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Dual Quaternions and Dual Quaternion Vectors
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Abstract

We introduce a total order and an absolute value function for dual numbers. The abso-

lute value function of dual numbers takes dual number values, and has properties similar

to the those of the absolute value function of real numbers. We define the magnitude of

a dual quaternion, as a dual number. Based upon these, we extended 1-norm, ∞-norm

and 2-norm to dual quaternion vectors.

Key words. Dual number, absolute value function, dual quaternion, magnitude,

norm.

1 Introduction

Quaternions were introduced by Hamilton in 1843 [9]. In 1873, Clifford [5] introduced dual

numbers, dual complex numbers and dual quaternions. This results in a new branch of algebra

- geometric algebra or Clifford algebra. Now, dual numbers, dual complex numbers and dual

quaternions have found wide applications in automatic differentiation, geometry, mechanics,

rigid body motions, robotics and computer graphics [1, 3, 4, 6, 7, 11, 14].

However, there are some gaps between the applications of dual quaternions and their math-

ematical foundations. For example, unit dual quaternions play an important role to represent
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the motion of a rigid body in 3D [1, 4, 10]. This involves the definition of the magnitude or

norm of a dual quaternion. In [10], the magnitude of a dual quaternion is defined as

‖q‖ = qq∗,

where q∗ is the conjugate of q. In the above definition, the left side has only one q factor, while

the right side has two q factors. This is not consistent. It is better to change it to

‖q‖2 = qq∗.

Then

‖q‖ =
√
qq∗.

This is not well-defined if q is infinitesimal. Also, now, ‖q‖ is a dual number. Does ‖ · ‖ still

obeys the triangular inequality? Some investigations are needed.

In the next section, we introduce a total order for dual numbers. We also define the square

root function for dual numbers.

Then, in Section 3, we define the absolute value function for dual numbers. We see that it

inherits many properties of the absolute value function of real numbers.

We show in Section 4 that the sum of the product of a quaternion and the conjugate

of another quaternion, and the product of the other quaternion and the conjugate of that

quaternion, is a real number.

We define in Section 5 the magnitude of a dual quaternion, as a dual number. This definition

matches the definition of unit dual quaternions in applications.

Based upon these, in Section 6, we extend 1-norm, ∞-norm and 2-norm to dual quaternion

vectors. The first two extensions are direct, while the third extension is nontrivial.

Some final remarks are made in Section 7.

We denote scalars, vectors and matrices by small letters, bold small letters and capital

letters, respectively.

2 A Total Order for Dual Numbers

Denote R and D as the set of the real numbers, and the set of the dual numbers, respectively.

A dual number q has the form q = qst + qIǫ, where qst and qI are real numbers, and ǫ is

the infinitesimal unit, satisfying ǫ2 = 0. We call qst the real part or the standard part of q,

and qI the dual part or the infinitesimal part of q. The infinitesimal unit ǫ is commutative

in multiplication with real numbers, complex numbers and quaternion numbers. The dual

numbers form a commutative algebra of dimension two over the reals. If qst 6= 0, we say that q

is appreciable, otherwise, we say that q is infinitesimal.

We may define a total order ≤ over D. Suppose p = pst + pIǫ, q = qst + qIǫ ∈ D. We have

q < p if qst < pst, or qst = pst and qI < pI . We have q = p if qst = pst and qI = pI . Thus, if
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q > 0, we say that q is a positive dual number; and if q ≥ 0, we say that q is a nonnegative

dual number. Denote the set of nonnegative dual numbers by D+, and the set of positive dual

numbers by D++.

For p = pst + pIǫ, q = qst + qIǫ ∈ D and a positive integer k, we have

p+ q = pst + qst + (pI + qI)ǫ, (1)

pq = pstqst + (pstqI + pIqst)ǫ, (2)

qk = qkst + kqk−1
st qIǫ. (3)

Then we have the following theorem.

Theorem 2.1. For any p, q ∈ D and a positive integer k, we have the following conclusions.

1. q2k ∈ D+;

2. p2 + q2 − 2pq ∈ D+;

3. If p, q ∈ D+, then pq ∈ D+;

4. If p, q ∈ D++ and at least one of them is appreciable, then pq ∈ D++

Proof. 1. By (3), we have

q2k = q2kst + 2kq2k−1
st qIǫ.

If qst 6= 0, then q2kst > 0. This implies q2k > 0. If qst = 0, then q2k = 0.

2. By 1, we have p2 + q2 − 2pq = (p− q)2 ≥ 0.

3. If pst > 0 and qst > 0, then pstqst > 0. By (2), pq > 0. If pst = 0 and qst > 0, then pI ≥ 0

as p ≥ 0. By (2), pq = pIqstǫ ≥ 0. Similarly, if pst > 0 and qst = 0, then by (2), pq = pstqIǫ ≥ 0.

If pst = qst = 0, then by (2), pq = 0.

4. This may be proved similarly to 3.

Clearly, many inequalities of real numbers can be extended to dual numbers without diffi-

culty.

For p, q ∈ D, suppose that p ≤ q. Then we may define

[p, q] = {u ∈ D : p ≤ u ≤ q},

[p,+∞) = {u ∈ D : p ≤ u},

(p,+∞) = {u ∈ D : p < u},

(−∞, q] = {u ∈ D : u ≤ q},

(−∞, q) = {u ∈ D : u < q}.

If furthermore p < q, then we may define

[p, q) = {u ∈ D : p ≤ u < q},
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(p, q] = {u ∈ D : p < u ≤ q},

(p, q) = {u ∈ D : p < u < q}.

If q is appreciable, then q is invertible and

q−1 = q−1
st − q−1

st qIq
−1
st ǫ.

If q is infinitesimal, then q is not invertible.

If q is nonnegative and appreciable, then the square root of q is still a nonnegative dual

number. If q is positive and appreciable, we have

√
q =

√
qst +

qI
2
√
qst

ǫ. (4)

When q = 0, we have
√
q = 0.

3 The Absolute Value Function of Dual Numbers

Recall that for any u ∈ R,

sgn(u) =















1, if u > 0,

0, if u = 0,

−1, if u < 0.

We define the absolute value of q ∈ D as

|q| =
{

|qst|+ sgn(qst)qIǫ, if qst 6= 0,

|qI |ǫ, otherwise.
(5)

We have the following theorem.

Theorem 3.1. The mapping | · | : D → D+. Suppose that p, q ∈ D. Then,

1. |q| = 0 if and only if q = 0;

2. |q| = q if q ≥ 0, |q| > q otherwise;

3. |q| =
√

q2 if q is appreciable;

4. |pq| = |p||q|;
5. |p+ q| ≤ |p|+ |q|.

Proof. By definition, | · | : D → D+, and we may verify conclusions 1 and 2 directly.

Suppose that q is appreciable. Then qst 6= 0. We have q2 = q2st + 2qstqIǫ. This implies that

√

q2 =
√

q2st +
2qstqI

2
√

q2st
ǫ = |qst|+ sgn(qst)qIǫ = |q|.

We have conclusion 3.
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We have

pq = pstqst + (pstqI + pIqst)ǫ.

Then,

|pq| =
{

|pstqst|+ sgn(pstqst)(pstqI + pIqst)ǫ, if pstqst 6= 0,

|pstqI + pIqst|ǫ, otherwise.
If pst 6= 0 and qst 6= 0, then

sgn(pstqst) = sgn(pst)sgn(qst).

We have

|pq| = |pstqst|+ sgn(pstqst)(pstqI + pIqst)ǫ

= |pst||qst|+ |pst|sgn(qst)qIǫ+ sgn(pst)pI |qst|ǫ
= (|pst|+ sgn(pst)pIǫ) (|qst|+ sgn(qst)qIǫ)

= |p||q|.

If pst = 0 and qst 6= 0, then pq = pIqstǫ. This implies that |pq| = |pI||qst|ǫ. On the other

hand, we have |p| = |pI |ǫ and |q| = |qst|+ sgn(qst)qIǫ. Therefore,

|p||q| = |pI ||qst|ǫ = |pq|.

Similarly, if pst 6= 0 and qst = 0, then we have |p||q| = |pq|.
If pst = qst = 0, then pq = 0, |p| = |pI|ǫ and |q| = |qI |ǫ. We still have |pq| = |p||q|. Hence,

conclusion 4 holds.

We now show conclusion 5. We have

|p+ q| = |(pst + pIǫ) + (qst + qIǫ)| =
{

|pst + qst|+ sgn(pst + qst)(pI + qI)ǫ, if pst + qst 6= 0,

|pI + qI |ǫ, otherwise.
If pst 6= 0 and qst 6= 0, then

|p|+ |q| = |pst|+ |qst|+ (sgn(pst)pI + sgn(qst)qI)ǫ.

We have |p+ q| ≤ |p|+ |q|, as |pst|+ |qst| > 0 and |pst + qst| ≤ |pst|+ |qst|.
If pst = 0 and qst 6= 0, then

|p|+ |q| = |qst|+ (|pI|+ sgn(qst)qI)ǫ.

We have

|p+ q| = |qst|+ sgn(qst)(pI + qI)ǫ ≤ |p|+ |q|.
Similarly, if pst 6= 0 and qst = 0, then we have |p+ q| ≤ |p|+ |q|.
If pst = qst = 0, then

|p+ q| = |pI + qI |ǫ ≤ (|pI|+ |qI|)ǫ = |p|+ |q|.

Thus, in any case, we have |p+ q| ≤ |p|+ |q|.
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We see that the absolute value concept of dual numbers extends the absolute value concept

of real numbers.

In fact, for p, q ∈ D, |p− q| defines the distance between p and q. This distance satisfies the

triangular formula, and provides the basis for dual analysis.

Based on this distance measurement, we can define limits and continuous dual functions. A

function f : (a, b) → D, where a, b ∈ D, a < b, is called a dual function. Then we see that the

properties of dual functions are different from real functions. Consider f(x) = x2 − ǫ, defined

on D. We have f(0) = −ǫ < 0 and f(1) = 1 − ǫ > 0. However, we cannot find x ∈ [0, 1] ⊂ D

such that f(x) = 0.

4 A Mixed Product Sum of Two Quaternions

Denote Q as the set of the quaternions. A quaternion q has the form q = q0 + q1i + q2j + q3k,

where q0, q1, q2 and q3 are real numbers, i, j and k are three imaginary units of quaternions,

satisfying i2 = j2 = k2 = ijk = −1, ij = −ji = k, jk = −kj = i,ki = −ik = j. The real part

of q is Re(q) = q0. The imaginary part of q is Im(q) = q1i + q2j + q3k. A quaternion is called

imaginary if its real part is zero. The multiplication of quaternions satisfies the distribution

law, but is noncommutative.

The conjugate of q = q0 + q1i + q2j + q3k is q∗ = q0 − q1i − q2j − q3k. The magnitude of

q is |q| =
√

q20 + q21 + q22 + q23. It follows that the inverse of a nonzero quaternion q is given by

q−1 = q∗/|q|2. For any two quaternions p and q, we have (pq)∗ = q∗p∗.

By Theorem 2.1 of [16], we have the following proposition.

Proposition 4.1. For any p = p0 + p1i+ p2j + p3k, q = q0 + q1i+ q2j+ q3k ∈ Q, we have

1. |q| = |q∗|;
2. q∗q = qq∗ = |q|2 = q20 + q21 + q22 + q23;

3. |q| = 0 if and only if q = 0;

4. |p+ q| ≤ |p|+ |q|;
5. |pq| = |p||q|.

By direct calculation, we have the following theorem.

Theorem 4.2. Suppose that p = p0 + p1i + p2j + p3k, q = q0 + q1i + q2j + q3k ∈ Q, where

p0, p1, p2, p3, q0, q1, q2, q3 ∈ R. Then

pq∗ + qp∗ = p∗q + q∗p = 2p0q0 + 2p1q1 + 2p2q2 + 2p3q3, (6)

which is a real number.
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5 The Magnitude of a Dual Quaternion

We may denote the set of dual quaternions as DQ. A dual quaternion q ∈ DQ has the form

q = qst + qIǫ,

where qst, qI ∈ Q are the standard part and the infinitesimal part of q respectively. The

conjugate of q is

q∗ = q∗st + q∗Iǫ.

See [1, 4, 10]. If qst 6= 0, then we say that q is appreciable.

We can derive that q is invertible if and only if q is appreciable. In this case, we have

q−1 = q−1
st − q−1

st qIq
−1
st ǫ.

The magnitude of q is defined as

|q| :=











|qst|+
(qstq

∗
I + qIq

∗
st)

2|qst|
ǫ, if qst 6= 0,

|qI|ǫ, otherwise,
(7)

which is a dual number. Note that this definition reduces to the definition of the absolute

function if q ∈ D, and the definition of the magnitude of a quaternion if q ∈ Q.

Theorem 5.1. The magnitude |q| is a dual number for any q ∈ DQ. If q is appreciable, then

|q| =
√
qq∗. (8)

For any p, q ∈ DQ, we have

1. qq∗ = q∗q;

2. |q| = |q∗|;
3. |q| ≥ 0 for all q, and |q| = 0 if and only if q = 0;

4. |pq| = |p||q|;
5. |p+ q| ≤ |p|+ |q|.

Proof. By Theorem 4.2, qstq
∗
I +qIq

∗
st is a real number. As |qst| is also a real number, |q|, defined

by (7), is a dual number. If q is appreciable, then qst 6= 0. We have

qq∗ = qstq
∗
st + (qstq

∗
I + qIq

∗
st)ǫ = |qst|2 + (qstq

∗
I + qIq

∗
st)ǫ.

By (4) and (7), we have (8).

1. We have

qq∗ = qstq
∗
st + (qIq

∗
st + qstq

∗
I)ǫ

and

q∗q = q∗stqst + (q∗Iqst + q∗stqI)ǫ.
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Then by Proposition 4.1 and Theorem 4.2, we have qq∗ = q∗q.

2. If q is appreciable, then by (8), |q| = √
qq∗ and |q∗| = √

q∗q. By 1, we have |q| = |q∗|.
If q is not appreciable, then q = qIǫ and q∗ = q∗Iǫ. We have |q| = |qI|ǫ and |q∗| = |q∗I|ǫ. By

Proposition 4.1, |qI| = |q∗I|. Thus, we also have |q| = |q∗| in this case.

3. By (7), we have the conclusion.

4. Let d = pq. Denote p = pst+pIǫ, q = qst+qIǫ and d = dst+dIǫ, where pst, pI , qst, qI , dst, dI ∈
Q. Then dst = pstqst, dI = pIqst + pstqI , and

|d| =











|dst|+
(dstd

∗
I + dId

∗
st)

2|dst|
ǫ, if dst 6= 0,

|qI|ǫ, otherwise.

If pst 6= 0 and qst 6= 0, then dst = pstqst 6= 0. We have

|p| = |pst|+
(pstp

∗
I + pIp

∗
st)

2|pst|
ǫ,

|q| = |qst|+
(qstq

∗
I + qIq

∗
st)

2|qst|
ǫ,

|pq| = |d| = |dst|+
(dstd

∗
I + dId

∗
st)

2|dst|
ǫ.

We have

|p||q| = |pst||qst|+
( |pst|(qstq∗I + qIq

∗
st)

2|qst|
+

|qst|(pstp∗I + pIp
∗
st)

2|pst|

)

ǫ

= |pstqst|+
|pst|2(qstq∗I + qIq

∗
st) + |qst|2(pstp∗I + pIp

∗
st)

2|pst||qst|
ǫ

= |dst|+
|pst|2(qstq∗I + qIq

∗
st) + |qst|2(pstp∗I + pIp

∗
st)

2|dst|
ǫ.

Thus, to show that |pq| = |p||q| in this case, it suffices to show that

dstd
∗
I + dId

∗
st = |pst|2(qstq∗I + qIq

∗
st) + |qst|2(pstp∗I + pIp

∗
st). (9)

We have dst = pstqst and dI = pIqst + pstqI . Then d∗st = q∗stp
∗
st and d∗I = q∗stp

∗
I + q∗Ip

∗
st. From

these, (9) can be derived. Thus, |pq| = |p||q| in this case.

If pst = 0 and qst 6= 0, then pq = pIqstǫ. This implies that |pq| = |pI||qst|ǫ. On the other

hand, we have p = pIǫ, which implies that |p| = |pI|ǫ. Since

|q| = |qst|+
(qstq

∗
I + qIq

∗
st)

2|qst|
ǫ,

we have |p||q| = |pI||qst|ǫ = |pq|.
Similarly, if pst 6= 0 and qst = 0, we also have |pq| = |p||q|.
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If pst = qst = 0, then p = pIǫ, |p| = |pI |ǫ, q = qIǫ, |q| = |qI |ǫ. We have |pq| = 0 = |p||q|.
Thus, |pq| = |p||q| in all the cases. This proves Conclusion 4.

5. We have

|p| = |pst|+
(pstp

∗
I + pIp

∗
st)

2|pst|
ǫ,

|q| = |qst|+
(qstq

∗
I + qIq

∗
st)

2|qst|
ǫ,

|p+ q| = |pst + qst|+
(pst + qst)(p

∗
I + q∗I) + (pI + qI)(p

∗
st + q∗st)

2|pst + qst|
ǫ.

We may also divide to four cases, namely, a. pst 6= 0 and qst 6= 0, b. pst = 0 and qst 6= 0, c.

pst 6= 0 and qst = 0, and d. pst = qst = 0, to prove Conclusion 5. We omit the technical details

here.

If |q| = 1, then q is called a unit dual quaternion, which plays an important role to represent

the motion of a rigid body in 3D [1, 4, 10]. Thus, q is a unit dual quaternion if and only if

|qst| = 1 and

qstq
∗
I + qIq

∗
st = 0.

This matches the definition of unit dual quaternions in applications [1, 4, 10].

6 Norms of Dual Quaternion Vectors

Denote the collection of n-dimensional quaternion vectors by Qn, and the collection of n-

dimensional dual quaternion vectors by DQn. For x = (x1, x2, · · · , xn)
⊤ ∈ Qn with xi =

(xi)0 + (xi)1i + (xi)2j+ (xi)3k for (xi)j ∈ R, i = 1, 2, · · · , n, j = 0, 1, 2, 4, denote

xR = ((x1)0, (x1)1, (x1)2, (x1)3, (x2)0, · · · , (xn)3)
⊤ ∈ R4n.

Then

‖x‖2 ≡

√

√

√

√

n
∑

i=1

|xi|2 =

√

√

√

√

n
∑

i=1

[(xi)
2
0 + (xi)

2
1 + (xi)

2
2 + (xi)

2
3] ≡ ‖xR‖2.

This connects the 2-norms of real vectors and quaternion vectors, and will be useful for us to

discuss the 2-norm of dual quaternion vectors.

For x = (x1, x2, · · · , xn)
⊤,y = (y1, y2, · · · , yn)⊤ ∈ Qn, define x∗y =

∑n

i=1 x
∗
i yi, where

x∗ = (x∗
1, x

∗
2, · · · , x∗

n) is the conjugate transpose of x. By Theorem 4.2, we have the following

proposition.

Proposition 6.1. For x,y ∈ Qn, we have x∗y + y∗x ≤ 2‖x‖2‖y‖2.

9



Proof. By Theorem 4.2, we know

x∗
i yi + y∗i xi = 2[(xi)0(yi)0 + (xi)1(yi)1 + (xi)2(yi)2 + (xi)3(yi)3].

Consequently, it holds that

x∗y + y∗x =

n
∑

i=1

(x∗
i yi + y∗i xi) = 2(xR)⊤yR ≤ 2‖xR‖2‖yR‖2 = 2‖x‖2‖y‖2.

For x ∈ DQn, we may also write

x = xst + xIǫ,

where xst,xI ∈ Qn are the standard part and the infinitesimal part of x respectively.

A function v : DQn → D is called a norm on DQn if it satisfies the following three properties:

1. For any x ∈ DQn, v(x) ≥ 0, and v(x) = 0 if and only if x = 0;

2. For any x ∈ DQn and q ∈ DQ, v(qx) = |q|v(x);
3. For any x,y ∈ DQn, v(x+ y) ≤ v(x) + v(y).

Suppose that x = (x1, x2, · · · , xn)
⊤. We may extend the 1-norm and ∞-norm to dual

quaternion vectors as follows:

‖x‖1 =
n
∑

i=1

|xi|, (10)

and

‖x‖∞ = max
i=1,2,··· ,n

|xi|. (11)

For i = 1, 2, · · · , n, we have

|xi| =











|(xi)st|+
(xi)st(xi)

∗
I + (xi)I(xi)

∗
st

2|(xi)st|
ǫ, if (xi)st 6= 0,

|(xi)I|ǫ, otherwise.
(12)

Proposition 6.2. The 1-norm and the ∞-norm, defined above satisfy the three properties of

norms.

Proof. Consider the 1-norm first. Let x ∈ DQn. If x = 0, then xi = 0 for i = 1, 2, · · · , n. By

(12), we have |xi| = 0 for i = 1, 2, · · · , n. By (10), we have ‖x‖1 = 0. On the other, if ‖x‖1 = 0,

then by (10), we have |xi| = 0 for i = 1, 2, · · · , n, as |xi| ≥ 0 for i = 1, 2, · · · , n. By Theorem

5.1, we have xi = 0 for i = 1, 2, · · · , n. Hence x = 0. This proves Property 1 for the 1-norm.

Now, let q ∈ DQ. We have

‖qx‖1 =
n
∑

i=1

|qxi| =
n
∑

i=1

|q||xi| = |q|
n
∑

i=1

|xi| = |q|‖x‖1.

10



Then, Property 2 of the norm holds for the 1-norm. Finally, for x,y ∈ DQn, we have

‖x+ y‖1 =
n
∑

i=1

|xi + yi| ≤
n
∑

i=1

(|xi|+ |yi|) =
n
∑

i=1

|xi|+
n
∑

i=1

|yi| = ‖x‖1 + ‖y‖1.

This proves Property 3 for the 1-norm. Hence, the 1-norm is a norm.

We see that the proof for the 1-norm is the same as in the real vector space. The proof for

the ∞-norm is also the same as in the real vector space. Hence, we omit the details here.

However, for 2-norm, we may not simply define

‖x‖2 =

√

√

√

√

n
∑

i=1

|xi|2. (13)

We should define ‖x‖2 by (13) if not all of xi are infinitesimal. If all xi are infinitesimal, we

have xi = (xi)Iǫ for i = 1, 2, · · · , n. Then we define

‖x‖2 =

√

√

√

√

n
∑

i=1

|(xi)I|2ǫ. (14)

Proposition 6.3. For any x = xst + xIǫ ∈ DQn with xst 6= 0, it holds that

‖x‖2 = ‖xst‖2 +
(xR

st)
⊤xR

I

‖xst‖2
ǫ ≤ ‖xst‖2 + ‖xI‖2ǫ. (15)

Proof. Since xst 6= 0, by (12) and (13), we have

‖x‖2 =

√

√

√

√

n
∑

i=1

|xi|2

=

√

√

√

√

∑

(xi)st 6=0

(

|(xi)st|+
(xi)st(xi)

∗
I + (xi)I(xi)

∗
st

2|(xi)st|
ǫ

)2

+
∑

(xi)st=0

|(xi)Iǫ|2

=

√

∑

(xi)st 6=0

(|(xi)st|2 + ((xi)st(xi)
∗
I + (xi)I(xi)

∗
st)ǫ).

Since (xi)
∗
st = 0 when (xi)st = 0, we further have

‖x‖2 =

√

√

√

√

n
∑

i=1

|(xi)st|2 +
(

n
∑

i=1

((xi)st(xi)∗I + (xi)I(xi)∗st)

)

ǫ

=

√

√

√

√‖xst‖22 +
(

n
∑

i=1

((xi)st(xi)
∗
I + (xi)I(xi)

∗
st)

)

ǫ.

11



Consequently, by (4) and Theorem 4.2, we have

‖x‖2 = ‖xst‖2 +
∑n

i=1((xi)st(xi)
∗
I + (xi)I(xi)

∗
st)

2‖xst‖2
ǫ

= ‖xst‖2 +
∑n

i=1((xi)
∗
st(xi)I + (xi)

∗
I(xi)st)

2‖xst‖2
ǫ

= ‖xst‖2 +
x∗
stxI + x∗

Ixst

2‖xst‖2
ǫ

= ‖xst‖2 +
(xR

st)
⊤xR

I

‖xst‖2
ǫ,

which means that the equality in (15) holds. Finally, the inequality in (15) follows from the

fact that (xR
st)

⊤xR
I ≤ ‖xst‖2‖xI‖2.

Theorem 6.4. The 2-norm, defined by (13) and (14), satisfies the three properties of norms.

Proof. By (13) and (14), if x = 0, then ‖x‖2 = 0. On the other hand, assume that ‖x‖2 = 0.

If one of xi is appreciable, by (13), we have |xi| = 0 for i = 1, 2, · · · , n. This implies that

xi = 0 for i = 1, 2, · · · , n. Hence x = 0. If all of xi are infinitesimal, i.e., xst = 0, then by

(14), we have |(xi)I| = 0 for i = 1, 2, · · · , n. By Proposition 4.1, this means that (xi)I = 0 for

i = 1, 2, · · · , n. Hence, xi = 0 for i = 1, 2, · · · , n, i.e., x = 0. Thus, Property 1 holds for the

2-norm.

Assume that q ∈ DQ is appreciable. If at least one xi is appreciable, then the corresponding

qxi is also appreciable. By (13),

‖qx‖2 =

√

√

√

√

n
∑

i=1

|qxi|2.

By Theorem 5.1, |qxi| = |q||xi|. Hence,

‖qx‖2 =

√

√

√

√|q|2
n
∑

i=1

|xi|2 =
√

|q|2‖x‖22.

By Theorem 5.1, |xi| ≥ 0 for all i. Then |xi|2 ≥ 0 for all i. By (7), |xi|, hence |xi|2 is appreciable,
if xi is appreciable. This implies that

∑n

i=1 |xi|2 ≥ 0 and is appreciable. Since q is appreciable,

by (7), |q| ≥ 0 and is also appreciable. Thus, |q|2 ≥ 0 and is appreciable. Then, |q|2‖x‖22 ≥ 0

and is also appreciable. We have

‖qx‖2 =
√

|q|2‖x‖22 = |q|‖x‖2.

If all xi are infinitesimal, then all qxi are also infinitesimal. By (14), we have

‖qx‖2 =

√

√

√

√

n
∑

i=1

|qst(xi)I|2ǫ = |qst|

√

√

√

√

n
∑

i=1

|(xi)I|2ǫ.
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Since qst 6= 0, by (7), we have

|qst| = |q| − qstq
∗
I + qIqst

∗

2|qst|
ǫ.

‖qx‖2 =
(

|q| − qstq
∗
I + qIqst

∗

2|qst|
ǫ

)

√

√

√

√

n
∑

i=1

|(xi)I|2ǫ = |q|

√

√

√

√

n
∑

i=1

|(xi)I|2ǫ = |q|‖x‖2.

Assume now that q is infinitesimal. Then q = qIǫ, which implies that all qxi = qI(xi)stǫ are

infinitesimal. Consequently, by (14), we have

‖qx‖2 =

√

√

√

√

n
∑

i=1

|qI(xi)st|2ǫ = |qI |

√

√

√

√

n
∑

i=1

|(xi)st|2ǫ = |qI |‖xst‖2ǫ. (16)

If xst 6= 0, then by (16) and Proposition 6.3, we have

‖qx‖2 = |qI|
(

‖x‖2 −
(xR

st)
⊤xR

I

‖xst‖2
ǫ

)

ǫ = |qI|‖x‖2ǫ = |q|‖x‖2.

If xst = 0, then qx = 0, which implies ‖qx‖2 = 0 by (14). But in this case, by (14), ‖x‖2 is also
infinitesimal, which implies, together with the fact that |q| = |qI |ǫ, that |q|‖x‖2 = 0. Hence

‖qx‖2 = |q|‖x‖2. This proves that Property 2 holds for the 2-norm.

Finally, let x = xst + xIǫ,y = yst + yIǫ ∈ DQn. We wish to prove that

‖x+ y‖2 ≤ ‖x‖2 + ‖y‖2. (17)

By the properties of the 2-norm for quaternions [15], we have

‖xst + yst‖2 ≤ ‖xst‖2 + ‖yst‖2. (18)

If

‖xst + yst‖2 < ‖xst‖2 + ‖yst‖2, (19)

then xst 6= 0 and yst 6= 0. If xst + yst 6= 0, then by Proposition 6.3, we have

‖x+ y‖2 = ‖xst + yst‖2 + uǫ,

where u = (xR
st + yR

st)
⊤(xR

I + yR
I )/‖xst + yst‖2. Since xst 6= 0 and yst 6= 0, by Proposition 6.3,

we have

‖x‖2 + ‖y‖2 = ‖xst‖2 + ‖yst‖2 +
(

(xR
st)

⊤xR
I

‖xst‖2
+

(yR
st)

⊤yR
I

‖yst‖2

)

ǫ.

By (19), we know that (17) holds. If xst + yst = 0, then ‖xst + yst‖2 = 0 < ‖xst‖2 + ‖yst‖2.
Thus, (17) still holds.

If ‖xst + yst‖2 = ‖xst‖2 + ‖yst‖2, then by the argument at the beginning of this section, we

know that

‖xR
st + yR

st‖2 = ‖xR
st‖2 + ‖yR

st‖2.

13



By the properties of the 2-norm of real vectors, either xst = 0 or yst = 0 or there is a real

positive number t such that yst = txst. Hence, we divide this case to four subcases.

a. xst = yst = 0. Then x = xIǫ and y = yIǫ. We have x+ y = (xI + yI)ǫ, and by (14),

‖x+ y‖2 = ‖xI + yI‖2ǫ ≤ (‖xI‖2 + ‖yI‖2) ǫ = ‖xI‖2ǫ+ ‖yI‖2ǫ = ‖x‖2 + ‖y‖2.

b. xst = 0 and yst 6= 0. Then x + y = yst + (xI + yI)ǫ. Since yst 6= 0, by Proposition 6.3,

we have ‖x+ y‖2 = ‖yst‖2 + vǫ, where

v =
(yR

st)
⊤(xR

I + yR
I )

‖yst‖2
=

(yR
st)

⊤xR
I

‖yst‖2
+

(yR
st)

⊤yR
I

‖yst‖2
.

Consequently, we have

‖x+ y‖2 = ‖yst‖2 +
(yR

st)
⊤xR

I

‖yst‖2
ǫ+

(yR
st)

⊤yR
I

‖yst‖2
ǫ

= ‖y‖2 +
(yR

st)
⊤xR

I

‖yst‖2
ǫ

≤ ‖y‖2 + ‖xI‖2ǫ
= ‖y‖2 + ‖x‖2,

where the last second inequality is due to the fact that (yR
st)

⊤xR
I ≤ ‖yR

st‖2‖xR
I ‖2 = ‖yst‖2‖xI‖2.

Thus, we have (17).

c. xst 6= 0 and yst = 0. By exchanging x and y in the subcase b, we also have (17).

d. xst 6= 0 and yst = txst for a real positive number t. In this case, since x + y =

(1 + t)xst + (xI + yI)ǫ, by Proposition 6.3, we have

‖x+ y‖2 = (1 + t)‖xst‖2 +
(xR

st)
⊤(xR

I + yR
I )

‖xst‖2
ǫ = ‖xst‖2 + ‖yst‖2 +

(xR
st)

⊤xR
I

‖xst‖2
ǫ+

(yR
st)

⊤yR
I

‖yst‖2
ǫ,

where the second equality comes from yst = txst. By Proposition 6.3 again, we know that (17)

holds. Thus, Property 3 holds for the 2-norm.

For any x ∈ DQn, it is not difficult to show that ‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1.
For x = (x1, x2, · · · , xn)

⊤,y = (y1, y2, · · · , yn)⊤ ∈ DQn, let the conjugate transpose of x be

x∗ = (x∗
1, x

∗
2, · · · , x∗

n), and define x∗y =
∑n

i=1 x
∗
i yi. If x∗y = 0, then we say that x and y are

orthogonal. It is not difficult to show that x∗x = 1 if and only if ‖x‖2 = 1. In this case, we say

that x is a unit dual quaternion vector. If x(1),x(2), · · · ,x(n) ∈ DQn, and
(

x(i)
)∗

x(j) = δij for

i, j = 1, 2, · · · , n, where δij is the Kronecker symbol, then we say that
{

x(1),x(2), · · · ,x(n)
}

is

an orthonormal basis of DQn.

7 Final Remarks

In the study of robotics, dual quaternion optimization problems are studied [1, 4]. In such dual

quaternion optimization problems, are the variables of the functions involved dual quaternion
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vectors? Are those functions real valued or dual number valued? How to analyze such opti-

mization problems and their algorithms? A further study is needed to address these problems.

The further study and applications of dual numbers, dual complex numbers and dual quater-

nions inevitably lead to the study on dual number matrices, dual complex matrices, dual quater-

nion matrices and their spectral theories [2, 8, 12]. In particular, recently, Gutin [8] studied

spectral theory and singular value decomposition of dual number matrices, Qi and Luo [12] stud-

ied spectral theory and singular value decomposition of dual complex matrices. What about

the spectral theory of dual quaternion matrices? This may be also worth further studying.
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