

 DUAL-PROCESSOR NEURAL NETWORK IMPLEMENTATION IN FPGA

Diego Santos, Henrique Nunes, Fernando Morgado-Dias

Madeira Interactive Technologies Institute and Centro de Competências de Ciências Exactas e da

Engenharia, Universidade da Madeira

Campus da Penteada, 9000-039 Funchal, Madeira, Portugal.
Tel:+351 291-705150/1, Fax: +351 291-705199

Abstract: Artificial Neural Networks have become a common solution for many real world

problems. Many industrial, commercial and research applications need hardware

implementation due to issues regarding stability, speed, price and size. This paper presents

the implementation of a feed forward Artificial Neural Network in FPGA using two

embedded processors. The processors used are Xilinx hardcore PowerPCs. To verify the

implementation developed, a control loop of Direct Inverse Control was simulated using a

Personal Computer and a FPGA, thereby implementing a direct and an inverse model of a

system, respectively. The results obtained show that the hardware implementation works

properly and introduces no additional error. Copyright CONTROLO2012.

Keywords: Artificial Neural Network, FPGA, embedded processor, Xilinx, Direct Inverse

Control

1. INTRODUCTION

Nervous cells, or neurons, are excitable cells

specialized in receiving and sending electrical and

chemical impulses. These cells are constituted by a

nucleus, axons and dendrites. The nucleus controls

the impulses originating from other neurons and

generates a response. Axons are responsible for the

propagation of the message to other neurons.

Finally, dendrites act like bridges, by connecting

the nucleus of one neuron to various axons from

other neurons (ADEAR, 2010). The natural neuron

is represented in figure 1.

Sinapse

Axon

Dendrites

Nucleus

Fig. 1. Representation of a natural neuron (Dias,

2005).

This behavior can be mimicked by a computer,

thus originating in a simplified neuron which is

known as an artificial neuron. Artificial neurons

can be modeled as shown in figure 2, in which

inputs are multiplied by their respective weights

(w), thereby simulating an inhibition or stimulation

behavior. A polarization signal, or bias, is then

added to these inputs, which are then fed into an

activation function, whether it be linear or not, thus

providing the output result.

Artificial Neural Networks (ANN) are composed

of these artificial neurons, usually disposed in

layers and connected so as to form networks.

1

I1

I2

I3

w1

w
2

w3

∑ F
y

w
4

Fig. 2. Neuron structure.

The Perceptron or Feed-forward Neural

Network (FNN) was the first neural network to be

built. It was a feed forward type network. Figure 3

shows one network of this kind, where it is

possible to see that there are no lateral or feedback

connections (Dias, 2005).

I1

I2

I3

1

f
1
(.)

f
2
(.)

F
1
(.)

y

w
11

w
12

w
21

w
22

w
31

w
32

w
41 w

42

w'
21

w'
11

w'
31

1

Fig. 3. Example of a FNN.

The neuron implements the general equation:

).(
1

∑
=

=
n

i

wiIiFy (1)

where usual functions for F are sigmoidal, linear

and hard limit.

A FNN is composed of an input layer, one or more

hidden layers, with one or more neurons, and an

output layer, where the neurons are frequently

linear.

The Multi Input Single Output FNN in figure 3

implements the following general equation:

 ∑∑
==

=
nI

l

lljj

nh

j

j IwfwFy
11

11))('((2)

2. HARDWARE IMPLEMENTATION

ANN have become a common solution for many

real world problems. Many industrial, commercial

and research applications need hardware

implementation due to issues regarding stability,

speed, price and size. Connecting a Personal

Computer to each application is not a solution in

many situations outside the academic environment:

the operating system is frequently not stable

enough for industrial application; the sequential

processing does not provide the speed and the

parallelism which are required by some

implementations; the price is still high for some

implementations; and the size can be too large for

reduced scale applications.

In order to choose a platform for hardware

implementation in one specific application, one

needs to consider many factors such as the price,

performance and accuracy.

Developing an Application Specific Integrated

Circuit (ASIC) is the best solution as the user can

specify all the characteristics, meeting the needs of

the application. This solution is, nevertheless, too

expensive to be considered in most applications.

An acceptable compromise between price and

performance can be obtained using a Field

Programmable Gate Array (FPGA).

FPGAs also offer the advantage of being

reprogrammable, thereby eliminating or reducing

the costs of prototypes.

In the review of the literature it is possible to find

many implementations of ANN using FPGAs as

platforms, but only a few use the embedded

processors as the main element in the

implementation (Hoelzle, 2009)(Tabari, 2006).

The embedded processor presents the advantage of

being easy to program, thereby allowing a fast

implementation. This is an advantage over the

traditional hardware configuration possibility of

FPGAs.

In this paper, an implementation was developed

using the embedded processors available in the

FPGA. This research is part of a larger project

which includes testing other solutions for the

hardware implementation of ANN.

3. MICROBLAZE VS. POWERPC

The Xilinx company provides three embedded

microprocessors: PowerPc, MicroBlaze, and

PicoBlaze. The last alternative was not tested,

since it is the one which provides the lowest

performance. The characteristics of the first two

alternatives are summarized in the following

paragraphs.

The Xilinx MicroBlaze processor, on the one hand,

is a 32 bit Reduced Instruction Set Computer

(RISC) architecture, with a maximum processing

frequency of 100 MHz, which originates a

processing performance of 280 DMIPS (Dhrystone

Million Instructions per Second). Furthermore, it

has Harvard architecture with a 32 bit bus and

cache memory for faster access to data and

instructions. It has a level 3 or 5 pipelining

architecture, depending on the MicroBlaze’s

architecture. This means that it is capable of

executing 3 or 5 instructions on a single clock

cycle (Xilinx, 2010a).

On the other hand, the Apple/IBM/Motorola

PowerPC is a third generation 32 bit RISC

processor with a level 7 pipelining architecture. It

has a processing frequency of 400 MHz, resulting

in a processing performance of 700 DMIPS, which

is almost three times the performance of the

MicroBlaze (Xilinx. 2010b).

These characteristics result from the fact that

MicroBlaze is a softcore processor, i.e., a

processor which is built on the assemblage of the

logical blocks composing the FPGA, while

PowerPC is a hardcore processor drawn in the

wafer which constitutes the FPGA.

4. SYSTEM AND HARDWARE

SPECIFICATION

Using the development software provided by

Xilinx, namely the Xilinx Platform Studio (XPS)

for hardware configuration of the blocks, such as

the processor and peripherals, and the Software

Development Kit (SDK) for creation/compilation

of C/C++ programs, the system which will be

described in the following section was created on a

Virtex-5 ML510 XC5VFX130T.

Regarding the hardware, using XPS, several

configurations were tested. The configuration with

the largest set of resources used two PowerPCs

with a clock frequency of 300 MHz, bus frequency

of 100 MHz, JTAG interface and a Floating Point

Unit (FPU) with double precision. These

processors had as peripherals a Block Random-

Access Memory (BRAM) with 128 kB, a timer to

verify the time needed for the calculations and a

serial interface (RS232) with baudrate of 230400

bits per second, using 8 bit words with no parity

and one stop bit. In addition to this, both

processors shared the DIMM memory, and a

mutex.

Concerning the SDK, after exporting the hardware

from XPS, it was necessary to create a software

platform for each processor in which the xilkernel,

which is a simple operating system that provides

several functionalities (i.e. threading, semaphores,

timers, etc.), was activated, since the use of a timer

was found to be necessary. Then, in order to avoid

data being corrupted in the BRAM, the heap and

stack sizes were increased to 0x2000 bytes each.

5. PROCESSING SPEED COMPARISON

BETWEEN MICROBLAZE AND POWERPC

As stated in the previous section, the processing

speeds of both processors in the test are quite

different. Nevertheless, it is interesting to run the

same code in both processors and analyze the

results obtained in terms of speed.

For this analysis, it was necessary to create a C

program which would be tested in the FPGA with

a single processor (MicroBlaze or PowerPC), in

order to register the network’s processing time for

these two processors. To ensure that both

processors would be on even terms, they were both

configured with a processor frequency of 125 MHz

(this is the most important parameter concerning

the network processing time).

The single processor C program is exemplified by

the flowchart present in figure 4.

The activation function used was the hyperbolic

tangent in its simplified form, expressed as

follows:

x

e
xf

21

2
1)(

+
−= (3)

Furthermore, the values are expressed in double

floating point, which is 64bits of precision.

For testing purposes, two neural network models

were used. The first, FORG6700, consisted of 5

inputs, 3 hidden neurons and 1 output neuron, a 5-

3-1 configuration; and the second, FORGA001,

was composed of 5 inputs, 8 hidden neurons and 1

output neuron, a 5-8-1 configuration.

Fig. 4. Flowchart of the single processor’s

program.

Figure 5 accounts for the difference in processing

time of both neural networks for the two

processors analyzed in the initial test. Note that the

values expressed only represent the time necessary

to calculate the ANN’s output. Network

configuration is not taken into account.

Taking into consideration figure 5, it is visible that

the PowerPC can perform the same calculations as

the MicroBlaze in approximately seven hundred

times less time. Note that since PowerPC

processing times are much shorter, they are almost

unnoticeable in figure 5.

Fig. 5. Comparison between MicroBlaze and

PowerPC

This result demonstrates a much bigger difference

between MicroBlaze and PowerPC than would be

expected from the DMIPS information. Probably

due to the complexity of the instructions used in

the calculation of the ANN’s output, PowerPC can

make better use of its higher level pipeline when

compared to MicroBlaze.

6. PROCESSING SPEED RESULTS OF THE

SINGLE-POWERPC AND DUAL-POWERPC

SOLUTIONS

As one of the main objectives of this project was to

implement an ANN using two processors, and

taking into consideration the results previously

obtained, an obvious choice to achieve this

objective would be to use two PowerPCs.

In order to perform the tests with both PowerPCs

sharing information, another C program had to be

developed, although the main characteristics were

the same as for the single processor. Since the

memory posed some synchronization problems

when using the maximum frequency of the

PowerPCs, these had to be trimmed down do 300

MHz.

Using two processors, the ANN needs to be

divided into two sub-networks. This allows for the

splitting of the calculations between the

processors, in which one will calculate the top half

of the neurons and the other will calculate the

bottom half of the neurons of the ANN (consider

figure 3 as an example), reducing the overall

processing time. Figure 6 shows the flowchart of

this new implementation.

Figure 7 is obtained from the Integrated Software

Environment (ISE) from Xilinx and illustrates the

connection of the two PowerPc processors and

their peripherals.

As can be seen in figure 8, it is evident that,

although the processing time with two processors

does not reach half of the time achieved with one

processor at 300 MHz, it does have quite a

significant improvement.

Fig. 6. Flowchart of dual processor program.

It is not possible to obtain a reduction of the

processing time by half, due to the fact that one of

the processors needs to control the communication

and sharing of data.

Fig. 8. Comparison between single and dual

PowerPc implementation.

117,67

46,525

0,168

0,069

0 50 100 150

FORGA001

FOR6700

Time (ms)

PowerPC MicroBlaze

0,114

0,049

0,076

0,037

0 0,05 0,1 0,15

FORGA001

FORG6700

Time (ms)

Dual PPC Single PPC

Fig. 7. Block diagram of the two PowerPCs and

peripherals.

7. CONTROL LOOP SIMULATION

Once the analysis of the best solution in terms of

processors was completed, a testing scenario was

developed in which there would be a system to

control, an oven and a controller. Further

information on this system can be found in (Vieira,

2004).

The controller and the controlled system were

implemented in a computer, using Matlab, and the

FPGA, respectively. The connection between them

was established via a serial interface at a baudrate

of 230400 bits per second or 28800 bytes per

second.

In order to maintain a centralized supervision over

the loop, a Graphic User Interface (GUI) was

created in Matlab. This GUI allowed sending the

ANN’s configuration files to the FPGA, so that it

could implement the controller for one particular

network. Furthermore, the GUI would receive the

values calculated by the controller, feed them to

the system which was to be controlled and display

a chart which would allow for the comparison of

the actual values of the system with the desired

reference values (i.e. those which the researchers

wanted the system to yield).

In order to make the loop work properly, the

models were trained in pairs. This meant that, for

every system to be controlled (represented by a

direct model), there would be a controller (inverse

model). In table 1 it is possible to view the models

used and their configurations.

The control results for the three ANN loops can be

seen in figure 9.

If a comparison is made between the results of the

various networks, it is possible to assert that the

loop which uses the model 6700, on the one hand,

has values which are very similar to the reference

ones, though they have some oscillations in the

transitions. The 25F01 model, on the other hand,

does not change fast enough to follow the

reference values, thus showing that the number of

hidden neurons in the direct model has a great

influence on the settling time of an ANN.

Regarding the 25FMD model, it has the fastest

approximation on the transitions in relation to the

reference values.

(a)

(b)

(c)

Fig. 9. Control results for a) Model 6700; b) Model

25F01; c) Model 25FMD.

Table 1. Models and direct/inverse ANN

configurations

Model FPGA (Inv) Matlab (Dir)

6700 5-4-1 5-3-1

25F01 9-4-1 8-2-1

25FMD 5-8-1 5-8-1

The analysis of the previous paragraph is

confirmed by table 2 which illustrates the mean

square error of the models using the control loop

and a simulation performed solely on Matlab

(controller + system).

These values display a very small difference of

less than 0.1% in both control loops, which thus

confirms that the implementation is correct and

that the FPGA implementation introduces no

errors. In fact, during this FPGA implementation,

the exact calculations are used and no

simplification is introduced.

Table 2. Mean square error of the models

Models Matlab
Control

loop
Change

6700 17.48x10
-6

 17.50x10
-6

 +0.109%

25F01 0.1623 0.1622 -0.062%

25FMD 0.1808 0.1810 +0.111%

8. CONCLUSIONS

This paper describes the implementation of an

ANN in a FPGA using two embedded PowerPCs.

The use of embedded processors simplifies the

engineer’s work. Hence, instead of designing the

hardware, it is only necessary to program the

processor.

The results show, as expected, that PowerPC is

much faster than MicroBlaze and that with two

processors a significant improvement in

performance can be obtained. Furthermore, the

difference between an implementation only in

Matlab and another with Matlab and an FPGA is

very small, reaching a maximum of 0.11%.

ACKNOWLEDGEMENT

The authors would like to acknowledge the Xilinx

University program for their support and the

software used in this project.

The authors would like to acknowledge the

Portuguese Foundation for Science and

Technology for their support for this work through

project PEst-OE/EEI/LA0009/2011.

REFERENCES

The Alzheimer's Disease Education and Referral

(ADEAR): (2010). las neuronas y su

funcionamiento. [On-Line]. Available:
http://www.nia.nih.gov/Alzheimers/Publications

/LaEnfermedaddeAlzheimer/Parte1/neuronas.ht

m

Mathworks. (2010). Neural Network Toolbox,

User's Guide.

Electronica Mexico. (2010). Redes neuronales

artificiales. [On-Line]. Available:
http://electronica.com.mx/neural/informacion/pe

rceptron.html
Xilinx. (2010). MicroBlaze Processor Reference

Guide. [On-Line]. Available:
http://www.Xilinx.com/support/documentation/s

w_manuals/mb_ref_guide.pdf,
Xilinx. (2010). Embedded Processing. [On-Line].

Available:

http://www.Xilinx.com/technology/embedded.ht

m
Dias, F. M. (2005). Técnicas de controlo não-

linear baseadas em Redes Neuronais: do

algoritmo à implementação. PhD thesis.

(Universidade de Aveiro)

Hoelzle, G. & Dias, F. M. (2009). Hardware

Implementation of an Artificial Neural

Network with an Embedded

Microprocessor in a FPGA, 8th

International Conference and Workshop on

Ambient Intelligence and Embedded

Systems”, Funchal.

Vieira, J. & Dias, F. M. & Mota, A. (2004).

Artificial neural networks and neuro-fuzzy

systems for modelling and controlling real

systems: a comparative study, Engineering

Applications of Artificial Intelligence,

17(3), 265-273.

Tabari, K. & Boukadoum, A. & Bensaoula, D. &

Starikov, D (2006). Neural Network

Processor for a FPGA- based Multiband

Fluorometer Device, The Internacional

Workshop on Computer Architecture for

Machine Perception and Sensing.

