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ABSTRACT 

 

Intracellular membrane trafficking of glutamate receptors at excitatory synapses is critical 

for synaptic function. However, little is known about the specialized trafficking events occurring 

at the postsynaptic membrane. We have found that two components of the exocyst complex, 

Sec8 and Exo70, separately control synaptic targeting and insertion of AMPA-type glutamate 

receptors. Sec8 controls the directional movement of receptors towards synapses through PDZ-

dependent interactions. In contrast, Exo70 mediates receptor insertion at the postsynaptic 

membrane, but it does not participate in receptor targeting. Thus, interference with Exo70 

function accumulates AMPA receptors inside the spine, forming a complex physically 

associated, but not yet fused with the postsynaptic membrane. Electron microscopic analysis of 

these complexes indicates that Exo70 mediates AMPA receptor insertion directly within the 

postsynaptic density, rather than at extrasynaptic membranes. Therefore, we propose a molecular 

and anatomical model that dissects AMPA receptor sorting and synaptic delivery within the 

spine, and uncovers new functions of the exocyst at the postsynaptic membrane. 
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INTRODUCTION 

 

The exocyst is a multiprotein complex originally described in yeast to be required for 

exocytosis (TerBush et al., 1996). It consists of eight different subunits (Sec3, Sec5, Sec6, Sec8, 

Sec10, Sec15, Exo70 and Exo84), whose mammalian counterparts have been already identified 

(Hsu et al., 1996; Kee et al., 1997; Ting et al., 1995). The exocyst is localized at the plasma 

membrane and intracellular compartments (Shin et al., 2000; Yeaman et al., 2001), and it 

associates with cytoskeletal elements involved in vesicular trafficking (Hsu et al., 1998; Shin et 

al., 2000; Vega and Hsu, 2001; Wang et al., 2004). The exocyst is broadly expressed in adult 

brain and is enriched in synaptic membranes (Hsu et al., 1996; Sans et al., 2003; Vik-Mo et al., 

2003). However, its role in neurons has always been associated with membrane trafficking 

events required for neuronal development, such as neurite outgrowth (Vega and Hsu, 2001), 

synaptogenesis (Hazuka et al., 1999) and dendritic trafficking of newly synthesized NMDA 

receptors (NMDARs) (Sans et al., 2003). In contrast, the functional role of the exocyst in 

established synapses remains unclear. 

 Synaptic function is critically dependent on the targeting and delivery of a large number 

of different proteins at the postsynaptic membrane, including neurotransmitter receptors, ion 

channels, anchoring and cell adhesion molecules, and a variety of signal transduction modulators 

(Garner et al., 2000; Kim and Sheng, 2004; McGee and Bredt, 2003; Yamagata et al., 2003). 

AMPA type-glutamate receptors (AMPARs) mediate most excitatory synaptic transmission in 

the brain. Nevertheless, they are highly dynamic components of excitatory synapses. AMPARs 

can be added to or removed from synapses in an activity-dependent manner, leading to long-term 

potentiation (LTP) or depression (LTD) of synaptic transmission (see (Barry and Ziff, 2002; 
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Bredt and Nicoll, 2003; Esteban, 2003; Malinow and Malenka, 2002; Sheng and Lee, 2001) for 

recent reviews). In addition to this regulated trafficking, AMPARs continuously cycle in and out 

of synapses in an activity-independent manner, which requires NSF (Luscher et al., 1999; 

Nishimune et al., 1998; Song et al., 1998), Hsp90 (Gerges et al., 2004b) and NEEP21 (Steiner et 

al., 2005) function. Multiple proteins have been described to interact with AMPAR subunits and 

affect their synaptic localization (see (Henley, 2003; Kim and Sheng, 2004; Scannevin and 

Huganir, 2000) for recent reviews); however, we still know very little about the membrane 

trafficking mechanism mediating AMPAR targeting and delivery into synapses. 

Here we have explored a potential role for the exocyst in the dynamic behavior of 

AMPARs at the postsynaptic membrane. Using a combination of molecular biology, 

electrophysiology, fluorescence imaging and electron microscopy, we have found that different 

subunits of the exocyst mediate AMPAR synaptic trafficking at several distinct levels. 

Intracellular receptor targeting within the spine is mediated by the Sec8 subunit of the exocyst, 

possibly through PDZ-dependent interactions with synaptic scaffolding molecules. 

Independently from vesicle targeting, receptor insertion into the postsynaptic membrane requires 

the Exo70 subunit. By separately manipulating vesicle targeting and receptor insertion, we now 

show that AMPAR synaptic delivery occurs from intracellular compartments within the spine 

directly into the postsynaptic density. Therefore, in addition to characterizing the exocytic 

machinery that operates at the postsynaptic membrane, these results delineate the subcellular 

pathways by which AMPARs reach their synaptic targets. 
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RESULTS 

 

Different components of the exocyst play distinct roles in synaptic transmission 

 The C-terminus of the exocyst subunit Sec8 contains a PDZ motif that interacts with the 

synaptic scaffolding proteins PSD95 and SAP102 (Riefler et al., 2003; Sans et al., 2003) and is 

required for NMDAR trafficking (Sans et al., 2003). Therefore, as a first step to evaluate the role 

of the exocyst in synaptic transmission, we expressed the C-terminus (last 16 amino acids) of 

Sec8 as a GFP-fusion protein in CA1 hippocampal neurons from organotypic slice cultures using 

the Sindbis virus system (see Supplementary Information). This construct may act as a dominant 

negative by competing with the endogenous exocyst for its PDZ synaptic partners. The effect of 

Sec8 C-terminus (Sec8-Ct) on synaptic transmission was evaluated by simultaneous double 

whole-cell recordings from neurons expressing the recombinant protein and nearby uninfected 

neurons (Methods). As shown in Fig. 1A, Sec8-Ct significantly reduced AMPAR and NMDAR 

responses in hippocampal CA1 neurons, while GABAA receptor-mediated transmission remained 

unaffected. The depression of NMDA responses and lack of effect on GABAA responses are 

consistent with previously published observations using another Sec8 dominant negative 

construct (Sans et al., 2003). As control, overexpression of the full-length Sec8 protein (Sec8-wt) 

fused to GFP did not affect AMPA or NMDA transmission (Fig. 1B). Importantly, expression of 

a truncated form of Sec8-Ct lacking its last four amino acids (Sec8-Ct-Δ4), which are required 

for its PDZ interactions (Sans et al., 2003), did not alter AMPA or NMDA responses either (Fig. 

1C). These results suggest that the dominant negative effect of Sec8-Ct is indeed due to 

competition for PDZ-binding domains, which would be required for the synaptic delivery or 

stability of both AMPARs and NMDARs. 
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 Although both AMPARs (Bredt and Nicoll, 2003; Malinow and Malenka, 2002) and 

NMDARs (Nong et al., 2004; Perez-Otano and Ehlers, 2005; Prybylowski et al., 2005) undergo 

regulated synaptic trafficking, NMDARs are considered to be fairly stable components of the 

synapse, as compared with AMPARs (Sheng, 2001). Therefore, interference with a potential role 

of the exocyst specifically in receptor delivery is more likely to affect AMPARs to a larger 

extent than NMDARs. A truncated form of the exocyst subunit Exo70, lacking its C-terminal 

half (Exo70-N), has been recently shown to block the exocytic delivery of the glucose 

transporter Glut4 into the adipocyte cell surface (Inoue et al., 2003). Importantly, this truncated 

Exo70 is still able to interact with endogenous exocyst subunits (see Supplementary Fig. 1 and 

(Inoue et al., 2003)). We therefore evaluated the effect on synaptic transmission of Exo70-N as a 

GFP fusion protein in CA1 hippocampal neurons. As shown in Fig. 1D, AMPAR-mediated 

responses were significantly reduced in Exo70-N expressing neurons. Importantly, NMDAR 

responses were not affected, in contrast to the result obtained with Sec8-Ct. This result is also 

confirmed by the decrease in the ratio of AMPA to NMDA responses in Exo70-N-expressing 

neurons (Fig. 1D; to note, AMPA/NMDA ratios are intrinsically very variable across slices; 

therefore, comparisons between infected and uninfected cells were always drawn from 

recordings within the same slice, and in most cases, as simultaneous double recordings). As 

control, overexpression of full-length Exo70 (Exo70-wt) fused to GFP did not affect AMPA or 

NMDA synaptic responses (Fig. 1E). The differing effects of Exo70-N on AMPA and NMDA 

synaptic transmission suggest that the Exo70 subunit of the exocyst mediates receptor insertion 

at synapses, which is more likely to affect the continuous synaptic delivery of AMPARs than the 

stable presence of NMDARs at synapses. (To note, none of these wild-type and dominant 
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negative constructs affected passive membrane properties of the infected cell, such as input 

resistance and holding current; see Supplementary Fig. 2). 

 

Sec8 PDZ-dependent interactions are required for the constitutive synaptic cycling of 

AMPA receptors 

 The activity-independent, continuous delivery of AMPARs into synapses was originally 

inferred from intracellular peptide infusion experiments, in which AMPAR-mediated synaptic 

transmission rapidly ran down when a specific peptide competing GluR2-NSF interactions was 

loaded in the recorded cell (Luscher et al., 1999; Nishimune et al., 1998). We have used the same 

approach to determine whether the PDZ motif of Sec8 participates in the constitutive cycling of 

AMPARs. To this end, we recorded AMPAR-mediated synaptic responses from CA1 

hippocampal neurons while infusing them with one of three peptides: Sec8 C-t (last 8 amino 

acids of Sec8), NR2B C-t (last 8 amino acids of the NMDAR subunit NR2B, which also contains 

a PDZ ligand motif (Kornau et al., 1995; Niethammer et al., 1996)) and Sec8-mut C-t (last 8 

amino acids of Sec8 with the PDZ ligand sequence –TTV mutated to –ATA) (see Supplementary 

Information and Supplementary Fig. 3). These experiments were carried out in a blind fashion, 

that is, the person carrying out the electrophysiological recordings and the analysis did not know 

which peptide was used in the experiment. As shown in Fig. 2, the peptide corresponding to the 

Sec8 C-terminus produced a fast run-down of synaptic transmission, similar to the one observed 

for the GluR2-NSF peptide (Gerges et al., 2004b; Luscher et al., 1999; Nishimune et al., 1998). 

Importantly, the peptide corresponding to the PDZ ligand sequence of NR2B did not affect 

AMPAR-mediated responses, suggesting that specific PDZ-dependent interactions of Sec8 are 

required for the continuous synaptic cycling of AMPARs. As control, the mutated Sec8 C-t 
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peptide lacking the PDZ motif did not affect synaptic transmission either. Fig. 2B indicates that 

the differences in run-down of synaptic transmission obtained with the three peptides are not due 

to systematic changes in access resistance during the recordings. 

 

The exocyst associates with AMPA receptors in hippocampal synaptosomes 

 Our data shown above suggests that the exocyst may be directly involved in AMPAR 

synaptic trafficking. Therefore, we tested whether an exocyst/AMPAR complex is present in the 

brain. To this end we carried out immunoprecipitation experiments from hippocampal 

synaptosomes after Triton solubilization (see Supplementary Information; all 

immunoprecipitations were replicated in at least three independent experiments). As shown in 

Fig. 3A, immunoprecipitation of the exocyst subunits Sec8 or Exo70 co-precipitated AMPARs 

but not metabotropic (mGluR) receptors. As previously published (Riefler et al., 2003; Sans et 

al., 2003), the exocyst also co-precipitated the PDZ protein PSD95 (Fig. 3A). 

 The exocyst complex has been recently shown to associate with NMDARs through its 

interaction with synaptic anchoring proteins, such as PSD95 and SAP102 (Sans et al., 2003). 

However, AMPA and NMDA receptors do not appear to associate in hippocampal extracts (Sans 

et al., 2000; Wyszynski et al., 1999) (see also Fig. 3B). Therefore, we investigated whether the 

exocyst forms separate complexes with AMPARs and NMDARs at synaptic terminals. To this 

end, Triton-solubilized synaptosomal extracts from hippocampus were immunoprecipitated with 

anti-GluR2/3 (AMPARs) or anti-NR1 (NMDARs) antibodies (see Supplementary Information). 

As shown in Fig. 3B, the exocyst subunits Exo70, Sec8 and Sec6 co-precipitated predominantly 

with AMPARs, but only to low levels with NMDARs. This result supports the notion that the 

exocyst forms separate complexes with AMPARs and NMDARs. 
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A potential role for Sec8 but not for Exo70 in the dendritic trafficking of AMPA receptors 

 It has been recently described that the exocyst mediates the export into dendrites of newly 

synthesized NMDARs in primary neuronal cultures (Sans et al., 2003). In order to test whether 

the exocyst plays a similar role in the trafficking of AMPARs in hippocampal slices, we co-

expressed a GFP tagged AMPAR subunit (GluR2-GFP), together with Exo70-N, Sec8 C-t or 

NR2B C-t (as control) tagged with a red fluorescence protein (Exo70-N-RFP, Sec8-Ct-RFP or 

NR2B-Ct-RFP; see Supplementary Information). The efficiency of AMPAR transport along 

dendrites was quantified from the intensity of GFP fluorescence along the main apical dendrite, 

after background subtraction (see Supplementary Fig. 4A). As shown in Fig. 4, the trafficking of 

GluR2-GFP into distal dendrites was virtually identical with or without co-expressed Exo70-N, 

indicating that the transport of AMPARs along dendrites does not require a fully functional 

Exo70 subunit. In contrast, the dendritic transport of GluR2-GFP was significantly impaired 

when co-expressing Sec8-Ct or NR2B-Ct (Fig. 4; see Supplementary Fig. 4B for a complete 

quantification of AMPAR dendritic distribution in the presence of Exo70-N, Sec8-Ct and NR2B-

Ct). These results reinforce the interpretation that Exo70 and Sec8 play different roles in 

AMPAR trafficking: Exo70 probably mediates a local step in AMPAR synaptic delivery, 

whereas PDZ-dependent interactions of Sec8 or other proteins are required for efficient receptor 

transport and targeting (since both Sec8-Ct and NR2B-Ct impaired dendritic trafficking, the 

identity of these PDZ interactions cannot be determined from these experiments). 

 

Morphological dissection of AMPA receptor delivery into the spine surface 

 In order to directly test a local role of the exocyst in AMPAR trafficking, we monitored 

the transport of AMPARs from the dendritic shaft into adjacent spines and their delivery into the 
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spine plasma membrane. To this end, we co-expressed GFP-tagged GluR1 with a constitutively 

active, untagged form of αCaMKII (truncated αCaMKII, or tCaMKII) to trigger its synaptic 

delivery (see Supplementary Information and (Hayashi et al., 2000)), with or without Exo70-N. 

Protein expression was allowed for 36 hours, then slices were fixed and the surface distribution 

of the recombinant receptor in CA1 hippocampal neurons was monitored by immunostaining 

using an anti-GFP antibody under non-permeabilized conditions (the GFP tag is placed at the 

extracellular, N-terminus of the receptor). The immunostaining was visualized with an infrared 

fluorophore (Cy5). This experimental approach allows us to independently monitor the total 

amount of receptor (GFP channel), the fraction exposed to the cell surface (Cy5 channel) and the 

presence of the exocyst dominant negative construct (RFP channel). The distribution of surface 

and total receptor in spines and dendrites was quantified by line plots of fluorescence intensity 

across spine heads and adjacent dendritic shafts (see Fig. 5A for representative examples of the 

quantification of GFP and surface immunostaining from dendrite-spine pairs with or without co-

expressed Exo70-N). Surface ratios were then calculated as the ratio between the intensity of the 

Cy5 signal (surface receptor) and GFP signal (total receptor) after background subtraction 

(Brown et al., 2005; Gerges et al., 2004a). Importantly, this assay is internally normalized for 

immunostaining variability, because surface labeling is always acquired in pairs of spines and 

adjacent dendritic shafts. This also means that absolute changes in surface receptors at spines or 

dendrites cannot be evaluated, but only relative changes between the two compartments. Finally, 

spines are selected solely from their GFP image, so the analysis is done blind with respect to 

their surface immunostaining. 

As shown in Fig. 5B (first panel), surface expression of GluR1-GFP was slightly higher 

in spines as compared to their adjacent dendritic shafts when the exocyst function is intact. In 
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contrast, Exo70-N led to a marked reduction in the amount of receptors that reach the spine 

surface, to the point that surface expression at spines became significantly lower than at 

dendrites (Fig. 5B, second panel). This effect can also be evaluated from the leftward shift in the 

cumulative probability distribution of spine-to-dendrite ratios in the presence of Exo70-N (Fig. 

5B, third panel). 

A reduction of surface expression at spines may be due to an impaired translocation of 

the receptor into the spine. This step can be evaluated from the total receptor distribution (GFP 

channel) at spines and adjacent dendrites. As shown in Fig. 5C (first panel), GluR1-GFP 

partitions equally between dendrites and spines in the absence of exocyst dominant negative 

constructs. In marked contrast, and to our surprise, Exo70-N led to a significant increase (almost 

doubling) in the amount of total receptor in spines as compared to dendrites (Fig. 5C, second 

panel) (this effect can also be appreciated from the rightward shift in the cumulative probability 

distributions in Fig. 5C, third panel). Therefore, the decrease in receptor surface expression 

produced by Exo70-N is accompanied by an enrichment of receptors at spines. 

The next trafficking step after translocation into spines is receptor insertion at the spine 

plasma membrane. This process can be evaluated independently by calculating ratios of surface 

to total receptor (Cy5/GFP) at spines and dendrites. This approach normalizes receptor surface 

expression to the total number of receptors in each compartment, and therefore, it reflects the 

intrinsic efficiency of receptor delivery at the plasma membrane. As shown in Fig. 5D (first 

panel), surface ratios were slightly higher at spines than at dendrites when GluR1-GFP was co-

expressed only with tCaMKII. On the other hand, blockade of Exo70 function with Exo70-N 

strongly impaired receptor insertion at the spine surface, as judged from the drastic reduction in 

the surface ratio at spines versus dendrites (Fig. 5D, second and third panel). 
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These results support our interpretation that Exo70 plays a late step in AMPAR 

trafficking, even within the local environment of the synapse. Specifically, Exo70 seems to be 

required for the fusion of AMPAR-containing vesicles with the spine plasma membrane. 

Interestingly, the accumulation of GluR1-GFP at intracellular compartments within the 

spine when Exo70 function is impaired, also suggests that this pool of AMPARs reaches the 

synaptic membrane from intracellular compartments contained within the spine. We then tested 

whether a similar intra-spine pathway is followed for the constitutive synaptic delivery of the 

cycling population of AMPARs. This pathway can be monitored by expressing GluR2-GFP, 

which has been shown to constitutively reach spine and synaptic compartments (Shi et al., 2001). 

Therefore, we expressed GluR2-GFP in CA1 hippocampal neurons with or without Exo70-N-

RFP, Sec8-Ct-RFP or NR2B-Ct-RFP, as control. Total receptor (GFP channel) and surface (Cy5 

channel) distribution of GluR2-GFP was evaluated as described above (see Fig. 5A). As shown 

in Fig. 6A-C (first and second panels), and similarly to the results obtained with GluR1-GFP, 

interference with Exo70 function drastically impaired the surface delivery of GluR2 at the spine, 

and led to a concomitant enrichment of the receptor in the intracellular space of the spine. 

Interestingly, Sec8-Ct also strongly impaired surface receptor delivery (Fig. 6A, third panel), but 

this was not accompanied by receptor accumulation within the spine. In fact, Sec8-Ct produced a 

significant decrease in the fraction of receptors present at spines (Fig. 6B, third panel). As 

control, NR2B-Ct did not affect receptor presence at spines, and only modestly decreased surface 

delivery at spines (Fig. 6, forth panels; see also Supplementary Fig. 5 for a comparative analysis 

of the effects of Sec8-Ct and NR2B-Ct at spine-dendrite pairs). 

Taken together, these results indicate that the exocyst plays specialized roles in AMPAR 

synaptic trafficking, with Sec8 assisting both receptor translocation into the spine and delivery 
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into the spine surface, while Exo70 mediates exclusively a final membrane fusion step within the 

spine. 

 In addition, these results strongly suggest that the exocyst mediates both constitutive and 

regulated delivery of AMPARs at synapses. As a functional test for the role of the exocyst in 

these two pathways, we carried out electrophysiological experiments in which the presence of 

recombinant receptors at synapses is detected from their inward rectification properties (Hayashi 

et al., 2000; Shi et al., 2001). These electrophysiological experiments reinforced our fluorescence 

imaging data, and confirmed that the exocyst is required for the functional insertion of all 

AMPAR populations at synapses (see Supplementary Information). 

 

Distinct roles of Sec8 and Exo70 in targeting and insertion of AMPA receptors at the 

postsynaptic membrane 

 In yeast, different subsets of exocyst subunits have been proposed to associate with 

exocytic vesicles versus the target plasma membrane (Boyd et al., 2004). However, it is 

unknown what exocyst subassemblies reside in each compartment in the case of synaptic 

trafficking. Furthermore, it is still uncertain whether the target membrane for AMPAR exocytic 

delivery is directly at the synaptic membrane contained within the postsynaptic density (PSD), or 

whether AMPARs are inserted in extrasynaptic membranes and then reach their synaptic targets 

by lateral diffusion (Adesnik et al., 2005; Passafaro et al., 2001; Tardin et al., 2003; Triller and 

Choquet, 2005). Since Exo70 is required for local surface delivery of AMPARs (Fig. 5 and 6), 

we then tested whether interference with this exocyst subunit would alter the association of 

AMPARs with the PSD. To this end, we isolated PSD fractions (protocol based on (Peng et al., 

2004); see Supplementary Information) from hippocampal extracts of control slices or slices 
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overexpressing Exo70-N. To our surprise, and despite the fact that Exo70-N impairs receptor 

delivery into synapses (Fig. 1D) and spine plasma membrane (Fig. 5 and 6), Exo70-N 

overexpression led to a marked accumulation of Sec8, Rab8 and AMPARs at the PSD fraction 

(Fig. 7A and B; to note, none of these proteins is particularly enriched at the PSD fraction under 

basal conditions). Importantly, endogenous Exo70 and stable components of the PSD, such as 

PSD95 and αCaMKII, were not affected by expression of Exo70-N (Fig. 7A and B). Another 

exocytic Rab protein, Rab11, and the small GTPase Rho were undetectable at the PSD fraction 

under either condition. Therefore, these results together with those monitoring receptor delivery 

at the spine surface (Fig. 5 and 6), strongly suggest that AMPARs are directly inserted at the 

postsynaptic membrane (or at membranes biochemically associated to the PSD) in an Exo70-

depending manner. Truncation of the Exo70 C-terminus would lead to formation of an abortive 

complex at the PSD, in which incoming vesicles containing AMPARs, Sec8 and Rab8 remained 

associated but not yet fused with the postsynaptic membrane. 

 Importantly, this interpretation also implies that AMPAR targeting towards the 

postsynaptic membrane does not require a fully functional Exo70. Since Sec8 is the exocyst 

subunit that interacts with synaptic scaffolding molecules (Riefler et al., 2003; Sans et al., 2003) 

and it contributes to the transport of AMPARs into spines (Fig. 5), we then tested whether Sec8 

may be involved in the targeting aspects of AMPAR delivery into the postsynaptic membrane. 

To this end, we carried out similar PSD fractionation experiments with hippocampal extracts 

from uninfected slices, and from slices overexpressing Sec8-Ct. As shown in Fig. 7C and D, 

Sec8-Ct led to a drastic reduction in the amount of AMPARs and Sec8 at the PSD fraction. 

Interestingly, the association of NMDARs and PSD95 with the PSD was also decreased, in 

agreement with the depression of NMDA responses produced by Sec8-Ct (Fig. 1A). The same 
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result was obtained for the actin-dependent motor protein myosin Va, which is enriched in 

dendritic spines (Naisbitt et al., 2000; Walikonis et al., 2000). However, Sec8-Ct did not produce 

a generalized disassembly of the postsynaptic complex since Exo70 and αCaMKII were not 

affected by Sec8-Ct overexpression. This result with Sec8-Ct is virtually opposite to the one 

observed with Exo70-N (compare quantifications in Fig. 7B and D), and reinforces the 

interpretation that Sec8 mediates the targeting of AMPAR-containing vesicles towards the 

synapse, whereas Exo70 is required for the fusion of these vesicles with the postsynaptic 

membrane. 

 

Ultrastructural analysis of the role of the exocyst in AMPA receptor insertion at the 

postsynaptic membrane 

 The results presented above strongly suggest that AMPARs are able to reach the PSD and 

accumulate within it when Exo70 function is blocked. In order to test anatomically this 

interpretation and map with high-spatial resolution the role of Sec8 and Exo70 in AMPAR 

synaptic insertion, we have carried out immunogold electron microscopy. Organotypic 

hippocampal slices overexpressing Exo70-N or Sec8-Ct, or control (uninfected) slices were 

processed for postembedding immunogold staining with anti-GluR2/3 antibodies (see 

Supplementary Information). Electron micrographs were taken randomly from excitatory 

(asymmetric) synapses in the stratum radiatum (CA1) of these slices (see representative 

examples in Fig. 8A). As shown in Fig. 8A, B, AMPAR immunogold particles were significantly 

enriched (2.6-fold) within the PSD in Exo70-N-expressing slices. In contrast, Sec8-Ct produced 

a reduction in the fraction of AMPAR labeling at the PSD, although the difference was not 

significant with respect to uninfected slices. 
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This result confirms our biochemical observations and strengthens the interpretation that 

AMPARs approach the postsynaptic membrane but fail to fuse with it in the absence of a 

functional Exo70. In order to precisely map the trafficking step mediated by Exo70, we 

measured the distance between each gold particle and the synaptic cleft from slices expressing 

Exo70-N, Sec8-Ct or uninfected slices. The results are presented as cumulative distributions in 

Fig. 8C (only gold particles within 60 nm of the synaptic cleft –approximately 3 times the 

average PSD thickness– were considered for this quantification). As shown in Fig. 8C, AMPARs 

were found to accumulate in close proximity to the synaptic cleft in slices expressing Exo70-N 

(red line; leftward shift of the cumulative distribution), even from the shortest measurable 

distances within the PSD. Sec8-Ct produced the opposite effect, that is, AMPARs were less 

abundant in the vicinity of the PSD (blue line; rightward sift in the cumulative distribution). 

These results indicate that, in the absence of functional Exo70, AMPARs approach the 

postsynaptic membrane as much as physically possible, within the resolution of the immunogold 

labeling technique. 

Since Exo70-N seems to trap AMPARs at their final fusion step with the postsynaptic 

membrane, we then decided to map where this insertion takes place laterally with respect to the 

postsynaptic density. To this end we measured the lateral distance to the edge of the PSD for all 

immungold particles present within the PSD or on the lateral extrasynaptic membrane. As shown 

in Fig. 8D, in the presence of Exo70-N, AMPARs predominantly accumulate within the PSD, 

but in close proximity to its edge (almost 40% of the labeling is found within the distal 10% of 

the PSD) (Sec8-Ct was not included in this analysis due to the low number of gold particles 

present at the PSD under those conditions). Once again, this analysis supports the interpretation 
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that AMPARs are inserted into the synaptic membrane directly from the PSD or close to its edge, 

in a process mediated by the Exo70 subunit of the exocyst. 
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DISCUSSION 

 

 Delivery of AMPARs into synapses requires a precise and continuous coordination 

between sorting of AMPAR-containing vesicles towards the synapse, and fusion of these 

incoming vesicles with the postsynaptic membrane. Here we show that the exocyst complex 

links these two distinct functions through the concerted actions of Sec8 and Exo70. This 

conclusion is based on four main experimental observations. First, both Sec8 and Exo70 are 

required for AMPAR function at synapses, as assayed electrophysiologically. Second, both Sec8 

and Exo70 dominant negative mutants prevent receptor delivery to the spine surface, but in 

addition, only blockade of Exo70 function leads to accumulation of AMPARs at intracellular 

compartments within the spine. Third, exocytic vesicle proteins and AMPARs remain associated 

with the PSD upon interference with Exo70 function, whereas a Sec8 dominant negative 

produces the opposite effect. And forth, AMPARs accumulate within the distal part of the PSD 

in very close proximity to the synaptic cleft when Exo70 function is blocked. These observations 

lead us to propose a model for the anatomical and molecular events that lead to the delivery of 

AMPARs into synapses (Fig. 9). First, AMPARs are transported through intracellular 

membranes, probably belonging to the trans-Golgi network and recycling endosomes (Gerges et 

al., 2004a; Horton and Ehlers, 2003; Horton and Ehlers, 2004; Park et al., 2004), to reach the 

spine compartment. This process is constitutive for GluR2/GluR3 receptors, but requires 

CaMKII activation for GluR1/GluR2 receptors (Piccini and Malinow, 2002). The translocation 

of AMPARs into the spine is assisted by PDZ-dependent interactions of Sec8, but is independent 

from the Exo70 subunit of the exocyst. Exocytic vesicles containing AMPARs bud from intra-

spine compartments and are targeted towards the postsynaptic density, in a process probably 
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directed by interactions between the Sec8 subunit of the exocyst and synaptic scaffolding 

molecules (Fig. 9, left panel). These vesicles dock with the postsynaptic membrane within the 

PSD, leading to a transient association between AMPARs, vesicular proteins, such as Sec8 and 

Rab8, and the postsynaptic density (Fig. 9, upper right panel). This step is blocked by Sec8-Ct, 

presumably by competing with the Sec8-PDZ-dependent interactions that direct the vesicles 

towards the PSD. Finally, this complex is resolved by exocytic membrane fusion mediated by the 

Exo70 subunit of the exocyst (Fig 9, lower right panel). The C-terminus of Exo70 is required for 

this step, since Exo70-N prevents AMPAR delivery into the synaptic surface. 

 Our results reinforce the current view that different exocyst subunits perform individual 

functions during the exocytic process (Boyd et al., 2004), with Sec8 being specialized in vesicle 

transport and targeting, and Exo70 in membrane fusion. More importantly, this model provides 

new information about the distinct organization of this exocytic machinery in neurons for the 

delivery of AMPARs at synapses. The exocyst was originally proposed to act as a spatial 

landmark for polarized exocytosis in yeast (Finger et al., 1998). We now know that the exocyst 

mediates surface delivery of a variety of membrane proteins in different cell types. Therefore, it 

is expected that cell- and structure-specific proteins will recruit the exocyst to localize delivery 

of different cargo to their specific targets. In the case of the synaptic delivery of AMPA 

receptors, the PDZ-dependent interaction between Sec8 and synaptic scaffolding molecules, such 

as PSD95, seems to be the determining factor for membrane targeting. This interpretation is 

consistent with the observation that up- or down-regulation of PSD95 synaptic levels 

bidirectionally controls AMPAR delivery at synapses in hippocampus (Colledge et al., 2003; 

Ehrlich and Malinow, 2004; El-Husseini et al., 2000; El-Husseini Ael et al., 2002) and cerebral 

cortex (Beique and Andrade, 2003).. 



 20

 Finally, these results have offered unexpected anatomical information about the 

subcellular pathways followed by AMPARs to reach their synaptic targets. It has been previously 

proposed that the constitutive delivery of GluR2 receptors occurs by direct insertion at the 

postsynaptic membrane, whereas GluR1-containg receptors would reach the synaptic membrane 

by lateral translocation, after being inserted at extrasynaptic membranes (Passafaro et al., 2001). 

This model is compatible with the reported lateral diffusion of AMPARs on the dendritic plasma 

membrane (Groc et al., 2004; Tardin et al., 2003). However, our results do not support this 

model for synaptic delivery. We have found that impairment of AMPAR surface delivery with 

the Exo70 dominant negative leads to the accumulation of both recombinant GluR1 and GluR2 

receptors within the spine, and not in the surrounding dendritic space. Using immunogold 

electron microscopy, we have shown that endogenous AMPARs accumulate within the PSD, in 

very close proximity to the synaptic membrane, when Exo70 function is blocked. And finally, 

AMPARs biochemically associate with PSD fractions when surface delivery is impaired. Taken 

together, these results strongly suggest that AMPARs are targeted directly into the PSD, but 

become locked in an abortive complex at its intracellular side when membrane fusion is 

prevented. We do not know the reason for this discrepancy in the spatial pattern of AMPAR 

delivery, although a potentially important experimental difference may be the use of organotypic 

slice cultures in our experiments versus dissociated neuronal cultures for the reports on the 

lateral translocation of AMPARs (see also two recent reports supporting intra-spine delivery in 

slices (Kopec et al., 2006) and lateral diffusion in dissociated neurons (Adesnik et al., 2005)). 

Future experiments will be needed to resolve the physiological role of these different delivery 

pathways. 
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 In conclusion, our results shed light into the complex array of events that coordinate the 

transport, targeting and insertion of AMPARs at the postsynaptic membrane, and provide a 

molecular and anatomical map of the intracellular machinery that catalyzes this process along 

dendrites and within the dendritic spine. 
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MATERIALS AND METHODS 

 

Electrophysiology 

 Simultaneous whole-cell recordings were carried out from nearby pairs of 

infected/transfected and uninfected/untransfected CA1 pyramidal neurons using fluorescence and 

transmitted light illumination. Synaptic responses were evoked with two bipolar electrodes 

(stimulation pulses of 200 μs, up to 20 V) placed on the Schaffer collateral fibers between 300 

μm and 500 μm of the recorded cell. The responses obtained from the two stimulating electrodes 

were averaged for each cell and counted as an “n” of 1. This experimental configuration ensures 

that the potential effects of the expressed recombinant proteins are postsynaptic, since expression 

is always in CA1 neurons and stimulation is applied on Schaffer collateral fibers from CA3 

neurons. Synaptic responses mediated by AMPA or NMDA were acquired at -60 mV or +40 

mV, respectively, in the presence of 100 μM picrotoxin to block GABAA receptors. GABAA 

responses were acquired at 0 mV in the absence of receptor antagonists; therefore, they should be 

considered as a combination of mono- and disynaptic IPSCs. All synaptic responses were 

averaged over 50-100 trials. Voltage-clamp whole-cell recordings were acquired with a 

Multiclamp 700A amplifier (Axon Instruments). Composition of perfusion and internal solutions 

are described in the Supplementary Information. 

 

Imaging 

 Confocal and electron microscopy experiments are described in the Supplementary 

Information. 
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Biochemistry 

 Biochemical techniques for membrane fractionation and immunoprecipitations from 

synaptosomal preparations are described in the Supplementary Information. 
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FIGURE LEGENDS 

 

Figure 1. Effect of different exocyst subunits on synaptic transmission. (A-E) Insets, sample 

trace of evoked AMPA-receptor mediated synaptic responses recorded at –60 mV, from 

uninfected and infected cells. Scale bars, 20 pA and 40 ms. Left: average AMPAR-mediated 

current amplitude (i.e. the peak of the response recorded at –60 mV) from infected (inf) neurons 

expressing Sec8-Ct (A), Sec8-wt (B), Sec8-Ct-∆4 (C), Exo70-N (D) or Exo70-wt (E), and 

control neighboring cells not expressing the recombinant protein (uninf). n represents the number 

of cell pairs. Middle: average NMDAR-mediated current amplitude (recorded at +40 mV at a 

latency when AMPA responses are fully decayed, 60 ms) from uninfected and infected cells (n 

also represents the number of cell pairs). Right: average GABAA receptor-mediated current 

amplitude measured at 0 mV (A) or average AMPA/NMDA ratios for uninfected and infected 

cells (B-E). 

 

Figure 2. Interference of the constitutive synaptic cycling of AMPA receptors with a Sec8 

C-t peptide. (A) Time course of AMPAR-mediated responses recorded from CA1 neurons 

during whole-cell pipette infusion of Sec8 C-t, NR2B C-t or Sec8-mut C-t peptides, as indicated. 

Responses are normalized to a 2-minute baseline from the beginning of the recording. The 

statistical significance of the run-down of AMPA transmission was calculated from the last 5 

minutes of the recordings. (B) Time course of the pipette access resistance during the recordings 

shown in A. There was no systematic change in access resistance with any of the peptides. 

 

Figure 3. Co-immunoprecipitation of exocyst subunits and AMPA receptors from 

hippocampal synaptosomes. Exocyst subunits Exo70 and Sec8 (A), AMPA receptor subunits 
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GluR2/3 (GR2/3) and NMDA receptor subunit NR1 (B) were immunoprecipitated from Triton-

solubilized synaptosomal preparation of hippocampus. IP indicates antibodies used for 

immunoprecipitation. Non-immune (N.I.) antibodies were used as control. Total solubilized 

protein (10% of the input) and the immunoprecipitated fractions were analyzed by 

immunoblotting using the indicated antibodies. 

 

Figure 4. Exo70 is not involved in the dendritic trafficking of newly synthesized AMPA 

receptors in hippocampal slices. Hippocampal CA1 neurons were transfected with GluR2-GFP 

alone or cotransfected with GluR2-GFP plus Exo70-N-RFP, Sec8-Ct-RFP or NR2B-Ct-RFP 

(these constructs are equivalent to their GFP counterparts, only with RFP in the place of GFP; 

the NR2B construct includes the last 16 amino acids of the NR2B C-terminus). (A) 

Representative examples of neurons expressing GluR2-GFP alone or co-expressing GluR2-GFP 

together with Exo70-N-RFP or with Sec8-Ct-RFP, as indicated. Scale bar: 20 μm. The efficiency 

of GluR2 transport along dendrites was quantified from the intensity of GFP fluorescence at the 

main apical dendrite 170 to 200 μm away from the cell soma. Fluorescence intensity is 

normalized to the peak value at the soma after background subtraction (see arrows on left panel 

and representative scheme in Supplementary Fig. 4A). (B) GluR2-GFP presence at distal apical 

dendrites (170 to 200 μm away from the cell soma) in the presence of Exo70-N, Sec8-Ct or 

NR2B-Ct, as indicated. Data are presented as mean ± s.e.m. n represents number of cells. 

 

Figure 5. Role of Exo70 in local AMPAR trafficking at spines. (A) Representative confocal 

image of a spine and the adjacent dendritic shaft from a neuron transfected with GluR1-GFP and 



 33

tCaMKII (left) or with GluR1-GFP, tCaMKII and Exo70-N-RFP (right), as indicated. GFP 

fluorescence signal (green) represents total GluR1 receptor distribution. Surface GluR1-GFP 

receptor (cyan) was assayed by immunostaining with an anti-GFP antibody coupled to Cy5 

under non-permeabilized conditions. Scale bar: 2 μm. Lower panels: representative line plot 

profiles of GFP and Cy5 fluorescence intensities across dendrite-spine pairs. Total (GFP) and 

surface (Cy5) receptor accumulation are calculated from the corresponding peaks of fluorescence 

intensity at spines and adjacent dendritic shafts. (B) Surface analysis (background-subtracted 

Cy5 values) from pairs of spines and dendrites in GluR1 plus tCaMKII transfected neurons (first 

panel; n=59 spine/dendrite pairs from 5 different cells) or in GluR1 plus tCaMKII and Exo70-N 

cotransfected neurons (second panel; n=40 spine/dendrite pairs from 5 different cells). Surface 

values are normalized by the mean dendrite value. Cumulative probabilities (third panel) of 

surface expression at spine over dendrite show significant differences between surface 

distributions of GluR1 plus tCaMKII versus GluR1 plus tCaMKII and Exo70-N transfected 

neurons. (C) Total receptor amount (GFP signal) in spines and dendrites are calculated in GluR1 

plus tCaMKII transfected neurons and in neurons co-transfected with GluR1 plus tCaMKII and 

Exo70-N, as indicated. GFP fluorescence is normalized to the mean dendrite value. The 

cumulative probability (right) indicates that Exo70-N leads to the accumulation of total receptor 

in spines as compared to dendrites. (D) Surface ratio from the same pairs of spines and dendrites. 

Surface ratios were calculated by dividing the corresponding background-subtracted Cy5 and 

GFP values. Surface ratios are normalized by the mean dendrite value. Cumulative probabilities 

(right) of spine/dendrite ratios show a significant difference between the surface ratio distribution 

of GluR1 plus tCaMKII versus GluR1 plus tCaMKII and Exo70-N transfected neurons.  
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Figure 6. Role of Exo70 and Sec8 in the constitutive AMPAR trafficking at spines. (A) 

Similar to Fig. 5B, surface analysis from pairs of spines and dendrites in GluR2 (first panel; 

n=21 spine/dendrite pairs from 4 different cells), GluR2 plus Exo70-N (second panel; n=32 

spine/dendrite pairs from 5 different cells), GluR2 plus Sec8-Ct (third panel; n=58 spine/dendrite 

pairs from 5 different cells) or GluR2 plus NR2B-Ct cotransfected neurons (forth panel; n=62 

spine/dendrite pairs from 5 different cells). (B) Similar to Fig. 5C, total receptor amount from the 

same pairs of spines and dendrites in GluR2 or in GluR2 plus Exo70-N, Sec8-Ct or NR2B-Ct 

cotransfected neurons. (C) Similar to Fig. 5D, surface ratio of the same pairs of spines and 

dendrites in GluR2 or in GluR2 plus Exo70-N, Sec8-Ct or NR2B-Ct cotransfected neurons. 

 

Figure 7. Opposite effects of Exo70 and Sec8 dominant negatives in the association of 

AMPA receptors with the postsynaptic density. (A) Total proteins in synaptosomes (8% of the 

total fraction) and PSD-associated proteins were analyzed by immunoblotting using the indicated 

antibodies (AMPARs were detected with a mix of GluR1 and GluR2/3 antibodies). The CA1 

area was dissected from 30-45 control (unin.) hippocampal slices or slices infected with Exo70-

N (inf.). Therefore, an “n” of 1 in this experiment represents the average of 30-45 slices. Protein 

extracts were processed to isolate the synaptosomal and PSD fractions (see Supplementary 

Information). (B) Quantification of multiple independent experiments as the one shown in A. 

Relative PSD enrichment was calculated as the intensity of the PSD band in the infected extracts 

over that of the uninfected ones, after normalization by their relative band intensities at the 

homogenates (input). Inset shows that infection did not produce a systematic effect on protein 

abundance at the inputs. (C) Similar to (A), comparing uninfected and infected slices expressing 

Sec8-Ct (same construct as in Fig. 1). Total proteins in synaptosomes (3% of the total fraction) 
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and PSD-associated proteins were analyzed by immunoblotting using the indicated antibodies. 

NMDARs were detected with a combination of NR1 and NR2A/B antibodies). (D). 

Quantification of PSD enrichment for the different proteins in the presence or absence of Sec8-

Ct was calculated as described for (B). 

 

Figure 8. Electron microscopic analysis of the role of the exocyst in AMPA receptor 

synaptic insertion. A. Representative micrographs of AMPA receptor immunogold labeling in 

control slices (Uninf), slices infected with Exo70 dominant negative (Exo70-N) or with Sec8 

dominant negative (Sec8-Ct; same construct as in Fig. 1). Immunogold particles at the 

postsynaptic density (PSD) are indicated with arrows. Note accumulation of AMPA receptors 

within the PSD in Exo70-N-expressing neurons. The opposite effect was observed in Sec8-Ct-

infected slices. B. Quantification of AMPA receptor presence at the PSD from electron 

micrographs as the ones shown in A. Percentage of PSD labeling was calculated as the number 

of gold particles at the PSD versus the total number of gold particles in each synaptic terminal 

(only gold particles within 800 nm of the synaptic cleft were included for quantification). n 

represents the number of synapses analyzed in each condition. C. Quantification of AMPA 

receptor local distribution with respect to the synaptic cleft. The distance to the synaptic cleft 

was calculated for each immunogold particle from uninfected slices (black line), slices 

expressing Exo70-N (red line) or Sec8-Ct (blue line), and plotted as cumulative distributions. In 

order to assess local synaptic distribution of AMPA receptors, only immunogold particles within 

60 nm of the synaptic cleft were included in this quantification (the average thickness of the PSD 

from our micrographs was 18 nm –thick line on the x-axis). n represents the number of gold 

particles analyzed in each condition. D. Quantification of AMPA receptor lateral distribution 
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within the PSD and on extrasynaptic membranes from uninfected slices (white columns) and 

Exo70-N-expressing slices (red columns). The lateral distance to the closest edge of the PSD was 

calculated for each immunogold particle and divided by the total length of the PSD (the average 

length of the PSD from our micrographs was 290 nm). Distances within the PSD were computed 

as negative values (relative lateral distances within the PSD cannot exceed -0.5, since the 

position of the immunogold particle is always calculated with respect to the closest PSD edge). 

 

Figure 9. Model for the exocyst-mediated targeting and delivery of AMPA receptors at the 

postsynaptic membrane. Left. Exocytic vesicles containing AMPA receptors reach dendritic 

spines, bud from intracellular compartments within the spine and are directed towards the PSD 

by interactions between Sec8 and synaptic scaffolding molecules, such as PSD95. Upper right. 

Incoming vesicles dock at the PSD forming a transient complex with it. Lower right. This 

complex is resolved by membrane fusion with the postsynaptic membrane. This process is 

mediated by Exo70. See further explanation in the main text. TGN: trans-Golgi network; RE: 

recycling endosome; EV: exocytic vesicle; DV: docked vesicle. 
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Figure 7 (Esteban)

0

0.5

1

1.5

AM
PA

Se
c8

Ra
b8

Ex
o7

0
PS

D9
5

Ca
M

KI
IN

or
m

al
iz

ed
 In

pu
t

(In
f. 

/ U
ni

nf
.)

A

αCaMKII

Myosin Va

PSD95

Exo70

NMDAR

AMPAR

unin.   inf.
(8%) Input PSD

PSD95

Rab11

AMPAR

Exo70

Rho

Sec8

Rab8

unin.   inf.

Exo70-N Sec8-CtC

unin. inf.
(3%) Input PSD

unin. inf.

0

0.5

1

1.5

AM
PA

Se
c8

Ra
b8

Ex
o7

0
PS

D9
5

Ca
M

KI
IN

or
m

al
iz

ed
 In

pu
t

(In
f. 

/ U
ni

nf
.)

Rab8

Sec8

B

R
el

at
iv

e 
P

S
D

 e
nr

ic
hm

en
t

(E
xo

70
-N

 In
f. 

/ U
ni

nf
.)

0

1

2

3

4

AMPA

n=
5

n=
4

n=
4

n=
5

n=
4

n=
3

Sec8
Rab8

Exo
70

PSD95

CaMKII R
el

at
iv

e 
P

S
D

 e
nr

ic
hm

en
t

(S
ec

8-
C

t I
nf

. /
 U

ni
nf

.)

0

0.5

1

1.5

n=
5

n=
4

n=
5

n=
5

n=
4

n=
4

AMPA
Sec8

Rab8
Exo

70
PSD95

CaMKII

D

αCaMKII

0

0.5

1

1.5

AM
PA

Se
c8

Ra
b8

Ex
o7

0
PS

D9
5

Ca
M

KI
IN

or
m

al
iz

ed
 In

pu
t

(In
f. 

/ U
ni

nf
.)

0

0.5

1

1.5

AM
PA

Se
c8

Ra
b8

Ex
o7

0
PS

D9
5

Ca
M

KI
IN

or
m

al
iz

ed
 In

pu
t

(In
f. 

/ U
ni

nf
.)

A

αCaMKII

Myosin Va

PSD95

Exo70

NMDAR

AMPAR

unin.   inf.
(8%) Input PSD

PSD95

Rab11

AMPAR

Exo70

Rho

Sec8

Rab8

unin.   inf.

Exo70-N Sec8-CtC

unin. inf.
(3%) Input PSD

unin. inf.

0

0.5

1

1.5

AM
PA

Se
c8

Ra
b8

Ex
o7

0
PS

D9
5

Ca
M

KI
IN

or
m

al
iz

ed
 In

pu
t

(In
f. 

/ U
ni

nf
.)

0

0.5

1

1.5

AM
PA

Se
c8

Ra
b8

Ex
o7

0
PS

D9
5

Ca
M

KI
IN

or
m

al
iz

ed
 In

pu
t

(In
f. 

/ U
ni

nf
.)

Rab8

Sec8

B

R
el

at
iv

e 
P

S
D

 e
nr

ic
hm

en
t

(E
xo

70
-N

 In
f. 

/ U
ni

nf
.)

0

1

2

3

4

AMPA

n=
5

n=
4

n=
4

n=
5

n=
4

n=
3

Sec8
Rab8

Exo
70

PSD95

CaMKIIR
el

at
iv

e 
P

S
D

 e
nr

ic
hm

en
t

(E
xo

70
-N

 In
f. 

/ U
ni

nf
.)

0

1

2

3

4

0

1

2

3

4

AMPA

n=
5

n=
4

n=
4

n=
5

n=
4

n=
3

Sec8
Rab8

Exo
70

PSD95

CaMKII R
el

at
iv

e 
P

S
D

 e
nr

ic
hm

en
t

(S
ec

8-
C

t I
nf

. /
 U

ni
nf

.)

0

0.5

1

1.5

n=
5

n=
4

n=
5

n=
5

n=
4

n=
4

AMPA
Sec8

Rab8
Exo

70
PSD95

CaMKIIR
el

at
iv

e 
P

S
D

 e
nr

ic
hm

en
t

(S
ec

8-
C

t I
nf

. /
 U

ni
nf

.)

0

0.5

1

1.5

0

0.5

1

1.5

n=
5

n=
4

n=
5

n=
5

n=
4

n=
4

AMPA
Sec8

Rab8
Exo

70
PSD95

CaMKII
AMPA

Sec8
Rab8

Exo
70

PSD95

CaMKII

D

αCaMKII



Uninf Exo70-N Sec8-CtUninf Exo70-N Sec8-Ct

0

10

20

Uninf Exo70-N Sec8-Ct

PS
D

 la
be

lin
g 

(%
)

**p=0.01

n=55 n=53 n=19

BA

0

0.2

0.4

0.6

0.8

1

0 20 40 60
Distance from synaptic cleft (nm)

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

Sec8-Ct
**p=0.0001

n=41

Exo70-N
*p=0.04
n=103 Uninf

n=46

PSD

C D

0 nm 60 nm

PS
D

Relative lateral distance from PSD edge

La
be

lin
g 

pe
rc

en
ta

ge

0

10

20

30

40

-0.5 -0.4 -0.3 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4-0.1

Exo70-N (n=83)

Uninf (n=42)

PSD Extrasyn. membr.

Uninf Exo70-N Sec8-CtUninf Exo70-N Sec8-Ct

0

10

20

Uninf Exo70-N Sec8-Ct

PS
D

 la
be

lin
g 

(%
)

**p=0.01

n=55 n=53 n=19

BA

0

0.2

0.4

0.6

0.8

1

0 20 40 60
Distance from synaptic cleft (nm)

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

Sec8-Ct
**p=0.0001

n=41

Exo70-N
*p=0.04
n=103 Uninf

n=46

PSD

C D

0 nm 60 nm

PS
D

Relative lateral distance from PSD edge

La
be

lin
g 

pe
rc

en
ta

ge

0

10

20

30

40

-0.5 -0.4 -0.3 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4-0.1

Exo70-N (n=83)

Uninf (n=42)

PSD Extrasyn. membr.

Figure 8 (Esteban)



vesicle
docking

Sec8-Ct membrane
fusion

Exo70-N

TGN

PSD95

NMDAR

RE

rab8

GluR1/2

CaMKII constitutive

GluR2/3

sec8
AMPAR exo70

exocyst
complex

exo70

dendrite

spine

PSD

rab8

sec8
exo70

EV
AMPAR

TGN

PSD95

NMDAR

RE

rab8

GluR1/2

CaMKII constitutive

GluR2/3

sec8sec8
AMPAR exo70exo70

exocyst
complex

exo70exo70

dendrite

spine

PSD

rab8

sec8sec8
exo70exo70

EV
AMPAR

PSD95

NMDAR

rab8sec8
exo70

DV
AMPAR

PSD95

NMDAR

rab8sec8sec8
exo70exo70

DV
AMPAR

PSD95

NMDAR AMPAR

exo70

sec8

rab8PSD95

NMDAR AMPAR

exo70exo70

sec8sec8

rab8

vesicle
docking

Sec8-Ct membrane
fusion

Exo70-N

TGN

PSD95

NMDAR

RE

rab8

GluR1/2

CaMKII constitutive

GluR2/3

sec8
AMPAR exo70

exocyst
complex

exo70

dendrite

spine

PSD

rab8

sec8
exo70

EV
AMPAR

TGN

PSD95

NMDAR

RE

rab8

GluR1/2

CaMKII constitutive

GluR2/3

sec8sec8
AMPAR exo70exo70

exocyst
complex

exo70exo70

dendrite

spine

PSD

rab8

sec8sec8
exo70exo70

EV
AMPAR

PSD95

NMDAR

rab8sec8
exo70

DV
AMPAR

PSD95

NMDAR

rab8sec8sec8
exo70exo70

DV
AMPAR

PSD95

NMDAR AMPAR

exo70

sec8

rab8PSD95

NMDAR AMPAR

exo70exo70

sec8sec8

rab8

Figure 9 (Esteban)


