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ABSTRACT

This paper describes and evaluates the Dual Reinforcement Q-Routing algorithm (DRQ-Routing)
for adaptive packet routing in communication networks. Each node in the network has a routing decision
maker that adapts, on-line, to learn routing policies that can sustain high network loads and have low
average packet delivery time. These decision makers learn based on the information they get back from
their neighboring nodes as they send packets to them (forward exploration similar to Q-Routing) and the
information appended to the packets they receive from their neighboring nodes (backward exploration
unique to DRQ-Routing). Experiments over several network topologies have shown that at low loads,
DRQ-Routing learns the optimal policy more than twice as fast as Q-Routing, and at high loads, it
learns routing policies that are more than twice as good as Q-Routing in terms of average packet delivery
time. Further, DRQ-Routing is able to sustain higher network loads than Q-Routing and non-adaptive
shortest-path routing.

1 INTRODUCTION

In a communication network [Tanenbaum (1989)] information is transferred from one node to
another as data packets. The process of sending a packet from its source node s to its destination
node d is referred to as packet routing [Bellman (1958)]. Normally it takes multiple “hops” to
transfer a packet from its source to destination node. On its way, the packet spends some time
waiting in the queues of intermediate nodes while they are busy processing the packets that came
earlier. Thus the delivery time of the packet, defined as the time it takes for the packet to reach
its destination, depends mainly on the total time it has to spend in the queues of the intermediate
nodes.

Normally, there are multiple routes that a packet could take, which means that the choice
of the route is crucial to the delivery time of the packet for any (s,d) pair. If there was a global
observer with current information about the queues of all nodes in the network, it would be
possible to make optimal routing decisions: always send the packet through the route that has the
shortest delivery time at the moment. In the real world, such complete, global information is not
available, and the performance of the global observer 1s an upper bound on actual performance.
Instead, the task of making routing decisions has to shared by all the nodes, each using only
local information. Thus, a routing policy is a collection of local decisions at the individual nodes.
When a node x receives a packet P destined for node d, it has to choose one of its neighboring
nodes y such that the packet reaches its destination as quickly as possible.

The simplest such policy is the shortest-path algorithm, which always routes packets through
the path with the minimum number of hops. This policy i1s not always good because some
intermediate nodes, falling in a popular route, might have large queues. In such cases it would be
better to send the packet through another route that may be longer in terms of hops but results
in shorter delivery time. Hence as the traffic builds up at some popular routes, alternative routes
must be chosen to keep the average packet delivery time low. This is the key motivation for
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adaptive packet routing strategies that learn alternate routes through exploration as the current
routing policy begins to lead to degraded performance.
Learning effective routing policies is a challenging task for several reasons:

e The goal is to optimize a global metric, the average packet delivery time of all packets, using
only local information.

e There is no “training signal” available for directly evaluating a routing policy until the packets
have reached their destination.

e When a packet reaches its destination, such a training signal could be generated, but to make
it available to the nodes responsible for routing the packet, the training signal would have
to travel to all these nodes, thereby consuming a lot of network resources.

e It is not known which particular decision in the sequence of routing decisions deserve credit
for the performance, and how much (the credit assignment problem).

A way of efficiently exploring the network environment and continually updating the decision
makers based on the local information is necessary in order to learn good routing policies.

Q-Routing [Boyan and Littman (1994); Littman and Boyan (1993)] uses the Q-learning
framework [Watkins (1989)] in this task. Each node makes its routing decisions based on routing
information at their neighboring nodes. The node stores a table of @ values that estimate the
quality of the alternative routes. These values are updated each time the node sends a packet to
one of its neighbors. This way, as the node routes packets, its Q values are gradually incorporate
more global information. Such exploration has been shown capable of adapting to load changes
and to perform better than the non-adaptive shortest-path routing with high loads.

This paper presents a new adaptive routing algorithm called Dual Reinforcement Q-Routing
(DRQ-Routing) that combines Q-Routing with Dual Reinforcement Learning [Goetz et al. (1996)].
Dual reinforcement learning was first applied to the satellite communication problem where the
two ends of the communication system co-adapt using the reinforcement signal for the other end
as their own. Dual reinforcement learning adds backward exploration to the forward exploration
of Q-routing, making DRQ-Routing twice as good as Q-Routing in terms of speed of adaptation
(at low loads) and average packet delivery time (at high loads).

The Q-Routing algorithm is described in detail next, followed by the DRQ-Routing. The
performance of the two algorithms are evaluated experimentally in section 4 and compared to
the standard shortest-path algorithm. The amount of overhead generated by these algorithms is
analyzed in section 5, and a number of directions for future research outlined.

2 Q-ROUTING

In Q-routing, the routing decision maker at each node z makes use of a table of values
Q. (y, d), where each value is an estimate, for a neighbor y and destination d, of how long it takes
for a packet to be delivered to node d, if sent via neighbor y, excluding time spent in node z’s
queue. When the node has to make a routing decision it simply chooses the neighbor y for which
Q. (y,d) is minimum. Learning takes place by updating the Q values.

On sending P to y, x immediately gets back y’s estimate for the time remaining in the trip,
namely

Qu(%2,d) = min Qyu(z,d), (1)

Z€N(y)

where N(n) denotes the set of neighbors of node n. If the packet spent ¢, units of time in z’s
queue, then z can revise its estimate based on this feedback:

new estimate old estimate

—_——
AQf(y’ d) = Uf(Qy(éa d) + ¢z — Qx(ya d) )a (2)
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where 7n; is the “learning rate”.

In other words, the information about the remaining path is used to update the @Q value of the
sending node. Such exploration can be termed forward exploration (figure 2). In DRQ-Routing,
the other possible direction of exploration, backward exploration, is added to this algorithm.

3 DUAL REINFORCEMENT Q-ROUTING

Dual reinforcement learning was first developed for adaptive signal predistorters in satellite
communications [Goetz et al. (1996)]. Both ends of a satellite communication system have a
predistorter that changes the signal, before it is transmitted, so that when the signal is received
at the other end, the effects of distortion due to atmosphere have been cancelled out. Both
predistorters start out equal and are adapted together while the system is performing. When the
receiver gets the signal, it evaluates the performance of the transmitter’s predistorter and uses
the evaluation to adapt its own predistorter. Thus both predistorters learn on-line based on a
training signal that is locally available.

The same 1dea is used to incorporate backward exploration into the Q-Routing algorithm,
resulting in “Dual Reinforcement Q-Routing” (DRQ-Routing). When a node z sends a packet P
to one of its neighbors, y, the packet can take along some @ value information of node . When
node y receives this packet, it can make use of this information for updating its own estimate
pertaining to the neighbor z. Later when node y has to make a decision, it has the updated Q
value for z. The only exploration overhead is a slight increase in the size of the packets.

Let s denote the source node of packet P, which is currently at node x. This packet carries to
node y the estimated time it takes for a packet destined for node s from node x, that is Q,(z,s)

defined as:

Q.(z,s) = min Q.(z,s). (3)

2EN(x)

With this information, node y can update its own estimate, Qg (2, s), of sending a packet to
node s via its neighbor x:

new estimate old estimate
—_—— —_——
AQy(x,s):nb(Qx(z,s)—l—qy— Qy(x,s) )’ (4)

where 7 is the learning rate and gy is the waiting time for this packet in node y.

In other words, the information about the path the packet has traversed so far is used to
update the @Q value of the receiving node. Such exploration can be termed backward exploration
(figure 2). This way the packet is used to carry routing information from one node to the next
as 1t moves from the source to destination.

In DRQ-Routing, both the forward exploration and backward exploration are used to update
the Q values. Figure 2 illustrates these two updates as the packet P hops from node z to its
neighbor y.



4 EXPERIMENTS

Experiments described in this paper use a simulated network represented by a collection of
nodes and links between these nodes (figure 4). Packets destined for random nodes are periodi-
cally introduced into this network at random nodes. The number of packets introduced per unit
simulation time step is called as the network load. Multiple packets at a node are stored in its
unbounded FIFO queue. In one time step, each node removes the packet in front of its queue,
examines the destination of this packet and uses its routing decision maker to send the packet to
one of its neighboring nodes. When a node receives a packet, it either removes the packet from
the network or appends it at the end of its queue, depending on whether or not this node is the
destination node of the packet.

The delivery time of a packet is defined as the time between its introduction at the source
node and its removal at the destination node. Delivery time is measured in terms of simulation
time steps. Average packet delivery time, computed at regular intervals, is the average of packet
delivery times of all the packets arriving at their destinations during the last interval. This
measure is used to monitor the network performance while learning is taking place. Average
packet delivery time after learning has settled measures the quality of the final routing policy.

The performance of DRQ-Routing was tested against Q-Routing and non-adaptive shortest-
path routing, on a number of network topologies including 7-hypercube, 116-node LATA tele-
phone network, and an irregular 6 x 6 grid. The results were similar in all cases; the discussion
below focuses on the last one since it best illustrates adaptation. In the 6 x 6 irregular grid
(due to [Boyan and Littman (1994); Littman and Boyan (1993)]), shown in figure 4, there are
two possible ways of routing packets between the left cluster (nodes 1 through 10) and the right
cluster (nodes 25 through 36): the route including nodes 12 and 25 (R;) and the route including
nodes 18 and 19 (Rz).
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The shortest-path routing algorithm, which chooses the route with minimum hops, routes all
the traffic between the left cluster and right cluster via route Ry. For low loads (0.5 to 1.5 new
packets per simulation step), this routing policy works fine and throughout the simulation, the
average packet delivery time is close to optimum (figure 3). At medium load levels (1.75 to 2.25
packets per simulation step), the shortest-path strategy breaks down as nodes 12 and 25 become
flooded with packets. The average delivery time increases linearly with simulation time (figure
4). For high load levels (2.5 and more packets per simulation time) the flooding of node 12 and
25 takes place at an even faster rate.

The main result is the comparison between Q-Routing and DRQ-Routing. In both methods,
the Q-tables at all nodes were initialized to low random values; the learning rate n; was set at
0.7 after [Boyan and Littman (1994)], and 7, was set to 0.9. As the simulation progressed, the
average packet delivery times at regular intervals of 50 simulation time steps were monitored to
see the effect of learning. The results shown in figures 2, 3 and 4 for low, medium and high
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Figure 4. Learning at med ium network
load (1.75 to 2.25 packets per simulation time.)
DRQ-Routing learns the optim al routing policy
twice as fast as the Q-Routing. The shortest-path
routing suffers from severe congestion and the av-
erage packet delivery time increases linearly as
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beyond 5000 simulation time steps.

loads, respectively, are typical single runs at these load levels. During the first few hundred time
steps the average packet delivery times are small because the packets destined for distant nodes
have not yet reached their destinations, and statistics are available only for packets destined for
nearby nodes (with small delivery times). As distant packets start arriving, the average packet
delivery time increases, while learning is still in progress. Eventually the learning converges, and
each of the curves settles down indicating a stable routing policy.

At low network load levels, shortest path routing is the best policy. Q-Routing learnt a close-
to-optimal routing policy, but it required almost three times the time it took DRQ-Routing to
learn a slightly better policy (figure 3). At medium load levels, DRQ-Routing learnt an effective
policy nearly twice as fast as Q-Routing (figure 4). At high load levels, DRQ-Routing converged
to a routing policy which was twice as good, in terms of average packet delivery time, as the
policy to which Q-Routing converged (figure 5).

The results are summarized in figure 6, which shows the average packet delivery times at
different load levels after the learning has converged. The plots are averages over 10 simulations.
The performance of the “optimal” routing policy with complete global information (section 1)
is also shown for comparison. At low loads, shortest-path routing is the best routing policy.
DRQ-Routing learns a slightly better routing policy at these load levels than Q-Routing. Both
adaptive routing algorithms do well in the medium load levels too, but the shortest-path routing
breaks down due to excessive congestion along Ri. In the high load region, Q-Routing breaks
down at around 2.5 packets per simulation time while DRQ-Routing can sustain load levels up
to 2.75 packets per simulation time of load.

5 DISCUSSION

Exploration makes it possible for a routing algorithm to adapt. In this paper, Q-Routing,
which is based on forward exploration alone, was compared with DRQ-Routing, which uses both
forward and backward exploration. Backward exploration makes adaptation more effective in

two ways:

1. It leads to a two-fold increase in exploration: two Q values are updated with each hop of
a packet in DRQ-Routing instead of one. Increased exploration in turn leads to increased
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speed of learning, as can be seen in figures 3, 4, and 5 (cf. [Thrun (1992)]).

2. Backward exploration is more accurate than forward exploration. In backward exploration,
information about the path already traversed is propagated, instead of estimates of the
remaining path. At low load levels (such as shown in figure 3), DRQ-Routing is almost three
times faster than Q-Routing because there is little exploration and learning depends more
on accuracy. At high loads again, higher accuracy makes it possible to learn a better policy,
as can be seen in figure 5.

However, exploration also adds overhead into a routing algorithm. It 1s important to analyze
the tradeoff between the improvements and the overhead incurred. In forward exploration, when
anode y receives a packet from node z, it sends back an estimate to node z. The estimate does not
enter node x’s queue, but instead node x waits for the estimate and processes it before the next
packet in its queue. The total time of node y generating the estimate (¢,), the transmission time
of this estimate over the link (¢;), and the processing time (¢,) when node x receives this estimate,
constitute the forward exploration overhead. With fast node processors, the contribution of ¢,
and t, is negligible. The main contribution comes from ;. If p is the size of data packet and e is
the size of estimate packet, then the overhead due to forward exploration is given by e/p (since
the transmission time is proportional to the size of the packet). Because the estimate packet
consists of just one Q value, this ratio is less than 0.1 %.

In backward exploration, an additional  value is appended to the packet, increasing the
packet size. The total time of node # computing and appending this Q value to the packet (t,),
the transmission time of this larger packet (¢;) and the time it takes for node y to extract this Q
value and use it for updating its Q table (¢,) constitute the backward exploration overhead. Again
with fast node processors, the contribution of ¢, and %, is negligible and the main contribution
comes from ¢;. The new packet is of size (p + €) where p is the size of the original packet and e
is the size of Q value appended to it. The increase in packet size is again less 0.1 % and so is the
overhead of using this larger packet.

Hence the total overhead due to forward and backward exploration is not significant, while
the adaptability they establish improves the performance of the routing algorithm multi-fold.



Also, the improvement of DRQ-Routing over Q-Routing i1s by a factor of nearly two in terms of
speed of adaptation at low loads and quality of routing policy at high loads, while the additional
exploration overhead is just 0.1 %.

An adaptive routing algorithm should be able to learn alternative routing policies when a
link goes down and should restore to the original policy when the link comes up again. In [Boyan
and Littman (1994)], Q-Routing was found able to adapt when links go down. However, when
the links come back up, it failed to restore to the original policy because it would not explore
paths that were found defective. Similar behavior is expected for DRQ-Routing. In [Choi and
Yeung (1996)] however, an extension of Q-Routing called Predictive Q-Routing, was proposed
which keeps track of the last update time and the best @) values seen so far. Based on this
information, PQ-Routing is able to explore paths that have been inactive for a long time, and
thereby is able to restore the previous policy. The same idea could be extended to DRQ-Routing
without changing the rest of the algorithm. The speed of restoration is again expected to be
higher in DRQ-Routing than in the current PQ-Routing because of enhanced exploration in
DRQ-Routing.

Unbounded FIFO queues were used in the current simulations for simplicity. In the real
world, the queue buffers of the network routers are finite, leading to possible congestion in
heavily loaded parts of the networks. Extension of the DRQ-Routing to address the problem of
finite buffer networks 1s another important future direction. This extension would make DRQ a
more realistic routing strategy that does not only route optimally, but can also sustain higher
loads in finite buffer networks to avoid congestion and adapt quickly to changing network loads
and traffic patterns.

6 CONCLUSION

In this paper a new adaptive network routing algorithm, DRQ-Routing was presented. It
combines Q-Routing and Dual Reinforcement learning to get increased explorative capabilities.
DRQ-Routing was shown to learn a better routing policy more than twice a fast as Q-Routing at
low loads. At high loads, the routing policy learnt by DRQ-Routing performs more than twice
as good as Q-Routing in terms of average packet delivery time. Moreover, DRQ-Routing can
sustain higher load levels than Q-Routing and shortest-path routing. The additional overhead of
adding this exploration being less than 0.1 %, DRQ-Routing is an efficient and practically viable
adaptive network routing algorithm.
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