 

less than 0.1% in both control loops, which thus 

confirms that the implementation is correct and 

that the FPGA implementation introduces no 

errors. In fact, during this FPGA implementation, 

the exact calculations are used and no 

simplification is introduced. 

Table 2. Mean square error of the models 

Models Matlab 
Control 

loop 
Change 

6700 17.48x10
-6

 17.50x10
-6

 +0.109% 

25F01 0.1623 0.1622 -0.062% 

25FMD 0.1808 0.1810 +0.111% 

8. CONCLUSIONS 

This paper describes the implementation of an 

ANN in a FPGA using two embedded PowerPCs. 

The use of embedded processors simplifies the 

engineer’s work. Hence, instead of designing the 

hardware, it is only necessary to program the 

processor. 

The results show, as expected, that PowerPC is 

much faster than MicroBlaze and that with two 

processors a significant improvement in 

performance can be obtained. Furthermore, the 

difference between an implementation only in 

Matlab and another with Matlab and an FPGA is 

very small, reaching a maximum of 0.11%. 
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