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The representation theory for Banach algebras has three main branches that are
only rather loosely connected with each other. The Gelfand representation of a commuta-
tive algebra represents the given algebra by continuous complex valued functions on a
space built from the multiplicative linear functionals on the algebra. A Banach star algebra
is represented by operators on a Hilbert space, the Hilbert space being built by means of
positive Hermitian functionals on the algebra. Finally, for general non-commutative
Banach algebras, an extension of the Jacobson theory of representations of rings is avail-
able. In this general theory, the representations are built in terms of irreducible operator
representations on Banach spaces, and, on the face of it, no part is played by the linear
functionals on the algebra. There is some evidence that the concepts involved in the
general theory are not sufficiently strong to exploit to the full the Banach algebra situation.

The purpose of the present paper is to develop a new unified general representation
theory that is more closely related than the Jacobson theéry to the special theories for
commutative and star algebras. The central concept is that of a dual representation on a
pair of Banach spaces in normed duality. It is found that each continuous linear functional
on a Banach algebra gives rise to a dual representation of the algebra, and thus the dual
space of the algebra enters representation theory in a natural way. One may ask of a dual
representation that it be irreducible on each of the pair of spaces in duality, and thus obtain
a concept of irreducibility stronger than the classical one. Correspondingly one obtains a
stronger concept of density. For certain pairs of spaces in duality, topological irreducibility
on one of the spaces implies topological irreducibility on the other. However, we show that
this is very far from being the case in general. We also consider a further concept of irreduci-
bility, namely uniform strict transitivity, which is stronger than strict irreducibility. For

certain pairs of spaces in duality, uniform strict transitivity on one of the spaces implies

() The second author’s contribution to this paper constituted part of his doctoral dissertation,
which was supported by a Carnegie Scholarship.
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uniform strict transitivity (and hence strict irreducibility) on the other; but it is not true
for such spaces that strict irreducibility on one of the spaces implies strict irreducibility
on the other. We are also concerned to relate the concept of a dually strictly irreducible
dual representation to the ideal structure of the algebra, and we introduce the dual radical
of a Banach algebra as the intersection of the kernels of all such representations.

We lean heavily on the thorough account of representation theory given by C. E. Rickart
in his book [5]; and, moreover, the present theory had its origin in a course of lectures given
by Rickart in London in 1961, in which he drew attention to the need for a stronger general
representation theory. A special case of the concept of dual representation is already
familiar in the established theory of representations of primitive algebras with minimal
ideals [5, pp. 62-70]. Our construction of dual representations in terms of continuous linear
functionals also appears in a recent paper by J. M. G. Fell [4]. His interest however is
mainly in the case in which the representing spaces have finite dimension. In this case

the dual irreducibility questions with which we are concerned are trivial.

1. Representations of Banach algebras

In this section, we collect together a few propositions concerning representations of
Banach algebras that we shall need. Most of this material is well known, and can be found,
though not precisely in the present form, in Rickart [5, Chapter II]. Standard defini-
tions and all proofs are accordingly omitted,

Let F denote either the real field R or the complex field C, and let 9 denote a Banach
algebra over F. It is not assumed that 9 is commutative, nor that 9 has an identity. Let
X be a Banach space over F such that X =+ (0), and let B(X) denote the Banach algebra
of all bounded linear operators on X, with the usual operator norm.

Prorositiox 1. Let a—>T, be a representation of A on X, let u€X, and let L=
{a:T,u=0}.
(@) If T,u=wu for some e in U, then e is a right identity (mod L).
(i) If uis a strictly cyclic vector, then L is a modular left ideal.
(iii) If w is a strictly cyclic vector and L is a maximal left ideal, then a—T, 1s strictly
wrreducible.
(iv) If a—>T, is strictly irreducible, and w+0, then L is a maximal modular left ideal.

ProrositroN 2. Let a—T, be a topologically irreducible representation of U on X,
and let there exist a strictly cyclic vector w. Then L={a:T,u=0} is a maximal modular left

ideal, and the representation a—T, is strictly irreducible.
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ProrositioN 3. Let L be a closed left ideal of N such that 2Lk L, and let a T, be the

left regular representation on A —L.

(i) If L is modular with e a right identity (mod L), then the L-coset e’ is a strictly cyclic
vector for the representation, and L={a:T,¢’ =0}.
(ii) The representation is strictly irreducible if and only if L is maximal.

(iii) The representation is topologically irreducible if and only if L is maximal closed.

ProrosiTION 4. Let the scalar field ¥ be the complex field C, and let a —T, be a strictly
vrreducible representation of U on X. Then the representation is strictly dense on X i.e. given

TeB(X) and given a finite dimensional subspace U of X, there exists a €U such that

T o="T|y, ie (To—T)U=(0).

2. Notation and elementary properties of dual representations

Throughout this paper (X, Y, {,>) will denote a pair of non-zero Banach spaces
X, Y in normed duality with respect to a bilinear form {,> (see Rickart [5, Definition
2.4.8]). Given such a pair (X, Y, {,)), there are two associated natural mappings «—£,

y — ¢ defined by
Ey) = >y (YeY),

g@) =<z, y> (z€X).

It is clear that £€ Y’ (x€X) and €X' (y€Y).
The following two routine propositions describe the nature of two Banach spaces in

normed duality.

ProrositionN 5. Let (X, Y, {,>) be Banach spaces in normed duality.

(i) The mapping y—~4§ is a continuous monomorphism from Y into X' whose image
Y is weak® dense in X'.
(i) If X is reflexive, then Y is norm dense in X'.

(iii) Y is norm closed in X' if and only if y—4 is bicontinuous.
Svmilar statements hold for the mapping x— 4.

ProPOsSITION 6. Let X be a Banach space and Y a weak* dense subspace of X'. If Y is
a Banach space under a norm dominating the usual norm on X', then X, Y are in normed

duality with respect to the natural bilinear form ().
6 — 662003. Acta mathematica. 117. Imprimé le 9 février 1967
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It is significant in parts of dual representation theory to know when X and ¥ are
norm closed. We leave the reader to produce examples in which (i) neither X nor ¥ is
norm closed, (ii) X is norm closed, Y is not norm closed.

Given Banach spaces X, Y in normed duality with respect to {, >, operators T € B(X),
SEB(Y) are said to be adjoint with respect to (, > if

Tz, y>=<{x,8y> (x€X,y€Y).

The non-degeneracy of the form <,» implies that there is at most one S€B(Y) adjoint to
a given T'€B(X) (and at most one T €B(X) adjoint to a given SE€B(Y)). The unique S,
if it exists, is denoted by T™ and is called the adjoint of T with respect to {,>. The adjoint
8* of a given SE€B(Y) is similarly defined. It is easy to verify that if elements T, U of
$B(X) have adjoints on ¥ with respect to <, ), then so do AT (A1€F), T+ U, TU, and

(AT =2T*, (T+Uy=T*+U* (TU=U*T*

It is also clear that 7™ has an adjoint (7%)* on X, and that (7*)*=7. We denote by
B(X, ¥, {,>) the algebra of all operators T €B(X) that have adjoints T*€B(Y) with
respect to {,>. The mapping T —T™* need not be continuous, but it has a closed graph in
the sense that V

lim |7,—T]|=0, lim |T,*~8|=0 = S=T*
= R0 n->o0
This follows since
(T, y>=lim (T,z,y> = lim <z, T, y> =z, Sy> (¢€X,y€Y).
We observe in passing that B(X, X, (,))=B(X).

Given any Banach space X, we denote by F(X) the algebra of all bounded operators
on X of finite rank. Given any pair (X, ¥, {,>) we write

F(X’ Y,<,>)=F(X)H§B(X, Y’ <7>)'

Given non-zero x € X and non-zero y € ¥, we denote by #®y the bounded operator of rank

one defined by
(r®y)(u) =<u, yro (u€X).

It is clear that x@y€F(X, Y, {,>) and that

(@®y)*(v) =<z, v)y (WEY).
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Prorositrion 7. B(X, ¥, {,D) is a Banach algebra under the norm
|7 = max (|71, | 7)),
Proof. This follows easily from the fact that T'— T™* has a closed graph.
ProrosiTION 8. The following statements are equivalent.

(1) BX, Y, {,>) 1s closed in B(X).

(ii) There is a real constant k such that

|T*| <k|T| (TEB(X, Y, (,H)).
(iii) ¥ 4s norm closed in X'.
Similar remarks apply with X and Y inferchanged.

Proof. This is a straightforward exercise.

Algebras A<B(X), BSB(Y) are said to be a dual pair of operator algebras on
(X, Y,(,0)if AcB(X, Y, {,)) and A*={T*: T €4} =B. It follows in this case that each
S € B has an adjoint in B(X) with respect to {,», and that B*=A4. Thus the concept of a
dual pair of operator algebras is symmetrical with respect to X and Y.

A dual representation of a Banach algebra 9 on (X, ¥, {,>) is a mapping a >7T, of A
into B(X, ¥, {,>) such that a -7, is a representation of 9 on X. The following proposition

shows that the concept of dual representation is symmetrical with respeet to X and Y.

ProrosiTION 9. Let a—=T, be a dual representation of W on (X, Y, {,>). Let A=
{T,:a€W}, B={T*:a€A}.

(i) (4, B) is a dual pair of operator algebras on (X, Y, {,>).
(i) a—>T,* is an anti-representation of A on Y.
(i) The kernel of the representation a—T, is also the kernel of the anti-representation

a—T.*
Proof. (i) and (iii) are trivial, (ii) follows readily from the closed graph theorem.

CororLARY. Let ||-|| be the norm on B(X, Y,<,>) given in Proposition 7. Then
a T, is continuous with respect to the norm ||-|| on B(X, ¥, (,>).

Every Banach algebra admits dual representations. In fact, since B(X, X', (,)) = B(X),
every representation of I on X is also a dual representation of Y on (X, X', (,)). For this

reason, dual representations are of interest only when both the representation a —7, and
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the anti-representation a —T,* have spatial properties on X and Y respectively, for example,
when both are strictly or topologically irreducible.

We say that a dual representation a -7, is dually strictly (topologically) irreducible if
a—~T, and a—~T* are both strictly (topologically) irreducible.

The following result will be useful in subsequent sections.

ProrosiTiON 10. The tdentity mapping is a dually strictly irreducible dual representa-
t’l:On O]( %(X, Y, <,>) on (X7 Y’ <7>)

Proof. The required irreducibility follows from the abundance of operators of rank one.

Remark. Evidently F(X, Y, {,>) is strietly irreducible on X and (F(X, ¥, {,>))*is

strictly irreducible on Y.

3. Characterisations of irreducible adjoint algebras

The following theorem gives a property analagous to the strict density of ¢ — T, that

corresponds to the strict irreducibility of a—T,*.

THEOREM 1. Let the scalar field F be C. Let a— 1T, be a dual representation of A on
(X, Y,<{,>). Then the following conditions are equivalent.

(i) a—T.* is strictly srreducible on Y.
(i) a— T* is strictly dense on Y.
(iii) Giveri a o(X, ¥, {,)) closed linear subspace U of X of finite codimension, and given
TeEB(X, Y, {,D), there exists a €W such that T,=T (mod U), ie. (T,—TYX<U.
(iv) Given o(X, Y, {,>) closed linear subspaces U, V of X of finite codimensions m,n
with n<m, there exists a € such that T, 2U=V.

(v) Condition (iv) holds whenever n<m=1.

Remarks. (1) If Y is the dual space X’ of X and {, ) is the natural bilinear form, then
all norm closed linear subspaces of X are closed in (X, ¥, {, ).

{2) We denote the dimension and codimension of a subspace £ by dim (Z) and
codim (E) respectively, and we have codim (U)=dim (X —-7U).

(3) Given subsets E, F of X, Y respectively, let

B ={y:{x,y> =0 (x€E)}, OF = {z:{x, y> =0 (yE}.

It is well known that for a (X, ¥, <,)) closed linear subspace U of X, we have U =%U?°)
and that codim (U) =dim (U°).

Proof of Theorem 1. We prove one of the implications and leave the rest to the reader.



DUAL REPRESENTATIONS OF BANACH ALGEBRAS 85

(iif) = (iv). Let U, V be linear subspaces of X with the properties stated in (iv).
We have dim (U% =m, dim (V%) ==, n <m. By Propositions 10 and 4, (B(X, ¥, {,>))* is
strictly dense on Y. Thus there exists T€B(X, Y, {,)) such that T* U=V’ By (iii),
there exists a €% such that (7,~T)X < U. Since

(&, (T —Ty) =0 (@€X,yel),
it follows that (7,* —7*)U®=(0) and so 7,*U°="V? We now have
T2, y>=Lx, TFy>=0 (x€V,yelUo.
Therefore T, V=%(U% =U, and so V= T,~1U. Also,
@ Ty ={T.2, 4> =0 @€T,'U,yel"),
and, since T'.* U= V9, this gives,
(e, yy =0 (€T ,1U, yeV?),

from which T,-1U< (Vo) = V.

4. A correspondence between linear functionals and dual representations

The following notation will remain fixed throughout. % denotes, as before, a Banach
algebra, U’ denotes its dual space of all continuous linear functionals on Y (as a Banach

space). For each f in U’, we write
N,={x:f(x) =0}, L,={x:Ax< N/},
K,={z:2aAc N}, P;={x: W= N}

Clearly, L, is a closed left ideal, K, is a closed right ideal, and P, is a closed two-sided ideal.

Given a subset E of U, the right quotient of E is the set {x:2% < B}, denoted by E:3.
Similarly, the left quotient of E is the set {x: Yz < E}, and we denote this by £:' to distin-
guish it from the right quotient of E. With this notation,

L;=NU K,=N;¥U, P,=L:UA=K,'I.

We denote the Banach spaces A —L,, A—~K, by X, and Y, respectively, and define
a form {,>; on X,;x Y, by taking k

&y, =fyr) (@€x'€X, yey' €Y)).
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This form is well-defined, for if x,, #,€2’ and ¥, y,€y’, then z; —2, €L, and y, —y, €K,
and so (y, —¥,) %, €N, and yy(x, —x,) EN,, from which

f121) = f(ya21) = f(y27s)-

We denote the left regular representation on X by a —~7%, and the right regular representa-
tion on Y, by a—S7.

We recall that an ideal is left primative if it is the right quotient of a maximal modular
left ideal, and it is right primitive if it is the left quotient of a maximal modular right ideal.
Given a closed two-sided ideal P that is both left and right primitive, we say that a linear
functional f belonging to A’ is appropriate for P if L, is a maximal modular left ideal, K,
is a maximal modular right ideal, and P,=P. We shall also say loosely that f is an appro-
priate functional if there is some left and right primitive ideal P of 9 for which fis appro-

priate.

THEOREM 2. Given fEN with f(U3) =+ (0), the mapping a—T% is a dual representation
of Won (X,, Y, {, ), 84 is the adjoint of T% on Y, with respect to <, >, and the following
statements hold.

{) If LAK,) is modular, then there is a strictly cyclic vector in XY ).
(ii) The representation is dually strictly irreducible if and only if L, and K are maximal.
(iii) The representation is dually topologically irreducible if and only if L, and K, are

maximal closed.
Proof. This is routine verification together with an application of Proposition 3.

Given 1=1, 2, let a —T" be dual representations of ¥ on (X, ¥, <,>;). We say that
these dual representations are equivalent if there exist bicontinuous linear isomorphisms
U, Vof X, onto X, and of Y, on to Y, respectively such that

(i) UT =T:U (a€ ),
(i) <y, Y1 21 =<Uzy, Vyy >s (2,€X,, 41 €Y)).

In the first corollary to the following theorem, we give conditions under which a dual
representation is equivalent to a dual representation a—T' associated as in Theorem 2

with a linear functional f. The theorem is a halfway house.

THEOREM 3. Let a—~T, be a dual representation of W on (X, ¥, <) such that there
exist topologically cyclic vectors 2, €X, y,€ Y. Then there exist €A’ and continuous linear
monomorphisms U, V of X,;, Y, on to dense linear subspaces of X, Y respectively, such that
F(UB) =+ (0) and



DUAL REPRESENTATIONS OF BANACH ALGEBRAS 87
(i) Ly={a:T,2y =0}, K;={a:T,*y,=0},
() UT,=T,U, VS,=Tr>V (a€N),
(iii) <2, y">,= <Ux’, Vy> @eX,y €Y,
Proof. Let f(a) =<{T 2, yo> (@€A). It is clear that fEA’. Also,
f(ba) = Topao, Yoo = <Tp Ty, Yo» = {Tog, Tp*yo>-

Since y, is topologically cyclic, this shows that a €L, if and only if 7', 2y=0. Thus L,=
{a:T,x,=0} and, similarly, K ,={a:T,*y,=0}. We define U and V by

Ur' =T,x, (x€x'€X)), Vy' =Ty, (yEY' EY)).
The rest of the proof is routine verification.

CoROLLARY 1. If 2, and y, are strictly cyclic, then the dual representation a—T% is
equivalent to the dual representation a — T, and L, and K, are modular.

Proof. Let x, and y, be strictly cyclic. Then U maps X, on to X, and therefore, by
Banach’s isomorphism theorem, is bicontinuous. Similarly, V is a bicontinuous mapping
of Y,on to Y. Thus the dual representations are equivalent. Since L,={a: T,2,=0}, Propo-
sition 1 (ii) shows that L, is modular, and similarly for K,.

CoroLLARY 2. If a— T, is dually strictly irreducible, then L, is a maximal modular

left ideal, and K is a maximal modular right ideal.
Proof. Proposition 1 (iv).

TasoREM 4. Let g €W be such that g(U3) = (0) and L, and K, are maximal left and right
tdeals respectively. Then there exists fE€N such that f(UB) == (0) and

(i) L; and K; are maximal modular left and right ideals respectively,
(i) P,=P,,

(iii) the dual representations a—T%, a— T% are equivalent.
Proof. By Theorem 2 (ii), a = T'g is a dually strictly irreducible dual representation of
. The theorem is now an immediate consequence of Theorem 3 Corollary 2.

TarEoREM 5. Let P be the kernel of a dually strictly irreducible dual representation of .

Then P is left and right primative, and there exists an appropriate functional for P.

Proof. Let a—1', be the given dual representation with kernel P. By Theorem 3

Corollary 2, there exists €9’ such that @ —>T" is an equivalent dual representation, and
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L,, K, are maximal modular ideals. We have T} =0 if and only if 7,=0, and so P=P,.
This shows that P is left and right primitive and that f is appropriate for P.

In the next theorem we shall characterise the existence of appropriate functionals in
terms of the ideal structure of the Banach algebra. We remark that if f €9’ is such that L;
is a proper modular left ideal, then P,< L, and so it is automatic that f(®) == (0).

LEeMMA 1. Let L be a maximal modular lefi ideal of 9.

(1) If a¢ L, there exists fEW with f(L)=(0) and f(a)=1.
(ii) For each non-zero fE€N’ with f(L)=(0), we have L,=L.

Proof. (i). This follows directly from the Hahn—-Banach theorem since maximal modular
left ideals are closed in a Banach algebra. (ii) Let f€’ be such that {30 and f(L)=(0).
Since L is modular, there exists ¢ in U such that a —ae€L (a€Y). Therefore f(a)=/{(ae)
(@ €A)and so eg¢ L,. Since L is a left ideal, we have ALS LS N and so L= L. By the maxi-
mality of L we conclude that L=L,.

A similar result elearly holds for maximal modular right ideals.

THEOREM 6. Let L be a mazimal modular left ideal in U. Then the following statements
are equivalent.

(i) There exists f€N' such that L,=L and K, is a maximal modular right ideal.

(11} There exists a maximal right ideal K such that L+ K==,

Proof. (i) = (ii). Let f satisty the conditions of (i). Let e, be a right identity (mod L)
and e, a left identity (mod K;). Let g{a) =f(e,ae;) (@€N). Then g€A’. Since Lie, <L, we
have f(e,Le,) =(0) and thus L,= N . Similarly we have K, N,. It follows that L, +Ef§ N,.
Since L,=L and K, is maximal, it is now sufficient to show that g=+0. But if g=0, then
{{aey), €)' >,=0 (@a€A) and so (X, e,">,=(0), which is a contradiction.

(ii) > (i). Let K satisfy the conditions of (ii). By the Hahn-Banach theorem there
exists g €Y’ such that g=+0 and g(L+ K)=(0). We have g(L)=(0) and therefore L,=L by
Lemma 1. Also, g(K)=(0) so that g(KU)=(0) and thus K< K, We have

K, =% =g = (0) = L, =9L.
Since K is maximal we conclude that K, =K. Since L, is & maximal modular left ideal,

g(A3)==(0), and so by Theorem 2, a— T7 is dually strictly irreducible. Let e be a right
identity (mod L) and let y¢ K. Let

fl@) =<T3e', 4>y (a€).
Clearly f€’, and by the argument of Theorem 3 we have
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Li={a:T%e¢ =0} = {a:ae€L}= L.

Since @ — T is strictly irreducible, L is proper and hence L,=L. Finally, the fact that K is

a maximal modular right ideal follows from Theorem 3 Corollary 2.

THEOREM 7. Let P be a left and right primitive ideal of A. Then ([0]) is a left and right

primitive ideal of AP, and the following statements are equivalent.

(1) There exists an appropriate f in U’ for P.
(i) There exists an appropriate g in (A/P)" for ([0]).

Proof. Apply Theorem 6.

As far as the existence of appropriate functionals is concerned, Theorem 7 has es-
sentially reduced the problem to the case of a Banach algebra which is both left and right
primitive. It is still an open question as to whether every left primitive Banach algebra
is also right primitive. G. M. Bergman, [1], has given an example of a ring primitive on the
right but not on the left, but his construction seems to have no analogue for Banach
algebras. Accordingly, our basic starting point for the next section is left primitive Banach
algebras. It is well known that such algebras are continuously isomorphic with strictly
irreducible algebras of bounded linear operators on some Banach space. In fact we are also

interested in the weaker situation of topologically irreducible algebras of operators.

5. Analysis of dual pairs of operator algebras

The main purpose of this section is to examine the following question.
“Given that (4, B) is a dual pair of operator algebras on (X, Y, {,)>) with A topo-
logically irreducible on X, what irreducibility properties has B on Y*%”

Prorositiow 11. Let (A, B) be a dual pair of operator algebras on (X, Y, {,>) with
A topologically irreducible on X. Let V be a non-zero invariant subspace of Y for B, and let

Z ={g:geY’, (V,g) =(0)}.

Then Z is a weak* closed subspace of Y', ZN X =(0), and V <=Z={y:y€Y, (y, Z)=(0)}.
Further, (A, B|v) is a dual pair on (X, V, {,)).

Proof. It is well known that Z is weak* closed and that ¥ =9Z. Let 2€Zn X so that
z=4% for some x€X. Since (V, z) =(0), we have (z, V) =(0). Since B is invariant on V, we
have (x, BV > =(0) and thus {Ax, V> =(0). If x<4=0, then Azx—X andso V= (0). This shows
that Z N X = (0) as required.
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Since °V =(0), the Banach spaces X and V are in normed duality with respect to
{,>. Since B is invariant on V, it follows that (4, B|y) is a dual pair on (X, v, )

We now consider a very special condition on the pair (X, Y, (,>). We say that ¥
represents X' through (,> if for each f€X' there exists y,€Y such that

Ha) =<z, ypp  (x€X).

This condition is equivalent to X’< Y. It follows from Proposition 5 and Banach’s iso-
morphism theorem that y—# is thus a bicontinuous isomorphism of ¥ with X’. In other
words, the pair is essentially (X, X', (,)). We may similarly speak of X representing ¥’
through {,>, and then the pair is essentially (Y’, ¥, (,)).

Prorosition 12. Let (X, Y, {,>) be such that X represents Y’ through {,>. Let (4, B)
be a dual pair on (X, Y, {,>) with A topologically irreducible on X. Then B s topologically

wrreducible on Y.
Proof. This follows easily from Proposition 11.

ProrosiTion 13. Let (X, Y, <{,)) be such that B is topologically irreducible on Y
whenever (A, B) is a dual pair on (X, Y, {,>) with A< F(X) and A4 strictly irreducible on X.
Then X represents Y’ through <, >.

Proof. Suppose that Y’ is not represented by X. Then there is some f€ Y’ that is not
represented by any element of X. Let V=N, so that ¥V is a closed subspace of Y with
(0)= VY. We have

{z, V) =(0)=(V, &) = (0)=N,EN;.
Since f is not represented by any element of X we must have N; =Y. This gives £=0 and
so x=0. It follows that the Banach spaces (X, ¥V, {, >) are in normed duality. By the remark
after Proposition 10, F(X, V,<,>) is dually strictly irreducible on (X, V, {,>). Let
A=F(X,V,{,>). Then A=B(X, Y,<,>) and (4, 4*%) is a dual pair on (X, Y, {,>), but
A* is not topologically irreducible on Y. This contradiction completes the proof.

THEOREM 8. 4 Banach space X is reflexive if and only if whenever A< F(X) is topo-

logteally irreducible on X, A* is topologically irreducible on X’.

Proof. Recall that (4, 4*) is a dual pair on (X, X', (,)) for every A< F(X). The Banach
space X ig reflexive if and only if X represents X" through (, ). The result follows immediately

from Propositions 12 and 13.
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Proposition 12 has an analogue for the case of a pair (X, ¥, {,)) such that the linear
space Y’ —X is finite dimensional. (In fact, using the results of Dixmier, [3], one can show
that such a pair is essentially of the form (@', (@) ®Z, (, )), where @ is a non-reflexive Banach
space and Z is a finite dimensional subspace of §".) Recall, [2], that a Banach space X is
quasi-reflexive of order n if X" —§(X) is of (finite) dimension n. By simple extensions of the
techniques employed above we obtain the following result.

THEOREM 9. A Banach space X is quasi-reflexive of order n if and only if whenever
A < F(X) is topologically vrreducible on X, A* is topologically irreducible on a closed subspace

of X' of finite deficiency k, where the maximum of such k is n.

We shall now consider two examples of dual pairs of operator algebras in which the
irreducibility properties are completely unsymmetrical.

In what follows we denote the set of positive integers by P and the n-th prime number
by p,. For each n€P we denote the usual factorisation of n by n=[]p{. If m, n€P, we
write m |n to denote that m divides n. Given m, n €P, we denote the highest common factor
of m and » by (m, n).

Given k€P, let 2, be the element of I* defined by

( 1 if k=,
ZeAN) =
") 0 if kin

Let Z, be the subspace of I* generated by z,, ..., z,, and let V,=Z, = {y :y €1, (y, Z,) = (0)}.
Lemma 2. N{V,:n€P}=(0).

Proof. Let Q denote the Stone-Cech compactification of P, i.e. the Gelfand carrier
space of the Banach algebra I, and for each z€I* let Z denote its unique continuous exten-
sion to Q. For all ¢, j in P, we have z;2,=z,, where £ is the least common multiple of ¢ and j.
Thus the closed real linear hull 4 of {zi:iEP} is a real subalgebra of I®. Let B =4, and
given @, p €L let g ~ 5 v denote that

fe) =1y) (f€B).
Then by the Stone-Weierstrass theorem, we have
B = {f:{€Cr(Q) such that f(p) = f(y) whenever ¢~ }.

Given 4, § in P with j£¢, we have
z(t) =0, z(5)=1.
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Therefore the elements of P belong to distinet equivalence classes under ~p; and given
n €P and real numbers 1, ..., A,,, there exists g€ B such that g(k) =4, (1 <k<n). Let

p =sup {|A|:1<k<n}.

Let h=(g Ap) vV (—pu), and f=hlp. Then f€A, |f|| =u, and f(k) =4, (1 <k<n).
Let y€ N{V,:n€P}, so that (y, A)=(0). Let r, n€P with r<n. Let 1,~—1, 4,=0
(1<i<n, iFr). Let f€ 4 be as above. Then we have (y, f) =0 and therefore

= 3 040

=n+l

Hence, ol <ifl 3l

Since y €1, it follows that y(r) =0 for each r in P and so y=0.
Remark. The above lemma may also be proved by a combinatorial argument.

Let Ap={T:T€B(c,), T*V, =V, (nE€P)}. It is easily verified that Ap is a closed
subalgebra of B(c,). Also, given T €B(c,), we have T'€4p if and only if T™Z,<Z, (n€P),
where T** denotes the usual second adjoint of 7 and so belongs to B(I®) (with the usual

abuse of notation). Given any one-to-one mapping ¢ of P into itself, we define 7', on ¢, by
Tox =xog,ie. (T,2)(n) =x(p(n)) (nEP).
Clearly T ,€%B(c,). We shall call ¢ admissible if T',€ Ap. It is easily seen that, given t€P,

1 ¢ g,
0 if t)fe(r).

In particular, if there is s €P such that ¢|@(r)<s|r, then T **z,=z,. For any ¢ we thus have

(T(p**zt) (7‘) ::{

T, 2 =2.
Lemvma 3. Given k€EP, let p:P —~ P be defined by

pn)=I1pg,, where n=]1pf.

(i) m|n<=yp(m)|ypn).
(i) Given n€P with n>1, either {r:n|p(r)}=0, or there exists m€P such that
{rin|p@)}={r:m|r} and km <n.

Proof. (i). Let m=T]]pf, n=[]p#. Then

m|n<p;<a for all i< p(m)|pn).
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(ii). We have {r:n|yp(r)} =@ if and only if there exists ¢ EP such that p,|n and ¢ ¢ {kp;:1€P}.

The remaining integers n are of the form n=[] p% , so that n=y(m), where m =[] p.
Then

{rin|y(r)} ={rypm)|p@)} = {rm|r}.
To see that km <n, it is sufficient to observe that some «,>1, and for cach ¢ in P we have

kp; < prp,.

Lemma 4. For each k in P there exists an admissible ¢ tn each of the following classes.

(i) @(1)=F.
(ii) @ is monotonic, p(1)=1, @(2) =px,1.
(iil) @(k)=1.

Proof. (i). Let ¢(s) =ks (s€EP). Let t €EP and let h = (¢, k). Then t =ha, k =hb, with (a,b) =1.

Thus
{s:t|@(s)} = {s:ha|hbs} = {s:a|bs} = {s:a|s},

since @ and & are coprime. We thus have T **z,=z, with a <t. It follows immediately that
T,*2,=7, (n€P), so that ¢ is admissible. We denote the corresponding 7', by 7%, and
we note that (7%x)(r) =z(nk) (n€P).
(ii). Let
p(s)=11p*,, where s=[]p=€eP.

Then ¢ satisfies the conditions of (ii), and it is clear from the argument of Lemma 3 (i),
that a|s<@(a)|p(s). Let t€P with ¢>1. If there does not exist a €P with @(a)=t, then
{s:t|p(s)} =0, and so T **2,=0. If there is a €P with g(a)=¢, then

{s:t|p(s)} = {s:9(a) |@(s)} = {s:a|s},

and so T **z,—z, with a <t. It is now clear that ¢ is admissible. We denote the correspond-
ing T, by T}, and we note that (Thz)(1)=2(1), and (T%x)(n) =2(p(n)) where g(n)>p,,,

(n=2).

(iii). Let ¢ be as in Lemma 3. Let

(p(s/k) i Els,

PO = k) i BJs.

Since for every ¢ in P, p,,, is greater than every prime factor of %, ¢ is a one-to-one mapping

of P into itself. Also ¢(k)=1. Let t€EP with ¢ >1. We have {s:¢|@p(s)} =E U F, where
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E = {s:k|s&t|y(s/k)},
F={s:k[s&t|ky(s)} = {s:t] byp(s)} \{s:t| ky(s) & k|s}.

By Lemma 3 (ii), either # =4, or there exists b €P such that kb<¢ and

E = {s:k|s & b|s[k} = {s:kb|s}.
Let h=(t, k), so that t =he, k=hd, with (c, d)=1. Then

F = {s:hc|hdy(s)} \{s:hc|hdy(s) & k|s} = {s:c|p(s)} \{s:¢c|p(s) & k|s}.

By Lemma 3 (ii) again, either F =0, or there exists m €EP such that km <c¢ and

F={s:m|s}\{s:m|s & k|s}.
Let ¢ =(m, k), so that m=qu, k=qv, with (u, v)=1. Then

F={s:m|s}\{s:qu|s&qv|s}
={s:m[s}\{s:quv|s}
={s:m|s}\{s:ku|s}.

We have m<km <c¢<¢ and ku<km <c<t. It is now clear that ¢ is admissible. We denote
the corresponding 7', by T4, and we note that T}e, =e;, where {e,:n €P} denotes the usual

basis for ¢,.

ProrosiTIioN 14. Ap is topologically irreducible on c,, while Ap* ts mot topologically

irreducible on any non-zero closed subspace of 1.

Proof. Let = be any non-zero element of ¢,. Then there exists »€P such that x(i) =0
(1<¢<r), and z(r) =0. Let T\ = (x(r)) 1T T%, so that T} € Ap (kEP). Let ¢ be as in Lemma
4 (ii). Then

7 —e]| = sup {(|2(r) )7 |@(rp(m)) |:n > 2} < (J(r)])*sup {|e(m)]|:n > peya}-

It follows that T,z —e, as k—co. Given y€c,, let S, = >/ ,y(4) T}, so that S,€Ap (KEP).
Then

k
ISeer =yl =1 3 uti) e, o1,

so that Sye; —~y as k—oco, It follows easily that Ap is topologically irreducible on ¢,.
Suppose that Ap* is topologically irreducible on some non-zero closed subspace V of I.

By Proposition 11, (¢,, V, (,)) are Banach spaces in normed duality and so V is infinite
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dimensional. We thus have VN V= (0) (n€P), for otherwise V would be finite dimensional.

Let v, be any non-zero element of VN V,. Then V=Ap*v,cV,. We thus have V<V,
(n€P) and so ¥V =(0) by Lemma 2. This contradiction completes the proof.

It is not known whether or not Ap is strictly irreducible on ¢,. To obtain an example in

which striet irreducibility obtains we proceed as follows. Let X =Y =/, and

@)= Sawyin) (@yel.

It is easily verified that (X, Y, {,>) is a pair of Banach spaces in normed duality. As
above, let ¢ be any one-to-one mapping of P into itself, and define T, on I by T,z =xogp
(x€l). Define ¢* on P by
o [P i neq®),
¢ (")={0 it n¢pP).
We then have T,€8B(!,1, ¢, ) with T *=1T . We now regard the operators T4, T%, T
(k€P) of Lemma 4 as elements of B, I, {,)). These operators generate a countable family
of finite products, {7, :n€P}, say. We thus have T, €B(, 1, {,)) (n€P), and, since

ToTy =Ty, it is not difficult to see that
|Ttp,,l=|Twn*I =1 (n€P).
oo
Given z €1, let T.=2zn)T,,
n=1 "

and let Bp be the image of [ under the mapping « —7',. It follows simply from Proposition
7 that Be<B(l, 1, (,>). Since T, *V, =V (n, kEP), we also have T,*V, =V, (kEP, z€l).
We define a second norm on Bp by

| Te|| = int {|ly]|:y €L, T, =T.}.

ProrosiTIioN 15. (i) Bp is a Banach algebra with unit under ||-|. (i) Bp is strictly

trreducible on 1, while Bp* is not strictly irreducible on any non-zero subspace of 1.

Proof. (i). It is clear that T, is a linear homomorphism of ! on to Bp such that
| T.| <||| (x€?). The kernel N ={z:T,=0} is thus a closed subspace of I, so that [—N
is a Banach space under the infimum norm. The norm ||- || on Bp is precisely this infimum

norm transferred to Bp. Thus Bp is a Banach space under |||, and |7, | <||T,| (z€l).
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Next, T,T,= nzlx(n) Tq’“n2=:1 m; 1av(n) ym) Ty g
Since, > |zm) ym)| < 3 |an)| 2 lym)],
m,n=1 n=1 m=1

it follows that 7,7, € Bp. Also, ||T.T,| <||z|||y|, and so |T. 7| <[ 7.||IT,}|. Finally,
I=Ti€Bp and we easily see that |[I||=1. Thus Bp is a Banach algebra with unit

under |-

(ii). If we now argue as in Proposition 14 with ¢, replaced by I, we see that Bp is topo-

logically irreducible on /. But in this case, e, is a strictly cyclic vector, for if y €7, then

T=Zly( n)T3€ Bp and 7Te,= lim Zy Tiel—hm Zy(z

n—>o0 i=

By Proposition 2, Bp is thus strictly irreducible on I. By a slight modification of the argu-
ment of Proposition 14 we see that Bp* is not strictly irreducible on any non-zero sub-

space of I.

Remarks. (1) We note that Bp is a left primitive Banach algebra. It is still an open
question as to whether or not Bp is right primitive. (2) We observe that Bp admits a duaal
representation on (I, ¢,, (,)) with associated dual pair (4, B) such that 4 is strictly ir-
reducible on ] and B is topologically, but not strictly, irreducible on ¢,. This follows im-
mediately from Proposition 12 when we note that each 7',€ Bp has an adjoint on ¢, with
respect to the natural bilinear form (, ), and that the proper subspace [ of ¢, is invariant for
the adjoint algebra. This observation also shows how far removed topological irreducibility
may be from strict irreducibility. In fact the adjoint algebra is topologically irreducible on
¢ and yet has a chain of invariant subspaces with zero intersection.

We close this section with a question. For which Banach spaces X does the following
statement hold?

“If A= B(X) is topologically irreducible on X, then A4* is topologically irreducible on

some non-zero closed subspace of X'.”

6. Uniformly transitive representations of Banach algebras

It is well known that any topologically irreducible *-representation of a B*-algebra is
automatically strictly irreducible. We have seen that a dually topologically irreducible
representation of a Banach algebra need not be dually strictly irreducible. In fact, by
Remark (2) after Proposition 15, the Banach algebra Bp admits a dual representation
a~>T, on a pair (X, X', (,)) such that a - T, is topologically, but not strictly, irreducible
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on X, and a— T'* is strictly irreducible on X’. In this section we strengthen even further
the concept of irreducibility, and for this concept we obtain dual irreducibility for dual
representations on pairs of the form (X, X', (,)).

Let a— T, be a representation of a Banach algebra % on a Banach space X. Let 9,
X, denote the closed unit balls in ¥, X. Let u€X, w0, and let «>0.

(i) We say that u is pointwise boundedly topologically cyclic (p.b.t.c.) if ’.thl—u is absorbent,
i.e. for each z€ X, there exists a bounded sequence {a,} in A such that T, u 2.

(il) We say that u is uniformly topologically cyclic with bound o (cc-u.t.c.) if X, < ocm,
i.e. for each €X,; and each >0, there exists a €, such that ||T,u—z| <e.

(iil) We say that u is uniformly strictly cyclic with bound « (o-u.s.c.) if X, € aTyu,
i.e. for each € X, there exists a €al; with T, u=ux.

(iv) We say that a—T, is uniformly topologically transitive with bound o (cc-u.t.t.)
if each z€X with |jz]| =1 is ec-u.t.c.

(v) We say that a—T, is uniformly strictly transitive with bound o (x-u.s.t.) if each
z€X with ||z|| =1 is a-u.s.c.

Ifa—T,is a-u.s.t. (x-u.t.t.), then evidently a - T, is strictly (topologically) irreducible
on X. It is also clear that if 4 is a-u.s.c., then u is o-u.t.c. Further, if  is a-w.t.c., then w
i p.b.t.c. In fact, these three conditions on u are almost equivalent as the next two proposi-

tions indicate.

ProprostTION 16. Let w be p.b.t.c. for a—~T,. Then u is a-u.t.c. for some a>0.

Proof. This is a straightforward application of the Baire category theorem.
ProrosiTion 17. Let u be c-u.t.c. for a=T,. Then u is (ot +€)-u.s.c. for every £>0.
Proof. This follows readily by the method employed in [5] Theorem 4.9.10.

CoROLLARY 1. If u s strictly cyclic for a T, then u is x-u.s.c. for some o¢>0.

Proof. If u is strictly cyclic, then u is clearly p.b..c. and so the result follows from
Propositions 16 and 17.

COROLLARY 2. If a1, is o-utt., then a—T, is (o +¢)-u.s.t. for every e>0.

ProrosiTioN 18. Let U be a closed subalgebra of B(X) such that o, is dense in the
closed unit ball of B(X) with respect to the weak operator topology. Then U is (o +&)-u.s.t. for

every €>0.

Proof. Routine.

7 — 662903. Acta mathematice. 117. Imprimé le 7 fevrier 1967
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Prorosirion 19. Let H be a complex Hilbert space, and let U be a strictly irreducible
self-adjoint closed subalgebra of B(H). Then W is (1+¢)-u.s.t. for every £>0.

Proof. By a theorem of Kaplansky (see [5], Theorem 4.9.10), the unit ball of ¥ is
dense in the unit ball of B(H) in the strong operator topology. The result follows easily.

We have already seen (Proposition 12) that if the anti-representation a - 7,* of Y on
X’ is topologically irreducible, then the representation a— 7', of 9 on X is topologically
irreducible. If g ->T * is strictly irreducible on X', then a — T, need not be strictly irreducible
on X as the Banach algebra Bp shows. The situation is more satisfactory for uniformly

strictly transitive representations.

TrEOREM 10. Let @ — T, be a representation of Won X such that a > T,* s a-u.s.8.on X'.

Then a—T, is (0®+¢&)-u.s.t. on X for every ¢>0.
Proof. Given u€X, u+0, ||u|| <1, and >0, let
Eyu) =Ty, u, plu)=sup {||T,u|:a€q}.
We have p(w) = o« ull. ®)

For there exists f€X’ such that ||f|| =1 and f(u)=]ju||. Since a >T* is a-u.st. on X',
there is a €aQl; such that T,*f=f. Then «~'a €9, and so

P(w) = || Tyul| > aH(Tou, f) = oM, To*f) = au, ) = a2 ul].
We prove next that if there exists y € X; "\ Hg, (), then
p(u) < g (**)

In fact, given such y, since Hg,(u) is a closed convex set, there exists /€X' with [|f|| =1,

such that
Ro f(2) <Re f(y) (x€Hpulu).

Given 2 € E,(u) and ¢ € X' with ||p|| =1, there exists b €, such that T,*f =¢. Then
B, ) =P, T,* ) =(pToz, f).
Since pb, < poadl;, we have BT,z € E 4,(u), and thus

Re po(x) <Re f(y) <1.
Since this holds for every ¢ € X’ with ||¢|| =1, we have
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Bllz) <1 (€ Ey(w)).
Finally, since T, u € E,(u) (@ €3,), this proves (**).

Combining (*) and (**), we see that if X, ¢ Ey (u), then ||u|| < a. Thus, whenever
||| =1 and f>a«, we have X,< Ez,(u), ie. u is Bo-u.t.c. By Proposition 17, u is then

(0% +¢)-u.8.c. for every £>0, and the result follows.

COROLLARY. Let a = T, be an «-u.s.t. representation of A on a reflexive Banach space X.
Then a T, is dually strictly irreducible on (X, X', (,)).

Remark. Let a —T, be the dual representation of By on (¢4, ¢y, (,}) given in Remark (2)
after Proposition 15. Then a—T1'* is strictly irreducible on ¢,’, but it follows from the

above theorem that o — 7';* is not a-u.s.f. on ¢y for any «>0.

7. The dual radical

The dual radical of a Banach algebra U is defined to be the intersection of the kernels
of all dually strictly irreducible dual representations of U. We denote the dual radical by
R, and we say that ¥ is dually semi-simple if Ry=(0).

Let R denote the Jacobson radical of 3. We denote by R, the intersection of all the
ideals of I which are both left and right primitive. It is easily seen that R, is also a “‘radical”

in that /R, is “semi-simple” in the corresponding sense.

TaroreM 11. Let U be a Banach algebra, and let Q be the set of all appropriate func-

tionals tn A with norm one.

(i) Ry=N{P1eQ}=N{L,:fEQ}=N{K;:f€Q]}.
(i) RS R,c R,.
(iil) A/R, is dually semi-simple.

Proof. Routine.

It is still an open question as to whether there are Banach algebras in which the radi-
cals R, R, R, are distinct. It would also be interesting to have more intrinsic algebraic
and topological characterisations of the dual radical.

We say that U is dually primitive if it admits a faithful dually strictly irreducible dual
representation. It is clear from Theorem 7 and the argument of [5] Theorem 2.6.1 that

every dually semi-simple Banach algebra is continuously isomorphic with a normed sub-
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direct sum of dually primitive Banach algebras. It is also of interest to give an operator

representation as in the next theorem.

TurorEM 12. Let U be a dually semi-simple Banach algebra. Then there exists o faithful
dual representation a—T, on a pair (X, Y, (,>) such that |T,| <||a|, |T.*] <||a| (2€).

Proof. Since ¥ is dually semi-simple there exists Q< U’ such that ||f|| =1 (f€Q) and
N{P;:f€Q}=(0). Let X be the normed sub-direct sum of > {X :f€Q} consisting of all
functions z on Q such that #(f) € X, (f€Q) and ||z|| =2 {||z(f}|| :/€Q} < oo. It is easily seen
that X is a Banach space. Let ¥ be the normed sub-direct sum of > {¥,:f€Q} consisting of
all functions y on Q such that y(f)€ Y, (f€Q) and |jy]| = sup {|jy(/)]]:/€Q}<oo. It is also
eagsily seen that Y is a Banach space. Let

<o yy =2A{<(f), y(f)>r:€Q} (@€X, y€Y).

We then have [<{x, y>| <|=||||¥| and it follows simply that X and ¥ are in normed duality
with respect to {,>.
For each a €9 we define T, S, as follows.

(Tox) (h=Tia(f) (fEQ, xz€X).
(Sy) (=829 (f€Q, yeT).

The rest of the proof is straightforward.

8. Examples
The first part of the following theorem states that any left primitive complex Banach
algebra with minimal one-sided ideals is dually primitive. The result is well known, only

the terminology is new.

TueEorREM 13. Let U be a left primitive complex Banach algebra with minimal one-

sided ideals.

(i) A admits a fasthful dually strictly irreducible dual representation a—T, on some
pair (X, Y, <, ) such that the image of U under a —T, contains all operators of the
form x@y (x€X, y€Y).

(ii) Let L be any maximal modular left ideal with L: U =(0), and K any moximal modular
right ideal with K :" U =(0). Then there exist x€X, y €Y such that

L={a:T,x=0}, K={a:T*y=0},
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and A —L, A—K are bicontinuously isomorphic with X, Y respectively. Further
L+K=ITK={0,:<T,,90, y> =0},
and so is @ maximal proper linear subspace of Y.

Proof. (i). This is [5] Theorem 2.4.12.
(ii). The first part follows by standard arguments.

It is clear that
L+K<{a:{T,z,y>=0}.

Suppose that (T,x, y>=0. If T,z=0, then a€LcL+K. If T,x+0, we may choose
1, €Y such that (T, 2, y,>=1. By (i), there exists ¢€ ¥ such that T,=T,z®y,. We have

Tcafax:TcTax'—Tax=(Tax®y1) (Tax) —Taxto'

Therefore ca —a€L. Since also T *y={T,z, y>y; =0, we have c€K. Thus ca €K and so
a€L+ K. It is now immediate that

L+K=L+K={a:{T,x,y>=0},

and so is a maximal proper linear subspace, being the null space of a2 continuous linear

functional.

TaEOREM 14. Let L be a maximal modular left ideal of & Banach algebra U such that
r(L)y={a:La=(0)}§ R. Then there exists f€N’ such that L,=L and K, is a mazimal modular
right ideal. ‘

Proof. Since R=R: U, Ar(L)& R, and so there exists & maximal modular right ideal K
such that Ar(L)¢ K. Hence there exist ¢ €Y and % €r(L) such that au ¢ K. By the Hahn—
Banach theorem there exists g€’ with g(K)=(0) and g(au)=1. Let f(x)=g(zu) (z€),
so that /€U’ and f(a)=1. Since Lu=(0), we have f(L)=(0) and so L;,=L by Lemma 1.
Also z€ K implies xu € K so that f(z) =g(zu) =0 (x€K). By the analogue of Lemma 1 for
right ideals, we have K,=K and the proof is complete.

CoroLLaRY. Let U be a Banach algebra with a family {L,:A€A} of mazimal modular
left ideals such that r(L,) = (0) (A€A) and N{Ly:A1€A}=(0). Then U is dually semi-simple.

We turn finally to complex Banach *-algebras. Recall that a *-representation is made on
a normed self-dual space X (see [5], Definition 4.3.1). Recall also that F €9’ is Hermitian if
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F(a*) = F(a) (ac¥).

Associated with F, there is the dual representation a—7T5 on (Xz, ¥z, {,>5). There is also

the *-representation o 77 on (X, X, (,)s), Where
(@', y)p= Fly*z) (x€x'€Xy yEy €Xy).

There is a natural conjugate linear isomorphism U from X, on to Y. If the involution is
continuous, then U is bicontinuous, but if the involution is not continuous, then U
need not be continuous and so the representations might be quite different topologically.

We point out that there are dually semi-simple Banach *-algebras for which no appro-
priate functional is Hermitian. The next result shows, however, that the condition for the

existence of appropriate functionals is simplified when the functional is Hermitian.

TrrEorEM 15. Let L be a maximal modular left ideal in a Banach *-algebra . Let
FeW be such that F=0, F(L)Y=(0), and F is Hermitian. Then F is appropriate for L:U.

Proof. We have L, =L by Lemma 1, and K,=Lz*

We remark that the above proof requires only the weaker Hermitian condition that
F(ey*)=F(y*z) (z, y€N). If FEW' is positive, i.e. Fxz*xr) >0 (x €Y), then this condition is
automatically satisfied. It follows immediately from [5] Theorem 4.7.14 that if ¥ is a
symmetric Banach *-algebra with locally continuous involution, then R;= R. In particular,

any B*-algebra is dually semi-simple.

References

{1]. BereMaN, G. M., A ring primitive on the left but not on the right. Proc. Amer. Math.
Soc., 15 (1964), 473-475.

[2]. Civin, P. & YooD, B., Quasi-reflexive spaces. Proc. Amer. Math. Soc., 8 (1957), 906-911.

[3]. DixMmIER, J., Sur un théoréme de Banach. Duke Math. J., 15 (1948), 1057-1071.

[4]. FELL, J. M. G., The dual spaces of Banach algebras. Trans. Amer, Math. Soc., 114
(1965), 227-250.

[6]. Rickart, C. E., General theory of Banach algebras. Van Nostrand, 1960.

Received November 19, 1965, in revised form March 15, 1966



