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Abstract— The coronavirus disease (COVID-19) is rapidly
spreading all over the world, and has infected more than
1,436,000 people in more than 200 countries and territories
as of April 9, 2020. Detecting COVID-19 at early stage is
essential to deliver proper healthcare to the patients and
also to protect the uninfected population. To this end,
we develop a dual-sampling attention network to automat-
ically diagnose COVID-19 from the community acquired
pneumonia (CAP) in chest computed tomography (CT).
In particular, we propose a novel online attention module
with a 3D convolutional network (CNN) to focus on the infec-
tion regions in lungs when making decisions of diagnoses.
Note that there exists imbalanced distribution of the sizes of
the infection regions between COVID-19 and CAP, partially
due to fast progress of COVID-19 after symptom onset.
Therefore, we develop a dual-sampling strategy to mitigate
the imbalanced learning. Our method is evaluated (to our
best knowledge) upon the largest multi-center CT data for
COVID-19 from 8 hospitals. In the training-validation stage,
we collect 2186 CT scans from 1588 patients for a 5-fold
cross-validation. In the testing stage, we employ another
independent large-scale testing dataset including 2796 CT
scans from 2057 patients. Results show that our algorithm
can identify the COVID-19 images with the area under the
receiver operating characteristic curve (AUC) value of 0.944,
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accuracy of 87.5%, sensitivity of 86.9%, specificity of 90.1%,
and F1-score of 82.0%. With this performance, the proposed
algorithm could potentially aid radiologists with COVID-19
diagnosis from CAP, especially in the early stage of the
COVID-19 outbreak.

Index Terms— COVID-19 Diagnosis, Online Attention,
Explainability, Imbalanced Distribution, Dual Sampling
Strategy.

I. INTRODUCTION

T
HE disease caused by the novel coronavirus, or Coro-

navirus Disease 2019 (COVID-19) is quickly spreading

globally. It has infected more than 1,436,000 people in more

than 200 countries and territories as of April 9, 2020 [1].

On February 12, 2020, the World Health Organization (WHO)

officially named the disease caused by the novel coronavirus as

Coronavirus Disease 2019 (COVID-19) [2]. Now, the number

of COVID-19 patients is dramatically increasing every day

around the world [3]. Compared with the prior Severe Acute

Respiratory Syndrome (SARS) and Middle East Respiratory

Syndrome (MERS), COVID-19 has spread to more places and

caused more deaths, despite its relatively lower fatality rate

[4], [5]. Considering the pandemic of COVID-19, it is impor-

tant to detect COVID-19 early, which could facilitate the

slowdown of viral transmission and thus disease containment.

In clinics, real-time reverse-transcription–polymerase-chain-

reaction (RT-PCR) is the golden standard to make a definitive

diagnosis of COVID-19 infection [6]. However, the high false

negative rate [7] and unavailability of RT-PCR assay in the

early stage of an outbreak may delay the identification of

potential patients. Due to the highly contagious nature of the

virus, it then constitutes a high risk for infecting a larger popu-

lation. At the same time, thoracic computed tomography (CT)

is relatively easy to perform and can produce fast diagno-

sis [8]. For example, almost all COVID-19 patients have some

typical radiographic features in chest CT, including ground-

glass opacities (GGO), multifocal patchy consolidation, and/or

interstitial changes with a peripheral distribution [9]. Thus

chest CT has been recommended as a major tool for clinical

diagnosis especially in the hard-hit region such as Hubei,

China [6]. Considering the need for high-throughput screening

by chest CT and the workload for radiologists especially in
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the outbreak, we design a deep-learning-based method to auto-

matically diagnose COVID-19 infection from the community

acquired pneumonia (CAP) infection.

With the development of deep learning [11]–[15], the tech-

nology has a wide range of applications in medical image

processing, including disease diagnosis [16], organ segmen-

tation [17], etc. Convolutional neural network (CNN) [18],

one of the most representative deep learning technology, has

been applied to reading and analyzing CT images in many

recent studies [19], [20]. For example, Koichiro et. al. use

CNN for differentiation of liver masses on dynamic contrast

agent–enhanced CT images [21]. Also, some studies focus

on the diagnoses of lung diseases in chest CT, e.g., pul-

monary nodules [22], [23] and pulmonary tuberculosis [24].

Although deep learning has achieved remarkable performance

for abnormality diagnoses of medical images [16], [25], [26],

physicians have concerns especially in the lack of model

interpretability and understanding [27], which is important

for the diagnosis of COVID-19. To provide more insight for

model decisions, the class activation mapping (CAM) [28] and

gradient-weighted class activation mapping (Grad-CAM) [29]

methods have been proposed to produce localization heatmaps

highlighting important regions that are closely associated with

predicted results.

In this study, we propose a dual-sampling attention network

to classify the COVID-19 and CAP infection. To focus on

the lung, our method leverages a lung mask to suppress

image context of none-lung regions in chest CT. At the same

time, we refine the attention of the deep learning model

through an online mechanism, in order to better focus on

the infection regions in the lung. In this way, the model

facilitates interpreting and explaining the evidence for the

automatic diagnosis of COVID-19. The experimental results

also demonstrate that the proposed online attention refinement

can effectively improve the classification performance.

In our work, an important observation is that COVID-19

cases usually have more severe infection than CAP cases [30],

although some COVID-19 cases and CAP cases do have

similar infection sizes. To illustrate it, we use an established

VB-Net toolkit [10] to automatically segment lungs and pneu-

monia infection regions on all the cases in our training-

validation (TV) set (with details of our TV set provided in

Section IV), and show the distribution of the ratios between

the infection regions and lungs in Fig. 1. Note that the VB-Net

toolkit is from previous work [10], which was trained on a

different dataset. In this work, we directly use it to get the

segmentation of the lung and infection masks. The proposed

CNN model uses these masks as well as the intensity CT

image as inputs for classification. We can see the imbalanced

distribution of the infection size ratios in both COVID-19

and CAP data. In this situation, the conventional uniform

sampling on the entire dataset to train the network could lead

to unsatisfactory diagnosis performance, especially concerning

the limited cases of COVID-19 with small infections and also

the limited cases of CAP with large infections. To this end,

we train the second network with the size-balanced sampling

strategy, by sampling more cases of COVID-19 with small

infections and also more cases of CAP with large infections

Fig. 1. Examples of CT images and infection segmentations of two
COVID-19 patients (top left) and two CAP patients (bottom left), and the
size distribution of the infection regions of COVID-19 and CAP in our
training-validation set (right). The segmentation results of the lungs and
infection regions are obtained from an established VB-Net toolkit [10].
The sizes of the infection regions are denoted by the volume ratios of the
segmented infection regions and the whole lungs. Compared with CAP,
the COVID-19 cases tend to have more severe infections in terms of the
infection region sizes.

within mini-batches. Finally, we apply ensemble learning to

integrate the networks of uniform sampling and size-balanced

sampling to get the final diagnosis results, by following the

dual-sampling strategy.

As a summary, the contributions of our work are in

three-fold:

• We propose an online module to utilize the segmented

pneumonia infection regions to refine the attention for

the network. This ensures the network to focus on the

infection regions and increase the adoption of visual

attention for model interpretability and explainability.

• We propose a dual-sampling strategy to train the network,

which further alleviates the imbalanced distribution of the

sizes of pneumonia infection regions.

• To our knowledge, we have used the largest multi-

center CT data in the world for evaluating automatic

COVID-19 diagnosis. In particular, we conduct extensive

cross-validations in a TV dataset of 2186 CT scans

from 1588 patients. Moreover, to better evaluate the

performance and generalization ability of the proposed

method, a large independent testing set of 2796 CT scans

from 2057 patients is also used. Experimental results

demonstrate that our algorithm is able to identify the

COVID-19 images with the area under the receiver oper-

ating characteristic curve (AUC) value of 0.944, accuracy

of 87.5%, sensitivity of 86.9%, specificity of 90.1%, and

F1-score of 82.0%.

II. RELATED WORKS

A. Computer-Assisted Pneumonia Diagnosis

Chest X-ray (CXR) is one of the firstline imaging modal-

ity to diagnose pneumonia, which manifests as increased
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opacity [31]. The CNN networks have been successfully

applied to pneumonia diagnosis in CXR images [16], [32].

As the release of the Radiological Society of North America

(RSNA) pneumonia detection challenge [33] dataset, object

detection methods (i.e., RetinaNet [34] and Mask R-CNN [35])

have been used for pneumonia localization in CXR images.

At the same time, CT has been used as a standard procedure

in the diagnosis of lung diseases [36]. An automated classifi-

cation method has been proposed to use regional volumetric

texture analysis for usual interstitial pneumonia diagnosis in

high-resolution CT [37]. For COVID-19, GGO and consoli-

dation along the subpleural area of the lung are the typical

radiographic features of COVID-19 patients [9]. Chest CT,

especially high-resolution CT, can detect small areas of ground

glass opacity (GGO) [38].

Some recent works have focused on the COVID-19 diagno-

sis from other pneumonia in CT images [39]–[41]. It requires

the chest CT images to identify some typical features, includ-

ing GGO, multifocal patchy consolidation, and/or interstitial

changes with a peripheral distribution [9]. Wang et al. [39] pro-

pose a 2D CNN network to classify between COVID-19 and

other viral pneumonia based on manually delineated regions.

Xu et al. [40] use a V-Net model to segment the infection

region and apply a ResNet18 network for the classification.

Song et al. [41] use a ResNet50 network to process all

the slices of each 3D chest CT images to form the final

prediction for each CT image. However, all these methods are

evaluated in small datasets. In this paper, we have collected

4982 CT scans from 3645 patients, provided by 8 collaborative

hospitals. To our best knowledge, it is the largest multi-

center dataset for COVID-19 till now, which can prove the

effectiveness of the method.

Note that, in the context of pneumonia diagnosis, lung

segmentation is often an essential preprocessing step in ana-

lyzing chest CT images to assess pneumonia. In the literature,

Alom et al. [42] utilize U-net, residual network and recur-

rent CNN for lung lesion segmentation. A convolutional-

deconvolutional capsule network has also been proposed for

pathological lung segmentation in CT images. In this paper,

we use an established VB-Net toolkit for lung segmentation,

which has been reported with high Dice similarity coefficient

of >98% in evaluation [10]. Also, this VB-Net toolkit achieves

Dice similarity coefficient of 92% between automatically and

manually delineated pneumonia infection regions, showing

the state-of-the-art performance [43]. For more related works,

a recent review paper of automatic segmentation methods on

COVID-19 could be found in [43].

B. Class Re-Sampling Strategies

For network training in the datasets with long-tailed data

distribution, there exist some problems for the universal par-

adigm to sample the entire dataset uniformly [45]. In such

datasets, some classes contain relatively few samples. The

information of these cases may be ignored by the network

if applying uniform sampling. To address this, some class

re-sampling strategies have been proposed in the literature

[46]–[50]. The aim of these methods is to adjust the numbers

of the examples from different classes within mini-batches,

which achieves better performance on the long-tailed dataset.

Generally, class re-sampling strategies could be categorized

into two groups, i.e., over-sampling by repeating data for

minority classes [46]–[48] and under-sampling by randomly

removing samples to make the number of each class to be

equal [47], [49], [50]. The COVID-19 data is hard to collect

and precious, so abandoning data is not a good choice. In this

study, we adapt the over-sampling strategies [46] on the

COVID-19 with small infections and also CAP with large

infections to form a size-balanced sampling method, which

can better balance the distribution of the infection regions

of COVID-19 and CAP cases within mini-batches. However,

over-sampling may lead to over-fitting upon these minority

classes [51], [52]. We thus propose the dual-sampling strategy

to integrate results from the two networks trained with uniform

sampling and size-balanced sampling, respectively.

C. Attention Mechanism

Attention mechanism has been widely used in many

deep networks, and can be roughly divided into two types:

1) activation-based attention [53]–[55] and 2) gradient-based

attention [28], [29]. The activation-based attention usually

serves as an inserted module to refine the hidden feature maps

during the training, which can make the network to focus

on the important regions. For the activation-based attention,

the channel-wise attention assigns weights to each channel

in the feature maps [55] while the position-wise attention

produces heatmaps of importance for each pixel of the feature

maps [53], [54]. The most common gradient-based attention

methods are CAM [28] and Grad-CAM [29], which reveal the

important regions influencing the network prediction. These

methods are normally conducted offline and provide a pattern

of model interpretability during the inference stage. Recently,

some studies [56], [57] argue that the gradient-based methods

can be developed as an online module during the training for

better localization. In this study, we extend the gradient-based

attention to composing an online trainable component and the

scenario of 3D input. The proposed attention module utilizes

the segmented pneumonia infection regions to ensure that the

network can make decisions based on these infection regions.

III. METHOD

The overall framework is shown in Fig. 2. The input for the

network is the 3D CT images masked in lungs only. We use

an established VB-Net toolkit [10] to segment the lungs for all

CT images, and perform auto-contouring of possible infection

regions as shown in Fig. 3. The VB-Net toolkit is a modified

network that combines V-Net [58] with bottleneck layers to

reduce and integrate feature map channels. The toolkit is

capable of segmenting the infected regions as well as the lung

fields, achieving Dice similarity coefficient of 92% between

automatically and manually delineated infection regions [10].

By labeling all voxels within the segmented regions to 1, and

the rest part to 0, we can get the corresponding lung mask and

then input image by masking the original CT image with the

corresponding lung mask.
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Fig. 2. Illustration of the pipeline of the proposed method, including two steps. 1) We train two 3D ResNet34 networks [44] with different sampling
strategies. Also, the online attention mechanism generates attention maps during training, which refer to the segmented infection regions to
refine the attention localization. 2) We use the ensemble learning to integrate predictions from the two trained networks. In this figure, “Attention
RN34 + US” means the 3D ResNet34 (RN34) with attention module and uniform sampling (US) strategy, while “Attention RN34 + SS” means the
3D ResNet34 with attention module and size-balanced sampling (SS) strategy. “GAP” indicates the global average pooling layer, and “FC” indicates
the fully connected layer. “1 × 1 × 1 Conv” refers to the convolutional layer with 1 × 1 × 1 kernel, and takes the parameters from the fully connected
layer as the kernel weights. “MSE Loss” refers to the mean square error function.

Fig. 3. The pneumonia infection region (upper right) and the lung
segmentation (bottom right) from the VB-Net toolkit [10].

As shown in Fig. 2, the training pipeline of our method

consists of two stages: 1) using different sampling strategies

to train two 3D ResNet34 models [44] with the online attention

module; 2) training an ensemble learning layer to integrate the

predictions from the two models. The details of our method

are introduced in the following sections.

A. Network

We use the 3D ResNet34 architecture [44] as the back-

bone network. It is the 3D extended version of residual net-

work [13], which uses the 3D kernels in all the convolutional

layers. In 3D ResNet34, we set the stride of each dimension

as 1 in the last residual block instead of 2. This makes

the resolution of the feature maps before the global average

pooling (GAP) [59] operation into 1/16 of the input CT image

in each dimension. Compared with the case of downsampling

the input image by a factor of 32 in each dimension in the

original 3D ResNet34, it can greatly improve the quality of the

generated attention maps based on higher-resolution feature

maps.

B. Online Attention Module

To exhaustively learn all features that are important for

classification, and also to produce the corresponding atten-

tion maps, we use an online attention mechanism of 3D

class activation mapping (CAM). The key idea of CAM

[28], [29], [56] is to back-propagate weights of the fully-

connected layer onto the convolutional feature maps for gener-

ating the attention maps. In this study, we extend this offline

operation to become an online trainable component for the

scenario of 3D input. Let f denote the feature maps before

the GAP operation and also w denote the weight matrix of

the fully-connected layer. To make our attention generation

procedure trainable, we use w as the kernel of a 1 × 1 × 1

convolution layer and apply a ReLU layer [60] to generate the

attention feature map A as:

A = ReLU (conv ( f, w)) , (1)

where A has the shape X × Y × Z , and X, Y, Z is 1/16 of

corresponding size of the input CT images. Given the attention

feature map A, we first upsample it to the input image size,

then normalize it to have intensity values between 0 and 1,

and finally perform sigmoid for soft masking [57], as follows:

T (A) =
1

1 + exp(−α(A − β))
, (2)
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where values of α and β are set to 100 and 0.4 respectively.

T (A) is the generated attention map of this online attention

module, where A is defined in Eq. 1. During the training,

the parameters in the 1 × 1 × 1 convolution layer are always

copied from the fully-connected layer and only updated by the

binary cross entropy (BCE) loss for the classification task.

C. Size-Balanced Sampling

The main idea of size-balanced sampling is to repeat the

data sampling for the COVID-19 cases with small infections

and also the CAP cases with large infections in each mini-

batch during training. Normally, we use the uniform sampling

in the entire dataset for the network training (i.e., “Attention

RN34 + US” branch in Fig. 2). Specifically, each sample

in the training dataset is fed into the network only once

with equal probability within one epoch. Thus, the model

can review the entire dataset when maintaining the intrinsic

data distribution. Due to the imbalance of the distribution

of infection size, we train a second network via the size-

balanced sampling strategy (i.e., “Attention RN34 + SS”

branch). It aims to boost the sampling possibility of the

small-infection-area COVID-19 and also large-infection-area

CAP cases in each mini-batch. To this end, we split the

data into 4 groups according to the volume ratio of the

pneumonia infection regions and the lung: 1) small-infection-

area COVID-19, 2) large-infection-area COVID-19, 3) small-

infection-area CAP, and 4) large-infection-area CAP. For

COVID-19, we define the cases that meet the criteria of

<0.030 as small-infection-area COVID-19, and the rest as

large-infection-area COVID-19. For CAP, we define the cases

with the ratio >0.001 as large-infection-area CAP and the rest

as small-infection-area CAP. We define the numbers of sam-

ples for the 4 groups as [Ncov id
small , Ncov id

large , N
cap
small , N

cap
large]. Then,

inspired by the class-resampling strategy in [46], we define

the weights [W cov id
small , W cov id

large , W
cap
small , W

cap
large] for 4 groups as

[Ncov id
large /Ncov id

small , 1, 1, N
cap
small/N

cap
large]. Since the numbers of

small-infection-area COVID-19 and large-infection-area CAP

are relatively small, the weights W cov id
small and W

cap
large are higher

than 1. The values of these two weights are approximately

1.5 in each training fold. Then, the sampling possibilities for

4 groups are calculated by the weight of each group divided by

the sum of all weights, Wsum . In a mini-batch, we randomly

select a group according to the refined possibilities for each

group [W cov id
small /Wsum, 1/Wsum, 1/Wsum, W

cap
large/Wsum], and

uniformly pick up a sample from the selected group. This

strategy ensures to have more possibility to sample cases

from the two groups of 1) COVID-19 with small infections

and 2) CAP with large infections. We conduct the size-

balanced sampling strategy for all mini-batches when training

the “Attention RN34 + SS” model.

D. Objective Function

Two losses are used to train “Attention RN34 + US” and

“Attention RN34 + SS” models, i.e., the classification loss

Lc and the extra attention loss Lex for COVID-19 cases,

respectively. We adopt the binary cross entropy as constrain for

the COVID-19/CAP classification loss Lc. For the COVID-19

cases, given the pneumonia infection segmentation mask M ,

we can use them to directly refine the attention maps from our

model and Lex is thus formulated as:

Lex =

∑
i j k (T (Ai j k) − Mi j k )

2

∑
i j k T (Ai j k) +

∑
i j k Mi j k

, (3)

where T (Ai j k) is the attention map generated from our online

attention module (Eq. 2), and i , j and k represent the

(i, j, k)th voxel in the attention map. The proposed Lex is

modified from the traditional mean square error (MSE) loss,

using the sum of regions of attention map T (Ai j k) and the

corresponding mask Mi j k as an adaptive normalization factor.

It can adjust the loss value dynamically according to the sizes

of pneumonia infection regions. Then, the overall objective

function for training “Attention RN34 + US” and “Attention

RN34 + SS” models is expressed as:

L total = Lc + λLex , (4)

where λ is a weight factor for the attention loss. It is set

to 0.5 in our experiments. For the CAP cases, only the

classification loss Lc is used for model training.

E. Ensemble Learning

The size-balanced sampling method could gain more atten-

tion on the minority classes and remedy the infection area

bias in COVID-19 and CAP patients. A drawback is that it

may suffer from the possible over-fitting of these minority

classes. In contrast, the uniform sampling method could learn

feature representation from the original data distribution in a

relatively robust way. Taking the advantages of both sampling

methods, we propose a dual-sampling method via an ensemble

learning layer, which gauges the weights for the prediction

results produced by the two models.

After training the two models with different sampling

strategies, we use an ensemble learning layer to integrate the

predictions from two models into the final diagnosis result.

We combine the prediction scores with different weights for

different ratios of the pneumonia infection regions and the

lung:

P f inal = wPU S + (1 − w)PSS, (5)

where, w is the weight factor. In our experiment, it is set

to 0.35 for the case where the ratio meets the criterion

<0.001 or >0.030, and 0.96 for the rest cases. The fac-

tor values are determined with a hyperparameter search on

the TV set. Then, P f inal is the final prediction result of

the dual-sampling model. As presented in Eq. 5, the dual-

sampling strategy combines the characteristics of uniform

sampling and size-balanced sampling. For the minority classes,

i.e., COVID-19 with small infections as well as CAP with

large infections, we assign extra weights to the “Attention

RN34 + SS” model. For the rest cases, more weights are

assigned to the “Attention RN34 + US” model.
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TABLE I

DEMOGRAPHIC OF THE TRAINING-VALIDATION (TV)

DATASET AND TEST DATASET

IV. EXPERIMENTAL RESULTS

A. Dataset

In this study, we use a large multi-center CT data for

evaluating the proposed method in diagnosis of COVID-19.

In particular, we have collected a total of 4982 (<2mm) chest

CT images from 3645 patients, including 3389 COVID-19 CT

images and 1593 CAP CT images. All recruited COVID-19

patients were confirmed by RT-PCR test. Here, the images

were provided by the Tongji Hospital of Huazhong University

of Science and Technology, Shanghai Public Health Clinical

Center of Fudan University, the Second Xiangya Hospital of

Central South University, the Third Hospital of Jilin Univer-

sity, Ruijin Hospital of Shanghai Jiao Tong University School

of Medicine, Hangzhou First People’s Hospital of Zhejiang

University, the Beijing Chaoyang Hospital of Capital Med-

ical University, and Sichuan University West China Hospital.

According to the data collection dates, we separate them

into two datasets. The first dataset (TV dataset) is used for

training and cross-validation, which includes 1094 COVID-19

images and 1092 CAP images. The second dataset serves for

independent testing, including 2295 COVID-19 images and

501 CAP images. Note that the split is done on patient level,

which means the images of the same subject are kept in the

same group of training or testing. More details are shown

in Table I.

Thin-slice chest CT images are used in this study with

the CT thickness ranging from 0.625 to 1.5mm. CT scan-

ners include uCT 780 from UIH, Optima CT520, Discov-

ery CT750, LightSpeed 16 from GE, Aquilion ONE from

Toshiba, SOMATOM Force from Siemens, and SCENARIA

from Hitachi. Scanning protocol includes: 120 kV, with breath

hold at full inspiration. All CT images are anonymized before

sending them for conducting this research project. The study

is approved by the Institutional Review Board of participating

institutes. Written informed consent is waived due to the

retrospective nature of the study.

B. Image Pre-Processing

Data are pre-processed in the following steps before feeding

them into the network. First, we resample all CT images and

the corresponding masks of lungs and infection regions to

the same spacing (0.7168mm, 0.7168mm, 1.25mm for the

x, y, and z axes, respectively) for the normalization to the

same voxel size. Second, we down-sample the CT images

and segmentation masks into the approximately half sizes

considering efficient computation. To avoid morphological

change in down-sampling, we use the same scale factor in

all three dimensions and pad zeros to ensure the final size

of 138 × 256 × 256. We should emphasize that our method

is capable of handling full-size images. Third, we conduct

“window/level” (window: 1500, level: -600) scaling in CT

images for contrast enhancement. We truncate the CT image

into the window [−1350, 150], which sets the intensity value

above 150 to 150, and below -1350 to -1350. Finally, following

the standard protocol of data pre-processing, we normalize the

voxel-wise intensities in the CT images to the interval [0, 1].

C. Training Details and Evaluation Methods

We implement the networks in PyTorch [61], and use

NVIDIA Apex for less memory consumption and faster

computation. We also use the Adam [62] optimizer with

momentum set to 0.9, a weight decay of 0.0001, and a learning

rate of 0.0002 that is reduced by a factor of 10 after every

5 epochs. We set the batch size as 20 during the training. In our

experiments, all the models are trained from scratch. In the TV

set, we conduct 5-fold cross-validation. In each fold, the model

is evaluated on the validation set in the end of each training

epoch. The best checkpoint model with the best evaluation

performance within 20 epochs is used as the final model and

then evaluated on the test set. All the models are trained

in 4 NVIDIA TITAN RTX graphics processing units, and

the inference time for one sample is approximately 4.6s in

one NVIDIA TITAN RTX GPU. For evaluating, we use five

different metrics to measure the classification results from

the model: area under the receiver operating characteristic

curve (AUC), accuracy, sensitivity, specificity, and F1-score.

AUC represents degree or measure of separability. In this

study, we calculated the accuracy, sensitivity, specificity, and

F1-score at the threshold of 0.5.

D. Results

First, we conduct 5-fold cross-validation on the TV set. The

experimental results are shown in Table II, which combines

the results of all 5 validation sets. The receiver operating

characteristic (ROC) curve is also shown in Fig. 4(A). We can

see that the models with the proposed attention refinement

technique can improve the AUC and sensitivity scores. At the

same time, we can see that “Attention RN34 + DS” achieves

the highest performance in AUC, accuracy, sensitivity, and

F1-score, when combining the two models with different

sampling strategies. As for the specificity, the performance

of the dual-sampling method is a little bit lower than that of

ResNet34 with uniform sampling.

We further investigate the generalization capability of

the model by deploying the five trained models of five

individual folds on the independent testing dataset. From

Fig. 4(B-F), we can see that the trained model of each



OUYANG et al.: DUAL-SAMPLING ATTENTION NETWORK FOR DIAGNOSIS OF COVID-19 2601

Fig. 4. ROC curves of the TV set and the test set. (A) ROC curves of TV set for 5 folds. (B) ROC curve of test set by using the model from TV set
fold 1. (C) ROC curve of test set by using the model from TV set fold 2. (D) ROC curve of test set by using the model from TV set fold 3. (E) ROC
curve of test set by using the model from TV set fold 4. (F) ROC curve of test set by using the model from TV set fold 5.

TABLE II

COMPARASION OF CLASSIFICATION RESULTS OF DIFFERNET MODELS

ON THE TV SET AND TEST SET (RN34: 3D RESNET34; US: UNIFORM

SAMPLING; SS: SIZE-BALANCED SAMPLING; DS: DUAL-SAMPLING).

THE RESULTS OF AUC, ACCURACY, SENSITIVITY, SPECIFICITY

AND F1-SCORE ARE PRESENT IN THIS TABLE. THE RESULTS

ON TV SET ARE THE COMBINED RESULTS OF 5 VALIDATION

SETS. FOR RESULTS ON TEST SET, WE SHOW MEAN±STD

(STANDARD DEVIATION) SCORES OF FIVE TRAINED

MODELS OF EACH TRAINING-VALIDATION FOLD

fold achieves similar performance, implying consistent per-

formance with different training data. Compared with the

results on the TV set in Fig. 4(A), the AUC score of

the models with the proposed attention module (“Attention

RN34 + DS”) on the independent test set drops from

0.988 to 0.944, while the AUC score of “RN34 + US”

drops from 0.984 to 0.934. This indicates the strong robustness

of our model, trained with our attention module, against

possible over-fitting. The proposed attention module can also

ensure that the decisions made by the model depend mainly

on the infection regions, suppressing the contributions from

the non-related parts in the images. All 501 CAP images

in the test set are from a single site that was not included

in the TV set. “Attention RN34 + US” and “Attention

RN34 + DS” models achieves ≥90.0% in specificity for these

images. We can see that our algorithm maintains a great

performance on the data acquired from different centers. In the

next section, the effects of different sampling strategies are

presented. In order to confirm whether there exist significant

differences when using the proposed attention module or not,

paired t-tests are applied. The p-values between “RN34 + US”

and the three proposed methods are calculated. All the

p-values are small than 0.01, implying that the pro-

posed methods have significant improvements compared with

“RN34 + US”.

E. Detailed Analysis

To demonstrate the effectiveness in diagnosing pneumonia

of different severity, we use the VB-Net toolkit [10] to get

the lung mask and the pneumonia infection regions for all CT

images. Based on the quantified volume ratio of pneumonia

infection regions over the lung, we roughly divide the data
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Fig. 5. Visualization results of our methods on three COVID-19 cases from small-infection group (<0.005), median-infection group (0.005 − 0.030)
and large-infection group (>0.030) of the test set are shown from left to right, respectively. For each case, we show the visualization results in both
axial view and coronal view. We show the original images (first row), and the segmentation results of the lung and pneumonia infection regions (2nd

and 3rd rows) by the VB-Net tookit [10]. For the attention results, we show the Grad-CAM results of “RN34 + US” (4th row), and the attention maps
obtained by our proposed attention module of “Attention RN34 + US” and “Attention RN34 + SS” models (5th and 6th rows).

into 3 groups in both the TV set and the test set, according to

the ratios, i.e., 1) <0.005, 2) 0.005 − 0.030, and 3) >0.030.

As shown in Table III, most of COVID-19 images have high

ratios (higher than 0.030), while most CAPs are lower than

0.005, which may indicate that the severity of COVID-19

is usually higher than that of CAP in our collected dataset.

Furthermore, the classification results of COVID-19 is highly

related with the ratio. In Table III, we can see that the sensitiv-

ity scores are relatively high for the high infected region group

(>0.030), while the specificity scores are relatively low for

the small infection region group (<0.005). This performance

matches the nature of COVID-19 and CAP in the collected

dataset.

As size-balanced sampling strategy (“Attention

RN34 + SS”) is applied in the training procedure, we can

find that the sensitivity of the small infected region group

(<0.005) increases from 0.534 to 0.569, compared with the

case of using the uniform sampling strategy (“Attention

RN34 + US”). And also the specificity of the large infected

region group (>0.030) increases from 0.642 to 0.667. These

results demonstrate that the size-balanced sampling strategy

can effectively improve the classification robustness when the

bias of the pneumonia area exists. However, if we only utilize

the size-balanced sampling strategy in the training process,

the sensitivity of the large infected region group (>0.030)

will decrease from 0.965 to 0.955, and the specificity of

the small infected region group (<0.005) will decrease

from 0.933 to 0.896. This reflects that some advantages of

the network may be sacrificed in order to achieve specific

requirements. To achieve a dynamic balance between the two

extreme conditions, we present the results using the ensemble

learning with the dual-sampling model (i.e., “Attention

RN34 + DS”). From the sensitivity and specificity in both

small and large infected region groups, dual sampling strategy

can preserve the classification ability obtained by uniform

sampling, and slightly improve the classification performance

of the COVID-19 cases in the small infected region group

and the CAP cases in the large infected region group.

Furthermore, the p-values between “Attention RN34 + US”

and “Attention RN34 + DS” in both small-infected-region

group (<0.005) and high-infected-region group (>0.030) are

calculated. All the p-values are smaller than 0.01, which also

proves the effectiveness and necessity of the dual sampling

strategy.

Finally, we show typical attention maps obtained by our

models (Fig. 5) trained in one fold. For comparison, we show

the attention results of naive ReNset34 (“RN34 + US”)

in the same fold without both the online attention module
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TABLE III

GROUP-WISE RESULTS ON TV SET AND TEST SET. BASED ON THE VOLUME RATIO OF PNEUMONIA REGIONS AND THE LUNG, THE DATA IS

DIVIDED INTO 3 GROUPS: THE VOLUME RATIOS THAT MEET THE CRITERIA OF <0.005, 0.005 − 0.030, AND >0.030, RESPECTIVELY

Fig. 6. Visualization results of two failure cases.

and the infection mask refinement, and perform the model

explanation techniques (Grad-CAM [29]) to get the heatmaps

for classification. We can see that the output of Grad-CAM

roughly indicates the infection localization, yet sometimes

appears far outside of the lung. However, the attention maps

from our models (“Attention RN34 + US” and “Attention

RN34 + SS”) can reveal the precise locations of the infection.

These conspicuous areas in attention maps are similar to the

infection segmentation results, which demonstrates that the

final classification results determined by our model are reliable

and interpretable. The attention maps thus can be possibly

used as the basis to derive the COVID-19 diagnosis in clinical

practice.

F. Failure Analysis

We also show two failure cases in Fig. 6, where the

COVID-19 cases are classified as CAP by mistake for all the

models. As can be observed from the results shown in Fig. 5,

the attention maps from all the models incorrectly get activated

on many areas unrelated to pneumonia. “RN34 + US” model

even generates many highlighted areas in the none-lung region

instead of focusing on lungs. With the proposed attention

constrain, the attention maps of “Attention RN34 + US” and

“Attention RN34 + SS” have partially alleviated this problem.

But still the visual evidence is insufficient to reach a final

correct prediction.

V. DISCUSSION AND CONCLUSION

For COVID-19, it is important to get the diagnosis result

at soon as possible. Although RT-PCR is the current ground

truth to diagnose COVID-19, it will take up to days to get

the final results and the capacity of the tests is also limited in

many places especially in the early outbreak [8]. CT is shown

as a powerful tool and could provide the chest scan results

in several minutes. It is beneficial to develop an automatic

diagnosis method based on chest CT to assist the COVID-19

screening. In this study, we explore a deep-learning-based

method to perform automatic COVID-19 diagnosis from CAP

in chest CT images. We evaluate our method by the largest
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multi-center CT data in the world, to the best of our knowl-

edge. To further evaluate the generalization ability of the

model, we use independent data from different hospitals (not

included in the TV set), achieving AUC of 0.944, accuracy

of 87.5%, sensitivity of 86.9%, specificity of 90.1%, and

F1-score of 82.0%. At the same time, to better understand

the decision of the deep learning model, we also refine the

attention module and show the visual evidence, which is able

to reveal important regions used in the model for diagnosis.

Our proposed method could be further extended for differential

diagnosis of pneumonia, which can greatly assist physicians.

There also exist several limitations in this study. First,

when longitudinal data becomes ready, the proposed model

should be tested for its consistency tracking the develop-

ment of the COVID-19 during the treatment, as considered

in [63]. Second, although the proposed online attention module

could largely improve the interpretability and explainability

in COVID-19 diagnosis, in comparison to the conventional

methods such as Grad-CAM, future work is still needed to

analyze the correlation between these attention localizations

with the specific imaging signs that are frequently used in

clinical diagnosis. There also exist some failure cases that the

visualization results do not appear correctly at the pneumonia

infection regions, as shown in Fig. 6. This motivates us to

further improve the attention module to better focus on the

related regions and reduce the distortion from cofounding

visual information to the classification task in the future

research. Third, we also notice that the accuracy of the

small-infection-area COVID-19 is not quite satisfactory. This

indicates the necessity of combining CT images with clinical

assessment and laboratory tests for precise diagnosis of early

COVID-19, which will also be covered by our future work.

The last but not least, the CAP cases used in this study do

not include the subtype information, i.e., bacterial, fungal,

and non-COVID-19 viral pneumonia. To assist the clinical

diagnosis of pneumonia subtypes would also be beneficial.

To conclude, we have developed a 3D CNN network with

both online attention refinement and dual-sampling strategy

to distinguish COVID-19 from the CAP in the chest CT

images. The generalization performance of this algorithm is

also verified by the largest multi-center CT data in the world,

to our best knowledge.
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