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Abstract

This dissertation addresses a number of topics that arise from the use of a dual method of sequen-

tial approximate optimisation (SAO) to solve structural optimisation problems. Said approach is

widely used because it allows relatively large problems to be solved efficiently by minimising the

number of expensive structural analyses required. Some extensions to traditional implementations

are suggested that can serve to increase the efficacy of such algorithms. The work presented herein

is concerned primarily with three topics: the use of nonconvex functions in the definition of SAO

subproblems, the global convergence of the method, and the application of the dual SAO approach

to large-scale problems. Additionally, a chapter is presented that focuses on the interpretation of

Sigmund’s mesh independence sensitivity filter in topology optimisation.

It is standard practice to formulate the approximate subproblems as strictly convex, since strict

convexity is a sufficient condition to ensure that the solution of the dual problem corresponds

with the unique stationary point of the primal. The incorporation of nonconvex functions in the

definition of the subproblems is rarely attempted. However, many problems exhibit nonconvex

behaviour that is easily represented by simple nonconvex functions. It is demonstrated herein that,

under certain conditions, such functions can be fruitfully incorporated into the definition of the

approximate subproblems without destroying the correspondence or uniqueness of the primal and

dual solutions.

Global convergence of dual SAO algorithms is examined within the context of the CCSA method,

which relies on the use and manipulation of conservative convex and separable approximations.

This method currently requires that a given problem and each of its subproblems be relaxed to

ensure that the sequence of iterates that is produced remains feasible. A novel method, called the

bounded dual, is presented as an alternative to relaxation. Infeasibility is catered for in the solution

of the dual, and no relaxation-like modification is required. It is shown that when infeasibility is

encountered, maximising the dual subproblem is equivalent to minimising a penalised linear com-

bination of its constraint infeasibilities. Upon iteration, a restorative series of iterates is produced

that gains feasibility, after which convergence to a feasible local minimum is assured.

Two instances of the dual SAO solution of large-scale problems are addressed herein. The first

is a discrete problem regarding the selection of the point-wise optimal fibre orientation in the

two-dimensional minimum compliance design for fibre-reinforced composite plates. It is solved

by means of the discrete dual approach, and the formulation employed gives rise to a partially

separable dual problem. The second instance involves the solution of planar material distribution

problems subject to local stress constraints. These are solved in a continuous sense using a sparse

solver. The complexity and dimensionality of the dual is controlled by employing a constraint

selection strategy in tandem with a mechanism by which inconsequential elements of the Jacobian

iii
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of the active constraints are omitted. In this way, both the size of the dual and the amount of

information that needs to be stored in order to define the dual are reduced.
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Opsomming

Hierdie proefskrif spreek ’n aantal onderwerpe aan wat spruit uit die gebruik van ’n duale metode

van sekwensiële benaderde optimering (SBO; sequential approximate optimisation (SAO)) om

strukturele optimeringsprobleme op te los. Hierdie benadering word breedvoerig gebruik omdat

dit die moontlikheid skep dat relatief groot probleme doeltreffend opgelos kan word deur die aan-

tal duur strukturele analises wat vereis word, te minimeer. Sommige uitbreidings op tradisionele

implementerings word voorgestel wat kan dien om die doeltreffendheid van sulke algoritmes te

verhoog. Die werk wat hierin aangebied word, het hoofsaaklik betrekking op drie onderwerpe: die

gebruik van nie-konvekse funksies in die definiëring van SBO-subprobleme, die globale konver-

gensie van die metode, en die toepassing van die duale SBO-benadering op grootskaalse probleme.

Daarbenewens word ’n hoofstuk aangebied wat fokus op die interpretasie van Sigmund se maas-

onafhanklike sensitiwiteitsfilter (mesh independence sensitivity filter) in topologie-optimering.

Dit is standaard praktyk om die benaderde subprobleme as streng konveks te formuleer, aangesien

streng konveksiteit ’n voldoende voorwaarde is om te verseker dat die oplossing van die duale

probleem ooreenstem met die unieke stasionêre punt van die primaal. Die insluiting van nie-

konvekse funksies in die definisie van die subprobleme word selde gepoog. Baie probleme toon

egter nie-konvekse gedrag wat maklik deur eenvoudige nie-konvekse funksies voorgestel kan word.

In hierdie werk word daar gedemonstreer dat sulke funksies onder sekere voorwaardes met vrug in

die definisie van die benaderde subprobleme inkorporeer kan word sonder om die korrespondensie

of uniekheid van die primale en duale oplossings te vernietig.

Globale konvergensie van duale SBO-algoritmes word ondersoek binne die konteks van die CCSA-

metode, wat afhanklik is van die gebruik en manipulering van konserwatiewe konvekse en skeibare

benaderings. Hierdie metode vereis tans dat ’n gegewe probleem en elk van sy subprobleme ver-

slap word om te verseker dat die sekwensie van iterasies wat geproduseer word, toelaatbaar bly. ’n

Nuwe metode, wat die begrensde duaal genoem word, word aangebied as ’n alternatief tot verslap-

ping. Daar word vir ontoelaatbaarheid voorsiening gemaak in die oplossing van die duaal, en geen

verslappings-tipe wysiging word benodig nie. Daar word gewys dat wanneer ontoelaatbaarheid

teëngekom word, maksimering van die duaal-subprobleem ekwivalent is aan minimering van sy

begrensingsontoelaatbaarhede (constraint infeasibilities). Met iterasie word ’n herstellende reeks

iterasies geproduseer wat toelaatbaarheid bereik, waarna konvergensie tot ’n plaaslike KKT-punt

verseker word.

Twee gevalle van die duale SBO-oplossing van grootskaalse probleme word hierin aangespreek.

Die eerste geval is ’n diskrete probleem betreffende die seleksie van die puntsgewyse optimale

veseloriëntasie in die tweedimensionele minimum meegeefbaarheidsontwerp vir veselversterkte

saamgestelde plate. Dit word opgelos deur middel van die diskrete duale benadering, en die for-

v
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mulering wat gebruik word, gee aanleiding tot ’n gedeeltelik skeibare duale probleem. Die tweede

geval behels die oplossing van in-vlak materiaalverspredingsprobleme onderworpe aan plaaslike

spanningsbegrensings. Hulle word in ’n kontinue sin opgelos met die gebruik van ’n yl oplosser.

Die kompleksiteit en dimensionaliteit van die duaal word beheer deur gebruik te maak van ’n

strategie om begrensings te selekteer tesame met ’n meganisme waardeur onbelangrike elemente

van die Jacobiaan van die aktiewe begrensings uitgelaat word. Op hierdie wyse word beide die

grootte van die duaal en die hoeveelheid inligting wat gestoor moet word om die duaal te definieer,

verminder.
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Chapter 1

Introduction

Structural optimisation is an area in which the physical design of a structure can be derived algo-

rithmically in a computational, automated fashion, with minimal human creative input. Depending

on the type of structural optimisation problem considered, this can mean that decisions about the

size, shape, orientation and/or connectivity of structural elements – or more generally the physical

distribution of material(s) within a given design domain – are determined as the result of a sys-

tematic optimisation procedure. Structural optimisation can be used as an important design tool

because it has the potential to deliver structurally near-optimal initial designs for designers to em-

broider upon. In this way, the process of arriving at effective designs for complex problems can be

formalised and made more efficient.

It is usually not possible to compute the optimal configuration for a structure directly from knowl-

edge of its boundary conditions and the (guessed) initial state alone. The system responses are

invariably dependent on changes in the system’s state variables in a nonlinear fashion. Structural

optima are arrived at iteratively through a controlled search, governed by one or other optimisa-

tion procedure. Each iteration entails a re-design and a subsequent re-analysis of the structure to

determine the new structural responses. Hence, structural optimisation requires the coupling of an

optimisation algorithm with a structural analysis package. The structural analysis is a computa-

tionally expensive procedure, entailing, for instance, a finite element analysis to determine both the

system responses and the sensitivities of these responses to changes in the design variables. As the

computational requirements grow superlinearly with the size or refinement of the analysis model,

analysis of large-scale models can take a considerable amount of time. In addition, the optimisation

component requires an iterative procedure in which possibly several hundred re-analyses may be

required to locate a system optimum. Hence, the optimisation procedures that are favoured in the

field of structural optimisation are those that limit or minimise the required number of re-analyses;

otherwise the process of optimisation becomes unfeasibly time consuming or the structural model

must remain inadequately unrefined.

For example, two widely studied structural optimisation problems – the minimum compliance and

minimum weight material distribution problems – are inherently large in scale, there being at least

one variable per finite element in the discretised form of each, and both may potentially have a

large number of constraints. Morever, the two problems are either difficult, constrained integer

programming problems or, in the more usual relaxed and penalised formulations, nonconvex, con-

1
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CHAPTER 1. INTRODUCTION 2

strained and multimodal. They are thus challenging problems from the point of view of numerical

optimisation, and it is important, if the field of structural optimisation is to find greater application

in industry, to identify or develop algorithms that can solve these types of problems efficiently.

The size of the problems that may be solved is limited both by the computational storage require-

ments demanded by the analysis model, and also by the necessity to store whatever information

is needed by the optimisation procedure. For large-scale problems, the latter can be substantial.

Therefore, the optimisation procedures historically preferred in structural optimisation are those

that in some way balance the conflicting imperatives of minimising the required number of struc-

tural analyses and, at the same time, minimising the computational storage requirements in order

that larger structures may be addressed (or conversely that sufficiently refined structural analysis

models may be used). Currently, the dominant methodology involves the use of sequential ap-

proximate optimisation (SAO). The idea underlying SAO is simply that it may be more efficient

to solve a series of explicit approximations to a problem, rather than solving the problem itself di-

rectly, especially when each evaluation of the objective function and/or constraints in the problem

requires that a structural analysis be carried out.

The optimisation approach that has been utilised in the work presented in this document for the

solution of popular structural optimisation problems is that of sequential approximate optimisation

using explicit separable approximations and employing a dual solver to solve each subproblem.

The approach has its genesis principally in the work that Fleury [1] presented in the late 1970s,

which ultimately led to the development of efficient methods of sequential convex programming

(SCP) for structural optimisation, utilising strictly convex and separable subproblems. The dual

solvers suggested by Fleury depend upon the key conceptualisation of a Lagrangian dual due to

Falk [2], which was presented even earlier, in 1967.

In the work considered here, we build on Fleury’s approach of using strictly convex and sepa-

rable approximations in combination with using a dual solution strategy based on the Falk dual,

though we don’t necessarily employ the same approximation strategies to construct the subprob-

lems. Several optimisation algorithms for structural optimisation are based on this framework,

popular examples being the method of moving asymptotes (MMA) of Svanberg [3], and convex

linearisation (CONLIN) of Fleury and Braibant [4, 5]. These methods have in common that the

SAO subproblems generated during their application are explicitly formulated to be strictly con-

vex, the reason being that strictly convex programming problems have unique solutions, and it has

been proved that the dual method can be used to locate such minima. Be this as it may, problems

in structural optimisation are often nonconvex. What is more, the problems themselves sometimes

suggest simple nonconvex forms for the approximating functions, which more accurately track the

local behaviour of the problem, and the question arises whether such approximations can be incor-

porated into the dual SAO approach without destroying the utility of the dual solution strategy.

Compliance minimisation with the inclusion of volumetric penalisation is such an example, in

which the volumetric constraint gives rise to a nonconvex feasible region and is easily represented

as a concave function. The standard weight minimisation problem is another example, for which

the feasible region is generally nonconvex due to the inclusion of stress or displacement constraints.

First-order reciprocal approximations of these constraints naturally acquire this nonconvexity. In

both cases it is standard practice to construct strictly convex approximations of the nonconvex be-

haviour, and to use these in the definition of the subsequent subproblems. Here it is investigated
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under what conditions the nonconvex forms may be used instead in the construction of the approx-

imate subproblems, and the abovementioned problems are used as explicit examples in which the

nonconvex behaviour is specifically retained.

No matter how the subproblems are defined, the point in the design space at which a particular

subproblem is minimised becomes the point at which the following subproblem is defined, and

thus also the initial point in the search for its minimum. In this way a sequence of iterates is

produced, each member of which corresponds to the solution of a particular subproblem. This

sequence may be made to converge to a local optimum of the problem by employing one or other

method for encouraging global convergence within the optimisation algorithm.

Global convergence is a second aspect of the dual SAO approach that is investigated in this docu-

ment. One method that can be used to drive global convergence is the use of conservative convex

and separable approximations (CCSA) in the construction of successive subproblems, as suggested

and developed by Svanberg [6]. Since, conventionally, convex and separable functions are used

anyway, it is relatively straightforward to incorporate conservatism as an additional prerequisite in

choosing the approximating functions during each iteration. However, conservatism requires that

each iterate is feasible, and so it is necessary to solve a relaxed version of a given problem and

its approximate subproblems. The term ‘relaxation’ here refers to a modification of the original

problem that ensures feasibility; Svanberg has shown that, under certain conditions, the solutions

to a relaxed problem correspond to the solutions to the original problem.

Relaxation unavoidably introduces additional complexity into the optimisation procedure. A novel

alternative to relaxation is discussed in which it is argued that global convergence may instead

be driven inherently by the solution of the dual subproblems when CCSA approximations are

used. Infeasibility is catered for by maximising the dual subproblems subject to a sufficiently large

upper bound restriction on the dual variables. For infeasible subproblems, the dual strategy acts as

a linear penalty formulation that minimises a linear combination of the constraint violations, and

this drives successive iterates towards the feasible region. Once feasibility is achieved, the CCSA

approach itself ensures global convergence without requiring relaxation.

The dual method is recognised as being advantageous for use primarily for problems in which the

number of constraints is less (and usually significantly less) than the number of design variables.

The reason for this is that the dual is defined in the space of the Lagrange multipliers, there being

one associated with each constraint. If there are fewer constraints than primal variables, then the

dual problem has a lower dimensionality than the primal problem. It is, moreover, concave and

only simply constrained, so maximising the dual is usually numerically easier than minimising the

primal. However, if the number of constraints approaches the number of primal variables and if

the problem has a large number of variables, the advantages of using the dual methodology are

eroded.

A third focus of the work presented here is the application of the dual to the solution of problems

that have both a large number of variables and a large number of constraints. For such large-scale

problems, even though the dual itself is very large, it retains its advantageous concave and simply

constrained structure. Two of the forthcoming chapters are devoted to the application of the dual

SAO approach in circumstances such as this.
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Outline

The body of this dissertation (namely Chapters 3 to 9) is essentially a reproduction of a series of

self-contained papers intended for submission and peer review; some have indeed seen publication.

They have been slightly modified here from their original forms so as to avoid excessive repetition

of the underlying theory that links them, although some repetition unavoidably remains in order to

preserve the stand-alone character of each chapter. Hence, each chapter constituting the body of

the dissertation has its own abstract, introduction, discussion, presentation of results and conclu-

sion, and each concerns itself in a detailed way with one of the themes delineated above (all but

Chapter 3 that is, which explores a topic particular to topology optimisation). Being articles, each

of the chapters has collaborators originally recorded as co-authors. Said collaboration is now noted

in a short prologue at the beginning of each chapter that additionally provides the original paper’s

title, as well as its publication or submission details if applicable. The layout of this dissertation is

as follows:

Chapter 2 serves to introduce some of the theory underlying the work presented in subsequent

chapters. It gives a brief overview of SAO, duality and the material distribution method, which

underlies the minimum weight and minimum compliance problems that are used as example prob-

lems in the remaining chapters.

In Chapter 3, sensitivity filtering in topology optimisation is discussed. Superficially, this topic

is not directly connected with the application of the dual SAO method in structural optimisation.

However, whenever the minimum compliance problem has been addressed in this work, this partic-

ular form of filter has been utilised in its solution (which is fairly standard practice). There is some

debate in the topology optimisation community on how the use of the filter should be interpreted,

because it effectively modifies the problem formulation. The use of dual SAO as a solution strat-

egy actually motivates an interpretation of the filter, and this has led to the arguments presented in

Chapter 3.

Chapter 4 describes the application of the dual method to a large-scale problem concerned with

deducing the optimal fibre orientation at each point in a composite plate. The problem is formu-

lated and solved as a discrete problem, through the application of Fleury’s discrete dual method,

whereas the problems considered in all the other chapters are solved in a continuous sense. Though

the number of constraints is greater than the number of design variables, for the considered problem

the dual gains a special separable structure, which enables it to be maximised relatively efficiently.

Chapters 5, 6 and 7 explore the use of nonconvex approximations in the dual SAO approach. These

chapters all draw on observations presented in Chapter 2, which describe under what conditions the

dual of nonconvex problems may be consistently defined. In Chapter 5, the inclusion of a power-

law volumetric penalisation in the minimum compliance problem is described. When the concave

constraint is retained in the definition of the subproblems, the dual subproblems must be derived

from nonconvex primal subproblems, which is unusual. It is often assumed that strict convexity of

the primal subproblems is a prerequisite for a consistent dual formulation, but this is not so.

In Chapter 5 it is argued that the type of nonconvex problems that arise as approximate subproblems

in the consideration of volumetric penalisation are amenable to solution via the standard Falk dual.

Furthermore, it is pointed out that incorporating the nonconvex behaviour of the problem into the

construction of the subproblems can lead to a more efficient solution procedure, relative to that
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which results from constructing strictly convex approximations to the nonconvex functions.

In Chapter 6, this line of reasoning is continued and the use of nonconvex approximations is dis-

cussed in the context of weight minimisation. Taking a cue from the development of CONLIN,

which is a so-called ‘method of mixed variables’, other methods of mixed variables are derived

that are based on the use of the separable exponential approximation, including its higher-order

terms. The suggested methods incorporate nonconvexity and can be used as general methods of

function approximation in a dual SAO approach. The weight minimisation problem is used as an

example.

The conditions that allow for the use of nonconvex functions in the dual SAO approach originate

from Falk’s original definition of the dual problem. They do not explicitly require that the non-

convex problems can be transformed into convex ones. However, it is true that the nonconvex

approximate subproblems discussed in Chapters 5 and 6 can all in fact be transformed into strictly

convex forms, which motivates an investigation of whether the existence of a convex transform

is related to the conditions expressed in Chapter 2. This relationship is delineated in Chapter 7,

although the inquiry is confined to separable problems.

The theme of global convergence is taken up in Chapter 8. Chapter 8 introduces the possibility

of omitting relaxation in a globally convergent dual SAO approach based on the use of the CCSA

approximations. This is accomplished by simply introducing a sufficiently large upper bound on

the dual variables, which is respected when the dual is maximised. A proof of global convergence

for this scheme is proffered.

Applying the dual SAO approach to large-scale structural problems is a topic that is returned to

in Chapter 9. Weight minimisation and minimum compliance problems are solved subject to the

addition of local stress constraints. These problems have as many constraints as design variables

and the work presented illustrates the utility of the dual approach even for problems such as these.

Different convex approximation schemes are compared and various ideas for minimising the ne-

cessitated computational storage requirements are discussed, as is an alternative method of stress

relaxation.

Finally, a summary of the conclusions drawn throughout the report is presented in Chapter 10, and

some thoughts and recommendations for future work are expressed.
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Chapter 2

Structural optimisation, SAO and duality

Optimisation problems in structural design are informally categorised as falling into one of three

types, namely shape, sizing and topology problems. In a shape optimisation problem, a structure

is defined by the spatial domain that it occupies, and the perimeter of the domain corresponds to

the physical surface of the structure. The purpose of the optimisation is to search for the optimal

structural shape, for a given problem formulation, by varying the domain boundaries that are pa-

rameterised by control variables in some way. Figure 2.1 presents a diagrammatic representation

of a planar shape optimisation problem. In it, the design domain is defined by a number of control

points joined by straight lines (although, more generally, some form of spline may be used). In

this case, the vertical position of the control points may be adjusted by the optimisation algorithm.

During a numerical analysis of the design, which is normally accomplished using the finite element

method, the domain is discretised. Since the domain itself is varied during shape optimisation, the

implementational problems that must be overcome in shape optimisation are typically associated

with mesh distortion and the remeshing of the structure.

In sizing optimisation, the design variables are physical properties of pre-existing design elements.

As such, the procedure requires that an initial ground structure be defined, its elements being

subsequently modified by the optimisation algorithm. An example of this is optimal truss design

(depicted in Figure 2.2), in which the configuration of the truss elements is defined a priori and

remains unchanged over the course of the optimisation. The positions of the supports, truss nodes

and applied loads are all pre-defined, and together with the truss connectivity define the ground

structure. The physical cross-sectional dimensions of the individual truss elements are frequently

the design variables in such a problem. Sizing design is also applied to problems in which the

design elements are not necessarily physically discrete. In two-dimensional continuum structures,

for instance, the thickness of the structure may be considered as spatially variable. However, in

this type of analysis the design domain is two-dimensional, and the thickness enters the analysis

only as a set of parameters in the constitutive description of the structure. Varying these parameters

does not change the domain in which the structure is defined or its connectivity (modelled by the

connectivity of the finite elements in the FEM mesh).

Topology optimisation, on the other hand, is concerned with the geometric features of the design

domain and with how these affect the structural responses. The domain itself is again defined

a priori. In topology optimisation of truss structures, the connectivity of the truss elements can

6
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Domain boundary / Object surface

Surface control point

Positional freedom of surface control points

Figure 2.1: Variation of the boundary of the design domain, and thus the structural shape, in a

planar shape optimisation problem.

be modified between a defined set of joints and supports, which together with the applied forces

define the ground structure. The set ground structure limits the possible truss configurations that

can be accommodated, and the purpose of the optimisation procedure would be to identify the

optimal truss connectivity (that is, to identify which joints and/or supports are connected by truss

elements). This is a discrete problem if the cross-sections of the elements are not variable. In

the consideration of continuum structures, the distribution of material within the design domain

is variable. The goal of the optimisation is to decide on the physical placement and nature of

features such as holes in the design domain, or even of differing materials. This type of problem

still requires the definition of an unchanging ground structure - the domain to be considered along

with the supports and forces. In the strict sense, the topology problem is combinatorial, which is

to say that, at a given point (or connection) in the design domain, the structure should be in one of

only a few possible states.

However, the lines differentiating the three traditional branches of structural optimisation are

blurred. A truss sizing procedure in which the dimensions of the truss elements can be reduced

to zero may equally well be termed a topology problem, because the connectivity of the domain

is modified thereby. In the same vein, a topology procedure that generates a solid-void design of

a structure within a given domain may just as well be called generalised shape optimisation, and

has been [7], since optimal structural configurations are generated with minimal restrictions on the

types of shapes produced.

2.1 The material distribution method

According to Bendsøe and Sigmund [8], the prevalent approach currently used in determining

optimum lay-outs for continuum structures is the material distribution method. Whereas the above

discussion divides the features of structural optimisation problems into three perhaps overly narrow

and artificially segregated classes, the ‘lay-out’ of a structure is described as being a more general

concept that combines features of all three. As such, the material distribution method is described

as being cabable of addressing all three aspects of structural optimisation simultaneously1.

1It should be noted that the term ‘lay-out’ is not necessarily used the same way in [7] and in [8].
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Maximum dimension Minimum dimensionOriginal dimension

Figure 2.2: An illustration of the type of modification a truss structure may undergo during sizing

optimisation.

Given a particular structural objective f0, as well as j constraints fj on the design, the material dis-

tribution method is aimed at identifying the optimal distribution of material x (r) within a known,

pre-defined design domain Ω, where the structural supports and applied loads are also defined2.

Hence, the objective function has to be phrased as a function of the material distribution through-

out the design domain. In the current document, two popular material distribution problems are

considered, namely the minimum weight problem and the (classical) minimum compliance prob-

lem, both of which have the following general form, in which the field x (r) denotes the presence

or absence of material at a point r in the design space:

min
x

f0 (x)

subject to fj (x) ≤ 0 j = 1, 2, · · · ,m,
and with x (r) ∈ [0, 1] ∀ r ∈ Ω .

(2.1)

These problems are not only used as challenging test problems for the optimisation procedures

employed, they have also motivated some of the ideas that have been integrated into the optimiser

and that are the focus of this document. It should be noted that the label ‘topology optimisation’

is commonly used to refer to the optimisation of general material distribution problems, using the

material distribution method, and sometimes specifically to the minimum compliance problem. In

the remainder of this document, the former usage is used regularly, and I have endeavoured to

expunge occurrences of the latter.

For our purposes, namely to discuss the efficient optimisation procedure we use to solve the prob-

lems, it is sufficient to depart from statements of the problems discretised in terms of the finite

element method. However, since some of the complications involved in topology design are in-

herent in the underlying continuum problem, it is instructive first to consider an example of the

continuum description. The ‘classical’ minimum compliance problem is used as an example, and

is presented as described by Bendsøe and Sigmund [8].

2The script r is used to denote spatial position, since the more usual script x is used in this document to denote

the vector of variables in an optimisation problem. For the problems that are considered here, the design variables are

not spatial coordinates. Instead, x denotes the scaling of the material properties associated with elements in a finite

element mesh. The normal-type x is here used to represent the scalar material distribution function, whose discretised

form is denoted by the bold-type x.
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2.1.1 An example of a continuum formulation (compliance)

In the minimum compliance topology optimisation problem, the optimal spatial material distri-

bution within the design domain is sought that minimises the structural compliance subject to an

explicit constraint on the allowable material distribution. The variational form for minimising

compliance is given in [8] as

min
u∈U,C

l (u)

subject to aC (u,v) = l (v) ∀ v ∈ U (2.2)

and with C ∈ Cad .

The compliance l (u) is given as

l (u) =

∫

Ω

fu dΩ +

∫

ΓT

tu ds ,

in which f represents the body forces and t denotes the tractions applied to portions of the bound-

ary ΓT of the design domain Ω. The equilibrium displacement field u satisfies the equilibrium

equations, in which

aC (u,v) =

∫

Ω

Cijkl (r) εij (u) εkl (v) dΩ

is the internal virtual work for an arbitrary virtual displacement v (provided v is a member of the

set of kinematically allowable displacements U ). Additionally, ε denotes the linearised strain field

εij (u) =
1

2

(
∂ui

∂rj

+
∂uj

∂ri

)
.

The dependence of the structural compliance on the material distribution enters the problem via

the constitutive tensor Cijkl, which is a function of the spatial position r. At any point in the

domain, the possible material properties are limited by the admissible set Cad, to which Cijkl (r)
must belong. The examples of the minimum compliance problem presented in this document are

all formulated in terms of isotropic material descriptions. The desired optimal topologies are solid-

void designs, meaning that material should ideally be either present or absent at any given point in

the domain, with no other possible states besides the binary [0, 1]. The binary material distribution

function can be denoted

x (r) ∈ [0, 1] ∀ r ∈ Ω ,

and the material compliance tensor, in turn, can be viewed as a function of x. If material is

present at some point in the domain, it has the compliance tensor of a solid isotropic material

C (x (r)) = C (1) = C0 at that point. On the other hand, if there is no material present at a

point in the domain, the material description for that point is conceptually C (x (r)) = C (0) = 0
(the computational solution of the problem makes it difficult to meet this stipulation, but it can be

approximated closely).

As an aside, it should be noted that in most numerical solution procedures for material distribution

problems the binary discreteness requirements on x are relaxed, so that x (r) may assume any

real value between 0 and 1. When this is done in the context of isotropic problems, the material
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Figure 2.3: Qualitatively different structures produced by decreasing the length scale associated

with the main structural feature (the holes). Each structure, however, has the same volume. Given

a set of boundary conditions and loads applied to the unchanging structural domain, the structural

compliance generally improves as the scale of the perforations decreases.

properties at a point in the design domain scale in a continuous way with x. In particular, when the

domain is discretised by means of the finite element method, both the volume and mass of material

within element i scale with xi, the material occupancy of element i. Perhaps for this reason x
is almost universally referred to as ‘density’, and the same terminology has been adopted in this

document. However, the reader should bear in mind that x is not related to the physical mass

density3 ρ, except insofar as it (in effect) scales ρ, as it does the other material properties.

In the classical isotropic minimum compliance problem, a limit is traditionally placed on the total

volume of solid material in the domain by introducing the following single constraint, in which ν̄
is the stipulated maximum allowable volume:

∫

Ω

x (r) dΩ ≤ ν̄. (2.3)

The continuum problem apparently lacks solutions. The reason for this complication is frequently

explained by at first considering a domain with a given distribution of solid material and holes,

such as is illustrated in Figure 2.3. It is then noted that, if the holes are made smaller and more

numerous so that the total volume of solid or void material within the domain does not change

relative to the original structure, the resulting material distribution tends to improve in terms of

its structural compliance. This process of successive refinement can be continued ad infinitum,

producing an ever more perforated material microstructure.

The non-existence problem can be answered by the use of the homogenisation approach to topol-

ogy design, in which material that possesses a microstructure can be introduced into the contin-

uum formulation. One type of microstructure that is often used is designed from a composite

combination of only the original isotropic material and void, in a way that is parameterisable by

control variables. It is spatially periodic and its aggregate material properties can be calculated as

a function of said control variables. This approach also provides for a physical interpretation of

non-binary values of x (r) in the design domain, since the ratio of solid to void material is variable

in the microstructure. Hence, both the density4 of the material at a point in the domain and its

other material properties are dependent on the microstructure at that point, and the parameters that

3Unless the homogenisation approach to topology optimisation is used. None of the work presented in this disser-

tation utilises homogenisation
4The term ‘density’ can here mean either the macroscopic mass density ρ or the material occupancy x (r), since in

the homogenisation approach the two concepts are closely linked.
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define it become the variables in the optimisation process. Using the homogenisation approach,

other types of microstructure are also possible5.

The materials with microstructure introduced in the homogenisation approach are anisotropic, so

the approach allows for the introduction of composite material characteristics into the topology

problem. Furthermore, the approach has spurred theoretical investigations in materials science and

the design of material microstructures. However, the topology examples considered in this docu-

ment are concerned with the more traditional topology problem in which the optimal distribution

of isotropic solid material and void is sought. In this context, the problem of non-existence of so-

lutions is seemingly related to the fact that the continuum structure has no minimum-length scale

- i.e. there is no lower bound on the characteristic size of structural features.

Whereas the homogenisation approach relies on an extension of the design space to address the

problem (allowing anisotropic materials), other approaches are availabe that involve a restriction

of the design space instead, and these can be employed in the design of isotropic structures. ‘Re-

striction’ involves the addition of other constraints to the formulation that in one way or another

introduce a finite limit on the minimim length scale for the structure, which in turn ensures that the

restricted version of the problem has solutions.

It should be noted that when the topology problem is discretised to facilitate numerical analysis,

usually with the finite element method, a minimum-length scale is automatically introduced into

the domain in the form of the discretising mesh. Therefore, in the discretised problem, the ex-

istence of solutions is not strictly an issue, since the mesh can only represent a finite number of

different [0, 1] designs. However, the problem manifests itself in the tendency for different mesh

discretisations to produce qualitatively different optimal topologies for the same problem. Increas-

ing the mesh discretisation reduces the minimum-length scale and allows finer grained alternation

of solid-void regions, thinner structural members and more intricate designs. Figure 2.4 presents

an example of such behaviour6.

Since optimal topologies should be useful in guiding the design of physical, manufacturable struc-

tures, this mesh dependence is considered unsatisfactory. By refining the mesh in an analysis, one

would ideally like to arrive at a finer grained model of the same structure, rather than a different

structure entirely. Moreover, from the point of view of the potential manufacturability of the de-

signs, it would be useful to have some control over the minimum size of structural features. In the

discrete setting, the restriction methods can provide the mechanism for achieving mesh indepen-

dence and feature size control.

Some popular examples of restriction methods are perimeter control, local gradient control, density

filtering and sensitivity filtering. For the continuum compliance problem, the first three methods

have been proved to resolve the existence problem. Interested readers may refer to [10] for an

overview of these methods, as well as their origination. Briefly, perimeter control places an upper

bound on the perimeter of the design, which is, loosely, “the sum of the circumferences of all

holes and outer boundaries,” [10]. In this way a single extra global constraint is implemented.

Local gradient control, on the other hand, places point-wise constraints on the magnitudes of the

5Refer to [7] for a brief overview and contextualisation, and [8] for a detailed discussion of the homogenisation

approach.
6The results depicted were generated using Sigmund’s freely availabe 99-line Matlab topology code [9], with a

filter radius of 1.5 elements for each mesh discretisation.
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(a) Mesh discretisation: 60 × 10

(b) Mesh discretisation: 120 × 20

(c) Mesh discretisation: 240 × 40

Figure 2.4: The practical result of the non-existence problem: the dependence of the solution on

mesh discretisation (minimum compliance for the MBB beam).

derivatives of the material distribution function,

č ≤
∂x (r)

∂ri

≤ ĉ ,

where č and ĉ are lower and upper bounds respectively. In numerical implementations, local gra-

dient control requires the introduction of two additional constraints per element, makings its per-

formance computationally expensive, especially for large problems (refined meshes).

Neither density filtering nor sensitivity filtering necessitate the inclusion of extra constraints. They

are based instead on methods borrowed from image processing. The basic idea, according to

Bourdin [11], is “to replace a (possibly) non-regular function by its regularisation obtained by the

convolution with a smooth function.” In density filtering, the entity that is filtered is the material

distribution function (the density field). A new density field x′ (r) is defined in which the ma-

terial occupancy at each point is derived as a kind of ‘weighted average’ of the original field x,

accomplished by means of the convolution operator

x′ (r) = F (r) ∗ x (r) =

∫

Rd

F (r − r′)x (r′) dr′,

where F is a smooth differentiable ‘filter’ function defined over R
d, the physical dimension d being

either 2 or 3 (Bourdin considers planar problems specifically). The choice of F differentiates one

density filter from another. The form of F is always chosen so that it has its maximim value at

r′ = r, and then decays monotonically as r′ diverges from r. The normal distribution function is

one such example. Bourdin’s theoretical analysis has the convolution operator acting over all R
2,

which in turn requires that the density field be defined on R
2, outside of Ω as well. In numerical

Stellenbosch University    http://scholar.sun.ac.za



CHAPTER 2. STRUCTURAL OPTIMISATION, SAO AND DUALITY 13

implementations a consistent method should be followed to ensure that the filter operation does

not produce spurious results due simply to the presence of the boundaries on the design domain.

A few suggestions are given in [11].

In sensitivity filtering it is the derivatives of the objective function, with respect to changes in the

density field x (r), that are filtered. This is reputedly the most popular restriction method in use,

being very easy to implement. Although density filtering is similarly straightforward to implement,

sensitivity filtering is apparently preferred by many in the optimisation community because it does

not directly modify the designs themselves. It should be noted, however, that there is no proof as

yet that the use of sensitivity filtering corresponds to a continuum compliance problem for which

solutions exist.

The first three restriction methods mentioned above are all practically applied as operators or con-

straints in the numerical solution of the discretised version of the compliance problem. However,

it is recognised that each of these methods defines a corresponding restricted continuum problem.

Unlike the original continuum compliance problem (2.2), it has been shown that these restricted

problems possess solutions [11, 12, 13]. Hence, far from being interpreted as mere operators, the

methods are part of the definition of the problems. As such, it is no longer (2.2) that is solved,

but rather a related problem defined by the incorporation of the given restriction method in the

continuum setting. It is these related problems that are discretised by means of the finite ele-

ment method, and it is necessary that the solutions for the discrete compliance problems produced

thereby converge to the solutions for the associated restricted continuum problems in the limit of

mesh refinement.

This is not the case for sensitivity filtering. No existence proof has been produced for this type of

filter, so is not clear as yet whether a separate restricted continuum problem exists that is defined

by the incorporation of sensitivity filtering. Also, assuming that one does exist, it is not known

whether this problem possesses solutions to which the discrete solutions should converge. Con-

sequently, the filter is generally seen as a heuristic that can be used to develop pleasing designs,

but there is doubt as to how these solutions should be interpreted. Nevertheless, exhaustive expe-

rience with its implementation by those in the topology optimisation community have shown the

filters in this class to be successful in generating mesh-independent designs. Due to its popularity

and ease of use, we have used sensitivity filtering for all the examples presented in this disserta-

tion (wherever filtering was necessary), utilising Sigmund’s mesh independency filter [14, 15], the

most popular form of sensitivity filtering. A more thorough discussion of this filter is presented in

Chapter 3.

2.1.2 The discretised minimum compliance problem

The continuum topology problem (2.2) can be disctretised using the finite element method. In the

discretised model, the elasticity (stiffness) matrix for element i is given as

Ci(xi) = xi C0 . (2.4)

Here, xi ∈ [0, 1] is an element of the binary-valued discretised density field x, C0 is the plane stress

elasticity matrix of the solid isotropic material, and Ci(xi) is the elasticity matrix for element i.
Subscript i indicates elemental quantities and operators and there are n finite elements in the mesh.
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The principle of stationary potential energy may be used to demonstrate that the finite element

stiffness matrices are expressed as

Ki =

∫

νi

BT
i Ci(xi)Bi dνi ,

where the Bi represents the elemental strain-displacement operator and νi is the volume of a single

element (we assume a regular mesh). If we denote w as the vector of applied nodal loads and q as

the vector of nodal displacements, the compliance of the structure is obtained as

f0(x) = qT w = qT Kq =
n∑

i=1

xi q
T
i Kiqi . (2.5)

Furthermore, the volume constraint (2.3) can be expressed as

f1(x) =
1

ν0

n∑

i=1

νixi − ν̄ ≤ 0 , (2.6)

if ν0 is understood to be the volume of the design domain. Hence, the classical compliance prob-

lem with its single volume constraint, and in which it is assumed that the loads w are design

independent, is expressed in a general way as an integer programming problem as

min
x

f0(x)

subject to f1(x) ≤ 0, (2.7)

K(x)q = w,

xi ∈ [0, 1] i = 1, 2, · · · , n.

Note, however, that a non-zero lower bound x̌ on the xi is actually required to prevent compli-

cations arising from numerical ill-conditioning. The discrete problem has solutions by virtue of

its discretisation, but to prevent mesh dependence a restriction method needs to be incorporated.

However, confining our attention to (2.7) we note that this discrete programming problem is NP-

complete and is very difficult to solve as a discrete problem, particularly since practical examples

have high dimensionality. Thus, it is often replaced by a relaxed continuous problem in which the

elemental densities are allowed to take on intermediate values

0 < x̌ ≤ xi ≤ x̂ ,

in which x̂ represents the allowable upper bound on the xi, namely xi = 1. The relaxed problem

is amenable to solution using standard optimisation strategies for continuous nonlinear program-

ming7. This relaxed continuous modification of (2.7) is obviously no longer representative of the

original solid-void compliance problem (2.2). If the design domain is planar, it instead corresponds

to a continuum formulation known as the variable thickness sheet problem, in which the field x (r)

7It is of course possible to attempt to solve the original discrete problem directly, using standard methods of integer

programming, but such methods are not very efficient for problems of this size. However, see Fleury [16], Beckers [17]

and Chapter 4 for a way of tackling the discrete problem that is based on the dual method and avoids using integer

programming.
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represents the (normalised) real-valued point-wise thickness of a planar structure. As it happens,

this problem has a unique solution. The optimal material distribution is characterised by much

grey material of intermediate thickness between 0 and 1.

In the solution strategy for (2.2), the relaxation is really only employed as a facility to enable the

use of methods of continuous programming. A method is therefore employed to encourage the

generation of [0, 1] solutions for the relaxed continuous problem, so that the solution set of this

now updated problem approximates the solution set of the original continuum compliance prob-

lem (or actually whatever restricted version thereof is considered). The most popular method for

doing so is the so-called ‘simple isotropic material with penalisation’ approach, or SIMP, sug-

gested independently by Bendsøe [18] and Rozvany and Zhou [19], which imposes a penalisation

on intermediate densities by replacing the elemental material description (2.4) with

Ci(xi) = xp
i C0 , p > 1. (2.8)

The penalisation does not affect the stiffness of elements that have densities of 0 or 1, but the

stiffness of an element with intermediate density is rendered disproportionately low (i.e. less than

a linearly scaled stiffness). Such an element is thus described as “uneconomical” in the classical

compliance problem [10]. That the solutions to the SIMP-penalised relaxed continuous problem

converge to the solutions to the original restricted continuum problem as the penalisation is in-

creased has been shown by Petersson for the perimeter constraint restriction [20].

The form of the minimum compliance problem considered in this dissertation

We are now finally in a position to state the form of the minimum compliance problem that is

frequently used as an example problem in testing some of the methods devised for sequential

approximate optimisation described in the forthcoming chapters. The relaxed continuous form of

the minimum compliance problem that is most amenable to numerical solution is

min
x

f0(x)

subject to f1(x) ≤ 0, (2.9)

K(x)q = w,

0 < x̌ ≤ xi ≤ x̂ i = 1, 2, · · · , n.

The discreteness requirements present in (2.7) are relaxed, and it is now implicitly assumed that

problem (2.9) is combined with some (heuristic) method to arrive at an (approximate) discrete

solution. We have invariably used the SIMP penalisation strategy, or a derivative thereof, to try

to encourage convergence towards solid-void solutions. Therefore, given (2.5) and (2.8), the pe-

nalised objective function f0(x) in (2.9) becomes

f0(x) = qT Kq =
n∑

i=1

xp
i qT

i Kiqi , (2.10)

the subscript i denoting elemental quantities. If the applied loads w are taken to be independent of

the design x, then with minimal manipulation the gradients of f0 can be shown to be

∂f0

∂xi

= −pxp−1
i qT

i Kiqi . (2.11)
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Hence, the sensitivities of the compliance objective may be evaluated directly using information

that is already available from the finite element solution for the structural displacements (and which

is necessary for evaluating the objective function anyway). This is advantageous, since the gra-

dients are typically necessary for the construction of the approximate subproblems in sequential

approximate optimisation schemes – certainly for the algorithms highlighted in this document –

and little additional work is required to derive them for the objective function or for the volume

constraint in the compliance problem8.

It is obviously possible to have multiple constraints fj in (2.9), most commonly for the purposes

of restricting the design space, for instance, or for representing allowable limits on stresses and/or

displacements, or for incorporating manufacturing considerations. However, the compliance prob-

lem is frequently solved with only a single constraint, given by (2.6), that limits the maximum

allowable volume of the structure. In this case it is common to use a filter as a restriction method.

In the compliance problems that are discussed in the forthcomming chapters (with the exception of

Chapter 9) we use Sigmund’s mesh independence filter exclusively. In Chapter 9 the compliance

problems are solved without using a restriction method.

2.1.3 The minimum weight problem

The second important structural optimisation problem considered here is the weight minimisation

problem. As with the compliance problem, the only form of the problem considered is that in

which the design domain is planar and continuous. The minimum weight problem is also phrased

in terms of the material distribution x (r) as in (2.1), the objective function being the weight9 of

the structure, given by

f0 (x) =

∫

Ω

ρ (r) x (r) dΩ .

The mass density ρ (r), as with the other material properties, can conceptually vary as a function

of position, but we confine our attention to problems in which the distribution of a single material

with a uniform mass density is optimised.

Conventionally, the minimum weight topology is sought, subject to constraints on the allowable

displacements and/or stresses within the structure. In the case of displacements, it is frequently

the case that only a single constraint is considered (that limits the displacement of the point at

which a load is applied, for example). Stress constraints, on the other hand, are by their nature

local, point-wise restrictions. So, for example, a limit is placed on the maximum value that the von

Mises stress, or another stress-related failure measure, can attain anywhere in the structure. For

planar structures, the von Mises stress is defined as

√
σ2

x − σxσy + σ2
y + 3τ 2

xy ≤ σmax. (2.12)

In keeping with (2.1) it is required that solid-void material distributions are identified as solutions,

but a relaxed continuous form of the discretised problem is again considered, so that methods of

continuous programming can be utilised in the optimisation. Given this relaxation, the discretised

8Stress and displacement constraints, on the other hand, require a bit more work (as will be seen in Chapter 9).
9Actually, the mass.
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objective function is clearly linear in the design variables xi, whereas it turns out that both nodal

displacement constraints and elemental stress constraints are reciprocal in the xi (as will be dis-

cussed in Section 2.2.2). Hence, the general (relaxed) form of the weight minimisation problem

considered herein is given by

min
x

f0 (x) =
n∑

i=1

ρiνixi

subject to fj (x) = c0j +
n∑

i=1

cij
xi

≤ 0 j = 1, 2, · · · ,m, (2.13)

0 < x̌ ≤ xi ≤ x̂ i = 1, 2, · · · , n,

in which the νi are the elemental volumes. The SIMP method is again employed to drive the

solutions to solid-void designs, so the material description is given by (2.8) in the FEM. In this case,

the penalisation does not affect the objective function in the optimisation problem. Instead, the

impetus for obtaining solid-void designs is provided by the way that penalisation affects constraint

satisfaction. For instance, consider the elemental stress vector for an element i, which scales

according to

σi = xi Ciǫi

in the relaxed but unpenalised formulation, and according to

σi = xp
i Ciǫi

when penalised. Since the components of σi all scale the same way, stress measures such as the

von Mises stress also scale according to either xi or xp
i (depending on whether a penalised or

unpenalised formulation is used). If a constraint based on such a stress measure is active for this

element, then clearly (for a given elemental strain vector ǫi) the value of xi would have to be higher

in the latter case than in the former, because xp
i < xi. Conceptually then, in a fully stressed design,

all the elements for which the stress constraint is active would be driven towards xi = 1. The xi

would be minimised for the other elements due to the action of the objective function.

2.2 Sequential approximate optimisation (SAO)

The conceptual framework for SAO is represented diagrammatically in Figure 2.5. In such a pro-

cedure, an explicit surrogate optimisation problem (from here on termed P
{k}
SUB) is derived that

approximates the local behaviour of the actual problem (henceforth denoted PNLP) near to a given

point x{k} in the design space, using information from PNLP evaluated at that point. This surrogate

problem, known as the approximate subproblem, is solved using a standard mathematical pro-

gramming (MP) procedure, rather than solving PNLP. Since P
{k}
SUB is constructed from elementary

(usually convex) functions, it is much easier and much more efficient to evaluate and to minimise,

iteratively if necessary, than PNLP.

The point in the design space that denotes the solution (the optimum) to the approximate subprob-

lem, namely x{k+1}, provides an approximation to the optimum of the original problem. Concep-

tually, a re-analysis can be carried out at this point and the information derived thereby can be
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PNLP

P
{0}
SUB

x{0}x{1}

(a) Iteration 0

P
{1}
SUB

PNLP

x{1}x{2}

(b) Iteration 1

PNLP

P
{2}
SUB

x{3}x{2}

(c) Iteration 2

Figure 2.5: A sequence of SAO solutions to an unconstrained problem.

used to construct another approximate subproblem P
{k+1}
SUB . This process is iterated, the superscript

k representing the iteration number, and thus produces a series of points – each representing the

solution to a subproblem – that (ideally) converges to a local optimum of the original problem

PNLP. With the imposition of various restrictions that facilitate stable convergence characteristics,

said convergence can be shown theoretically to occur. Hence, in this manner, the bulk of the nu-

merical calculations required during an iterative optimisation procedure are carried out during the

evaluation of the elementary functions comprising the approximate subproblems, and the number

of expensive re-analyses required for the evaluation of PNLP is kept to a minimum.

For example, probably the earliest and most straightforward example of an SAO algorithm is se-

quential linear programming (SLP), in which the approximate subproblems are constructed as

linear programming (LP) problems. This is done by taking first-order Taylor series expansions of

the objective and constraint functions that comprise the original problem at the current point x{k}

(the current approximate solution) in the design space:

f̃j (x) = fj

(
x{k}

)
+

n∑

i=1

(
∂fj

∂xi

){k} (
xi − x

{k}
i

)
j = 0, 1, 2, · · · ,m. (2.14)

Here, the index j denotes the particular function considered. By convention j = 0 denotes the

objective function, while j = 1, 2, · · · ,m denotes the associated constraint, of which there are m
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in total. The notation (
∂fj

∂xi

){k}

≡
∂fj

∂xi

(
x{k}

)

signifies a constant that is determined by evaluating the partial derivative at the point x{k}. In

SLP, the relevant information required from the re-analysis, that is necessary for the construction

of the subproblems, consists of the function values and gradients of the structural objective and

constraints at the point of approximation x{k}. Hence, if the original problem is represented by the

following nonlinear programming problem10 PNLP

min
x

f0 (x)

subject to fj (x) ≤ 0 j = 1, 2, · · · ,m,
0 < x̌ ≤ xi ≤ x̂ i = 1, 2, · · · , n,

(2.15)

then an SLP subproblem derived at the point x{k} would be the linear programming problem P
{k}
SUB

min
x

f̃0 (x) = f0

(
x{k}

)
+

n∑

i=1

(
∂f0

∂xi

){k} (
xi − x

{k}
i

)

subject to f̃j (x) = fj

(
x{k}

)
+

n∑

i=1

(
∂fj

∂xi

){k} (
xi − x

{k}
i

)
≤ 0 j = 1, 2, · · · ,m,

0 < x̌ ≤ xi ≤ x̂ i = 1, 2, · · · , n.

Note that, although the objective f0 and constraints fj that represent the original structural be-

haviour are functions of the design variables, it is not usually possible to express them as simple

algebraic statements. However, the functions that comprise the approximate subproblem (f̃0 and

the f̃j) can be expressed as simple algebraic statements, in which the function values and sensitiv-

ities of the original problem, evaluated at x{k}, simply appear as constants.

The surrogate linear programming problem thus derived has function values and gradients that can

be evaluated easily and efficiently at any point x. Its optimum can be found using one of the many

standard efficient solution algorithms for linear programming (such as the SIMPLEX method or

one of the interior point methods developed for LP). This is one of the advantages of SAO: having

derived a subproblem of a standard form it is often possible to utilise an existing tried-and-tested

optimisation algorithm for its solution.

Convergence of the SAO procedure to a local optimum of PNLP has been proved for many SAO

algorithms (see for instance [21] for the proof of convergence for an SLP algorithm equipped

with a so-called NLP filter). Generally speaking, the two ingredients that are often relied on to

produce convergence are firstly that the subproblems be accurate to first order and secondly that

the SAO routine includes a mechanism for encouraging global convergence (such as the NLP

filter). First-order accuracy means that the gradients of the objective and constraint functions in

the subproblem should match the sensitivities of the objective and the associated constraints in

the original problem. This ensures that if the necessary conditions for a local optimum11 of the

10For the sake of notational simplicity only one type of constraint is represented here, although both equality and

inequality constraints may generally be present.
11The familiar KKT conditions. See [22], for example.
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original problem are satisfied at a point x∗, then the subproblem defined at x∗ will also satisfy

the necessary conditions at x∗. In turn, this implies that the SAO procedure will recognise (that

is, terminate at) the local optimum x∗. It also implies that, if a direction of descent is identified

for the subproblem P
{k}
SUB, it will also be a descent direction for the original problem PNLP (at least

locally at the point of approximation)12.

For constrained optimisation, the idea of ‘descent’ must be qualified, since minimisation of the

objective function value and reduction of the (possible) constraint violation are both facets of the

optimisation process. For example, a particular design update may decrease the objective function

value but, by so doing, increase the measure of constraint violation. Alternatively, if the current

design is infeasible, a reduction in the constraint violation may require that the objective function

value increases. As the constraints must be strictly satisfied at the solution of an MP problem, the

minimisation of the constraint violation takes precedence over the minimisation of the objective

function. The classical way of combining these two imperatives in an optimisation procedure is

through the use of penalty methods, which have a long history in mathematical programming.

In a penalty method, an unconstrained problem is defined by adding penalised functions of the

infeasibilities to the original objective function. Although many different penalty formulations

exist, the idea is essentially that

fpen
0 (x) = f0 (x) +

m∑

j=1

λj |fj (x)|+ ,

in which

|fj (x)|+ =

{
fj (x) if fj (x) > 0 ,
0 otherwise.

A direction of descent for the problem would then be one along which the value of this penalised

objective function decreases. Convergence to feasible solutions is encouraged by increasing the

penalties associated with the constraint violations, thereby accentuating the importance of the vio-

lated constraints over the objective function and the feasible constraints.

In Chapter 8 we argue that the dual method inherently contains such a penalisation scheme (of

the form given above). We show that the dual variables (the Lagrange multipliers) associated with

the initially infeasible constraints can be seen as penalty parameters that scale the importance of

the constraint functions relative to the objective function. This behaviour is useful when the dual

method is used to solve SAO subproblems. If an SAO subproblem P
{k}
SUB is constructed at a point

that is infeasible for the original problem PNLP, it can sometimes occur that P
{k}
SUB has no feasible

solution. The dual method then has the ability to locate points of minimum infeasibility if the

subproblems are convex, and it can be shown that the sequence of SAO iterates so produced will

restore feasibility. As a consequence, the dual SAO scheme described in Chapter 8 is able to cope

with infeasible starting points.

The second ingredient for convergence, the use of a global convergence procedure, represents an

important ‘restriction’ on the native behaviour of SAO algorithms, without which convergence to

local optima usually cannot be demonstrated. In an SAO algorithm, if the solution to subproblem

P
{k}
SUB defined at x{k} is unconditionally accepted as the point at which the following subproblem

12Barring pathological occurrences, such as the Maratos effect.
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P
{k+1}
SUB is defined, namely x{k+1}, then the sequence of solutions x{k+1}, k = 1, 2, · · · is not nec-

essarily guaranteed to converge at all. Indeed, the sequence may oscillate indefinitely or even

diverge. Global convergence mechanisms curb such behaviour by controlling the step that can be

taken from x{k}, and/or by ensuring that the sequence produced has monotone descent character-

istics. The global convergence mechanisms include the linesearch routines (carried out, perhaps,

on a penalty function, such as the merit functions advocated for sequential quadratic program-

ming [23]), trust regions [24], filtering (in the sense of Fletcher and Leyfer [25]), and the use of

conservative convex and separable approximations [6].

The various sequential approximate optimisation algorithms differ primarily in how the subprob-

lems are defined – that is, the specific function approximations that are chosen to construct the

subproblems – and in what method is chosen to solve the subproblems. There are pros and cons

associated with the different choices that may be made as regards these two. We have already

introduced sequential linear programming, and it was noted that an advantage of this approach is

the availability of various trusted and efficient algorithms for solving the subproblems. Another

advantage is that, since only function values and gradient information are required to construct

the subproblems, computer storage requirements are far less than for algorithms that require cur-

vature information to be stored as well, and this means that the solution of comparatively larger

problems can be attempted. However, for the same reason, convergence can be expected to be

poorer (in terms of the number of iterations required) than for the algorithms that take advantage

of second-order information.

Probably the most successful algorithm that uses curvature information is sequential quadratic

programming (SQP). In SQP, Newton’s method is applied to the system composed of the following

two KKT conditions [
∇xL (x,λ)
fj (x)

]
=

[
0
0

]
,

in which L (x,λ) denotes the Lagrangian of the problem (which will be introduced in Section 2.3).

The solution to the resulting system of linear equations (known as the KKT system) yields an

approximation to a saddle point of the Lagrangian, i.e. a KKT point of the problem. Although the

algorithm is not derived explicitly as an SAO approach, it is equivalent to solving the following

quadratic subproblem during each iteration k of the algorithm:

min
x

1

2
dT
[
W
(
x{k},λ{k}

)]
d +

[
∇f0

(
x{k}

)]T
d

subject to
[
∇fj

(
x{k}

)]T
d + fj

(
x{k}

)
= 0 j = 1, 2, · · · ,ma .

Here,ma represents a set of active constraints, treated as equalities, which must be identified during

each iteration. The solution to the KKT system locates the minimum of the above approximate

quadratic objective function on the null space of the chosen active constraints. The matrixW in the

objective function is the Hessian of the Lagrangian ∇xxL, evaluated at the current approximation

to the saddle point
(
x{k},λ{k}

)
; the subproblem is here written in terms of d = x − x{k}. To

encourage convergence, a line search is often carried out on a penalty merit function in the direction

of the approximated optimum to identify the next iterate. For details, the reader is referred to [23].

SQP is highly regarded because it has excellent convergence properties, which it inherits from

Newton’s method. The rate of convergence local to a KKT point is theoretically quadratic, pro-

vided that the active constraint set can always be identified consistently and that the Hessian of

Stellenbosch University    http://scholar.sun.ac.za



CHAPTER 2. STRUCTURAL OPTIMISATION, SAO AND DUALITY 22

the Lagrangian remains positive definite. Indeed, SQP is probably considered the state of the art

for moderately sized problems. For large-scale problems, however, the algorithm suffers from the

necessity of having to evaluate and store the fully populated Hessian of the Lagrangian, in addi-

tion to the gradient vectors of the objective function and constraints that are identified as active

in a given iteration. Even if the Hessian can be approximated from first-order information using

a quasi-Newton method such as BFGS (see for instance [26]), which alleviates the necessity for

evaluating the curvature terms, the Hessian still needs to be stored and the resulting linear system

has to be manipulated. Much research is currently being devoted to finding more efficient methods

of deriving and solving the linear system in SQP (for instance by using efficient sparse solvers).

2.2.1 The dual SAO approach for structural optimisation

According to Fleury [1], there had been two dominant approaches to the solution of structural

optimisation problems13. The first was the use of optimality criterion (OC) methods, wherein

designs are improved or updated using rules derived from statements of the optimality criteria for

a problem. In a very general sense, these are statements that are thought to be valid at the optimum

of a problem, and are not valid elsewhere. The form of a given optimality criterion often suggests

a scheme (which is usually heuristic) by which a non-optimal design may be improved, such that

the scheme will produce no design changes for optimal designs (for which the OC is satisfied).

The second approach entails the use of the more rigorous, but often less efficient, methods of

mathematical programming.

Haftka and Gürdal [27] point out that the OC methods were generally not viewed favourably out-

side of the structural optimisation community. One reason is that some of these methods lack

mathematical rigour, relying on ad hoc updating schemes and/or intuitive optimality criteria. The

other principal criticism frequently levelled at the OC approaches is that, even if the OC are rigor-

ous, they are often used in problems for which they are not strictly valid, having been derived for

other problems. Be this as it may, many of these methods yield very efficient algorithms whose fa-

cility can be demonstrated practically. In comparison, the methods of mathematical programming

are of course recognised as having a strong theoretical foundation. The main impediment to their

use in structural optimisation is that they are frequently computationally inefficient (relative to OC

approaches), a drawback that becomes more acute the larger the considered problems become.

Hence, Fleury intimates that in the 1970s there were two communities working on converging

lines of research regarding the optimisation procedures used in structural optimisation. On the

one hand was the comunity of OC practitioners, who were seeking more generally applicable

methods derived from rigorous optimality criteria, using physically justifiable and interpretable

update schemes. On the other hand was the school of researchers using mathematical programming

algorithms, whose goal was to develop more efficient algorithms using the precepts of MP.

The two fields (or more specifically, certain techniques therein) were formally unified by Fleury

in 1978. Fleury showed that a general approach emerging in the OC school at that time could

be interpreted as a method of MP. Concomitantly, the favoured MP approach of the time could

similarly be seen as an OC method. Under certain conditions, an exact equivalence could be

demonstrated.

13Fleury considered specifically the weight minimisation problem.
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The convergence of the two fields appears to have been the result of the widespread use of the

fact that there is a reciprocal-like dependence of many structural responses on the variables in

structural optimisation problems. This dependence was utilised in (that is: explicitly built into)

both the construction of OC updates and the generation of efficient MP algorithms. A recognition

of the close relationship between the two approaches stemmed from another pivotal ingredient.

This was the use of the dual approach, both as a method for solving MP problems and as a means

to analyse or interpret the OC approaches.

Fleury proceeded to derive a generalised method for the solution of the structural weight min-

imisation problem based on the linearisation of the problem at a point in the design space. This

“generalised OC approach” [28] involved the use of the dual method to produce the design update

from the linearised subproblem, with this procedure being repeated iteratively. The linearisation

was accomplished either directly in terms of the design variables (a first-order Taylor series ex-

pansion) or in terms of the reciprocals of the design variables. When interpreted from an MP

point of view, it is clear that a series of approximate subproblems are derived and solved using the

dual method to find the stationary point of the subproblems, which, because they are derived from

first-order approximations, are separable in the primal design variables. Separability is of chief

importance in making the dual solution method viable, and the dual method advocated by Fleury

(in [28]) was that introduced by Falk. This last is no less an important introduction, since without

Falk’s version of the dual, the dual problem quickly becomes prohibitively large when problems

with many variables are considered due to the existence of the side (bound) constraints on the

primal variables.

Fleury subsequently limited the subproblems to particular strictly convex forms by introducing

a consistent way of deciding on the form of the separable approximations used to describe the

problem. The method decides between the linear and reciprocal forms to model the dependencies

of each of the functions comprising the problem on each of the design variables. The method is

consequently termed a ‘method of mixed variables’, and the resultant algorithm became known as

CONLIN, for convex linearisation [4, 5].

2.2.2 A brief description of OC methods

Given the historical significance of OC methods, as well as their continued use, it is instructive to

elaborate on their connection to dual MP methods before describing the MP method used herein.

What follows in this section is précised from Fleury [1] and from Haftka and Gürdal [27].

According to [27], most OC methods typically utilise a rigorously derived optimality criterion

based on the Karush-Kuhn-Tucker (KKT) conditions, in combination with a heuristic rule for

updating the design variables. If there are ma active constraints at the optimum, then the OC is

typically the condition that

∂f0

∂xi

−
ma∑

j=1

λj
∂fj

∂xi

= 0 . (2.16)

In describing a general OC approach, Fleury uses structural weight minimisation as an example

and departs from an OC method that uses the concept of virtual strain energy. The problem he

describes is the minimisation of structural weight subject to constraints on the allowable displace-

ments of certain points in the structure, where the structure is discretised and analysed using the
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finite element method. The objective function for the optimisation problem is thus

W =
n∑

i=1

ρiνixi ,

in which the volume of element i is given by the product νixi, and the mass density is ρi. For truss

problems, the νi can be interpreted as truss member lengths and the xi represent cross-sectional

areas, whereas for planar structures the νi represent elemental volumes and the xi would then

represent the presence or absence of material within the element (when solid-void solutions are

sought). If the xi are allowed to attain real values between 0 and 1, the corresponding problem can

be interpreted as weight minimisation of a variable thickness sheet, in which case the xi are seen

as normalised thicknesses and the νi as elemental areas.

It is here tacitly assumed that the global stiffness matrix is a linear function of the design variables

K =
n∑

i=1

Kixi , (2.17)

in which the Ki represent the individual element stiffness matrices. This assumption is often valid

for discretised structural sizing problems. After Barnett [29] and Berke [30], using the principle of

virtual strain energy the prescribed constraints on the structural displacements may be written as

u = qtg̃ = qtKq̃ . (2.18)

Here, g̃ denotes a virtual load applied at the node to which the displacement constraint applies

(initially only a single constraint f1 is considered), and q̃ is the associated structural displacement

vector. Due to (2.17), in the structural analysis the structural responses are implicitely a function of

the design variables xi. The displacement constraints (2.18) can be written explicitly as functions

of the design variables as

u = qtKq̃ =
n∑

i=1

ci
xi

. (2.19)

This is an exact representation of a nodal displacement response for statically determinate struc-

tures, for which assumption (2.17) holds, the displacements being inversely proportional to the

design variables. For such structures, the coefficients ci are constant and can be written as [1, 27]

ci =
(
qt

iKiq̃i

)
xi . (2.20)

This is no longer the case for statically indeterminate structures, but (2.19) then represents a good

first-order approximation (or linearisation) of the response. If the constraint is assumed active,

such that

f1(u) = u− ū = 0 , (2.21)

with ū some prescribed limit on the nodal displacement and u according to (2.19), then the appli-

cation of the KKT condition (2.16) yields

λ =
∂f0

∂xi

/
∂f1

∂xi

∀ i
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for the single Lagrange multiplier. This expression can be interpreted as stating that, at the op-

timum, all design variables are equally cost effective at producing a change in the constraint

value (the numerator being the ‘cost’ associated with effecting a change in the constraint value

by changing xi)
14. An OC update scheme derived from this, and discussed by Fleury [1], Haftka

and Gürdal [27] and others, is

x
{k+1}
i = x

{k}
i

[
λ

ci
ρiνix2

i

]0.5

, (2.22)

in which the superscript k denotes the iteration number. The value of the multiplier λ at the

optimum is, of course, not known a priori, but it can be estimated by requiring that the constraint,

given by (2.21) and (2.19), is active at the optimum. This implies that (2.19) and (2.20) are either

accurate (and therefore valid at the optimum), or are at least good local approximations.

In [1], Fleury showed that stress constraints can be handled in much the same way as displacement

constraints, using the virtual work method and yielding expressions of the form

σ =
n∑

i=1

di

xi

for the prescribed elemental stresses. Furthermore, he broadened the above discussion to include

multiple constraints as well as inequality constraints. When multiple constraints of the form (2.19)

are considered, the KKT optimality criterion generalises to

x2
i =

1

ρiνi

m∑

j=1

λjcij (2.23)

(see [27]), from which the following update rule is derived (although other updates based on (2.23)

are also used):

x
{k+1}
i = x

{k}
i


 1

ρiνi

(
x
{k}
i

)2

m∑

j=1

λjcij




0.5

. (2.24)

For multiple inequality constraints the difficulty lies in finding the values of the m Lagrange mul-

tipliers at the optimum. Condition (2.23) is valid if all the constraints are active at the optimum (at

least in the statically indeterminate case). Constraints that are inactive at the optimum can either be

excluded from condition (2.23), or else their associated Lagrange multipliers can be assigned the

values λj = 0, which amounts to the same thing. This last follows from the KKT conditions for in-

equality constrained problems and, incidentally, results naturally when the MP-plus-dual approach

is used to solve the problem.

Since the set of active constraints is not known a priori, an iterative method is required to identify

the active constraint set A and then to solve the system of equations resulting from setting

fj

(
x{k+1}

)
= 0 j ∈ A ,

14This is discussed specifically in the context of OC methods in [27], and more generally in terms of Lagrange

multiplier theory in [22].
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which yields a linear system of equations to be solved for the λj , j ∈ A, with x{k+1} given in

terms of the Lagrange multipliers by (2.24). The task of determining the active constraint set is

a difficult problem in itself, being combinatorial in nature, and the effort required to do so scales

very badly as the number of constraints increases. Note that it is a linearisation of the fj that is

used in the above condition fj = 0, which again furnishes only an approximate solution in the case

of statically indeterminate structures, and so this process must be repeated iteratively to converge

on a solution to the problem. One important question that arises immediately, therefore, is whether

this process can be expected to converge at all.

In [1], Fleury proceeds to demonstrate that an efficient method of solving the problem can be de-

rived from the application of the mathematical programming approach by solving a sequence of

linearised subproblems derived from the original problem. In these subproblems, the objective

function is expressed as a linear function of the design variables, as it is in the original problem.

Due to the recognition of the form of the structural responses embodied by (2.19), the (displace-

ment and/or stress) constraints are expressed explicitly as first-order Taylor series expansions in

terms of the reciprocals of the design variables, namely

f̃j (x) = fj

(
x{k}

)
+

n∑

i=1

(
xi − x

{k}
i

)(x{k}i

xi

)(
∂fj

∂xi

){k}

. (2.25)

This being the case, the evaluation of the KKT conditions at the optimum of the linearised approx-

imate subproblem yield exactly the optimality conditions (2.23). Hence, the general OC approach

described above is interpereted from an MP perspective as furnishing the solutions to a series of

linearised subproblems constructed from first-order Taylor series expansions of the actual problem.

These are defined successively at the ‘current’ working point in the design space x{k}, in terms of

either the design variables directly or the reciprocals thereof. The advantage of this interpretation

is that the convergence properties of the OC method as presented here are understood, being the

convergence properties of the associated method of MP. Standard methods for encouraging global

convergence, such as conservatism [6], then gain relevance.

More importantly perhaps is that standard methods for solving the MP subproblems acquire sig-

nificance in the OC framework. In particular, the dual method offers an efficient alternative for

solving the subproblems. As such, the dual method represents a consistent approach for calcu-

lating the values of the Lagrange multipliers (the dual variables) at the optimum. Moreover, the

method inherently provides a means of distinguishing the active from the inactive constraints when

the defined constraints are inequalities (which is usually the case).

One small complication that should be noted in the derivation of (2.23), as it is important for some

of the work presented in this document, is the assumption of convexity. Equation (2.23) is derived

from the familiar KKT condition

min
x

L (x,λ) = 0 .

Therefore there is an inherent assumption that the Lagrangian of the problem possesses a turning

point (in fact a unique turning point, if the intention is to use a dual solver) with respect to x for

any λ, and that this turning point corresponds to a minimum and not a maximum. This is not

necessarily the case for the weight minimisation problem itself, nor generally for other structural

optimisation problems. Therefore, in an MP approach, the subproblems P
{k}
SUB are almost always
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derived from strictly convex approximations, whether or not the original problem PNLP is locally

convex.

The combination of using a strictly convex programming approach in parallel with a dual solver

is now a well established methodology for solving structural optimisation problems, particularly

when problems with a large number of variables and a small to moderate number of constraints

are considered. Methods such as Fleury’s CONLIN and Svanberg’s method of moving asymptotes

(MMA) [3] are recognised as being both robust and computationally efficient. Indeed, and of par-

ticular importance for the work presented herein, algorithms of this type appear to be the standard

in the topology optimisation and sizing community.

Finally it should be noted that equation (2.22) derives from the approximate form of the weight

minimisation problem, that is: a problem with a linear objective and a reciprocal-like constraint.

A generalisation of (2.22) for problems with different forms is

x
{k+1}
i = x

{k}
i

[
λ

(
±
∂g

∂xi

/
∂f

∂xi

)] 1

η

, (2.26)

in which the term in brackets is positive. If the Lagrangian function of the linearised or approxi-

mated problem possesses a unique minimum with respect to x for any choice of λ, the bracketed

term will be positive15. In the OC paradigm, η acts as a parameter that controls the size of the

design changes x{k} → x{k+1} from one iteration to the next [27].

2.2.3 Examples of SAO algorithms used in structural optimisation

The SAO algorithms commonly used to solve topology optimisation problems have evolved to

be suited to large structural problems. It has become standard practice to use only first-order

approximations as the explicit functions that are used to construct the subproblems. However,

these approximations are selected to be good local approximations for the structural responses, the

local characteristics of which are frequently known. Specifically, it is standard to utilise the first-

order Taylor expansion in terms of the reciprocals of the design variables (or variations thereof),

discussed in Section 2.2.2.

As has been pointed out, the use of first-order approximations enables larger problems to be tackled

by limiting the necessitated storage, as well as limiting the amount of information that needs to be

evaluated from the original problem during the definition of the subproblems. Another important

point is that the use of first-order approximations results in separable subproblems, which is a

crucial characteristic if the dual method is to be used for the solution of the subproblems. Finally,

these functions can be used to generate strictly convex subproblems, which guarantees either a

unique solution to each subproblem or a unique point of minimum infeasibility if a subproblem

happens to be infeasible (that is: if it lacks a feasible region).

The algorithms discussed in this section then use the dual method for solving the subproblems.

The dual problem will be discussed in Section 2.3. For now it is sufficient to say that, under certain

conditions, such as continuity and convexity of the primal subproblem, the dual subproblem is

15This is seen as a crucial requirement if the dual method is to be employed in an SAO strategy, which shows again

the link between the OC and dual SAO approaches.
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a concave function whose stationary point (its maximum) is equivalent to the KKT point (the

solution) of the primal subproblem. However, the dual is often easier to solve than the primal

subproblem, for the following reasons: Whether the primal subproblem is convex or not, if the

dual of the subproblem can be defined uniquely it will be a concave function. Moreover, the dual

subproblem has only simple bound constraints on the dual variables, which are easier to deal with

than the general constraints applied to the primal subproblem. The dual subproblem often also

is smaller than the primal subproblem; its dimensionality is equal to the number of constraints

in the primal subproblem, which is usually less than the number of primal variables. Given the

concave, simply bounded form, many standard optimisation algorithms exist that can be used for

its maximisation. If the gradients of the dual are required by such an algorithm, they are easily

evaluated because they correspond to the function values of the associated constraints in the primal

subproblem.

The main complication in the application of the dual method is the conversion of the primal sub-

problem to the dual subproblem, which requires additional computations during the optimisation

process. As will be discussed in Section 2.3, the primal and the dual are related by a series of equa-

tions that facilitate the calculation of the values of the primal variables corresponding to specific

coordinates in the domain of the dual. The efficient evaluation of these primal-dual relationships

demands that the primal subproblem be separable. In the case of the algorithms discussed below,

the primal-dual relationships produced have algebraic expressions that can be hard-coded.

It should be noted finally that, although first-order primal approximations are standard, they are

not a necessity, either for efficient SAO algorithms for structural optimisation or for the use of

dual solvers. There are several methods available that incorporate limited information about the

curvatures of the original problem into the primal subproblem and that at the same time preserve

the separability and convexity of the primal subproblem, and yield easily solvable primal-dual

relationships (see, for instance, the SAOi algorithm of Groenwold and Etman [31]). When this

is done, however, the curvature information is limited, at most, to the diagonal elements of the

Hessians of the functions describing the original problem, or approximations thereof. Otherwise

the additional computational and storage requirements may again become prohibitive.

CONLIN

In convex linearisation [4, 5] the approximate subproblems are generated at the point x{k} by

applying the following approximation to each function fj, j = 0, 1, 2, · · · ,m, of the optimisation

problem PNLP:

f̃j = fj

(
x{k}

)
+
∑

{+}j

(
xi − x

{k}
i

)(∂fj

∂xi

){k}

+
∑

{−}j

(
xi − x

{k}
i

)(x{k}i

xi

)(
∂fj

∂xi

){k}

. (2.27)

Stellenbosch University    http://scholar.sun.ac.za



CHAPTER 2. STRUCTURAL OPTIMISATION, SAO AND DUALITY 29

The notation {+}j represents the set of all indices i for which the partial derivative of the function

fj with respect to xi is positive, from which the definition of {−}j follows accordingly,

{+}j =

{
i :
∂fj

∂xi

≥ 0, j = 0, 1, 2, · · · ,m

}
,

{−}j =

{
i :
∂fj

∂xi

< 0, j = 0, 1, 2, · · · ,m

}
.

Hence, a direct linearisation is carried out for the sensitivities belonging to the set {+}j , whereas a

reciprocal linearisation is carried out on the function dependencies that fall into {−}j . The approx-

imation (2.27) is therefore termed a mixed linearisation; the subproblems constructed from (2.27)

are convex and separable.

MMA

The method of moving asymptotes, due to Svanberg [3, 32], is another very popular optimisation

algorithm used in structural optimisation, particularly within the topology optimisation commu-

nity. In MMA, each function fj, j = 0, 1, 2, · · · ,m, in PNLP is approximated as

f̃j = fj

(
x{k}

)
−

n∑

i=1

(
p
{k}
ij

U
{k}
i − x

{k}
i

−
q
{k}
ij

x
{k}
i − L

{k}
i

)
+

n∑

i=1

(
p
{k}
ij

U
{k}
i − xi

−
q
{k}
ij

xi − L
{k}
i

)
. (2.28)

This is an extension of the reciprocal approximation, and also results in strictly convex approximate

subproblems. The constants U
{k}
i and L

{k}
i , calculated at each iteration k, are coordinates at which

the approximation asymptotes to infinity. These asymptotes function as a built-in step-size control,

the optimum of the subproblem being located definitely within the box defined by the U
{k}
i and

L
{k}
i . Part and parcel of the algorithm is a routine for calculating or adjusting the location of the

asymptotes from iteration to iteration. MMA thus comes equipped with a built-in mechanism for

encouraging global convergence. For details, the reader is referred to [3]. In equation (2.28), the

constants p
{k}
ij and q

{k}
ij are chosen as follows:

p
{k}
ij =





(
U

{k}
i − x

{k}
i

)2
(
∂fj

∂xi

){k}

if

(
∂fj

∂xi

){k}

> 0,

0 if

(
∂fj

∂xi

){k}

≤ 0,

and q
{k}
ij =





0 if

(
∂fj

∂xi

){k}

≥ 0,

(
x
{k}
i − L

{k}
i

)2
(
∂fj

∂xi

){k}

if

(
∂fj

∂xi

){k}

< 0.

SAOi

The SAOi algorithm, developed by Groenwold and Etman [31], is a sequential approximate opti-

misation algorithm primarily intended for the solution of simulation-based inequality constrained
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nonlinear optimisation problems16. It is based on the use of convex and separable quadratic ap-

proximating functions

f̃ (x) = f
(
x{k}

)
+

n∑

i=1

(
xi − x

{k}
i

)( ∂f
∂xi

){k}

+
1

2

n∑

i=1

c
{k}
i

(
xi − x

{k}
i

)2

, (2.29)

in which the curvatures can be tailored by manipulating the constants c
{k}
i . The algorithm exploits

some of the advantages of quadratic approximations, but does so without storing exact second-

order information (refer to [33] for details). Instead, approximate diagonal second-order informa-

tion is constructed and stored. By judiciously choosing the curvatures c
{k}
i , it becomes possible to

accurately and efficiently optimise problems that exhibit strong monotonicities, like those present

in structural optimisation, using quadratic functions. This is achieved by selecting the c
{k}
i so that

the resulting function is a quadratic approximation to either the reciprocal or exponential functions

about the point x{k}. These inverse functions are themselves monotonic approximations at x{k} of

the nonlinear functional dependencies exhibited by the optimisation problem being solved.

Examples of standard approximations present in the algorithm are the quadratic approximation

to the reciprocal approximation, the quadratic approximation to the CONLIN approximation of

Fleury and Braibant, and the quadratic approximation to the MMA approximation of Svanberg.

Philosophically, using these approximated approximations is very different to using the CONLIN

or MMA algorithms themselves. Two distinctly different approximate subproblems may be for-

mulated: a separable quadratic programming problem with quadratic constraints, solved using a

dual statement, and a Lagrangian diagonal quadratic program (QP), solved using a QP solver. The

former is attractive when the design variables outnumber the constraints by far, and vice versa.

The algorithm is aimed in particular at large-scale optimisation. Thus, the gradients of the con-

straints may be stored in sparse form and the algorithm comes equipped with solvers that take

advantage of the sparsity of the system of equations that is manipulated during the solving of the

subproblems. SAOi is used to solve the large-scale stress-constrained material distribution prob-

lems discussed in Chapter 9. A more concrete explanation of how the constants c
{k}
i are selected

is also presented there.

2.3 General overview of duality

As we have seen, sequential approximate optimisation methods seek to find a solution to a given

(generally nonlinear) programming problem PNLP by solving a sequence of approximate subprob-

lems, which are easily represented and easily evaluated. In the case of the methods of approx-

imation inherent in the three algorithms discussed above, the subproblems themselves are also

nonlinear programming problems, although of a particularly advantageous type, being constructed

as strictly convex, separable and continuous. Consequently, they have at most a unique solution,

which can be found using calculus-based methods that take advantage of their continuity. The

subproblems may thus be solved using any applicable method of constrained nonlinear program-

ming. As has been discussed, however, the dual method of solution is often favoured in structural

optimisation, for the reasons highlighted in Section 2.2.3.

16Simulation-based problems are those that entail computationally demanding numerical simulations or modelling.
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The terms ‘dual’, ‘dual problem’ and ‘dual method’ have a wide variety of meanings in mathe-

matics and even in mathematical programming, the notion of a ‘dual’ being variously defined in

different fields. However, the examples of dual problems used in SAO stem largely from the notion

of Lagrangian duality, which itself is born of Lagrange multiplier theory17.

Lagrange multiplier theory, which is formulated for equality constrained problems, asserts that the

following conditions hold at all extrema x∗ of an objective function f0 on the subspace defined by

the equality constraints fj = 0, j = 1, 2, · · · ,m, provided that the constraints satisfy a constraint

qualification at x∗:

(
∂f0 (x∗)

∂xi

)
+

m∑

j=1

λj

(
∂fj (x∗)

∂xi

)
= 0 i = 1, 2, · · · , n, (2.30)

fj

(
x{∗}

)
= 0 j = 1, 2, · · · ,m. (2.31)

The method of Lagrange multipliers converts an optimisation problem into the problem of solving

a system of equations, which are linear in the λj , but generally nonlinear, and non-separable, in the

xi. It can be shown (see for instance Hadley [22]) that (x∗,λ∗), where x∗ represents an extremum

of the f0 on fj and λ∗ denotes the associated Lagrange multipliers, is a solution of the above

system of equations, provided that an m × m non-singular submatrix can be selected from the

Jacobian of the constraints

J =




∂f1

∂x1

∂f1

∂x2

. . .
∂f1

∂xn

∂f2

∂x1

∂f2

∂x2

. . .
∂f2

∂xn

...
...

. . .
...

∂fm

∂x1

∂fm

∂x2

. . .
∂fm

∂xn




∗

,

where it is assumed that n ≥ m and J is evaluated at x∗. If this condition is satisfied, then

there is a unique vector of multipliers λ∗ associated with x∗ that together with x∗ satisfies (2.30).

Conditions (2.30) and (2.31) may be arrived at succinctly by defining a Lagrangian function that

combines the objective and constraint functions into a single structure

L (x,λ) = f0 (x) +
m∑

j=1

λjfj (x) . (2.32)

Then, equations (2.30) are obtained by demanding that the solutions satisfy

∂L

∂xi

= 0

17It should be said that some important duals, like the linear programming dual, were not originally developed from

Lagrange multiplier theory, but can nevertheless be shown to derive from it.
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and
∂L

∂λj

= 0 ,

which generates equations (2.31). These conditions are necessary, though not sufficient, to define

the extrema of f0 on fj . Hence, in order to locate a global optimum for an equality constrained

programming problem, all the solutions to the above system of equations need to be identified and

then compared to determine the optimum. There is no algorithm for doing so generally, so in and

of itself the method does not necessarily simplify the process of finding a solution to a problem,

unless said problem happens to have additional structure that can be exploited.

The well-known Karush Kuhn Tucker conditions are an extension of the above conditions to prob-

lems that may also have inequality constraints. For a general nonlinear programming problem

defined by

min
x

f0 (x)

subject to fj (x) = 0 j = 1, 2, · · · ,me

and fj (x) ≤ 0 j = me + 1,me + 2, · · · ,m,

the KKT conditions, the first-order necessary conditions that an optimum (x∗,λ∗) satisfies, are

stated as

∂L (x∗,λ∗)

∂xi

= 0 ∀ i,

∂L (x∗,λ∗)

∂λj

= 0 for j = 1, 2, · · · ,me,

∂L (x∗,λ∗)

∂λj

≤ 0 for j = me + 1,me + 2, · · · ,m, (2.33)

λj ·
∂L (x∗,λ∗)

∂λj

= 0 for j = me + 1,me + 2, · · · ,m,

λj ≥ 0 for j = me + 1,me + 2, · · · ,m.

Hadley [22] also provides a geometric interpretation of KKT points. KKT points are very often

identified with saddle points on the Lagrangian surface, at which (for minima)

L (x∗,λ) ≤ L (x∗,λ∗) ≤ L (x,λ∗) . (2.34)

This equation is valid in the immediate vicinity of (x∗,λ∗), i.e. local to the KKT point, and on the

part of the Lagrangian restricted by λj ≥ 0, j = me + 1,me + 2, · · · ,m. Within this region the

value of the Lagrangian function at the saddle point can be obtained as

L (x∗,λ∗) = max
λ

min
x

L (x,λ) (2.35)

and, given the KKT conditions above, is equivalent to the objective function value at the local

optimum, i.e.

f0 (x∗) = L (x∗,λ∗) .
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Central to Lagrange multiplier theory and the KKT conditions is that a unique relationship exists

between the primal variables and the Lagrange multipliers at a KKT point. This unique correspon-

dence also extends to the domain local to a KKT point. From (2.35) it may be ascertained that, for

any λ† close to λ∗, there is an x† close18 to x∗ that satisfies

x† = arg min
x

L
(
x,λ†

)
.

The function of λ obtained by carrying out the minimisation in (2.35) is the dual function associ-

ated with the saddle point (x∗,λ∗), namely

γ (λ) = min
x

L (x,λ) , (2.36)

which is ‘dual’ to f0 in the sense that, for any feasible point
(
x†,λ†

)
,

γ
(
λ†
)
≤ f0

(
x†
)
. (2.37)

Furthermore, given the KKT conditions, it is expected that the minimiser x† will satisfy the con-

dition

∇xL
(
x†,λ†

)
= 0 . (2.38)

That x† is a unique minimiser of the Lagrangian with λ = λ† is certainly not a global characteristic

of the Lagrangian in general. As with Lagrange multiplier theory, neither the KKT conditions

nor the notion of a dual automatically gives rise to an algorithm for actually finding the KKT

points for an arbitrary nonlinear programming problem. However, if the problem is strictly convex,

then its Lagrangian is strictly convex in x. In this case the problem has a unique KKT point

(which corresponds to the global minimum), the Lagrangian surface has a unique saddle point so

that (2.34) is valid globally, the dual (2.36) is defined uniquely and there is no duality gap. This

last means that, at the solution
(
λ†,x†

)
, equation (2.37) is satisfied as an equality. Thus, when

duality is used in sequential convex programming (SCP), in which strictly convex subproblems are

defined during every iteration k, the subproblems may be solved by first defining the dual of the

subproblem and then maximising the dual. For SCP, Wolfe [34] defined the dual by generating the

primal-dual relationships through the application of (2.38).

Limitations

Even for strictly convex problems, the use of Lagrange multiplier theory and the definition of

the dual that is commonly used in SCP have many limitations. Chief amongst these is that, if

the problem possesses bound constraints on its primal variables (as is the case in both the struc-

tural optimisation problems of weight minimisation and minimum compliance), then each of these

bound constraints is associated with a Lagrange multiplier in the definition of the Lagrangian, just

as any other constraint is. Since each primal variable contributes at least one dual variable, the dual

problem is at least as large as the primal problem in this case, and often considerably larger. This

undermines the utility of the dual method.

18This notion of closeness has a rigorous definition; e.g. see Hadley [22].
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Secondly, even for strictly convex problems, equation (2.38) may not have solutions x† for all λ†.

Consider, for instance, if the Lagrangian is strictly reciprocal in x. A reciprocal function does not

possess a stationary point at finite x. Also, the approximate subproblems may not be defined for

all x. The reciprocal function is undefined at x = 0, for instance. In fact, if the Lagrangian has a

reciprocal form, then it is strictly concave on x < 0, so without a means of limiting the range of

validity within which the problem is to be considered, useful subproblems from which a dual can

be derived consistently cannot be derived from functions like the reciprocal approximation.

Hadley, in his consideration of KKT points as saddle points of the Lagrangian in [22], already ad-

dresses these concerns. He incorporates into his definition of a saddle point a means of limiting the

domain x over which the Lagrangian is considered. In his case, x ≥ 0. Instead of incorporating

this restriction on x into the definition of the Lagrangian as additional constraints, Hadley demon-

strates that these restrictions may instead be incorporated into the first-order optimality conditions

defining the saddle point (now on the more restricted domain). If the Lagrangian is strictly convex

over this domain, Hadley indicates that the saddle point defined hereby is unique.

Falk [2], in his definition of a dual method for nonlinear programming, presents a much more gen-

eral analysis that addresses these same limitations. Instead of considering the restricted domain

x ≥ 0, he considers a general closed and compact domain C. His analysis considers the general

nonlinear nonconvex programming problem, though subject only to inequality constraints19. For

these problems, the dual as defined by Falk is not necessarily unique, the relationships between λ†

and x† being point-to-set relationships in the general case. However, Falk shows that in the case of

strictly convex programming problems, his dual is again uniquely defined. It is this specialisation

that is used in the formation of dual subproblems for structural optimisation in the algorithms dis-

cussed in Section 2.2.3. The subproblems defined by the approximations used in those algorithms

are strictly convex, and Falk’s formulation allows the domain C to be identified with the bound

constraints. This ensures firstly that the bounds do not increase the dimensionality of the dual, and

secondly that C can be chosen so that the subproblems are always properly defined within C.

We note that when the restriction on the domain given by C is introduced, equation (2.38) is not

valid in general for defining the minimiser of the Lagrangian with respect to x within C. The

Lagrangian cannot be assumed to possess a turning point within C for all λ†. Therefore, the primal-

dual relationships are instead defined by condition (2.36). Since C is closed, the Lagrangian of a

strictly convex problem always has a unique minimum on C, for any feasible λ†, although it may

not meet the definition of a stationary point.

Lastly, although Falk highlighted the applicability of his dual for strictly convex problems, it is

not necessarily the case that a problem must be strictly convex in order for a unique Falk dual to

be defined. It is standard practice to generate strictly convex subproblems for structural optimisa-

tion problems and then to solve these using Falk’s definition of the dual. The work presented in

Chapters 5 and 6, however, considers instances in which nonconvex subproblems arise from the

minimum compliance and minimum weight problems respectively. We show that the dual method

may still be used to solve these problems, because Falk’s dual is still uniquely defined for them. A

brief description of Falk’s dual is provided below as it appears in [2], which the reader is urged to

refer to.

19Falk’s work is apparently extensible to include equality constraint. In the current document, however, only in-

equality constrained problems are addressed, so equality constraints are omitted in what follows.
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2.3.1 The Falk Dual

Falk [2] considers a mathematical programming problem with the form20

min
x

f0(x)

subject to fj(x) ≥ 0 j = 1, 2, · · · ,m,

xi ∈ C i = 1, 2, · · · , n,

where (2.39)

C ⊂ Rn,

f0 : Rn → R1,

fj : Rn → R1, j = 1, 2, · · · ,m.

A Lagrangian is defined over the space Rn ×Rm as

L(x,λ) = f0(x) −
m∑

j=1

λjfj(x) . (2.40)

Falk defines an auxiliary function γ by

γ(λ) = min
x

L(x,λ)

subject to x ∈ C (2.41)

and λ ≥ 0 ,

and D[γ] – the domain of γ – is given by all λ for which L(x,λ) possesses a finite minimum

with respect to x, where x ∈ C. For a given λ, the minimiser x need not in general be unique.

The points x at which L(x,λ) is minimised for given λ form the set X (λ). The auxiliary func-

tion (2.41) is dual to the primal problem (2.39) in the sense that γ(λ) ≤ f0(x) for all feasible

points λ and x (by Theorem 4 of [2]).

The optimum of the dual is not guaranteed, in general, to match the optimum of the primal problem.

However, for strictly convex problems (i.e. problems for which f0 is strictly convex and all fj are

concave, given the above definitions of the programming problem and Lagrangian), Falk showed

that their solution could be achieved using the dual because the following set of properties can be

proved21:

• Theorem 7: The domain over which the dual is defined (D[γ]) is an open set relative to the

interior of the positive orthant in the space of the Lagrange multipliers (Rm)+.

• Theorem 8: The domain D[γ] is convex (which makes γ concave by Theorem 1).

• Theorem 9: X is a continuous function on D[γ].

20Note that Falk uses the positive-null (≥) form to represent the constraints. In presenting his work here, we have

followed suit to maintain consistency with his exposition.
21The theorem numbers are those listed in Falk [2].
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• Theorem 10: γ is differentiable throughout the interior of D[γ] and the right-hand partial

derivatives ∂γ/∂λ+
j exist at λj = 0 for λ = λ◦ if λ◦ ∈ D[γ] and λ◦j = 0.

• Theorem 11: If γ is maximised over D[γ] at λ∗, then x∗ = X (λ∗) is the solution to (2.39)

and γ(λ∗) = f0(x
∗).

2.3.2 Nonconvexity and the dual

Although strict convexity of the primal problem is assumed in the formulation of the proofs of the

above Theorems 7 through 11, we maintain that the proofs themselves are applicable to a broader

class of problems. We have used this observation as the basis of two papers concerning the use

of nonconvex function approximations in sequential approximate optimisation infrastructures [35,

36], which are presented in Chapters 5 and 6. In particular, we have argued that certain nonconvex

forms that can arise in the consideration of the weight minimisation problem and the minimum

compliance problem are still consistent with the proofs of the above theorems. Hence, we have

demonstrated that these nonconvex approximate subproblems can be solved uniquely using Falk’s

dual formulation.

In [2], the proofs of Theorems 7 through 11 are presented specifically for strictly convex program-

ming problems. However, the proofs themselves depend primarily on the following attributes of a

problem for their validity:

Attribute 1: The Lagrangian L(x,λ†) has a unique minimim in terms of x over the set C,

for any arbitrarily chosen λ† in D[γ].

Attribute 2: D[γ] is convex.

Attribute 3: All fj are continuous, j = 0, 1, 2, · · · ,m.

Strictly convex continuous programming problems obviously possess these attributes, and this

result has encouraged the successful development of sequential approximate optimisation algo-

rithms based on the iterative solution of strictly convex subproblems using Falk’s dual approach.

Note, however, that there are nonconvex problems that also possess the above attributes. We have

made the assertion that these continuous nonconvex programming problems, for which Attributes

1 through 3 hold, are also amenable to solution via the same dual approach, and can therefore also

be used as approximate subproblems in an SAO infrastructure, particularly for structural optimisa-

tion.

In the field of structural optimisation, a problem’s objective function and constraints are most

often continuous functions or are approximated as such. Moreover, the domain C is commonly

defined only by the upper and lower bound constraints on the design variables. In the case of

structural optimisation then, the problems are simplified by the fact that Attribute 3 holds and that

C is compact. Under these circumstances, the observation can be made immediately (see [2]) that

D[γ] corresponds to (Rm)+. Therefore, D[γ] is automatically convex and we need only concern

ourselves with whether or not Attribute 1 holds.
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2.3.3 Separability

The requirement that the Lagrangian always has a unique minimum with respect to the set of primal

(design) variables x for any positive λ is very restrictive and very difficult to verify in general.

However, if the SAO subproblems are defined in terms of separable functions, the requirement

that Attribute 1 holds can be checked more easily. For separable functions, the Lagrangian can be

expressed as a sum of n terms,

L(x,λ) = L1(x1,λ) + L2(x2,λ) + . . .+ Li(xi,λ) + . . .+ Ln(xn,λ), (2.42)

each being a function of only one primal variable xi. If the domain C represents only the bound

constraints on x, then it can be defined separably as well:

C = {x | x̌ ≤ xi ≤ x̂ ∀ i} . (2.43)

Minimising L with respect to the n design variables reduces to performing n one-dimensional

minimisations

min
x

L(x,λ)

subject to x ∈ C

}
=

n∑

i=1

(
min

xi

Li(xi,λ)

)

subject to x̌ ≤ xi ≤ x̂ .

(2.44)

If all n minima exist in C and are both finite and unique for every conceivable vector of positive

multipliers λ, then Falk provides us with the assurance that the dual can be defined uniquely and,

moreover, that it is concave and continuous.

2.4 Closure

The material presented in this chapter has served to briefly introduce three topics: topology op-

timisation, sequential approximate optimisation and duality. It is the combination of these three,

namely the application of the dual within an SAO infrastructure applied to topology problems, that

has given rise, rather organically, to the work presented in the forthcomming chapters. The work

presented neither assumes nor requires an expert knowledge of the material distribution problem,

since the thesis is concerned primarily with the exploration of some facets of dual-based SAO,

with material distribution problems providing challenging and important examples to which it can

be applied. Having said this, it is the material distribution problems themselves that have sug-

gested which facets of dual SAO might be investigated fruitfully. Thus, research into the discrete

dual (Chapter 4), dual separability (also Chapter 4), the use of nonconvex approximation functions

(Chapters 5, 6 and 7) and the potential of solving large problems (Chapters 4 and 9) was driven

by the requirements of particular topology problems. Inevitably some feedback has occurred, and

certain more application-specific topics are also addressed, such as sensitivity filtering in Chapter 3

and stress relaxation in Chapter 9.
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Chapter 3

Sensitivity filtering in topology optimisation

The exposition in this chapter is a crystalisation of a number of ideas that have germinated from a

collaboration with Prof. Albert A. Groenwold of the Department of Mechanical Engineering at the

University of Stellenbosch, Stellenbosch, South Africa, and Dr L.F.P. Etman of the Department of

Mechanical Engineering at the Eindhoven University of Technology, Eindhoven, the Netherlands.

It is intended for (possible) submission with these co-authors, and has thus been prepared in the

format of an article.

3.1 Abstract

Ever since its introduction into topology optimisation, the so-called ‘mesh independence filter’

of Sigmund has been considered a heuristic tampering of the objective function sensitivities to

achieve designs that are not only mesh independent, but also free from checkerboarding. Mesh de-

pendence in particular stems from the fact that the underlying continuum topology problem lacks

solutions, unless its solution space is restricted in some way. The filter was introduced as such

a restriction method, though in the past it has been criticised as lacking mathematical justifica-

tion, and there is as yet no proof that the use of the filter solves the existence problem. There is

therefore some uncertainty about how the use of the filter should be interpreted, although there is

a perception that by using the filter one actually solves a different problem closely related to the

originally stated topology problem. Despite the uncertain basis for the filter, it has nevertheless

seen widespread use in the topology optimisation community because, in practice, it does pro-

duce largely mesh-independent and checkerboard-free designs, and that very efficiently. Years of

collective experience therefore testify to its utility.

In this chapter we revisit the mesh independence filter of Sigmund. Instead of being purely heuris-

tic, we argue that, in the context of sequential approximate optimisation, the filtered sensitivities

can be interpreted as defining the exact gradients of a modified approximate primal subproblem.

These subproblems are not only separable in the design variables, but also (conditionally) strictly

convex. Hence, the subproblems that the filter gives rise to possess unique solutions. In this sense,

the filter need not be considered mathematically unsound.

While we provide an interpretation of the definition of the filter, we do not provide an explanation

38
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of its action. That is, why using subproblems of the form defined by the filter would reduce mesh

dependence and checkerboarding is a question that we cannot satisfactorily answer. However, we

believe that the interpretation of the filter given herein in the context of SAO will be a fruitful start-

ing point for explaining its efficacy in future, and we offer a few initial thoughts on the subject. In

contrast, we argue that the interpretation of the filter as being associated with a different underlying

problem entirely is invalid.

Lastly, viewing the filter as giving rise to subproblems in the SAO paradigm provides the basis for

an analysis of more specific questions regarding the nature of the filtered optimisation problems.

For example: can algorithms using the filter converge? If so, what are the characteristics of a point

to which convergence occurs? Are such points solutions to the originally stated problem? And so

on. We offer a few initial thoughts on these matters as well. Our hope is that, through consideration

of questions like these in the context of SAO, a proof of existence for the solutions of the filtered

topology problem may be devised in the future.

3.2 Introduction

In topology optimisation we seek the distribution of material within a pre-defined spacial domain

such that said distribution is optimal for a given structural objective function subject to any number

of linear and/or nonlinear inequality constraints. This solid-void optimisation problem is very

difficult from a mathematical point of view: the continuum problem suffers from multimodality

and non-existence of the solution. When the field describing the material distribution is discretised

using the finite element method, the associated optimisation problem is inherently NP-complete

and of (very) high dimensionality, while the non-existence problem manifests itself by making the

solutions qualitatively dependent on the mesh discretisation used. Additionally, the optimisation

problem may exhibit an artificial numerical stiffening phenomenon known as checkerboarding1.

Notable effort has previously been directed towards showing that a solution to the (continuum)

topology optimisation problem exists if certain methods are employed that either extend or restrict

the design space (refer to Section 2.1). Probably the most widely used restriction method is due

to Sigmund [14, 15], who proposed a filtering method to overcome non-existence of the solution

and checkerboarding. Borrowed from digital image processing, and known as his so-called ‘mesh

independence filter’, this filter is considered heuristic. Even so, it is extremely popular in topology

optimisation, the reasons being that it is easy to implement, produces very little extra computational

burden, and works very well, being effective at decreasing mesh dependency and the appearance

of checkerboarding. In fact, it seems to satisfy most of the desirable characteristics of numerical

filters for topology optimisation (according to Sigmund [37], it is desired that these methods do not

introduce additional constraints, that they are effective, simple, computationally efficient, easily

implemented, and robust).

The main objection to the filter is that it is not considered mathematically sound. The reason for

this is that the sensitivities of the problem are tampered with, such that the information used in

the solution procedure no longer corresponds to the problem that is supposed to be solved. This,

1The latter applies when fully integrated low-order quadrilateral finite element discretisations are used, in combi-

nation with elemental design variables (which is standard practice).
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in turn, raises the question of what problem is actually being solved when the filter is used. In

other words, assuming that the filter affects only the objective function and that the constraints

are not modified2, what objective function actually possesses the filtered sensitivities as its true

gradients? What is the (spatially discretised relaxed continuous) optimisation problem to which

it belongs? And then, what is the continuum form of the optimisation problem from which this

derives? Ultimately, what is the variational problem that gives rise to the filtered objective and how

is it related to compliance?

Regarding his filter, Sigmund [37] has quite recently remarked that “as the sensitivities are modi-

fied heuristically, it is probably impossible to figure out what objective function is actually being

minimised, but generally, it may be stated that the filtered sensitivities correspond to the sensitivi-

ties of a smoothed version of the original objective function.” In fact, filtering of the sensitivities is

considered “dangerous when linesearch techniques are used”. The development of density filter-

ing techniques (e.g. see Bruns and Tortorelli [38] and Bruns [39]), which per se introduce a grey

transition region between black and white material, was largely motivated by the desire to present

a mathematically sound filtering technique as an alternative to sensitivity filtering.

As the quote above implies, it is not clear just how the filter achieves its objectives of mesh inde-

pendence and the suppression of checkerboarding. It is evident that mesh independence is effected

because a minimum-length scale, which is associated with the filter radius and is thus largely inde-

pendent of the mesh refinement, is introduced into the problem. However, a thorough explanation

of mesh independence is actually required to demonstrate that the filter solves the existence prob-

lem in the original continuum form of the topology problem. While we are not in a position to

do this, an attempt is nevertheless made to describe and elucidate the working of the filter, purely

because most of the minimum compliance topology results produced for this document have relied

upon the filter for the regularisation of the problems.

The prevalent opinion is that the use of the filter to regularise a given topology problem actually

causes a different problem to be solved, though one that is closely related to the originally stated

topology problem. The nature of this relationship is as yet unclear. In describing the way the

filter works in the current chapter, it is this interpretation, and the perception of the filter as an

unsubstantiated heuristic, that will be addressed.

We herein assume that the filter is used in sequential approximate optimisation algorithms in which

dual principles are used to solve the surrogate subproblems. This seems reasonable: since the

dimensionality of the topology problem is very high and few constraints are present (if local stress

and/or displacement constraints are absent), primal methods are hardly, if ever, used. Methods

popular in topology optimisation are dual sequential approximate optimisation (SAO) methods, of

which the method of moving asymptotes (MMA) proposed by Svanberg [3, 32] is probably the

best known and most frequently used, and optimality criterion (OC) methods, which have been

shown to be closely related to dual SAO procedures. We demonstrate that, in the context of SAO,

the filtered sensitivities define the exact gradients of a modified approximate primal subproblem.

The crux of the work presented in this chapter is, however, an investigation into whether the filter

can be interpreted as giving rise to a different objective function. We argue that this is extremely

unlikely in general and we present various numerical examples for which this interpretation cannot

2We here consider the classical minimum compliance problem, in which only the sensitivities of the compliance

objective are filtered.
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be considered valid.

The chapter is constructed as follows: in Section 3.3, the standard minimum compliance topology

optimisation problem is discussed briefly. This is followed in Section 3.4 by notes on both the

OC updates and the dual SAO algorithms used to approximately solve the problem. In Section 3.5

the mesh independence filter of Sigmund is introduced, and we elaborate on how the filter may be

interpreted in SAO algorithms. In Section 3.6 we consider the question of whether an alternative

‘smoothed’ objective function exists from which the filtered sensitivities derive. Specific, illustra-

tive numerical examples are presented in Section 3.7, and our observations are summed up by our

concluding remarks in Section 3.8.

3.3 Minimum compliance topology optimisation

The topology optimisation problem, perhaps more properly referred to as the material distribution

problem, has been discussed in Section 2.1, in which both the minimum compliance and minimum

weight problems were introduced. In discussing the use of the filter, however, it will be assumed

that the objective function on which the filter operates is compliance. In Chapter 9, where spatially

continuous weight minimisation and minimum compliance problems are solved (as opposed to a

discrete truss-type problem), no filter is used. On the other hand, the filter is incorporated into the

minimum compliance problems presented in the rest of the document.

For convenience, the relaxed continuous form of the compliance problem with a single volume

constraint (2.9) is repeated here.

Relaxed continuous compliance problem PC

min
x

f0(x) = qT Kq =
n∑

i=1

(xi)
pqT

i Kiqi

subject to f1(x) =
1

ν0

n∑

i=1

νixi − ν̄ ≤ 0 , (3.1)

Kq = r ,

0 ≤ x̌ ≤ xi ≤ x̂ = 1 i = 1, 2, · · · , n.

Note that although [0, 1] solutions are sought, the above definition reflects the fact that it is nec-

essary to introduce a non-zero lower bound x̌ on the design variables in order to avoid numerical

ill-conditioning in the solution of the finite element equations.

3.4 The common OC design update for topology optimisation

We depart from a generally applicable optimality criterion statement used to update the topology

design from x{k} to x{k+1} (e.g. see [40, 41]):

x
{k+1}
i (λ) =





x
{k}
i βη

i (λ) if x̌ < x
{k}
i βη

i (λ) < x̂,

x̌ if x
{k}
i βη

i (λ) ≤ x̌,

x̂ if x
{k}
i βη

i (λ) ≥ x̂.

(3.2)

Stellenbosch University    http://scholar.sun.ac.za



CHAPTER 3. SENSITIVITY FILTERING IN TOPOLOGY OPTIMISATION 42

Here, x = [x1, x2, · · · , xn]T represents the n primal design variables, while x̌ and x̂ denote,

respectively, the lower and upper bounds on xi (which are the same for all xi). The vector

λ = [λ1, λ2, · · · , λm]T represents the m dual variables in the general case. Superscript k ≥ 0
represents the iteration number in the optimisation procedure. The βi are found from the optimal-

ity conditions (2.16), as well as from a consideration of the form of the structural responses.

For the minimum compliance objective subject to a single linear constraint on the material re-

source, we have

βi(λ) = −

(
∂f0

∂xi

){k}/
λ

(
∂f1

∂xi

){k}

, (3.3)

for all elements i = 1, 2, · · · , n. The update (3.2) has the same form as the OC update (2.26)

described in Section 2.2.2. However, the sensitivities of the constraint appear in the denominator

of (3.3), whereas they occur in the numerator of (2.26). The form discussed in Section 2.2.2

derives from the weight minimisation problem, in which the reciprocal behaviour of the structural

responses affect the constraint functions, while the objective function is linear. Here, however, it

is the objective that exhibits the reciprocal-like form, and the volume constraint is linear in the

design variables. The optimality conditions for x
{k+1}
i derived from the stationary condition of

the Lagrangian (2.16) for the compliance problem therefore express the relationship between the

gradients of f0 and f1 inversely with respect to the weight minimisation problem.

In (3.2), η is a heuristic numerical damping factor first introduced by Bendsøe [42] for the topology

optimisation problem. Its function was discussed in Section 2.2.2; for the compliance problem a

value of η = 0.5 is typically used.

Previously, Groenwold and Etman [43] have shown that (3.2) can be derived from a sequential

approximate optimisation algorithm based on duality, just as Fleury noted the equivalence of SAO

and OC in the definition of (2.22). The update (3.2) corresponds exactly to the SAO updating

scheme one obtains if the primal objective function is approximated by

f̃
{k}
0 (x) = f0(x

{k}) +
n∑

i=1

(
yi − y

{k}
i

)(∂f0

∂yi

){k}

= f0(x
{k}) +

n∑

i=1

(
xq

i − (xq
i )

{k}
)(x1−q

i

q

){k}(
∂f0

∂xi

){k}

, (3.4)

and the primal approximate constraint is a linear function in terms of xi, given by the expan-

sion (2.14). The objective approximation (3.4) is a linear (first-order) truncated Taylor series

expansion in terms of the exponential intervening variables yi = xq
i , first suggested by Fadel et

al. [44]. The condition q < 0 is adequate to ensure that the approximate primal problem is strictly

convex. With the objective and constraint functions approximated in this way, the Lagrangian of

the subproblem is separable in the xi. Applying the stationary conditions (2.16) to the Lagrangian

yields

xi =
[(
xk

i

)1−q
βi

] 1

1−q

∀ i = 1, 2, · · · , n,

with the βi given by (3.3). This is equivalent to (3.2) with

η =
1

1 − q
,
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and with the bounds on xi respected. Of particular interest is the case when η = 0.5, which results

in

f̃
{k}
0 (x) = f0(x

{k}) +
n∑

i=1

(
xi − x

{k}
i

)(x{k}i

xi

)(
∂f0

∂xi

){k}

, (3.5)

a linear Taylor series expansion in terms of the familiar reciprocal intermediate variables so popular

in structural optimisation. The function (3.5) is obtained by setting q = −1 in (3.4). Incidentally,

both the heuristic OC method proposed by Bendsøe and the MMA algorithm utilise reciprocal

intermediate variables.

To derive (3.2) from (3.4) in a general SAO setting, it is merely required that the Falk dual [2]

exists. In turn, the Falk dual may be shown to exist for an arbitrary (approximate) primal subprob-

lem that is strictly convex and separable, on condition that the design variables represent a closed

and bounded set (this being the case in the topology optimisation problem). For details, the reader

is referred to References [2, 28, 41]. Accordingly, (3.2) may be understood to be a very general

statement in topology optimisation. Even the popular method of moving asymptotes (MMA) may

be generalised to a form similar to (3.2).

It is in the context of the OC update (3.2) that Sigmund’s filter is normally considered. The fil-

ter modifies the design updates by changing the sensitivities of the objective function that enter

into (3.3). The question arises: what exactly does it mean when the gradients of the stated objective

are not used in the design update, being instead replaced by the filtered sensitivities? Recognising

the equivalence between OC and SAO allows us to suggest an interpretation.

3.5 Sigmund’s mesh independence filter

We now turn our attention to Sigmund’s very well-known sensitivity filter [14, 15]. For an arbitrary

objective function f0, it is expressed as

(
∂̂f0

∂xi

){k}

=

n∑

j=1

wijx
{k}
j

(
∂f0

∂xj

){k}

x
{k}
i

n∑

j=1

wij

, i = 1, 2, · · · , n. (3.6)

Apparently, the sensitivities of the objective function are modified, and the elemental sensitivities

(
∂f0

∂xi

){k}

are replaced by the ‘filtered sensitivities’

(
∂̂f0

∂xi

){k}

,
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which have become a function of the sensitivities and densities of a subset of the total number of

elements n (most wij = 0). It is this very replacement of the sensitivities that is seen as the reason

why the mesh independence filter is suspicious from a mathematical point of view, since the filtered

sensitivities are then used in the update scheme for the βi in (3.2). A satisfying explanation of what

it means physically to insert the filtered sensitivities into (3.2) has been lacking

Of course, the effect of this insertion is recognised as advantageous. Firstly, checkerboarding is

suppressed; at the solution, the design variables xi are ‘smoothed’ in some sense over the subset

of neighbouring elements defined by the convolution operator wij , being zero for elements ‘far

away’ but non-zero for a number of elements in the ‘close vicinity’ of element i, with (typically)

wij = 1 for j = i and 0 < wij < 1 otherwise. However, this ‘smoothing’ is not accomplished

in a direct way, as with density filtering [38]. Instead, modifying the gradients of the objective

somehow naturally gives rise to a sequence of design updates that gravitate away from solutions

that exhibit checkerboarding. Secondly, the same process also produces mesh independence.

3.5.1 Interpreting Sigmund’s mesh independence filter

The filter is seen as heuristic because it seems to lack a formal mathematical rationale for both

its particular form and its function. If the solution of the topology problem is approached from

the point of view of the OC methods, it is indeed difficult to find a formal interpretation of the

filter. However, when the solution of the problem is viewed from the (equivalent) perspective of

dual-SAO, the mechanism of the filter naturally acquires a more significant interpretation. It is

straightforward to show that the use of the filter modifies the form of the approximate subproblems

that are used in the optimisation procedure.

The problem of interpreting the mesh independence filter of Sigmund becomes tractable if the

update scheme is understood to be the result of a Falk-like dual formulation. For the compliance

problem considered, this perspective leads us to conclude that the update scheme containing the

filtered sensitivities must derive from the primal approximation

f̃
{k}
0 (x) = f0(x

{k}) +
n∑

i=1

(
xp

i − (x
{k}
i )p

)(x1−p
i

p

){k}
(
∂̂f0

∂xi

){k}

, (3.7)

in exactly the same way that the combination of (3.2) and (3.3) derives from (3.4). The filtered

sensitivities are constants evaluated at x{k}. They are strictly negative because the gradients of the

partial derivatives of the compliance objective are all negative. Hence an easily identifiable and

strictly convex primal approximate objective, defined by (3.7), is minimised whenever the filtered

sensitivities are used. When constructing the Falk dual, (3.7) poses no problems whatsoever, since

the modified sensitivities do not depend on the elements of x in the Lagrangian of the approximate

subproblem L{k}(x,λ).

At the point x{k}, primal approximations (3.4) and (3.7) have identical function values. However,

their gradients at this point differ. The effect of the filtered sensitivities is that the SAO subproblems

constructed using the filtered sensitivities are different from those that would have been constructed

using the actual gradients, though each is still strictly convex, possessing a unique solution. Thus,

the use of these subproblems produces a different sequence of SAO iterates x{k+1} than would have

been obtained without the filter. In this interpretation it is still the original compliance problem that
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is solved, and the filter determines the form of the subproblems used in the SAO. It is the choice of

the particular form of the SAO subproblems (defined by the filter) that effects mesh independence

and overcomes checkerboarding.

The interpretation of Sigmund’s mesh independence filter proffered here therefore changes the

question of explaining the functioning of the filter from “what problem is actually being solved?”

to “why should the subproblems defined by the filter be effective?” Why and how such sub-

problems would produce a sequence of solutions that converge (hopefully) on a design that is

checkerboard-free, in a qualitatively mesh-independent way, remains to be explained. Hence, the

fundamental questions regarding the filter remain unanswered. However, it is hoped that interpret-

ing the form of the filter in terms of sequential approximate optimisation at least provides a firm

basis from which an investigation of its function may be advanced.

Of course, (3.7) is no longer a genuine Taylor series expansion. The approximate subproblem

derived thereby is not first-order accurate (something that is usually demanded if a convergence

proof for an SAO algorithm is to be advanced), so the question can be asked whether using such

an approximation is a particularly sensible choice from the perspective of SAO3. Nevertheless, the

meaning of the filtered sensitivities, at least, is clear. Again, of particular interest is the case when

η = 0.5, which simply corresponds to

f̃
{k}
0 (x) = f0(x

{k}) +
n∑

i=1

(
xi − x

{k}
i

)(x{k}i

xi

)(
∂̂f0

∂xi

){k}

. (3.8)

Finally, it is instructive and semantically correct to refer to Sigmund’s original method for filtering

as ‘filtering through the construction of a modified approximate primal subproblem’, or possibly

‘approximation-based filtering’ for short. Since the filter defines a particular form for the SAO sub-

problems, there is no reason to suspect that the filter itself is in any sense fundamental. This is to

say that other subproblem forms, defined by other sensitivity filters, may equally accomplish mesh

independence and the suppression of checkerboarding. Indeed, as a form of approximation-based

filtering, the filter of Sigmund exhibits similarities with the so-called grey-scale filter previously de-

veloped by Groenwold and Etman [45]. We point out that the insights developed from an analysis

of Sigmund’s filter, in the context of SAO, may be used to develop alternative approximation-based

filtering methods to (3.7).

3.5.2 A two-dimensional graphic example

Consider the two-dimensional programming problem

min
x

f0(x1, x2) =
a1

x2
1

+
a2

x2
2

subject to f1(x1, x2) = x1 + x2 − 0.8 ≤ 0 , (3.9)

x1, x2 > 0 ,

3Experience of course suggests that the modified primal approximation that stems from the filter is indeed sensible.

The optimality of the solution, from the point of view of the original unfiltered compliance problem, is another matter

altogether.
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where f0 is a monotonically decreasing inverse quadratic function. This problem is depicted in

Figure 3.1(a), for a1 = 3 and a2 = 1.

Two linear inverse approximations to the original function are graphed in Figures 3.1(b) and 3.1(c).

Both approximations use reciprocal intermediate variables. Figure 3.1(b) was constructed us-

ing (3.5), i.e. the original unfiltered sensitivities were used, whereas Figure 3.1(c) was constructed

using (3.8), i.e. the filtered sensitivities were used. We have used the convolution operator

w1j = [1.0 0.4] ,
w2j = [0.4 1.0] ,

and both approximations are constructed around the point x{k} = [0.2 0.6]. Figure 3.1(d) depicts

a comparison of each function on the subspace (x1, (x2 = 0.6)). The filtered approximation is

quite different to the Taylor approximation and its gradient does not match the true gradient at

the point of approximation. Naturally, the minima of the two different approximate subproblems

with respect to the linear constraint f1 are found at different positions. The approximate primal

objective function defined by employing the filter has the same monotonically decreasing form as

the unfiltered Taylor approximation, but the modified gradients change the position at which the

approximate optimum is located.

If the approximate subproblem derived from the Taylor expansion were to be constructed at the

optimum x∗ of (3.9), it would have the same optimum as (3.9), namely the point of approximation

x∗. The same is not true of the filtered approximation. The filtered approximation constructed at

x∗ would have a minimum elsewhere, this being a consequence of the fact that the filtered approx-

imation is not first-order accurate. Hence, when the filter is used in SAO (or in an OC algorithm

for that matter), the solution that the optimisation process identifies will characteristically not be

a KKT point of the stated problem. This last presumes that convergence to a solution will oc-

cur at all, which is unclear generally (for the 2D problem above, however, convergence can be

demonstrated numerically).

3.6 The existence of a smoothed problem

One advantage of the interpretation of the filter given in Section 3.5.1, as part of the generation

of SAO subproblems, is that, in this view, the originally stated topology problem is the problem

that is addressed, and not some other related problem. It is still interesting to ponder whether this

alternative view is, in fact, possible. Hence, we here consider the question of whether, for a given

material distribution problem PD, it is possible to view the filtered gradients as being the actual

gradients of another (true) objective function ft (x), which is actually being minimised when the

filter is employed. Note: we ask only whether a different objective function can exist for the

relaxed continuous form of the optimisation problem. However, if the answer is negative, it is

difficult to see how the existence of a different continuum4 form can be espoused. This question

may be viewed in two ways:

4Spatially continuous.
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Figure 3.1: The effect of filtering and approximation on the minimum of a simple 2D function.

Case 1: The true objective function ft has the same objective function values as the evalu-

ated objective function f0 (x) at all point x{k}, k = 1, 2, · · · in the sequence of SAO

iterates.

Case 2: The true objective function is entirely different from the stated compliance objec-

tive in PD, in which case it is never actually evaluated throughout the optimisation

process.

In both cases, the sensitivities of the true objective function are derived from the evaluation of

PD. They are constructed from the sensitivities of f0 (x) via the application of (3.6). If we expect

Case 1 to be valid, then we require that two functions, f0 and ft, exist that have the same function

values everywhere, but different gradient fields. In other words, two identical functions must

have different gradients. This is so because the points at which the objective is evaluated are

essentially arbitrary. Case 1 is therefore obviously not possible because of the uniqueness of partial

derivatives. That is to say: a continuous and differentiable function has a unique gradient field

because its partial derivatives are unique.

Case 2 is more interesting. In case 2, the only knowledge that is gleaned about the supposed

function ft is its gradient field, which is written (and evaluated) in terms of the sensitivities of
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f0. In theory it is possible to recover the function ft from its gradient, which is a vector field.

The idea can be expressed using, for example, the fundamental theorem of line integrals (see for

instance [46]), which derives from the fundamental theorem of calculus, and holds that
∫

S

F · ds = f (x1) − f (x0) . (3.10)

Here S is a simple parameterised curve joining x1 and x0, and ds is an infinitesimal line element

on S. The gradient field of a given function f is represented by F . It is a standard result from the

calculus of vector-valued functions that, if F is the gradient of a scalar potential function f , i.e.

F = ∇f , then equation (3.10) holds and the right-hand side of (3.10) is independent of the path S
chosen between x1 and x0

5. In other words, F is conservative. Thus, given a starting point x0 and

an associated function value ft (x0), the ‘true’ objective function ft (x) can be recovered from the

vector field F t (given by the filtered sensitivities) as

ft (x) =

∫

S

F t · ds+ ft (x0) , (3.11)

where x is now arbitrary and the curve S is chosen appropriately. If ft (x0) is not known, it can be

chosen arbitrarily, in which case ft (x) is recovered relative to ft (x0). In two and three dimensions

it is possible to test directly whether the vector field F t is in fact the gradient of a scalar function

ft. Another standard theorem from calculus holds that if F = ∇f , then it must be true that

curl (∇f) = 0 . (3.12)

Hence, if we have a vector field F t in three dimensions, we can test whether an associated scalar

potential function ft exists by testing whether curl (F t) = 0, because only rotation-free vector

fields derive from scalar potential functions. Again, refer to [46], for example.

For a three-variable problem, the condition that curl (F ) = 0 is equivalent to the conditions

∂2f

∂x1∂x2

−
∂2f

∂x2∂x1

= 0 ,

∂2f

∂x1∂x3

−
∂2f

∂x3∂x1

= 0 , (3.13)

∂2f

∂x2∂x3

−
∂2f

∂x3∂x2

= 0 .

Now, suppose the filter is applied to an arbitrary three-variable conservative vector field F 0 that

derives from a scalar objective f0, so that

F 0 = ∇f0 =




∂f0

∂x1

∂f0

∂x2

∂f0

∂x3




5Provided that the domain on which F is defined is simply connected, that F (x) is continuous and that the curve

joining x1 and x0 is simple.
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and f0 satisfies (3.13). By differentiating the filter equation (3.6), the off-diagonal elements (i 6= j)
of the Hessian can be written

(
∂2ft

∂xj∂xi

)
=

n∑

k=1

wik

(
δkj

∂f0

∂xk

+ xk

(
∂2f0

∂xj∂xk

))

xi

n∑

k=1

wik

,

so that for the three-variable problem the mixed partials are expressed as

(
∂2ft

∂xj∂xi

)
=

1

xi (wi1 + wi2 + wi3)

(
wij

∂f0

∂xj

+ wi1x1
∂2f0

∂xj∂x1

+ wi2x2
∂2f0

∂xj∂x2

+ wi3x3
∂2f0

∂xj∂x3

)
.

Provided that the convolution operator is constant, so that its form does not change as a function

of the spatial position r and it is independent of the design variables x, then

W =
n∑

k=1

wik and wii = w ∀ i = 1, 2, · · · , n. (3.14)

Choosing j = 1 and i = 2, we find that

∂2ft

∂x1∂x2

−
∂2ft

∂x2∂x1

=
1

W

[(
w21

x2

)
∂f0

x1

−

(
w12

x1

)
∂f0

x2

]
+

1

W

[(
w21x1

x2

)
∂f0

∂x2
1

−

(
w12x2

x1

)
∂f0

∂x2
2

]
+ (3.15)

1

W

[
(w22)

∂f0

∂x1∂x2

− (w11)
∂f0

∂x2∂x1

]
+

1

W

[(
w23x3

x2

)
∂f0

∂x1∂x3

−

(
w13x3

x1

)
∂f0

∂x2∂x3

]
.

Similar equations of course result for the other two differences of mixed partials, (13 − 31) and

(23 − 32). In (3.15), the third term on the right-hand side disappears by virtue of the fact that

the unfiltered field F 0 satisfies the conditions in (3.13), and we have assumed conditions (3.14).

However, it is unlikely that the remaining terms on the right-hand side of (3.15) sum to zero for

all allowable values of the variables x1, x2 and x3. This being the case, it would seem that the

vector field generated upon application of the filter is unlikely to be conservative, and the filtered

sensitivities are therefore unlikely to be associated with a different scalar function ft. Certainly,

the filter does not automatically produce a conservative vector field from any conservative field F .

The above does not suggest that the filter cannot be associated with a scalar function. It may well

be possible that certain combinations of function and convolution operator exist that will produce a

vector field representing the gradients of another scalar potential function. But the form of (3.15) is

reason enough to suspect that the generation of a conservative vector field is not the de facto result

of applying the filter, and that, for any given scalar objective, the converse is more likely to be true.

In particular, we are therefore motivated to postulate that the filtered compliance sensitivities are

not associated with a different objective function at all.
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Compliance objective

For the three variable compliance objective, the above can be verified directly. To simplify matters,

we will assume a simplified convolution operator that meets the criterion (3.14), namely that

wij = 1 ∀ i = 1, 2, 3, j = 1, 2, 3. (3.16)

As discussed in Section 2.1.2, the unfiltered sensitivities of the SIMP-penalised compliance objec-

tive function are given by
∂f0

∂xi

= −pxp−1
i qT

i Kiqi .

This form, in which Ki is the elemental stiffness matrix of element i, and qi is the vector of nodal

displacements for element i, is useful for the numerical calculation of the sensitivities. However,

it may also be written as
∂f0

∂xi

= −pxp−1
i qT Kiq , (3.17)

where q is the complete displacement vector for the mesh. The matrix Ki again denotes the

elemental stiffness matrix for element i, though now it should be understood to be represented as a

global matrix of size [ndof × ndof ], in which only the degrees of freedom associated with element

i are potentially non-zero (ndof being the total number of degrees of freedom for the mesh). From

∂

∂xj

(Kq) =
∂w

∂xj

,

for design-independent loads we obtain

∂q

∂xj

= −pxp−1
j K−1 [Kjq] . (3.18)

Using (3.17) and (3.18), the second-order partial derivatives of the penalised compliance objective

can be expressed as

∂f0

∂xj∂xi

= 2p2
(
xp−1

i

) (
xp−1

j

)
[Kiq]T K−1 [Kjq] − δijp (p− 1)

(
xp−2

i

) [
qT Kiq

]
. (3.19)

Note that since K−1 is symmetric, for the off-diagonal terms i 6= j,

∂f0

∂xj∂xi

=
∂f0

∂xi∂xj

(3.20)

as expected. Therefore, for the three-dimensional filtered sensitivities, in which the convolution

operator has been simplified according to (3.16) and applied to the sensitivities of the compliance

objective, the difference of mixed partials 12 − 21 in equation (3.15) is given by

∂2ft

∂x1∂x2

−
∂2ft

∂x2∂x1

=

p2

3x1

(
xp−1

2

) (
qT K2q − 2xp

2 [K2q]T K−1 [K2q] − 2xp
3 [K3q]T K−1 [K2q]

)
− (3.21)

p2

3x2

(
xp−1

1

) (
qT K1q − 2xp

1 [K1q]T K−1 [K1q] − 2xp
3 [K3q]T K−1 [K1q]

)
.
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Coordinates Results

x1 x2 x3

∣∣∣ ∂2ft

∂x1∂x2
− ∂2ft

∂x2∂x1

∣∣∣
∣∣∣ ∂2ft

∂x1∂x3
− ∂2ft

∂x3∂x1

∣∣∣
∣∣∣ ∂2ft

∂x2∂x3
− ∂2ft

∂x3∂x2

∣∣∣

0.146 0.176 0.058 1.572 × 106 3.480 × 106 6.844 × 106

0.231 0.201 0.136 1.163 × 105 2.161 × 105 5.088 × 104

0.027 0.002 0.021 1.443 × 1014 1.142 × 1010 1.857 × 1014

Table 3.1: Differences in mixed partials at three pseudo-randomly chosen (feasible) points for the

three-variable MBB beam.

Equation (3.21) can be evaluated at various points x for any particular structure discretised by only

three elements. It is only strictly necessary to identify a single point for which (3.21) or either of

the other two differences of mixed partials is non-zero to demonstrate that the filtered sensitivities

do not represent a conservative vector field6. Table 3.1 contains the results of the evaluation of

the differences in mixed partials for the filtered problem at three random feasible points for the

MBB beam problem, in which the half-beam is discretised using only three elements (Figure 3.2).

Sigmund’s 99-line topology code [9] was used for this purpose. Clearly, these terms are non-zero

(while the corresponding terms are verifiably zero for the unfiltered problem), implying that the

vector field defined by the filtered sensitivities is not conservative.

For other, more representative compliance problems, which have a greater number of variables and

employ a more standard convolution operator, the conservativeness of the filtered gradients is not

tested as easily. The test involving the curl operator (3.12) is valid in two and three dimensions,

but not in higher dimensions, being defined in terms of the cross product. An equivalent notion for

higher dimensions is difficult to come by, and even more difficult to understand (for this author at

least). Therefore, for larger problems we propose to test whether the filtered compliance gradient

field is conservative (or not) by numerically checking the path independence of (3.11). We do so

in Section 3.7.

x1 x3x3 x1 x2x2 h = 1

l = 6

P = 1

Figure 3.2: The MBB beam (unit thickness; plane stress; E = 1, ν = 0.3).

6The mixed partial derivatives could of course be approximated using finite differences instead.
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3.7 Numerical examples

In this section we numerically catalogue the propensity for the filter to produce non-conservative

vector fields from the unfiltered conservative gradient fields of a few additional problems. The first

problem considered is another analytical example, which we use to generate graphical results that

illustrate the method used to establish whether or not the considered field is conservative. We also

use this example to express a few thoughts regarding the convergence of SAO procedures using

the filter. The other problems considered are larger and more representative minimum compliance

topology problems. That is: they have more than three variables (though they are still very small)

and use a standard discrete convolution operator.

Since the compliance problems have more than three variables, we lack a straightforward test

for the conservativeness of their gradient fields. We therefore propose to use equation (3.11) to

numerically calculate the function values from the gradient field along two separate piecewise

linear curves, or routes, both originating at the same point p0 and terminating at the same point p2 in

the design space. Figure 3.3 illustrates the process. If the filtered gradient field F t is conservative,

and is thus associated with a scalar objective function, then the function value arrived at for p2

using route 1 should be identical to the function value determined using route 2, so that

fR1
t (xp2

) − fR2
t (xp2

) = 0 . (3.22)

Each route is constructed from two line segments defined by the random selection of two additional

points, p1 for route 1 and p′1 for route 2. An outline of the procedure used is as follows:

1. Calculate △s = β (xe − xb) for the current line segment, where xb and xe are respectively

p0

p1

p2
p′1

Figure 3.3: Two piecewise linear curves joining two points p0 and p2.

Stellenbosch University    http://scholar.sun.ac.za



CHAPTER 3. SENSITIVITY FILTERING IN TOPOLOGY OPTIMISATION 53

the beginning and end points of the line segment and β is the desired step size.

2. Given the current point x{k} and its function value ft

(
x{k}

)
, evaluate F t

(
x{k}

)
.

3. Calculate ft

(
x{k+1}

)
=
[
F t

(
x{k}

)]
· △s and determine the following point on the line

segment x{k+1} = x{k} + △s.

4. Repeat (2) and (3) until the end of the line segment is reached.

Numerical error, which is dependent on both the step length and the magnitude of the elements of

the gradient field, is inherent in the process just described. However, it is again only necessary to

generate one result for which (3.22) does not hold, and for which we are confident that the result

is not caused by the error, to conclude that the field is not conservative.

In an effort to define the scale of the error produced by the numerical line integrals, the same

process that is carried out on F t is also carried out on the unfiltered gradient field F 0, which is

already known to be conservative because it derives from a scalar objective function f0. Since

ft (xp2
) is calculated relative to ft (xp0

), the error produced by integrating F 0 along a specific

route Ri, namely
[
f0 (xp2

) − fRi

0 (xp2
)
]
, is normalised with respect to

[
fRi

0 (xp2
) − f0 (xp0

)
]
, the

superscript Ri indicating that the function value was obtained by numerical integration along route

i. Then, the error that we expect to be produced by numerically integrating F t along the same path

Ri is estimated as

ERi =

∣∣∣∣∣
[
fRi

t (xp2
) − f0 (xp0

)
] [f0 (xp2

) − fRi

0 (xp2
)
]

[
fRi

0 (xp2
) − f0 (xp0

)
]
∣∣∣∣∣ , (3.23)

in which f0 (xp0
) and f0 (xp2

) are the actual function values at the beginning and end of route

i, determined by evaluating the function directly. Additionally, to minimise the error further, all

points are chosen close together (within a unit radius of one another).

3.7.1 A 3D convex and separable example

Consider the following strictly convex and separable programming problem, similar to the graphic

example (3.9) given in Section 3.5.2:

min
x

f0(x) =
3

x2
1

+
1

x2
2

+
2

x2
3

subject to f1(x) = x1 + x2 + x3 − 0.8 ≤ 0 , (3.24)

x1, x2, x3 > 0 .

Conservatism of the filtered vector field is investigated as described above. The results of four

numerical experiments are given. Table 3.2 lists the coordinates of the four (pseudo-randomly

selected) points used in each of the tests, as well as the actual function values f0 (xp0
) and f0 (xp2

)
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and the function values at p2 derived by numerical integration of the unfiltered gradients fR1

0 (xp2
)

and fR2
0 (xp2

). The convolution operator for these tests is set at wij = 1∀ i, j.

Table 3.3 summarises the results obtained by integrating the filtered gradient field. The differences

in function values obtained at p2 are compared with the estimated expected error. We may thereby

judge whether the differences in function values obtained are the result of error, or the result of the

field being non-conservative. We expect that, if the filtered field is conservative, the difference in

function values should be of the same order as the sum of the expected errors for each integration

route. The step size used for this example is β = 5 × 10−5.

The results of four tests are shown. The results are typical in that a difference in function values

at p2 is evident, indicating that the results obtained are path dependent. Only those results have

been shown for which the integration error produced by integrating the unfiltered field is low.

The integration paths for which this is not the case are likely to include regions in which the

gradient is very steep (this can be expected since the function has asymptotes), in which case the

numerical procedure employed will be deficient without resorting to smaller step sizes. The four

tests presented clearly exhibit function differences that are orders of magnitude greater than the

estimated numerical error, so we conclude that the filtered sensitivities do not correspond to any

scalar objective function.

Figure 3.4 (page 60) displays the results graphically. It shows the functions ft (x) obtained by

integrating the filtered sensitivities F t · ds along the piecewise linear routes defined in Table 3.2.

For comparison, the function derived from carrying out the same procedure on the unfiltered sen-

sitivities F 0 is also shown (i.e. we integrate the directional derivatives of f0 along S). It should be

noted that the graphs obtained by integrating F 0 · ds are indistinguishable from the true function

values f0 along the specified routes on the scales at which the graphs are plotted. The points of

discontinuity in the curves correspond to the points p1 and p′1 in each route at which there is an

abrupt change in direction.

Of course, the curl (∇f) = 0 argument could have been used to prove the filtered sensitivities are

non-conservative for this problem, it being only three-dimensional, but the example serves to illus-

trate the numerical process applied to the higher dimensional compliance problems below. Also,

and more importantly perhaps, is that this problem allows us to test the possibility of convergence

for optimisation algorithms using the filtered sensitivities rather than the original ones.

A word on convergence

The fact that the filter creates subproblems that are not first-order accurate raises the question of

whether convergence can be expected to occur at all when the filter is used in an OC or SAO

framework. The widespread use of the filter is itself probably reason enough to presume that the

filter does not disturb convergence. However, that convergence will occur has not been established

generally; a formal proof that the filter does not upset the ability of SAO to converge, despite the

lack of first-order accuracy, would place it on a surer footing theoretically. We cannot proffer such

a proof. However, we here discuss certain observations based on the three-variable separable and

strictly convex problem introduced above.

As with the compliance problem, this three-variable problem has partial derivatives that are ev-

erywhere negative. Provided that all the xi and all the wij are positive, the filter preserves this
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Coordinates Function values

Point x1 x2 x3 f0 (xp0
) f0 (xp2

) fR1

0 (xp2
) fR2

0 (xp2
)

Test 1

p0 0.2080 0.1044 0.0908 4.036 × 102 4.281 × 102 4.277 × 102 4.279 × 102

p1 0.2520 0.1480 0.0637
p′1 0.1797 0.1824 0.2540
p2 0.1035 0.1407 0.1430

Test 2

p0 0.203 0.140 0.206 7.394 × 103 2.642 × 103 2.634 × 103 2.632 × 103

p1 0.029 0.029 0.075
p′1 0.026 0.243 0.258
p2 0.163 0.020 0.150

Test 3

p0 0.207 0.050 0.132 5.811 × 102 1.510 × 103 1.509 × 103 1.506 × 103

p1 0.277 0.150 0.207
p′1 0.163 0.130 0.031
p2 0.089 0.076 0.046

Test 4

p0 0.182 0.189 0.299 1.413 × 102 3.111 × 102 3.110 × 102 3.105 × 102

p1 0.140 0.100 0.152
p′1 0.064 0.242 0.339
p2 0.121 0.138 0.193

Table 3.2: Coordinates defining the line segments used in examining the conservatism of the fil-

tered gradient field of problem (3.24), together with function values at the initial and terminal

points of the integration paths.

characteristic: all the elements of the filtered gradient field will be everywhere negative. There-

fore, any sequence of descent steps produced by a descent algorithm is bound to intersect the

linear constraint (descent being defined in this case as proceeding in the direction negative to the

gradient).

Ordinarily (that is, when minimising a scalar function f ) one would observe that, provided the

function actually has a finite absolute minimum on a closed and continuous feasible region (i.e. it

does not asymptote to negative infinity), the sequence of descent steps produced is bounded below.

Convergence can then be adduced, although the point to which convergence occurs can lie in a

subspace on which the function is constant, or the function may be multimodal, so convergence

to a particular point cannot be assured. When examining the convergence characteristics for an

SAO sequence, one would normally take as starting assumptions the existence of KKT points, as
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Test fR1

t (xp2
) ER1 fR2

t (xp2
) ER2

∣∣ERi + ERi

∣∣ ∣∣fR1

t (xp2
) − fR2

t (xp2
)
∣∣

1 3.707 × 102 0.539 4.215 × 102 0.157 0.696 5.08 × 101

2 1.121 × 104 6.147 0.364 × 104 7.426 13.573 7.57 × 103

3 1.413 × 103 0.997 1.975 × 103 4.783 5.780 5.62 × 102

4 2.878 × 102 0.077 4.315 × 102 1.089 1.166 1.44 × 102

Table 3.3: A comparison of the differences in function values obtained for p2 by numerical in-

tegration along two different paths with the expected error involved in the integration. If Ft is

conservative, the difference in the function values should be of the same order as the cumulative

error.

well as the idea that the function can be seen as locally convex in some small region surrounding

each KKT point. Whatever the specific nature of the assumptions, it is the properties of the scalar

objective function that are used in arguments to assert convergence. The familiar KKT conditions,

which characterise the optimal solutions, are also phrased in terms of the partial derivatives of the

objective function. However, when the filter is used it is a little difficult to build a similar argument

asserting convergence if no such scalar function exists. Therefore, an analysis of convergence must

be based on this filtered gradient field itself.

Consider, for instance, the curves obtained by integrating the filtered gradients Ft along linear

routes, depicted in Figure 3.4. Although these curves do not correspond to sections of any function,

one notes that the portions that correspond to particular line segments in each route are strictly

convex. The original function f0 is, of course, convex and it appears that the filter has preserved

some measure of convexity. For convex functions, we know that their Hessians are positive definite,

which is to say that

xT
[
∇2f

]
x = xT [∇F ] x > 0 ∀ x 6= 0 . (3.25)

Although we cannot ascribe positive definiteness to any function corresponding to the filtered

gradient field for this three variable problem (since no such function exists), it is easy to verify that

in this case xT [∇Ft] x > 0, since all the components of [∇Ft] are positive. It seems justifiable,

by an extension of the familiar properties of convex functions, to suspect that any vector fields that

satisfies (3.25) will have a unique terminal point for any sequence of descent steps (projected onto

active constraints if necessary) on any convex domain.

Indeed, one is able to test numerically that a projected gradient descent algorithm (that takes steps

in the direction of the maximal descent vector projected onto the subspace of active constraints)

will converge to the same point for the filtered version of (3.24) for a given set of weights wij

that define the convolution operator. Table 3.4 lists the terminal point x∗ to which the algorithm

converges for three symmetric choices of wij . A maximum step size of 0.001 (before projection)

is used.

The process used here to minimise the function is similar to the process of numerically producing

trajectories through phase space for nonlinear systems, given the differential equations describing

the system [47]. It is known that, depending on the properties of the system in question, such

trajectories can converge to a point within the space. However, trajectories can also converge to

a limiting closed cyclic trajectory, and systems may even have strange attractors (about which the
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Example w11 w12 w13 w22 w23 w33 x∗1 x∗2 x∗3

1 1.0 1.0 1.0 1.0 1.0 1.0 0.2667 0.2667 0.2667
2 1.0 0.5 1.0 1.0 0.5 1.0 0.2767 0.2775 0.2458
3 1.0 0.5 0.0 1.0 0.5 1.0 0.2715 0.2898 0.2388

Table 3.4: Convergence points for a descent algorithm applied to the 3D convex test problem.

The point of convergence depends on the definition of the convolution operator wij . Here, three

symmetric operators (wij = wji) have been used. The solution to the unfiltered problem is x∗ =
(0.3116, 0.2161, 0.2723).

trajectories are non-repetitive but also non-terminating. Of course, trajectories may also diverge.

Superficially, it appears to us that proving convergence for the optimisation process applied to

the filtered problem would require showing that the filtered gradient field only possesses point

attractors, at least on the closed feasible region defined by the problem’s constraints.

If convergence is achieved then the solution obtained, which we denote x{k∗}, satisfies the KKT

conditions for a stationary point of the approximate subproblem defined at x{k∗}, provided the

familiar constraint qualification is satisfied. Therefore, at the subproblem level, the stationary

condition for the Lagrangian reads

(
∂f̃0

∂xi

){k∗}

+ λ

(
∂f̃1

∂xi

){k∗}

= 0 , (3.26)

from which the βi in (3.3) are derived. The bound constraints on x are handled separately in the

update (3.1), which is consistent with the use of the Falk dual (see Section 2.3.1) rather than a

standard Lagrangian dual in which the bounds would have to be included in the definition of the

Lagrangian.

As discussed, the point of convergence x{k∗} (if it exists) generally will not be a KKT point of

the original, unfiltered problem PC . Since a filtered objective function ft does not exist, condi-

tion (3.26) really doesn’t form part of the KKT conditions for any associated problem besides the

terminal SAO subproblem. However, at the problem level (as opposed to the subproblem level) we

may write the stationary conditions (3.26) in terms of the filtered gradient field as

(Ft)
{k∗}
i + λ

(
∂f1

∂xi

){k∗}

= 0 , (3.27)

in which

(Ft)
{k∗}
i =

(
∂̂f0

∂xi

){k∗}

.

Lastly, we must emphasise the fact that the remarks presented here regarding convergence pertain

to the solution of the relaxed continuous minimum compliance problem. However, in addressing

the topology problem for a given spatial discretisation (i.e. mesh refinement), it is really the dis-

crete programming problem (2.7) that we are trying to solve. When viewed strictly in a combinato-

rial sense, (2.7) does not possess gradients anyway, and neither are the KKT conditions relevant for

Stellenbosch University    http://scholar.sun.ac.za



CHAPTER 3. SENSITIVITY FILTERING IN TOPOLOGY OPTIMISATION 58

characterising its optima. So, while convergence is obviously an important aspect of the optimisa-

tion, the observation that the filter disturbs convergence to a KKT point of the relaxed continuous

problem is probably subordinate to the question of whether the filter encourages mesh-independent

solid-void solutions to be found. The results depicted in Figure 5.5 are a good example. They are

minimum compliance results for the MBB beam structure, generated using a relaxed continuous

formulation in which the filter is employed. The results exhibit mesh independence and exception-

ally high black-and-white fractions. Termination of the search algorithm occurred on a minimum

tolerance imposed on the magnitude of the design changes ‖x{k−1} − x{k}‖ ≤ ǫx.

3.7.2 Larger MBB beam problems

The method described above, for assessing whether or not a given gradient field is conservative, is

now applied to the filtered sensitivities of the compliance objective for larger MBB problems, being

more representative of the problems that are typically solved using the sensitivity filter. Although

the analysed problems are still quite small, the mesh discretisation is sufficient to allow the use

of the standard convolution operator, with the filter radius being set at r = 1.5 elements in the

topology code (refer to [9]).

The results are depicted in Table 3.5 for two mesh discretisations. Three results are displayed for

each discretisation. Column 3 in the table records the maximum error produced (for the two routes)

by applying the numerical integration to the conservative unfiltered gradients. Column 4 shows the

sum of the expected errors, to be compared with the actual difference in function values obtained

by integrating the filtered sensitivities along the two different paths.

The differences obtained are an order of magnitude greater than the expected numerical error

involved in the integration. Therefore we conclude that the gradient field defined by the filtered

sensitivities of the compliance objective is not a conservative vector field, and therefore that there

is no scalar function to which it corresponds. If no spatially discretised relaxed continuous function

exists that is associated with the filtered sensitivities, it is difficult to see how a different continuum

problem could exist.

Finally, it is in order to relay a thought regarding checkerboarding in the context of the filter inter-

preted as a generator of SAO subproblems. Checkerboarding is known to be a spurious anomaly

Test Mesh max
i=1,2

∣∣fRi

0 (xp2
) − f0 (xp2

)
∣∣ ∣∣ER1 + ER2

∣∣ ∣∣fR1

t (xp2
) − fR2

t (xp2
)
∣∣

1 9 × 3 0.714 1.510 5.88 × 101

2 9 × 3 0.747 1.482 4.05 × 101

3 9 × 3 5.123 10.970 2.55 × 102

4 15 × 5 0.828 0.481 1.85 × 102

5 15 × 5 0.243 1.126 4.91 × 101

6 15 × 5 6.924 13.072 8.51 × 102

Table 3.5: Expected errors and differences in function values obtained by numerical integration

along two separate integration paths joining p0 and p2 for the MBB compliance problem.
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of the numerical analysis of the structure when displacement-based Q4 elements are used in the

FEM, which results in checkerboarded designs being unphysically over-stiff. From the point of

view of the optimiser, however, this anomaly is part of the definition of the objective, and ex-

ternal to the optimiser. If no additional constraints are present in the problem that constrain out

checkerboarded designs, then the solutions to the optimisation problem that correspond to the over-

stiff checkerboarded designs are superior designs from the point of view of the optimiser, which

seeks solutions of minimal compliance. The point here is that an optimiser based on SAO using

first-order accurate approximations should converge to the stationary points that represent the stiff

checkerboarded solutions. This implies that one cannot use any first-order accurate filter-based

technique for constructing SAO subproblems if the intention is to avoid checkerboarded designs

when Q4 elements have been used. Interestingly, it appears to be the loss of first-order accuracy

that allows checkerboarded designs to be avoided. But then, of course, the solutions obtained are

in general not stationary points of the originally stated (relaxed continuous) compliance problem

either.

3.8 Conclusion

We have studied the mesh independence filter of Sigmund in the context of sequential approximate

optimisation algorithms based on dual principles. We have shown that the filtered sensitivities de-

fine the exact gradients of a modified approximate primal subproblem, and therefore that a concrete

interpretation of the filter exists in the context of SAO. These subproblems are not only separable

in the design variables, but also (conditionally) strictly convex. According to this interpretation,

the problem that is solved when the filter is applied is still the originally stated topology problem.

We have also argued that the accepted contrary view, that the filter gives rise to another objective

function entirely, is not valid.

We have thus provided an explanation of the form of the filter based on the concepts of SAO,

but many interesting questions remain unanswered. Firstly, we do not know why the use of these

particular approximations would ensure either mesh independence or checkerboard-free designs

for topology problems. However, we hope that this novel interpretation of the filter may be used

in future as the basis on which to explore these questions, perhaps more fruitfully than in the past.

Secondly, the subproblems defined by the filter are not accurate to first order, and this raises the

question of whether convergence is assured when SAO algorithms that incorporate the filter are

utilised. Also, if convergence occurs, how is the solution obtained to be interpreted relative to the

stated objective function? There is certainly ample scope for further research along this line of

reasoning.

Lastly, we consider it instructive and correct to refer to Sigmund’s original method for filter-

ing as ‘filtering through modified approximate primal subproblems’, or ‘approximation-based

filtering’ for short. The insights developed herein may be used to propose alternative forms of

approximation-based filtering.

Stellenbosch University    http://scholar.sun.ac.za



CHAPTER 3. SENSITIVITY FILTERING IN TOPOLOGY OPTIMISATION 60

100.0

200.0

300.0

400.0

500.0

600.0

0 0.2 0.4 0.6 0.8 1

f

Proportion of route

Route 1
Route 2

(a) Example 1: Unfiltered

100.0

180.0

260.0

340.0

420.0

500.0

0 0.2 0.4 0.6 0.8 1

f

Proportion of route

Route 1
Route 2

(b) Example 1: Filtered

0.0

1600.0

3200.0

4800.0

6400.0

8000.0

0 0.2 0.4 0.6 0.8 1

f

Proportion of route

Route 1
Route 2

(c) Example 2: Unfiltered

1000.0

5000.0

9000.0

13000.0

17000.0

21000.0

0 0.2 0.4 0.6 0.8 1

f

Proportion of route

Route 1
Route 2

(d) Example 2: Filtered

0.0

500.0

1000.0

1500.0

2000.0

2500.0

0 0.2 0.4 0.6 0.8 1

f

Proportion of route

Route 1
Route 2

(e) Example 3: Unfiltered

0.0

400.0

800.0

1200.0

1600.0

2000.0

0 0.2 0.4 0.6 0.8 1

f

Proportion of route

Route 1
Route 2

(f) Example 3: Filtered

100.0

240.0

380.0

520.0

660.0

800.0

0 0.2 0.4 0.6 0.8 1

f

Proportion of route

Route 1
Route 2

(g) Example 4: Unfiltered

100.0

200.0

300.0

400.0

500.0

600.0

0 0.2 0.4 0.6 0.8 1

f

Proportion of route

Route 1
Route 2

(h) Example 4: Filtered

Figure 3.4: Linear sections through the unfiltered objective function and the filtered ‘function’

constructed by numerically integrating the directional derivatives.
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Chapter 4

A discrete topology problem

This chapter is based in part on a paper presented at a conference on fibre-reinforced composites,

hosted by the South African Council for Scientific and Industrial Research (CSIR) from the 9th to

the 12th of December 2007, in Port Elizabeth, South Africa. The original conference paper is titled

“Optimisation of constrained mixed discrete continuous composite problems via a dual method of

sequential approximate optimisation” [48]. It is co-authored by Prof. Albert A. Groenwold of

the Department of Mechanical Engineering at the University of Stellenbosch, Stellenbosch, South

Africa.

4.1 Abstract

In this chapter, a dual method for the optimisation of discrete and mixed discrete-continuous con-

strained problems that appear in the analysis of fibre-reinforced composite structures is presented.

Developed initially by Schmit and Fleury, the method is an extension of a popular dual approach

used in the sequential approximate optimisation of continuous problems to (mixed) discrete prob-

lems. As such, the primal problem is substituted by a suitable convex and separable approximate

subproblem during each iteration of the algorithm. A continuous but piecewise linear Falk dual

is defined and solved subject only to non-negativity constraints on the dual variables, yielding an

approximation to the (mixed) discrete primal optimum. Both the advantages and shortcomings

of the method are illustrated. Its utility for the optimisation of constrained discrete problems is

demonstrated by a novel application of the method to a problem concerning the combined selec-

tion of the optimum point-wise fibre direction and solid-void material distribution in the minimum

compliance design of planar composite structures.

4.2 Introduction

The use of fibre-reinforced composite (FRC) materials has become important in structural design,

particularly in industries that place a premium on developing high-strength, low-weight structures,

such as the aerospace industry. In addition to the advantages gained by their high strength-to-

weight ratios, the orthotropic nature of FRCs also affords designers great freedom to tailor com-

61
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posite designs to suit the prevailing structural loads. However, the drawback of such flexibility is

the increased complexity of analysis, design and optimisation of FRC structures over structures

composed of isotropic material. Venkataraman and Haftka [49] provide an overview of the design

of composite panels from the standpoint of complexity, and it is noted that high-fidelity analysis of

large, complex composite structures is currently nigh impossible due to the computational burden

that this entails.

On the other hand, the optimal design of single components or composite laminates has become

an active and fruitful area of research. Most commonly, problems concerning optimal ply orienta-

tion, thickness and stacking sequence have been addressed for the purposes of buckling, vibration

or failure analysis [49, 50]. In these analyses, a given ply’s fibre direction(s) and thickness are

assumed to be spatially constant throughout the laminate. It has become interesting, however, to

consider the design of laminates in which the fibre angle can change as a function of position,

particularly now that tow-placement machines have made these so-called ‘variable stiffness’ lam-

inates manufacturable [51]. The problem of optimal spatially-varying fibre orientation has been

addresses by Landriani and Rovati [52], amongst others, and the design of laminates in which both

the fibre direction and the laminate thickness are allowed to vary has been considered, for instance,

by Pederson [53]. A natural extension of this line of research is the combination of optimal topol-

ogy and optimal fibre angle design for a laminate. It is toward this question that the work presented

in the current chapter is directed. Hansel and Becker [54] and Duvaut et al. [55] both present work

in which fibre orientation is optimised, in combination with density in the former case and fibre

volume fraction in the latter. Both present results that are reminiscent of optimal topologies, though

neither algorithm is based on a traditional penalisation-based solid-void topology formulation. Se-

toodeh et al. [56], by contrast, have presented a method that uses the solid isotropic material with

penalisation (SIMP) approach to topology optimisation, suggested independently by Bendsøe [18]

and Rozvany and Zhou [19], to generate designs in which the optimal topology and optimal local

fibre orientation is determined concurrently for the minimum compliance design of FRC plates.

Interestingly, they accomplish this through the use of cellular automata.

In this chapter a method is presented for generating such designs that is based largely on the work

of Stegmann and Lund [57]. They solve the problem by using the SIMP approach, and by applying

a technique that they call ‘discrete material optimisation’ (DMO), which was first introduced by

Sigmund et al. [58] as ‘multiphase topology optimisation’. DMO allows the optimiser (which

in their case was the method of moving asymptotes [3]) to search for the optimal set of material

properties from a set of candidate materials. The selection of element-wise fibre directions is

accomplished by evaluating the stiffness matrix for an FRC composite at multiple discrete angles,

and then defining these as the candidate materials. The DMO formulation described in [57] does

not allow for the generation of true solid-void topologies. Instead, an isotropic material with

a low stiffness may be included as one of the candidate materials, and the optimiser is free to

approximate voids in the domain through the selection of this material. Stegmann and Lund solve

the problem in the continuous sense (that is, they solve the relaxed continuous problem) and rely

on the SIMP method of penalisation, as well as clever interpolation schemes for the elemental

material properties, to generate solutions in which each element is representative of one of the

candidate materials.

The approach that we follow is an adaptation of DMO. As with DMO, we consider the mate-

rial properties of an element to be a linear combination of several discrete candidate materials.
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However, we introduce inequality constraints on the density of each element, which allows the

optimiser to generate a void element by driving the contribution of all the candidate materials to

zero. The resulting problem can be considered large-scale, since there are as many constraints as

elements in the finite element mesh and the number of primal variables is a multiple of the number

of elements. In order to ensure that at most one candidate material is selected per element, the

problem is formulated on the binary discrete set and solved using the discrete dual approach intro-

duced by Schmit and Fleury [16]. As far as we know, this is both a novel adaptation of DMO as

well as a novel application of the discrete dual, which has previously been applied to the minimum

compliance topology design of isotropic structures by Beckers [17].

Relative to DMO, the complexity and size of the optimisation problem is increased by the addition

of elemental constraints, which is obviously not desirable. However, the application of DMO

within the framework of dual SAO for this problem gives rise to an advantageous structure for the

dual subproblems. Alhough it is standard practise, and even necessary, to formulate the primal

subproblems as separable when dual solvers are used, it is unusual to encounter a dual which

itself has a separable structure in the space of the dual variables. The FRC topology problem

presented here gives rise to just this situation. Even though the dual has large dimensionality,

we take advantage of its separability to solve the dual problem efficiently using only a linesearch

technique.

4.3 A dual method of sequential approximate optimisation

We begin by considering a general nonlinear programming problem (NLP), which may be stated

as

min
x

f0(x)

subject to fj(x) ≤ 0 j = 1, 2, · · · ,m, (4.1)

x̌ ≤ xi ≤ x̂ i = 1, 2, · · · , n,

where f0 represents the n-dimensional function to be minimised and the fj, j = 1, 2, · · · ,m,
denote the j constraint functions. Each primal variable xi is considered to be bound constrained

between allowable upper and lower bounds (x̌ and x̂ respectively). This form is typical of the

relaxed continuous forms of the structural optimisation problems described in Section 2.1. A

wide variety of methods exist for solving (4.1). We consider the class that fall under the label of

sequential approximate optimisation (SAO), a short description of which was given in Section 2.2.

Due to the great expense of solving large nonlinear constrained structural optimisation problems

directly, it has become standard practice to instead derive explicit approximations to the original

problem and to optimise these approximate subproblems instead. Since the approximations are

only valid locally, it is necessary to iteratively solve the original problem by considering a sequence

of approximate subproblems – hence the name SAO. Under certain additional restrictions, e.g.

conservatism, separability and convexity, it can be proved that this process converges to a stationary

point of the original (relaxed continuous) problem [6]. Obviously, it is desirable to use relatively

good quality approximations to the original problem, such as the ones described in Section 2.2.3

for structural optimisation.
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Since the constrained subproblems dealt with very often have a large number of primal variables

and only a small number of constraints, it is frequently advantageous to solve them using a dual

method. The dual method essentially converts a constrained problem into a simple non-negatively

constrained problem in the space of the Lagrange multipliers λ, whose dimensionality equals the

number of primal constraints. We apply the dual method proposed by Falk [2], introduced in

Section 2.3.1, in which the upper and lower bound constraints on the primal variables do not have

to be explicitly considered in the definition of the Lagrangian, which is given by

L(x,λ) = f0(x) +
m∑

j=1

λjfj(x) (4.2)

when the constraints are defined in the negative-null sense, as in (4.1). If f0 is strictly convex and

all the fj are convex, then the global minimiser will uniquely satisfy the KKT conditions [22] for

a saddle point of the Lagrangian. Moreover, Falk shows that the dual, defined by

γ(λ) = min
x

{L(x,λ) : x̌ ≤ xi ≤ x̂} , (4.3)

is concave under these conditions, and that the (unique) maximum of the dual with respect to λ,

subject only to λj ≥ 0, corresponds to the minimum of the original subproblem defined for (4.1),

given the relationship between primal and dual variables (4.3). In general, equation (4.3) is difficult

to apply, but in the special case that f0 and all fj are separable functions, the Lagrangian itself

becomes a separable function and (4.3) reduces to a set of one-dimensional minimisations, each

in terms of a single primal variable xi. Separability, then, makes the dual method viable. The

approximations described in Section 2.2.3 are all separable and convex, making the dual method

applicable whenever said approximations are utilised. It is frequently possible to accomplish the

minimisations in (4.3) analytically. The resulting relationships are substituted into (4.2), yielding

γ (λ) explicitly. When this is not the case, the one-dimensional minimisations must be performed

numerically, degrading the efficiency of the dual method. Finally, one further advantage of the

dual approach is the ease of calculating the gradients of the dual function with respect to the dual

variables. They are simply given by the values of the associated constraints, found via the primal-

dual relationship (4.3), at any given point λ in the dual space.

4.3.1 A dual method for mixed discrete-continuous problems

The structural optimisation problems described in Section 2.1 are really discrete in nature. When

the underlying continuum problems are discretised (spatially) by means of the finite element

method, they take the following general form,

min
x

f0(x)

subject to fj(x) ≤ 0 j = 1, 2, · · · ,m, (4.4)

xi ∈ [0, 1] i = 1, 2, · · · , n,

in which the variables are limited to the binary values 0 and 1, signifying the absence or presence

of material at a point in the design space1. Although the solution of (4.1) has often been considered

1In practical implementations it is necessary to replace the set xi ∈ [0, 1] with xi ∈ [x̌, 1], where x̌ has a strictly

positive value close to zero, so as to avoid ill-conditioning problems in the structural analysis.

Stellenbosch University    http://scholar.sun.ac.za



CHAPTER 4. A DISCRETE TOPOLOGY PROBLEM 65

when x is defined on a discrete set instead of a real interval, relatively little attention has been given

to the application of the above dual method in this case. One method of applying the dual is simply

to numerically carry out the minimisations in (4.3) over the allowable discrete set using some

discrete search method such as Branch and Bound, Genetic Algorithms, rounding of the continuous

optimum etc. (see Salajegheh [59] for example). This results in a large number of numerical

minimisations if the number of primal variables is high. Due to the cumbersome nature of the

integer programming methods relative to methods of continuous programming when applied to

such large problems, in structural optimisation it is usually preferred to solve a relaxed continuous

version of (4.4) in which the xi with values intermediate between 0 and 1 are penalised in some

way.

However, an alternative (mixed) discrete approach was developed independently by Schmit and

Fleury [16] and Sepúlveda and Cassis [60], in which a set of discrete mappings are derived

from (4.2) and (4.3) for the variables defined on a discrete set. For the discrete variables, these

mappings are used in the definition of the dual, which is accomplished directly, without the need

for numerical minimisation of (4.3) over the allowable discrete set. The minimisation in (4.3) – or

the sometimes equivalent stationary conditions – are still applied to define the primal-dual map-

pings for the continuous variables. Thus, each point in the dual space maps to a primal coordinate.

However, the discrete mapping is not everywhere unique. A brief description of the details (based

on [16]) follows below. Without loss of generality, we describe only the primal-dual relationships

for the discrete variables.

Consider a discrete problem that has been approximated by convex and separable functions, as de-

scribed above. This yields a separable Lagrangian that is convex with respect to each xi and varies

linearly with respect to λ (see Section 2.3.3). Figure 4.1(a) depicts a contour plot of one separable

part of such a Lagrangian, i.e. Li (xi,λ), and for simplicity we represent a one-dimensional prob-

lem with only one constraint, which is to say that Li (xi,λ) = L (x, λ). The Lagrangian is shown

as a continuous function, but, since the problem is discrete, we will assume for the purposes of this

description that L (x, λ) is only strictly defined at integer values of x. On the other hand, λ is not

limited to discrete values.

Line A in Figure 4.1(a) is the continuous solution of (4.3) for this problem and defines the con-

tinuous dual function. Lines B represent the integer solution to (4.3), defining the discrete dual

in this case. It is evident that there are values for λ – for example λ∗ in the figure – for which

there are two consecutive integer values of x that satisfy (4.3) for the same λ. L (x, λ∗) is shown

in Figure 4.1(b). At other values of λ the Lagrangian has a unique integer minimum with respect

to x. L (x, λ = 4) is graphed in Figure 4.1(c), for example. Figure 4.1(d) depicts both the contin-

uous dual and the discrete dual, which is the union of all lines B (Figure 4.1(a)) in this case. It is

piecewise linear and the vertices are points that map to two distinct primal points. Hence, the dual

becomes a piecewise continuous function composed of surfaces with constant gradient that join at

points at which the gradients are discontinuous – owing to a jump in the primal integer minimiser.

The tenets exemplified above extend easily to problems possessing a greater number of dual vari-

ables and discrete sets other than integer. Essentially, the relations

Li

(
xA

i ,λ
)

= L
(
xB

i , λ
)

i = 1, 2, · · · , n, (4.5)

with A and B denoting consecutive indices from the allowable (ordered) discrete set, define hyper-

surfaces in the dual space at which the discrete minimiser of Li (xi,λ) jumps from one value xA
i to
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an adjacent value xB
i . A given dual coordinate maps to a primal discrete coordinate via a mapping

derived from (4.5). The details of the mapping obviously depend on the particular approximations

used to construct the Lagrangian; some examples are given in Section 4.3.2. An example of what

the dual surface may look like for a fully discrete problem with two constraints is shown in Fig-

ure 4.2. The surface is concave and consists of multiple intersecting linear hyperplanes. The edges

along which the hyperplanes join constitute the domains in the dual space along which one of the

primal variables jumps from one allowable discrete value to another in the primal-dual relation-

ships. On the edges themselves, the discrete primal minimiser defined by the primal-dual mapping

is not unique.

The above discussion considers a purely discrete problem. If a problem is continuous in some

variables xc then, due to separability, the associated parts of the Lagrangian Lc (xc,λ) are simply

minimised in a continuous sense when defining the dual (4.3). In this case the dual will no longer

be piecewise linear in form, as in Figure 4.2.

There are two major difficulties that must be overcome in relation to the implementation of the
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Figure 4.1: Construction of the discrete and continuous duals for a one-dimensional example with

one constraint.
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discrete dual method. The first is the application of a move limit suited to discrete problems.

The global convergence characteristics of an algorithm utilising a discrete dual solver can be very

unstable if nothing is done to limit the scale of the changes between successive designs. For con-

tinuous problems it is relatively straightforward to limit the maximum allowable step in the design

domain that may be taken between one design and the next, but in the case of discrete problems an

analogous strategy is difficult to implement, particularly for zero-one problems. Beckers [17] sug-

gests two approaches based on the introduction of continuation strategies, which allow the problem

definition to be modified gradually while preserving its discrete nature. The second complication

concerns the difficulty inherent in maximising a piecewise linear surface. An ascent algorithm

adapted for doing this is also presented by Schmit and Fleury in [16].

4.3.2 Specific examples of the discrete primal-dual mapping

The form of the discrete primal-dual mapping in an SAO subproblem depends on the form of

the approximation functions used to define the approximate subproblems. We present here two

specific examples. The first is the case discussed by Schmit and Fleury [16], who construct sub-

problems in which the f̃0 have reciprocal forms and the f̃j are linear functions (the tildes indicate

that the functions f̃ belong to the approximate subproblems). The second example has a quadratic

objective and linear constraints.

Reciprocal objective and linear constraints

Consider the subproblems obtained when the objective function f0 in (4.4) is approximated using

the separable reciprocal approximation (2.25), and the constraints fj are represented by the Taylor

series expansion to first order (2.14). In this case, the primal approximate subproblems have the

Figure 4.2: Example of a discrete dual: the surface is generated for a discrete problem with two

constraints.
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form

min
x

f̃0 (x) = f0

(
x{k}

)
+

n∑

i=1

(
xi − x

{k}
i

)(x{k}i

xi

)(
∂f0

∂xi

){k}

subject to f̃j (x) = fj

(
x{k}

)
+

n∑

i=1

(
xi − x

{k}
i

)(∂fj

∂xi

){k}

≤ 0 j = 1, 2, · · · ,m,

xi ∈ D i = 1, 2, · · · , n,

in which the set D represents an ordered set of discrete values. Terms bearing the superscript

{k} denote constants evaluated at the point in the design space x{k} at which the subproblem is

defined. This form of subproblem will be used to represent the variable stiffness laminate problem

discussed below. The separable parts of the Lagrangian function for this problem become

Li (xi,λ) =
(
xi − x

{k}
i

)(x{k}i

xi

)(
∂f0

∂xi

){k}

+
m∑

j=1

λj

(
xi − x

{k}
i

)(∂fj

∂xi

){k}

.

Applying (4.5), with xA
i and xA+1

i denoting two consecutive allowable values of xi from the set D,

we have

xA
i · xA+1

i = −
(
x
{k}
i

)2
(
∂f0

∂xi

){k}
/

m∑

j=1

λj

(
∂fj

∂xi

){k}

. (4.6)

This equation defines the subspace at which the discrete primal minimiser of Li (xi,λ) transitions

from xA
i to xA+1

i . On this subspace, both xA
i and xA+1

i are primal minimisers of Li (xi,λ), which is

the situation depicted in (4.1(b)). Thus, all points on the dual that lie between the surfaces defined

by xA
i and xA+1

i on the one side and xA−1
i and xA

i on the other, map to the primal coordinate xA
i ;

i.e. a particular point in the dual corresponds to (maps to) xA
i if

xA−1
i · xA

i ≤

[
−
(
x
{k}
i

)2
(
∂f0

∂xi

){k}
/

m∑

j=1

λj

(
∂fj

∂xi

){k}
]
≤ xA

i · xA+1
i . (4.7)

Quadratic objective and linear constraints

Consider a second-order approximation in which all the off diagonal curvatures cij, i 6= j, are set

as zero:

f̃ (x) = f
(
x{k}

)
+

n∑

i=1

(
xi − x

{k}
i

)(∂fi

∂xi

){k}

+
1

2

n∑

i=1

cii

(
xi − x

{k}
i

)2

.

There are various ways that the curvatures cii may be defined; the reader is referred to [33, 61] for

specific examples. For our purposes here, the particular definition of the cii is not important. It is

sufficient to stipulate that cii > 0 ∀ i, so that the resulting function approximation is strictly convex.

A primal approximate subproblem, constructed using the above separable quadratic approximation
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for the objective function in PNLP and linear approximations for all the constraints, is

min
x

f̃0 (x) = f
(
x{k}

)
+

n∑

i=1

(
xi − x

{k}
i

)(∂fi

∂xi

){k}

+
1

2

n∑

i=1

cii

(
xi − x

{k}
i

)2

subject to f̃j (x) = fj

(
x{k}

)
+

n∑

i=1

(
xi − x

{k}
i

)(∂fj

∂xi

){k}

≤ 0 j = 1, 2, · · · ,m,

xi ∈ D i = 1, 2, · · · , n.

Applying (4.5) as before, the equations for the surfaces in the dual space on which the primal

coordinates transition are obtained as

(
xA

i + xA+1
i

)
=

(
2

cii

)[
ciix

{k}
i −

(
∂f0

∂xi

){k}

−

m∑

j=1

λj

(
∂fj

∂xi

){k}
]
.

Therefore, all points in the dual that satisfy the following condition map to xA
i in the primal space:

(
xA−1

i + xA
i

)
≤

(
2

cii

)[
ciix

{k}
i −

(
∂f0

∂xi

){k}

−
m∑

j=1

λj

(
∂fj

∂xi

){k}
]
≤
(
xA

i + xA+1
i

)
.

4.4 A closer look at the discrete dual approach

From Figure 4.1 we see that, for any λ, the discrete minimiser of Li (xi,λ) will be one of the

discrete points immediately adjacent to the relaxed continuous minimum. This is simply a conse-

quence of the fact that Li (xi,λ) is convex with respect to xi and is perforce constructed that way.

We expect, then, that when the dual is maximised to solve the primal minimisation problem, the

resulting discrete primal minimiser will also be one of the discrete points immediately surround-

ing the relaxed continuous minimum. We now discuss the consequences of this by referring to two

convex two-dimensionality problems.

4.4.1 Two small example problems

Figure 4.3 shows contour plots of a pair of two-dimensional constrained problems together with

the parts of their dual surfaces containing the dual maxima. Each problem has two constraints, so

the duals are also two-dimensional. Figures 4.3(a) and 4.3(b) concern a separable quadratic func-

tion subject to linear constraints. Figures 4.3(c) and 4.3(d) depict a separable reciprocal function

with linear constraints. In the figures, the primal continuous constrained minima are indicated by

triangles, whereas the discrete optima are indicated by squares. The feasible regions should be

obvious given the position of the discrete minima. The maxima of the duals, together with the

primal points to which they map, are indicated by circles.

4.4.2 Pros and cons

The dual maxima do not map to the discrete primal optima for either of the two problems presented

above. Instead, the optimal primal points indicated by the duals are in both cases found to be
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(a) Primal problem: quadratic objective, linear con-
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Figure 4.3: Contour plots of the primal problems and the associated discrete duals for two small

2D example problems.

immediately adjacent to the continuous optimum. Even then one is not guaranteed to find the most

optimal of these points surrounding the continuous solution. In Figure 4.3(a), point (4, 4) has a

lower function value than either of the points indicated by the dual. Furthermore, the solutions

found by the method can violate the constraints – all four of the solutions found in Figure 4.3(c)

violate one of the constraints. Evidently, then, one would be ill-advised to utilise the discrete dual

approach presented above to find the discrete minima for small or moderately sized problems, or

in situations where constraint violations are strictly not permissible. Given this last, what then are

the advantages of the method?

The primary advantage of the method is simply its efficiency. Many problems in structural opti-

misation are simply too large (in terms of the number of variables considered) for the traditional

discrete search algorithms to be comfortably applicable. These problems are typically multimodal,

even in the continuous sense, so no method short of complete enumeration guarantees that the

global optimiser can be found at all. Under these conditions, the overriding concern is the use of
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a technique that can arrive at high-quality solutions efficiently. Additionally, to evaluate a given

design usually entails running a lengthy analysis and so a method is preferable that minimises the

number of analyses required. The dual SAO method achieves this, since it is based on the construc-

tion of explicit approximations. Lastly, given the examples presented above, one might argue that

an enumerative search of the points surrounding a continuous local optimum appears to represent

a better strategy than the discrete dual approach. However, for large problems, even this limited

enumeration is a daunting task and would require an unfeasible number of analyses.

If the number of constraints is small compared to the number of primal variables, then the number

of primal points corresponding to the dual maximum is considerably less than the number of points

surrounding the continuous optimum. The [0, 1] topology problem (discussed below) is an extreme

example of this. Each and every possible discrete solution is located at the vertex of a hypercube

that surrounds the continuous optimum. Yet, for isotropic materials and one constraint, the dual

approach usually returns a choice between only two primal points for the discrete solution.

4.5 Minimum compliance design: isotropic material

Topology optimisation is concerned with determining the distribution of material within a given

design domain such that, ultimately, the domain will be composed of solid and void regions and

the emergent structure, defined by the union of solid regions, will be optimal according to some

pre-defined measure. One such measure typically used (and, indeed, the measure used herein) is

that of minimal structural compliance.

4.5.1 The classical minimum compliance topology problem

The minimum compliance problem was introduced in Section 2.1.1. In the current chapter we are

concerned with the spatially discretised form of the problem, represented in (2.7), in which we

admit only a single constraint2 on the allowable structural volume. The problem is restated here

for convenience: we assume that the design domain is discretised by the finite element method, in

which case the classical minimum compliance problem can be stated as

min
x

f0(x)

subject to f1(x) ≤ 0 , (4.8)

K(x)q = w ,

xi ∈ [0, 1] i = 1, 2, · · · , n.

In the above, f0 denotes the objective function, which here corresponds to the structural compliance

and depends on the material distribution vector x = [x1, x2, · · · , xn] defined over the binary [0, 1]
set. The symbol K represents the global assembled finite element stiffness matrix, q is the global

displacement vector and w the vector of applied loads, which is assumed to be design independent.

2What follows is equally valid for multiple constraints.
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The constraint function f1 denotes the limit on the volume of the design, namely

f1(x) =
1

ν0

n∑

i=1

νixi − ν̄ ≤ 0 , (4.9)

in which ν0 is the total volume of the design domain, ν̄ is the limiting value and νi is the volume

of element i. In topology optimisation it is usual to consider a relaxed version of problem (4.8),

in which the constraints, the objective and their first derivatives are all defined at real values of xi

between zero and one. Hence, a continuous problem is solved iteratively and it is the purpose of

the so-called SIMP specialisation to drive the solution towards a solid-void design.

4.5.2 SIMP

When problem (4.8) is relaxed, the variables that, in the discrete case, describe the presence or

absence of material at a point in the design space are instead interpreted as material ‘densities’,

which serve to scale the properties of the solid isotropic material. The SIMP method is used to pe-

nalise the material of intermediate density in an attempt to generate solid-void designs as solutions

to the relaxed problem. In the SIMP approach, the material properties are scaled according to

Ci = (xi)
pC0 , p > 1 , (4.10)

where C0 is the elasticity tensor describing the actual material. The volume of material in the

design domain is not affected by the penalisation, unless volumetric penalisation is also employed

(see Chapter 5).

Recalling the discussion in Section 2.1.1, the stiffness matrix K, and therefore the compliance

objective in (4.8), are functions of these element densities xi. If problem (4.8) is solved purely

in a zero-one sense, the space defined by an element will either be void or solid, and the result-

ing topology has an unambiguous interpretation. However, the relaxation of (4.10) means that

elements may have fictitious intermediate densities, which interpolate for fictitious material prop-

erties because the penalisation is usually unable to get rid of all intermediate-density material. In

this case it becomes more difficult to interpret the results obtained, and particularly to compare

different results that are not completely solid-void (this last will be touched upon in Chapter 9).

There are, therefore, advantages to solving the problem in a purely discrete sense.

4.5.3 Discrete solution

Fleury’s method for solving the topology problem in a discrete sense was applied to the minimum

compliance problem with some success by Beckers [17]. The problem formulation presented

in [17] differs slightly from (4.8) in that an additional perimeter control constraint is included, this

being one of the methods alluded to in Section 2.1.1 that can be used to combat mesh dependency.

The solution procedure discussed in [17] does not use Sigmund’s filter described in Chapter 3, nor

is the SIMP procedure required.

In keeping with Schmit and Fleury [16], we solve (4.8) by an SAO strategy in which the approx-

imate subproblems are constructed as described in the first part of Section 4.3.2. The compliance
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objective is approximated using a separable reciprocal function, while the volume constraint is

represented as a first-order Taylor series expansion. We have used Sigmund’s mesh independence

filter [14] instead of perimeter control to ensure mesh independence, as it simplifies the solution

strategy, particularly for the FRC problem. However, it must be said that a comparison of our

results for the isotropic case with those of Beckers indicates that perimeter control may contribute

much to stabilising the optimisation.

Since the problem is solved in a discrete sense it is seemingly unnecessary to apply SIMP penal-

isation. Indeed, Beckers does not utilise SIMP; however, she does note the need for a move limit

suited to binary variables, and introduces certain continuation strategies that serve to encourage

global convergence. It has also been our experience that direct solution of (4.8) on the [0, 1] set

yields unsatisfactory results. We have found it necessary to employ both a continuation strategy

and SIMP penalisation in our attempts to solve the discrete composite problem, and we discuss

both of these here with reference to the isotropic case.

SIMP penalisation and the continuation strategy

A continuation strategy similar to one of the options suggested in [17], in which the problem

remains strictly binary, was attempted initially. The problem is first solved using two allowable

values [xlow, xhigh] for xi that are chosen close to the allowable volume fraction ν̄, which defines

the volume constraint f1. As the iterations progress, these values are moved steadily apart, so that

xlow → 0 and xhigh → 1. These values assume the bound values [x̌, 1] after a predetermined

number of iterations, which means that the convergence time of the algorithm is fixed a priori.

We have not been able to generate satisfactory results using this procedure. Figure 4.4(b) is indica-

tive of the type of designs obtained in searching for optimal (minimum compliance) topologies for

the MBB beam structure, diagrammed in Figure 4.4(a). Apart from being a relatively inferior local

minimum, the design is ‘messy’. Despite the use of a filter, it contains small holes or channels

(smaller than the filter radius), as well as semi-isolated solid elements connected to the bulk struc-

ture on only one edge. Additionally, this result was generated using a standard SIMP penalisation

of p = 3. Although this strategy produces checkerboard-free results with p < 3, they are worse

than the one depicted in Figure 4.4(b). Finally, this purely binary continuation strategy proves to

be completely inadequate for the FRC problem.

A similar continuation strategy is suggested in [17], except that four discrete values are allowed

for xi. The values xlow and xhigh are permitted, while x = 0 and x = 1 are also retained in all

the iterations. Otherwise, the continuation proceeds as described above. This strategy represents

a kind of relaxation of the binary prescription during the optimisation process, though the binary

set is strictly restored in the final iteration of the algorithm. We have had more success using this

idea, except that, instead of initially allowing only four discrete values for xi, we allow a larger

number. All the results that follow have been generated using an initial discretisation of 26 values

in Sx, which denotes a discrete set of values between 0 and 1. Allowing a larger number of discrete

values seems to be more of a boon when applied to the FRC problem than in the isotropic case.

The continuation strategy we use relies on the mapping (4.7). However, in an effort to avoid the

use of lookup tables, we define (4.6) as a primal-dual mapping between λ and the set of discrete

values between 0 and 1 through the intermediary of a set of integers Sz. The number of discrete
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E=1, ν=0.3, P =1, l=6, h=1, ν̄=0.5

(a) Ground structure for the MBB beam

(b) Mesh: 150 × 50 elements, f∗

0 = 246.45, p = 3, tcpu = 944 sec.

Figure 4.4: Ground structure and ‘optimal’ discrete topology for the isotropic MBB beam. The

optimal design is found using a continuation strategy based on a binary mapping, with convergence

occurring after 105 iterations.

values in Sx and Sz is N , those in Sz ranging from 0 to N − 1. We relate the values in Sx to those

in Sz by

xA
i =

zA
i

N − 1
. (4.11)

From (4.6), if zA
i and zA+1

i are consecutive integers in Sz, then a reliable mapping can be defined

for xA
i by first determining zA

i as

zA
i = ceil

{
root+

[(
r

N − 1

)2

+
r

N − 1
− y = 0

]}
,

in which y is the right-hand side of the equality (4.6). The notation root+ simply denotes the

positive root of the quadratic function in brackets, while the ceil operator is a standard MATLAB3

operator that rounds up its argument to the next highest integer. Having determined zA
i , the rela-

tionship (4.11) is used to calculate the corresponding xA
i . Of course, the only reason the integer

intermediaries are necessary is because of the ceil operator; what we have in effect is an update

equation for the discrete problem.

Now, the continuation is accomplished by mapping the constant set Sx to a variable set S ′
x′ , whose

elements also lie distributed between 0 and 1, through the use of the sigmoidal function

x′i =
1

1 + e−b(xi−0.5)
. (4.12)

The shape of the sigmoid is altered by changing the parameter b. Figure 4.5 depicts how the

distribution of the elements in S ′
x′ changes as the sigmoid is made steeper by increasing b. We

3We use Sigmund’s 99-line MATLAB topology code [9] as a backbone for the algorithm we employ, though it is

greatly modified for the FRC problem.
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Figure 4.5: The sigmoidal function accomplishes the mapping of the evenly distributed discrete

points xi to points x′i, whose distribution is biased more towards [0, 1].

solve the compliance problem (4.8) on S ′
x′ . Additionally, we define an upper bound x̂ close to

1 so that all x′i > x̂ are made 1. Similarly, all values of x′i < x̌ are made x̌. Algorithmically,

therefore, when determining the discrete mapping, only the portion of the sigmoid between x̌ and

x̂ is considered. In this case the update equation becomes

zA
i = ceil {[(1 −N) ln (r)] /b} , (4.13)

where

r = root+

[
C2 (r)2 + C1 (r) + C0 = 0

]
. (4.14)

The coefficients in (4.14) are expressed in terms of the transformation (4.12) as

C2 = eb · e−b/(N−1),

C1 = e0.5b
[
1 + e−b/(N−1)

]
,

and C0 = 1 − 1/y .

Figure 4.6 shows some of the optimal topologies gained when using the continuation strategy just

described, in combination with different values for the SIMP penalty parameter p. Figures 4.6(a)

and 4.6(b) are examples in which the half-beam mesh discretisation is 90 × 30 elements and the

filter radius for Sigmund’s mesh independence filter is 2.1. Figure 4.6(c), on the other hand, is

generated using a mesh of 150 × 50 elements and a filter radius of 2.5 elements. In all cases, the

same continuation is used and termination occurs at a purely binary solution after 100 iterations.

The objective function value and penalty parameter for each design are stated in the figure, as

well as the cpu time required. For each design, the limiting volume fraction was set at ν̄ = 0.5.

Evidently, good solutions can be obtained with values of p < 3, although we still fail to generate

satisfying results with p = 1 (i.e. without SIMP penalisation). For the FRC problem described

below, however, higher values of the penalty were necessary, and we use p = 3 throughout.
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(a) f∗

0 = 280.13, p = 1, tcpu = 199 sec. (b) f∗

0 = 186.95, p = 2, tcpu = 188 sec.

(c) Mesh: 150 × 50 elements, f∗

0 = 188.13, p = 3, tcpu = 982 sec.

Figure 4.6: Optimal [0, 1] topologies for the isotropic MBB beam using a continuation strategy

based on a relaxed discrete set distributed according to a variable sigmoidal mapping.

4.6 Compliance and fibre angle optimisation: FRC laminates

In a continuous sense, the problem of finding the optimal spatially varying fibre orientation for

minimal compliance of an FRC laminate is heavily multimodal, even when spatially discretised

using FEM. Consider, for instance, the discretised cantilevered structure shown in Figure 4.7(a),

in which the fibre direction in each element is allowed to vary continuously between +90 and −90
degrees. Figure 4.7(b) plots the variation in compliance for the structure as the fibre orientations

θ1 and θn for the elements labelled in Figure 4.7(a) are varied. As can be seen from the figure, the

relationship between compliance and fibre direction has an underlying sinusoidal character.

The problem we wish to consider here is the concurrent optimisation of topology and fibre orien-

tation. That is: the density of each element in the mesh is subject to change, and so is the fibre

orientation in each element. As in the examples depicted above for isotropic structures, the mate-

rial contribution of each element is required over the binary [0, 1] set. However, for the material

that is present in the design, the optimal fibre orientation is also desired. Both the fibre direction

and the element density (via the SIMP formulation) are inherent in the material properties of each

element. Thus, the two types of primal variables (xi and θi) are intrinsically coupled, and true op-

tima cannot be found by first solving the isotropic material distribution problem and then solving

the orthotropic fibre orientation problem for the material that remains.

The traditional approach to topology optimisation is to consider the relaxed continuous form of a

problem, and then to effect [0, 1] material distributions using penalisation. When considering the

relaxed continuous form of the FRC problem, the primary complication lies in the formulation of

a material description that incorporates both the effect of element density as well as fibre direction,

and simultaneously encourages the element densities to discrete values via penalisation. A tech-

nique known as discrete material optimisation (DMO) has been introduced that accomplishes just

this. Previous implementations of DMO have focused on solving the relaxed continuous material

distribution problem, and have used materials with low stiffness to approximate voids in the design

domain. We here adapt DMO to solve the discrete problem in a way that allows true voids to be

generated (at the expense of incorporating many additional constraints).
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Figure 4.7: An example of the variation in compliance with fibre orientation for a discretised FRC

structure in which the elemental fibre directions can vary continuously.

4.6.1 Discrete material optimisation

Stegmann and Lund [57] have introduced the possibility of concurrently optimising for fibre direc-

tion in a topology infrastructure that seeks an optimal material distribution within a design domain.

They accomplish this by considering the material properties assigned to a particular element to be

a weighted combination of a fixed number of candidate materials. In the context of orthotropic ma-

terials, this means that the space defining the allowable elemental fibre orientations is discretised.

The elasticity tensor of each candidate material is derived from the FRC material and calculated

using a different fibre orientation. The material constituting a given element is made up of a limited

fixed number of these candidate materials, as is depicted in Figure 4.8. Each candidate material

has a pre-defined fibre angle and its own weight factor, which in what follows can be interpreted

as a material density. The task of the optimiser is to find a zero-one solution for the weights, which

amounts to selecting the single optimal material (i.e. fibre direction) for the element. If one of the

weights is driven to unity, then the weights associated with all the other candidate materials within

the element must be driven to zero. Our adaptation of DMO allows all the weights associated

with a given element to be driven to zero, which results in a void and thereby facilitates solid-void

topology optimisation.

We will discuss the above more explicitly in the following section. For now, note that there are

many ways that this “weighted combination” of materials can be defined. Also, if the SIMP ap-

proach is used to encourage solid-void solutions, the complication arises of how best to penalise

the element density (see [57] for further details).
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θn1Element

n
xn1 xn2 xn3

+ . . .

Figure 4.8: The DMO formulation of elemental material properties as a function of many candidate

materials.

4.6.2 Our method for discrete topology and fibre angle design

We use the simplest relationship suggested in [57] to define the material characteristics associated

with an element i in the finite element mesh:

Ci =

nθ∑

j=1

(xij)
pC0 (θj) . (4.15)

The elasticity tensor of a given orthotropic material is calculated at nθ different (user-defined)

angles. Ci is a penalised weighted sum of the resulting set of material characteristics, where each

weight xij is penalised individually. The weights can still be considered as densities (or, more

properly, material occupancies) in the sense that the volume of material in the design domain is

now given by

V =
n∑

i=1

nθ∑

j=1

xij . (4.16)

Naturally, it makes no sense to have element densities of greater than one, so the set of weights

pertaining to a single element must also satisfy

Vi =

nθ∑

j=1

xij ≤ 1 . (4.17)

Stegmann and Lund rejected (4.15) on the grounds that it fails to allow a sufficiently discrete

selection of the optimal candidate material within an element when the problem is optimised in

the continuous sense and the SIMP approach is used. The difficulty stems from the fact that they

prefer not to take (4.17) into account explicitly, since this greatly increases the complexity of the

problem, contributing an additional n constraints. They instead find other methods of implicitly

satisfying (4.17), albeit as equality constraints.

We solve the topology problem (4.8) discretised by a finite element mesh containing n elements

and we use (4.15) as our material description. We explicitly retain all n constraints (4.17) and

the problem is additionally subject to a global constraint on the total volume (4.16) of the design.

There are, therefore, n × nθ design variables and (n+ 1) constraints. We find the optimum iter-

atively using the discrete dual SAO approach, in which the objective function f0 is approximated

by (2.25) and each constraint fj is approximated by a linear truncated Taylor series expansion

(equation (2.14) up to the linear term).
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This last is one of the advantages of using the DMO approach for the FRC problem. Although

the dependency of the compliance on fibre orientation is sinusoidal in nature for the continuous

problem, in the DMO formulation the effect of fibre orientation is reflected instead in terms of

the candidate material densities. The variation in compliance as a function of these densities is

locally reciprocal in nature, so the same function approximations can be used as for the isotropic

problem. Moreover, since the additional elemental constraints are also linear, the same primal-dual

relationships can be used, as well as the same continuation strategy. Indeed, we use essentially

the same optimisation infrastructure to solve the FRC problem as we used to solve the discrete

isotropic problem described in Section 4.5, except that the dual maximisation scheme is modified

to account for the greater dimensionality of the dual and to take advantage of its special structure.

4.6.3 Maximising the dual

When considered as a discrete DMO formulation, the combined minimum compliance and optimal

local fibre orientation problem for an FRC laminate is expressed as

min
x

f0(x) =
n∑

i=1

qT
i Kiqi

subject to fi(x) =

nθ∑

j=1

xij ≤ 1 i = 1, 2, · · · , n, (4.18)

fn+1(x) =
1

ν0

n∑

i=1

(
νi

nθ∑

j=1

xij

)
≤ ν̄ ,

xij ∈ [0, 1] i = 1, 2, · · · , n, j = 1, 2, · · · , nθ,

where the qi are the elemental nodal displacement vectors, νi denotes the volume of element i,
ν0 the volume of the design domain and ν̄ the desired limit placed on the volume of the optimal

design. There are n elements in the finite element mesh and nθ candidate materials per element,

the material properties for each being defined at a different fibre angle θ. The elemental stiffness

matrices are given by

Ki =

∫

νi

BT
i CiBi dνi

in terms of the elemental strain-displacement operators, and the elemental elasticity matrix is cal-

culated in accordance with (4.15). When constructing the subproblems we apply the reciprocal

approximation to the objective function and a linear Taylor expansion to all the constraints (refer
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to Section 4.3.2). Thus, the Lagrangian for any of the subproblems has the form

L̃ (x,λ) = f0

(
x{k}

)
+

n∑

i=1

{ nθ∑

j=1

(
xij − x

{k}
ij

)(x{k}ij

xij

)(
∂f0

∂xij

){k}}

+
n∑

i=1

λi

[
fi

(
x{k}

)
+

nθ∑

j=1

(
xij − x

{k}
ij

)]
(4.19)

+ λn+1

[
fn+1

(
x{k}

)
+

n∑

i=1

{
αi

nθ∑

j=1

(
xij − x

{k}
ij

)}]
,

in which the following identities hold:
(
∂fi

∂xij

){k}

= 1 ∀ i = 1, 2, · · · , n,

and

(
∂fn+1

∂xij

){k}

= αi =
νi

ν0

.

The Lagrangian is separable in the primal variables xij and so, following the discussion presented

in Section 4.3.2, the primal-dual mappings are determined using

xA
ij · x

A+1
ij = −

(
x
{k}
ij

)2
(
∂f0

∂xij

){k}
/

(λi + αiλn+1) . (4.20)

The primal-dual relationship for a given primal variable xij , which represents the density of a

single candidate material j within element i, is a function of only the dual variables associated

with constraint i (limiting the density of the ith element) and the multiplier associated with the

global volume constraint λn+1. This allows us to write the Lagrangian for a subproblem in a

‘partially separable’ form as the sum of i + 1 terms. Each of the first n terms is associated solely

with one element in the finite element mesh, whereas the final term is a function purely of λn+1

and does not involve the primal variables

L̃ =
n∑

i=1

{
λifi

(
x{k}

)
+

nθ∑

j=1

[(
xij − x

{k}
ij

)(x{k}ij

xij

)(
∂f0

∂xij

){k}

(λi + αiλn+1)
(
xij − x

{k}
ij

)]}

+
[
f0

(
x{k}

)
+ λn+1fn+1

(
x{k}

)]
.

The primal-dual relationships expressed in (4.20) are used as the basis for the sigmoidal mapping

in the continuation strategy discussed in Section 4.5.3. When the mapping is applied to accomplish

the minimisation of the Lagrangian required in the definition of the dual (4.3), the dual function

inherits the same separable form as L̃, namely

γ̃ (λ) =
n∑

i=1

{
λifi

(
x{k}

)
+

nθ∑

j=1

[(
x†ij − x

{k}
ij

)(x{k}ij

x†ij

)(
∂f0

∂xij

){k}

(λi + αiλn+1)
(
x†ij − x

{k}
ij

)]}
+

[
f0

(
x{k}

)
+ λn+1fn+1

(
x{k}

)]
,
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M

λi

M ′ λn+10

Figure 4.9: The structure of the sub-duals in the discrete combined FRC topology and fibre orien-

tation problem.

where x†ij here represents the dependence of the primal variables on the dual coordinates:

x†ij = xij (λj, λn+1) .

The dual is only weakly coupled, and its maximisation may be accomplished using a series of

one-dimensional search procedures. We apply a linesearch maximisation scheme to the dual in the

coupling variable λn+1. For each particular value for λn+1, the maxima of the i parts of the dual

with respect to their independent variables λi may be calculated independently4, also using only a

linesearch strategy.

Each of the i parts of the dual has the form depicted in Figure 4.9. Since the considered FRC

problem is fully discrete in the primal variables, each sub-dual is a surface composed of linear

planes that intersect on lines marking the discrete transition of one of the primal variables. The

equations of these lines in the (λi, λn+1) space are given, via a manipulation of (4.20), as

λi = −αiλn+1 −

(
x
{k}
ij

)2

xA
ij · x

A+1
ij

(
∂f0

∂xij

){k}

, (4.21)

in which the last term is simply a constant. The lines are parallel and intersect both the λi and

λn+1 axes. This means that between λn+1 = 0 and λn+1 = M ′ (refer to Figure 4.9), the maximum

of the dual with respect to λi lies on the same line, or ridge. We use a gradient-only linesearch

strategy to maximise the dual on each of the n+1 directions. For a given direction i the linesearch

strategy begins by locating two points λA
i and λB

i in sub-dual i at which the partial derivatives of

the dual ∂γ/∂λi have opposite signs. The gradients thus calculated are used to construct linear

approximations of the dual in direction i, and the subsequent point λC
i at which the sub-dual is

evaluated is determined by the intersection of these linear functions. The point λC
i replaces either

λA
i or λB

i in the following iteration of the linesearch, depending on the sign of the partial derivative

evaluated there. Since the dual is concave on all i, if ∂γ/∂λi ≤ 0 at λi = 0, then λi = 0 represents

the maximum of sub-dual i in λi and, provided that the primal subproblem is feasible, there will

4Maximisation of the separate dual parts may be carried out in parallel, if one has the facilities to do so.
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always be a point at which ∂γ/∂λi ≤ 0 with λi large enough. Given that the dual is both concave

and piecewise linear, this represents a straightforward strategy to locate the apex at which the dual

is maximised.

4.7 Numerical results

We model structures utilising a shear-weak material description (C0 is based on the material char-

acteristics given in [56]). In this case we expect the uniaxial fibre directions in an optimal design to

be aligned with the local major principal stress direction. In the case where the topology optimiser

yields a design composed of struts, we expect the fibre directions to be aligned with the axes of the

struts.

In Figure 4.10 we present results for a Michell truss with a centre load, which may be compared to

the results presented in [56]. In Figure 4.11 we present results for a cantilever beam subjected to a

distributed load, which may be compared to results presented in [53] and [57]. In the figures, the

white elements are void, and the remaining elements are solid with a particular fibre angle as indi-

cated by the colour keys (Figures 4.10(b) and 4.11(b)). The solution algorithm was implemented

in MATLAB and run on an ACER 1.73 GHz laptop. The solution time for the problem depicted

in Figure 4.10(d) was 2.25 hours (91 iterations), whereas the problem shown in Figure 4.11(c)

required 28 minutes (90 iterations).

Lastly, we present results for the MBB beam structure depicted in Figure 4.4(a). We take advantage

of symmetry and model only the right-hand half of the design space, so the fibre angles denoted by

the colour bars in Figure 4.12 indicate the optimal fibre directions determined for the right-hand

half of the beams. The left-hand side is simply a mirror image of the right. The colour key in

Figure 4.12(d) is also the key associated with the solutions depicted in Figure 4.13.

4.8 Conclusions

A novel approach to performing coupled optimal topology and optimum fibre orientation design of

planar fibre reinforced composite components was presented. The discrete material optimisation

technique, detailed by Stegmann and Lund, is used to formulate the problem as an optimisation

problem in which only material densities are varied. Angular fibre orientation does not enter into

the problem explicitly. Instead, a number of isotropic candidate materials are defined, the elasticity

matrix for each corresponding to the elasticity matrix of the FRC material evaluated at one of a

discrete set of allowable fibre angles. The elasticity matrix for an element in the finite element mesh

is determined as a weighted combination of these candidate materials. The allowable values for

the weights are limited to the discrete [0, 1] set, and elemental constraints are used to ensure that an

element in the optimal design is either void or composed of only a single candidate material. The

discrete dual sequential approximate optimisation algorithm introduced by Schmit and Fleury is

applied to obtain the solid-void designs in which the solid material has a fibre direction that varies

spatially. The algorithm utilises a dual solver; for the problem discussed, the dual subproblems are

piecewise linear and have a larger dimensionality than the primal subproblems. However, because

they have a separable structure, the dual subproblems can nevertheless be solved efficiently.
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(a) Volume and loading (b) Colour key for fibre directions

(c) Volume constraint: ν̄ = 50%; mesh discretisation:

200 × 50 elements

(d) Volume constraint: ν̄ = 30%; mesh discretisa-

tion: 240 × 60 elements

Figure 4.10: Results obtained for the combined optimisation of topology and fibre orientation for

the Michell truss test problem.
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(a) Volume and loading (b) Colour key for fibre directions

(c) Volume constraint: ν̄ = 100%; mesh discretisa-

tion: 96 × 32 elements

(d) Volume constraint: ν̄ = 100%; mesh discretisa-

tion: 180 × 60 elements

Figure 4.11: Results obtained for the combined optimisation of topology and fibre orientation for

the cantilever beam test problem.
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(a) Fibre angle discretisation: θD = 6 (b) Colour key for fibre directions

(c) Fibre angle discretisation: θD = 8 (d) Colour key for fibre directions

Figure 4.12: Results obtained for the combined optimisation of topology and fibre orientation for

the MBB beam with a half-beam mesh discretisation of 60×20 elements, and a maximum volume

constraint of ν̄ = 50%.

(a) Volume constraint: ν̄ = 40%

(b) Volume constraint: ν̄ = 50%

Figure 4.13: Results obtained for the combined optimisation of topology and fibre orientation

for the MBB beam with a half-beam mesh discretisation of 150 × 50 elements, and a fibre angle

discretisation of θD = 8.
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Chapter 5

Compliance minimisation subject to a

concave volume constraint

The work presented here originates from a paper titled “On concave constraint functions and

duality in predominantly black-and-white topology optimisation” [35]. The paper is co-authored

by Prof. Albert A. Groenwold of the Department of Mechanical Engineering at the University of

Stellenbosch, Stellenbosch, South Africa.

5.1 Abstract

We study the ‘classical’ discrete, solid-void or black-and-white topology optimisation problem, in

which minimum compliance is sought subject to constraints on the available material resource. We

assume that this problem is solved using methods that relax the discreteness requirements during

intermediate steps, and that the associated programming problems are solved using sequential

approximate optimisation (SAO) algorithms based on duality. More specifically, we assume that

the advantages of the well-known Falk dual are exploited. Such algorithms represent the state of

the art in (large-scale) topology optimisation when multiple constraints are present, an important

example being the method of moving asymptotes (MMA).

We depart by noting that the aforementioned SAO algorithms are invariably formulated using

strictly convex subproblems. We then numerically illustrate that strictly concave constraint func-

tions, like those present in volumetric penalisation, as recently proposed by Bruns and co-workers,

may increase the difficulty of the minimum compliance problem when strictly convex approxi-

mations are used in the SAO algorithm. In turn, volumetric penalisation methods are of notable

importance, since they seem to hold much promise for generating predominantly solid-void or

discrete designs.

We then argue that the nonconvex problems we study may in some instances be solved efficiently

using dual SAO methods based on nonconvex (strictly concave) approximations that exhibit mono-

tonicity with respect to the design variables. Indeed, for the minimum compliance problem result-

ing from SIMP-like volumetric penalisation, we show explicitly that convex approximations are

not necessary. Even though the volumetric penalisation constraint is strictly concave, the max-

85
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imum of the resulting dual subproblem still corresponds to the optimum of the original primal

approximate subproblem.

5.2 Introduction

Topology optimisation seeks to introduce topological features into a structure, such that the dis-

tribution of material is optimal in some sense, subject to any number of linear and/or nonlinear

inequality constraints. From an algorithmic point of view, this discrete programming problem is

very difficult. Not only are the design variables discrete and the design region possibly disjointed,

but, more often than not, the dimensionality of the problem is (very) high. In recent years, this

problem has nevertheless been solved regularly in an approximate sense. Broadly speaking, this is

mainly due to two important ‘ingredients’.

The first ingredient is the very popular solid isotropic material with penalisation (SIMP) method.

Independently proposed by Bendsøe [18] and Rozvany and Zhou [19], this method to some extent

overcomes certain of the difficulties associated with discrete design variables. In the SIMP method,

an approximate, relaxed, continuous programming problem is solved. A penalised material model

is used in the definition of the objective function; this effects partially solid-void or black-and-

white designs through the penalisation of intermediate densities, e.g. see Bendsøe [42] for details.

The second ingredient is the use of sequential approximate optimisation (SAO) algorithms based

on dual principles (which include the sometimes equivalent [43] OC methods). These SAO algo-

rithms are often based on strictly convex and separable primal approximate subproblems, which

may be transformed into highly efficient dual subproblems when the number of constraintsm is far

less than the number of design variables n. Examples of successful convex dual SAO algorithms

are, amongst others, the well-known CONLIN algorithm [4] and its generalisation, the method of

moving asymptotes (MMA) [3, 32].

We should at this point elaborate on the discreteness requirement of the topology optimisation

problem, since this has important implications for the first ingredient: whereas SIMP-like penal-

isation is quite efficient in generating solid-void or black-and-white designs, this efficiency may

decrease notably when filtering methods are introduced into the problem formulation. In turn,

filtering methods are used in topology optimisation for good reason, since they overcome the de-

pendence of the solution on mesh discretisation. Undoubtedly, the most popular filtering methods

use filtering of the design sensitivities, proposed by Sigmund [14, 15].

Recently, Sigmund [37] has forcefully made the point that the discreteness requirement should be

taken very seriously, using a nano-optical device as an example – the effectiveness of the device

is degraded and notably changed in the presence of grey (that is, intermediate-density) material,

to the extent that even post-processing methods become troublesome. In many practical situations

we have become accustomed to accepting designs for which the black-and-white fraction is only

in the region of 60%. Hence, methods that are able to generate predominantly black-and-white

results should be considered to be of fundamental importance.

In an attempt to generate predominantly black-and-white results, Bruns [39] has recently proposed

the introduction of a penalty into the volume constraint, rather than penalisation of the objective

function, thereby building on the work of Zhou and Rozvany [62], Guedes and Taylor [63], and
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Rietz [64]. He denoted this volumetric penalisation method, in which intermediate-density material

is volumetrically unattractive, the SINH method (pronounced ‘cinch’), where the name reflects the

use of the hyperbolic sine function in the constraint penalisation. In combination with penalisation

of the volumetric constraint function, Bruns also employed filtering of the element densities, rather

than of the design sensitivities. However, note that these aspects are not dependent on each other; it

is perfectly possible to combine the use of volumetric penalisation via the hyperbolic sine function

(or any other penalty method for that matter) with sensitivity filtering, and density filtering may

of course be combined with classical SIMP-like penalisation. The approach proposed by Bruns

does result in predominantly black-and-white solutions, and it has the added advantage that the

resulting optimisation problem is regularised and consistent.

Bruns then solves his SINH problem using the aforementioned method of moving asymptotes

(MMA) proposed by Svanberg, which has been very widely used in topology optimisation. In

MMA, the convex approximate subproblems are based on linear first-order Taylor series expan-

sions formulated in terms of reciprocal-like intervening (intermediate) variables. However, as said,

volumetric penalisation results in a (strictly) concave constraint function. This, in turn, implies

that volumetric penalisation may be expected to complicate the optimisation process per se, since

strictly convex subproblems are used to approximate a nonconvex problem. We will numerically

demonstrate this herein. From an algorithmic and computational point of view, concave constraint

functions may indeed complicate the optimisation process if problem solution is effected by algo-

rithms constructed using convex arguments.

However, an important advantage of convexifying the subproblems in the first place is that they

are easily amenable to solution via dual methods (as is done in MMA). In turn, the most popular

of these – and probably the most effective by far if the number of design variables n is far greater

than the number of constraints m – is the dual defined by Falk [2]. In Falk’s definition of the

dual, discussed in Section 2.3.1, the upper and lower bound constraints on the design variables do

not explicitly have to be included as constraints in the definition of the Lagrangian. For convex

programming problems, Falk demonstrated that maximisation of his dual corresponds to minimi-

sation of the original primal problem [2]. It is now widely recognised that the use of strictly convex

approximate subproblems is a sufficient condition to ensure that the primal and dual solutions are

identical. However, perhaps because of the ubiquity of the algorithms that depend on convexifica-

tion, it is not as often recognised that strict convexity is not a necessary condition. Certainly, dual

algorithms based on separable nonconvex approximations are not widely used, if at all, but much

of what was developed by Falk [2] holds for less restrictive classes of problems.

We do not intend to provide additional proofs that the Falk dual is useful for other classes of

problems; this will require the development of a proof for many a different problem. Instead, we

draw on the argument put forward in Section 2.3.2, that the proofs presented by Falk for convex

programs hold whenever a problem satisfies certain attributes, and that a problem need not be

convex to satisfy these conditions. We here show specifically that these attributes are fulfilled by

a particular form of nonconvex mathematical programming problem that is useful in minimum

compliance topology optimisation when volumetric penalisation is considered. To construct the

problem we use a SINH-like method, but we effect penalisation of the volume constraint using a

more traditional power law approximation, such as is normally used in SIMP. Approximation of

the constraint function is then straightforward. For the sake of brevity and simplicity, we retain
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filtering of the design sensitivities1; this may result in less grey material.

The development of this chapter is as follows: In Section 5.3 we summarise the minimum compli-

ance problem; this includes a reflection on the SIMP method and volumetric penalisation methods.

A brief note regarding the approximations used to develop the SAO subproblems for this study

is presented in Section 5.4. In Section 5.5 we show explicitly that the nonconvex problem result-

ing from the application of SIMP-like volumetric penalisation can be solved using the Falk dual.

Thereafter, we briefly discuss the computational implications of volumetric penalisation in Sec-

tion 5.6, and we present results generated by convex and nonconvex dual algorithms alike. Finally,

in Section 5.7 we offer some conclusions and recommendations for future work.

5.3 The classical minimum compliance problem

The classical minimum compliance topology optimisation problem for linear elastostatic structures

was introduced in Sections 2.1.1 and 2.1.2. In keeping with the description advanced there, it is

explicitly assumed that the structural design domain is discretised using the very popular finite

element method (FEM), and that only one constraint is present, which represents a prescribed limit

on the structural volume2. To facilitate numerical solution, the discretised form of the problem (2.7)

is replaced by the relaxed continuous problem (2.9), which is re-expressed here for convenience:

min
x

f0(x)

subject to f1(x) ≥ 0 , (5.1)

K(x)q = w ,

0 < x̌ ≤ xi ≤ 1 i = 1, 2, · · · , n,

where the lower bound x̌ > 0 is introduced for the sake of numerical stability (it prevents dis-

jointed regions, etc.). Note that, for the sake of continuity with the work of Falk presented in

Section 2.3.1, we have here resorted to the positive-null form. Since we restrict ourselves to linear

elastic materials, the constitutive relationship used in the finite element discretisation is adequately

described by

σ = Cǫ ,

where σ, C and ǫ are the stress, elasticity and strain tensors respectively. After Bruns, we now

introduce the notion of the first density measure µ1i
(xi) for element i, which can be interpreted as

‘scaling’ the material properties between 0 or void, and 1 or solid; it is introduced into the problem

formulation via the elasticity tensor Ci, using

C̄i(xi) = µ1i
(xi)C0 .

Here, C0 is the elasticity tensor of the solid material and Ci(xi) is the effective elasticity tensor.

We assume that µ1i
(xi) depends on element i only, for reasons that will become clear shortly.

1It may (correctly) be argued that these differences neglect important advantages of the SINH method. However,

this is irrelevant in any discussion of the lack of convexity of volumetric penalisation.
2Though it is important to note that multiple constraints pose no problem whatsoever in algorithms developed using

dual principles.
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The compliance f0(x) is obtained in terms of the first density measure as

f0(x) = qT r = qT Kq =
n∑

i=1

µ1i
(xi)q

T
i Kiqi , (5.2)

in which the Ki are elemental stiffness matrices defined by (2.5) and qi is the vector of nodal

displacements. The subscript i indicates elemental quantities and operators, and there are n finite

elements in the mesh. For an elemental volume of νi, the effective elemental material volume can

be represented as

νe
i = νiµ2i

(xi) , (5.3)

with µ2i
(xi) the second density measure. We then formulate the volume constraint

f1(x) = ν̄ −
ν(x)

ν0

= ν̄ −
1

ν0

n∑

i=1

νiµ2i
(xi) ≥ 0 , (5.4)

where ν(x) represents the material or final structural volume, ν0 the total volume of the design

domain Ω, and 0 < ν̄ < 1 a prescribed limit on the final volume fraction allowed.

5.3.1 The SIMP method

In the classical SIMP method, we have

µ1i
(xi) = xp

i ,

µ2i
(xi) = xi , (5.5)

where p ≥ 1 is the penalty parameter that, in the case of the inequality, drives the solution towards

the bounds x̌ and 1, e.g. see [42]. Finally, since the SIMP method relies on penalisation of the

first density measure, we will temporarily denote the SIMP method the SIMP(1) method, for ‘solid

isotropic material with penalisation of the first density measure’.

5.3.2 Volumetric penalisation

Bruns’ SINH method

As an alternative to the SIMP(1) method, in which the first density measure µ1i
(xi) is penalised,

Bruns [39] and others have recently proposed to rather penalise the second density measures

µ2i
(xi). Using the hyperbolic sine function rather than a power law, this is expressed as

µ1i
(xi) = xi ,

µ2i
(xi) = 1 −

sinh(d(1 − ρ))

sinh(d)
, (5.6)

with ρ a generalisation of the design variables (required when the design is filtered, rather than the

sensitivities). The first density measure µ1i
(xi) is not penalised. d ≥ 1 is the penalty parameter;
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in the case of the inequality, intermediate-density material becomes volumetrically inefficient, e.g.

see Bruns [39].

Advantages of Bruns’ approach, which used the SINH method in combination with density fil-

tering, are that the optimisation problem is consistently defined, the topology description is un-

ambiguous, and the method leads to predominantly solid-void (black-and-white) designs. The

consistency and unambiguity result from filtering the design rather than the sensitivities (which is

pretty standard in SIMP(1)). Apparently, the predominantly black-and-white designs are to be at-

tributed to penalisation of the second density measure in the SINH method, and not to the problem

being consistent or to the use of the hyperbolic sine function.

According to Bruns, a drawback of his implementation is that the designs are ‘somewhat less

distinct or more diffuse’ than in the SIMP(1) method, since the design itself is defined via a filtered

density design field. This shortcoming, resulting from density filtering, may largely be overcome

by a hybrid formulation, being a combination of the SIMP(1) and SINH methods, in that both the

first and second density measures are penalised, viz.

µ1i
(xi) =

sinh(pβ)

sinh(p)
,

µ2i
(xi) = 1 −

sinh(d(1 − β))

sinh(d)
, (5.7)

with p ≥ 1 and d ≥ 1. Bruns reports that the hybrid SINH method may be sensitive to the rela-

tive values of the first and second density measures [39]. Also, the upper bound on the volume is

not satisfied, in particular during intermediate iterations, if the solution algorithm utilises convex

approximations to the constraint. This is not, however, considered problematic, since the final de-

signs are predominantly black and white, while the prescribed volume is normally an approximate

goal only (but the implications for additional arbitrary nonconvex constraints are clear).

Finally, the hyperbolic sine function used in the foregoing has some advantages over the more

traditional power law (e.g. the derivatives do not vanish as the design variables xi → 0, which may

be advantageous in some applications).

SIMP-like volumetric penalisation

As argued in the foregoing, the hyperbolic sine function does not seem fundamental to the develop-

ment of the SINH method; many a penalty method can conceptually be used in combination with

volumetric penalisation (i.e. penalisation of the second density measure). Neither is filtering of

the densities essential in volumetric penalisation methods. For the sake of simplicity we therefore

rather use the traditional power law in this study, and we employ the well-established approach

of filtering the design sensitivities. Although this filtering method is not without its problems,

filtering of the design itself seems unattractive in that it is not customary in structural topology

optimisation. In addition, filtering of the design per se results in ‘diffuse’ solutions3.

3This is a dilemma of significant proportions. Some argue that regularisation of the problem is of significant

importance. In our opinion, this is indeed the case if problems with continuous design variables are studied (e.g. the so-

called variable-sheet problem). However, if the optimal design variables are required to be discrete, it is in our opinion

also important to realise that the relaxed, continuous problem is merely a surrogate problem for the intractable discrete
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Hence, instead of (5.6), we use

µ1i
(xi) = xi ,

µ2i
(xi) = xd

i , (5.8)

with 0 < d ≤ 1. Accordingly, we will denote this method by SIMP(2), for ‘solid isotropic material

with penalisation of the second density measure. If we retain SIMP(1) penalisation of the first

density measure (which is not a requirement), we replace (5.7) by

µ1i
(xi) = xp

i ,

µ2i
(xi) = xd

i , (5.9)

with p ≥ 1 and 0 < d ≤ 1. For obvious reasons, we will denote this hybrid method by SIMP(1,2).

On purpose, we let µ1i
depend on xi only. This lowers the complexity of the resultant optimisation

problem, and is possible when the sensitivities of the objective are filtered, rather than the design

itself, as proposed by Bruns and Tortorelli [38], and Bruns [39].

Finally, note that volumetric penalisation results in separable, strictly concave constraint functions

that exhibit strict monotonicities with respect to the design variables xi.

5.4 Approximate subproblems

The approximate subproblems used herein are based on first-order Taylor series expansions of the

objective and constraint functions. The familiar direct linear expansion valid for the kth iteration

of the SAO algorithm is

f̃(x) = f(x{k}) +
n∑

i=1

(
xi − x

{k}
i

)( ∂f
∂xi

){k}

, (5.10)

where the quantities bearing the superscript k are constants evaluated at the optimal solution of

the previous subproblem defined for iteration k − 1. The direct linear expansion (5.10) is con-

ventionally used to approximate the linear (unpenalised) volume constraint usually present in the

minimum compliance problem. On the other hand, since the sensitivities of the minimum compli-

ance objective function, given by

∂f

∂xi

= −
∂

∂xi

(µ1i
(xi)) qT

i Kiqi , (5.11)

are always negative, the objective function can be approximated using a linear expansion in terms

of either reciprocal or exponential intervening variables with negative exponents. When volumet-

ric penalisation is employed, the concave constraint can be approximated in terms of exponential

intervening variables with positive exponents, though in this case the constraint need not be ap-

proximated at all, as it can be used directly.

programming problem. Hence, the quality of the final discrete solution is of some importance, while regularisation

should mostly be of interest from the point of view that solving the subproblems should be problem free. We hope to

elaborate on this elsewhere.
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5.4.1 Reciprocal intervening variables

We write (5.10) in terms of the variables yi, i = 1, 2, · · · , n, whereafter we substitute the reciprocal

intervening variables

yi =
1

xi

, i = 1, 2, · · ·n.

In terms of the original variables xi, the approximation is given as

f̃(x) = f(x{k}) +
n∑

i=1

(
xi − x

{k}
i

)(x{k}i

xi

)(
∂f

∂xi

){k}

, (5.12)

since the intervening variables yi, i = 1, 2, · · · , n are functions of a single design variable xi only.

The convexity of (5.12) depends on the sign of the partial derivatives (∂f/∂xi)
{k}. When these

derivatives are negative (as they are for the minimum compliance topology optimisation problem),

we obtain a strictly convex approximation.

5.4.2 Exponential intervening variables

If instead we substitute the exponential intervening variables

yi = xri

i , i = 1, 2, · · ·n,

a so-called exponential approximation results [44]:

f̃(x) = f(x{k}) +
n∑

i=1



(

xi

x
{k}
i

)r
{k}
i

− 1



(
x
{k}
i

r
{k}
i

)(
∂f

∂xi

){k}

. (5.13)

The convexity of (5.13) depends on the values of the r
{k}
i and the signs of (∂f/∂xi)

{k}. If the r
{k}
i

are all negative, the requirements for convexity of (5.13) are similar to the requirements for (5.12).

Finally: for r
{k}
i = −1, we recover a reciprocal approximation in term i, whereas for r

{k}
i = 1 we

recover a direct linear approximation in term i.

It is in order to note that the standard OC method in minimum compliance topology optimisation

is equivalent to the use of the exponential approximation for the objective function [43]. However,

the exact effect of sensitivity filtering on the compliance objective function is not clear. Indeed,

it is fair to say that development of the primal objective function in the presense of sensitivity fil-

tering is considered an open research issue by many. Nevertheless, the use of sensitivity filtering

with approximations that employ intervening variables is commonplace, and we will not concern

ourselves with theoretical deficiencies of sensitivity filtering here. (An important example of an al-

gorithm that uses reciprocal-like intervening variables is MMA, which is often used in combination

with sensitivity filtering.)

Furthermore: while the filtered compliance objective function suffers from theoretical difficulties,

the primal and dual subproblems at least are problem free (from the point of view that the dual

can be developed, and that they are equivalent). And we reiterate that filtering of the densities
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should possibly also be considered to suffer from theoretical difficulties: the optimisation problem

is posed as a discrete problem, but density filtering per se prevents discrete variables between solid

and void regions, albeit that the relaxed (continuous) optimisation problem is consistent. (Given the

possibilities of post-processing methods for some problems, it may be too restrictive to formulate

all topology optimisation problem as discrete in the first place, but that is again a question we will

not concern ourselves with here.)

5.5 Analysis of the nonconvex problem

5.5.1 Purely nonconvex constraints

When addressing the minimum compliance problem we will use the penalised volumetric con-

straint (5.4) – with the second density measure defined by (5.8) – directly, which is equivalent to

employing an exponential approximation (5.13) with positive exponents. The objective function

will be approximated either as (5.12) or as (5.13) with negative exponents. In either case, the re-

sulting mathematical programming problem represented by the approximate subproblem has the

following explicit form4:

min
x

f0(x) = a0 +
n∑

i=1

aix
ri

i

subject to fj(x) = c0j +
n∑

i=1

cijx
qij

i ≥ 0 j = 1, 2, · · · ,m,

ai > 0 i = 1, 2, · · · , n,

α ≤ ri < 0 i = 1, 2, · · · , n, (5.14)

cij < 0 i = 1, 2, · · · , n, j = 1, 2, · · · ,m,

0 < qij ≤ 1 i = 1, 2, · · · , n, j = 1, 2, · · · ,m,

0 < x̌i ≤ xi ≤ x̂i i = 1, 2, · · · , n.

The upper bound on all the primal variables is x̂ = 1, and the curvatures of the approximate

objective function are limited by setting α at some small negative number (α = −4, for instance).

In (5.14) we have not restricted ourselves to the consideration of only a single constraint, but we

assume that, if there are multiple constraints, all the constraints have an exponential form with

0 < qij ≤ 1. We further assume that at least one 0 < qij < 1, otherwise the problem becomes

convex and what follows is rendered uninteresting.

The objective is a strictly decreasing reciprocal function (i.e. strictly convex and monotonic), but

in this case the constraints are also strictly decreasing reciprocal functions (i.e. monotonic and

convex), which means that the feasible region is nonconvex, bearing in mind that we represent the

constraints using the positive-null form in this chapter. However, maximising the associated Falk

dual corresponds to minimising (5.14) in the primal form.

4In the remainder of this chapter we do not explicitly indicate that we now solve an approximate substitute sub-

problem, but this is clear from the context.
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For (5.14), each separable term in the Lagrangian – see (2.42) – has the following general form:

Li = aix
ri

i +
m∑

j=1

λjbijx
qij

i , (5.15)

with

bij = −cij > 0 i = 1, 2, · · · , n,

α ≤ ri < 0 i = 1, 2, · · · , n,

0 < qij ≤ 1 i = 1, 2, · · · , n, j = 1, 2, · · · ,m.

From the arguments presented in Section 2.3.2, we only need to show that each Li has a unique

minimum with respect to xi, for any λ, to show that Falk’s proofs apply to (5.14). This being the

case, we know immediately that solving the dual corresponds to solving (5.14), and that both have

unique optima. Hence, we consider (5.15) closely.

If all qij are different, there is generally no further simplification of (5.15) that sheds any more

light on it. However, we note that

lim
x→0

Li = lim
x→0

aix
ri

i = +∞, (5.16)

and

lim
x→+∞

Li = lim
x→+∞

xq
i = +∞, 0 < q ≤ 1, (5.17)

whenever at least one λj is greater than 0. Therefore, in this case there must exist at least one

stationary point at finite xi that represents a minimum. For the case where all λj are zero, Li

obviously reduces to a decreasing monotonic function, and its minimum over C will be at xi = x̂i.

Figure 5.1(a) illustrates the case where at least one λj > 0. The reciprocal term dominates for

small xi, and Li is therefore convex where xi is sufficiently small. For large xi, on the other hand,

the power terms dominate, and these are concave. Li, then, is a nonconvex function, but we wish

to show that it has a unique stationary point so that, by the limit argument presented above, this

stationary point must be a minimum. To this end, we start by observing that at any stationary point

L
i

xi

Power term
Reciprocal term

Lagrangian

(a) Terms in the Lagrangian

∂
f
/
∂
x

i

xi

Power term
Reciprocal term

Lagrangian

(b) Gradients of the terms

Figure 5.1: The form of the one-dimensional functions in the Lagrangian, and their gradients, for

problem (5.14).
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it is necessary that

−
∂

∂xi

(aix
ri

i ) =
∂

∂xi

(
m∑

j=1

λjbijx
qij

i

)
,

or − airix
(ri−1)
i =

m∑

j=1

λjbijqijx
(qij−1)
i . (5.18)

The term on the left of the equality in (5.18) is a monotonically decreasing function that is always

positive for positive xi. Figure 5.1(b) contains the negative of this curve. The term on the right of

the equality is the sum of positive, monotonically decreasing functions, and is thus itself a mono-

tonically decreasing function that is always positive for positive xi (again, refer to Figure 5.1(b)

for an example). However, since the qij are different in general, it is difficult to simplify this sum.

Now consider the following observations for the case when the qij are strictly less than 1:

Observation 1: The curve defined by any one term of the sum in (5.18), i.e. λjbijqijx
(qij−1)
i ,

intersects the curve defined by −airix
(ri−1)
i exactly once.

To show this, it is only necessary to note that the equation

−airix
(ri−1)
i = λjbijqijx

(qij−1)
i

has the unique real solution

x∗i =

(
−airi

λjbijqij

) 1

qij−ri

,

bearing in mind that ri is negative.

Observation 2: λjbijqijx
(qij−1)
i < −airix

(ri−1)
i ∀ xi < x∗i and

λjbijqijx
(qij−1)
i > −airix

(ri−1)
i ∀ xi > x∗i .

This is easily seen if one writes

xi = x∗i ǫ .

Then

λjbijqijx
(qij−1)
i

−airix
(ri−1)
i

= ǫ(qij−ri) and qij − ri > 0 .

Therefore,

xi < x∗i and
λjbijqijx

(qij−1)
i

−airix
(ri−1)
i

< 1 when ǫ < 1, and

xi > x∗i and
λjbijqijx

(qij−1)
i

−airix
(ri−1)
i

> 1 when ǫ > 1.

Since both λjbijqijx
(qij−1)
i and −airix

(ri−1)
i are positive numbers (for positive xi), Observation 2

is verified.
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Observation 3: The curve defined by the gradient of any one term of the sum in (5.18),

i.e. ∂
∂xi

(
λjbijqijx

(qij−ri)
i

)
, intersects the curve defined by ∂

∂xi

(
−airix

(ri−1)
i

)

exactly once.

Once again we simply note that the equation

−airi (ri − 1)x
(ri−2)
i = λjbijqij (qij − 1)x

(qij−2)
i

has the unique real solution

x⋄i =

(
−airi (ri − 1)

λjbijqij (qij − 1)

) 1

qij−ri

,

bearing in mind that ri and (qij − 1) are both negative.

Observation 4: x∗i < x⋄i .

x⋄i = x∗i

(
ri − 1

qij − 1

) 1

qij−ri

and
ri − 1

qij − 1
> 1.

Observation 5: ∂
∂xi

(
λjbijqijx

(qij−1)
i

)
> ∂

∂xi

(
−airix

(ri−1)
i

)
∀ xi < x⋄i and

∂
∂xi

(
λjbijqijx

(qij−1)
i

)
< ∂

∂xi

(
−airix

(ri−1)
i

)
∀ xi > x⋄i .

This last can again be shown by using the ǫ-argument given under Observation 2, replacing x∗i with

x⋄i , and additionally taking note of the fact that ∂
∂xi

(
λjbijqijx

(qij−1)
i

)
and ∂

∂xi

(
−airix

(ri−1)
i

)
are

both negative numbers for positive xi.

Armed with the above observations we now proffer the following argument to indicate the unique-

ness of the stationary point for Li. Since a stationary point occurs wherever (5.18) is satisfied,

we concern ourselves with the curves that represent the gradients of the functions in Li, de-

picted in Figure 5.1(b). For the sake of simplicity, we denote the gradient of the reciprocal term

(−airix
(ri−1)
i ) as Ai, the gradient of each power term in the sum (λjbijqijx

(qij−1)
i ) as gij and the

gradient of the sum total as Bi. Each gij intersects Ai only once (Observation 1). Hence, there are

at most m points at which Ai is intersected by a curve representing a term in the sum. We call the

least of these x∗i values x∗†i and the term associated with it g†ij . Then we deduce that all gij < Ai

for xi < x∗†i (by Observation 2). Also, at each one of the intersection points x∗ki , k ∈ m (k is here

used as an index, not an exponent), the gradient of the associated curve gk
ij is shallower than the

gradient of Ai and remains so over the region xi < x∗ki (Observations 3, 4 and 5). This, therefore,

is true of all gij for xi < x∗†i . So, the quantity

δi = Ai −Bi = Ai −
m∑

j=1

gij = Ai −
m∑

j=1

[Ai − (Ai − gij)] (5.19)
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increases as xi moves from x∗†i towards zero, because all the terms (Ai − gij) each increase indi-

vidually. If qij = 1, then Observations 3, 4 and 5 are void. However, in this case gij is simply a

positive constant, and it immediately follows that its representative curve intersects Ai only once

at a x∗i , that

gij < Ai ∀ xi < x∗i and gij > Ai ∀ xi > x∗i , (5.20)

and that (Ai − gij) must therefore still increase as xi moves from x∗†i towards zero. Now, at x∗†i ,

Bi > g†ij because Bi is the sum of g†ij and other gij that also have positive values. Given the above,

if Bi intersects Ai at some point xmin
i (necessarily less than x∗†i ), then Bi must remain less than

Ai for all xi < xmin
i , i.e. there can at most be one stationary point in the region 0 < xi ≤ x∗†i .

Moreover, by Observation 2, there can be no stationary points in the region x∗†i ≤ xi ≤ ∞, because

Bi > Ai there. Ergo, (5.15) has at most a unique stationary point and, by the limit argument, this

stationary point must exist and must represent a minimum.

We have shown that Attribute 1 is always met by (5.14) and the Falk dual is thus properly defined.

Actually locating the minimum of Li would in general require a numerical line search if there is

more than one constraint present and the qij are different. If, however, there is only one constraint

(qij → qi), as is the case in the topology problem considered, the minima of Li, i = 1, 2, · · · , n,
can be found analytically and these minima are given by the statement

xi(λ) =





βi(λ) if x̌ < βi(λ) < x̂,
x̌ if βi(λ) ≤ x̌,
x̂ if βi(λ) ≥ x̂,

(5.21)

with

βi =

(
−airi

λbiqi

) 1

qi−ri

. (5.22)

For the problem described in Section 5.3 with a single volume constraint given directly by (5.4)

and incorporating the SIMP(2) volumetric penalisation given by (5.8), all qi = d. The objective

function is approximated by (5.13) (since (5.13) includes (5.12) as a special case), so in iteration

k the βi become

βi =




−
(
x
{k}
i

)“

1−r
{k}
i

”(
∂f0

∂xi

){k}

λ

(
1

ν0

)
d




1

d−r
{k}
i

. (5.23)

Equation (5.23) is valid whether or not SIMP(1) penalisation is carried out on the first density

measure in the objective (5.2).

5.5.2 The addition of convex monotonic constraints

In (5.19), the quantity δi corresponds to the negative of the gradient of the Lagrangian term Li. We

have noted that δi increases as xi moves from x∗†i towards zero, which is to say that the gradient

of the Lagrangian term becomes increasingly negative as xi → 0 with x < x∗†i . We have also

indicated that the minimum of Li, which we denote xmin
i , lies in this region. From this we infer
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that Li is convex over the region x < xmin
i . Now, assume that an additional set of constraints of

the form

fadd
l (x) = cadd

0l +
n∑

i=1

cadd
il xtil

i ≥ 0 l = (m+ 1), (m+ 2), · · · , s

is added to problem (5.14), where we again require that cadd
il < 0 for all i and l. Here we let

til > 1 ∀ i, l, so the additional constraints are separable, monotonically increasing power functions.

The individual Lagrangian terms now acquire additional convex terms

Lnew
i =aix

ri

i +
m∑

j=1

λjbijx
qij

i +
s∑

l=m+1

λlb
add
il xtil

i

=Lnc
i +

s∑

l=m+1

λlb
add
il xtil

i ,

in which badd
il = −cadd

il > 0 and Lnc
i denotes the nonconvex Lagrangian of (5.15). Regarding

the existence of a unique stationary point of Lnew
i , the addition of the convex terms does nothing

to change the limit argument proffered in Section 5.5.1, so we know that a minimum of Lnew
i

must exist. Also, since the gradients of Lnc
i and the additional terms are all positive in the region

xi > xmin
i , the minimum must be in the region xi ≤ xmin

i . However, it is evident that Lnc
i and the

additional terms are convex over this latter region, so the minimum of Lnew
i must also be unique.

This means that it is possible to use Falk’s dual formulation to solve the following broader version

of (5.14):

min
x

f0(x) = a0 +
n∑

i=1

aix
ri

i

subject to fj(x) = c0j +
n∑

i=1

cijx
qij

i ≥ 0 j = 1, 2, · · · ,m,

ai > 0 i = 1, 2, · · · , n,

α ≤ ri < 0 i = 1, 2, · · · , n, (5.24)

cij < 0 i = 1, 2, · · · , n, j = 1, 2, · · · ,m,

0 > qij i = 1, 2, · · · , n, j = 1, 2, · · · ,m,

0 < x̌i ≤ xi ≤ x̂i i = 1, 2, · · · , n,

in which the qij are only required to be non-negative. Once again, in solving the dual for the general

case of arbitrary constraints, the determination of the primal-dual relationship (2.41) will require n
numerical line searches at any given λ. In terms of the minimum compliance problem with SIMP(2)

volumetric penalisation considered in this chapter, the above indicates that the problem can be

solved directly using the dual formulation when the constraints are all of decreasing exponential

form with positive exponents.
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5.6 Computational implementations of volumetric penalisation

5.6.1 On constraint violation

Let us first reflect on the observation that volumetric penalisation implies that the upper bound on

the volume of the material in the design space ν̄ is not adhered to, in particular during intermediate

steps of the optimisation process. This is not generally considered to be problematic, since any

design that satisfies the penalised volume constraint will have a volume that is less than or equal

to ν̄, due to the concavity of the penalised constraint. This discrepancy between the specified

volume limit and the volume of the design found by the optimiser is a natural result of employing

a penalised density measure in the volume constraint, while the physical volume of the design must

still be understood to be a linear function of the unpenalised density, viz.,

Vl =
n∑

i=1

νixi . (5.25)

The volume of the design (as per (5.25)) and the volume calculated by using the second density

measure

Vp =
n∑

i=1

νiµ2i
(xi) , (5.26)

with µ2i
(xi) given as in (5.8), are identical only at [0, 1] solutions. For numerical reasons, a hard

lower limit on the densities x̌ is always necessitated, so true [0, 1] solutions are not achievable but,

in theory at least, Vp can be brought arbitrarily close to Vl at black-and-white designs by letting

x̌→ 0.

5.6.2 On concavity

We now investigate the numerical solution of the (relaxed) topology problem (5.1), using mini-

mum compliance as the objective (5.2), which may incorporate SIMP(1) penalisation, and a single

penalised volumetric constraint (5.4) where SIMP(2) volumetric penalisation (5.9) is used. We ap-

ply two different optimisation algorithms. Firstly, we apply the standard MMA algorithm, which

constructs strictly convex approximations to the nonconvex constraint. Secondly, we represent the

constraint exactly and solve the dual by means of (5.23), and we refer to the resulting algorithm

as the ‘nonconvex algorithm’. Both of these algorithms solve the approximate subproblems in the

space of the dual variables.

l

h

P

E=1, ν=0.3, P =1, l=6, h=1, ν̄=0.5

Figure 5.2: The MBB beam (unit thickness; plane stress).
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The particular problem considered is the well-known MBB beam depicted in Figure 5.2, and the

problem settings are as follows: we use a 150 × 50 mesh and a linear mesh independence filter

with radius rmesh = 4.0 (see Sigmund [14, 15]). The minimum allowable density x̌ is a function

of the SIMP(1) penalty p and of machine precision. We use the following combinations of p and

x̌: (p = 1, x̌ = 10−10) and (p = 3, x̌ = 10−3). We use standard four-node displacement-based

isoparametric finite elements with bilinear interpolation (often known as Q4 elements). To ensure

feasible starting designs, we initiate the optimisation process at the point in the design space given

by

xi = ν̄
1

d ∀ i = 1, 2, · · · , n. (5.27)

Finally, we introduce φB&W , which represents the elemental ‘black-and-white fraction’, viz. the

sum of the combined number of elements on the lower and upper bounds n[0] +n[1], divided by the

total number of elements n, viz.,

φB&W =
n[0] + n[1]

n
. (5.28)

Results are presented for each of the algorithms using ν̄ = 0.5 and the two penalty pairs (p =
1, d = 0.35), which is an instance of SIMP(2), and (p = 3, d = 0.35), an instance of SIMP(1,2).

The topology after 100 iterations is shown together with the associated objective function value

(f 100
0 ) and black-and-white fraction (φB&W ), whenever the latter are meaningful. In these figures,

the plotted grey-scale values of the grid elements correspond to their direct, unpenalised design

densities xi. Plots of the initial convergence histories of the objective function and the (feasible)

constraint values are also proffered.

Strictly convex constraint approximation

MMA has become the algorithm of choice for solving the topology problem, particularly when

multiple constraints are applied. The MMA approximations are strictly convex, and the ‘moving

asymptotes’ function as built-in move limits. Consequently, it is customary to run MMA without

applying additional (external) move limits. We have, however, found it necessary to introduce such

a move limit. Also, it is necessary to set the penalties ci ≥ 10000 to generate feasible solutions

(see the MMA literature).

The results generated by the MMA algorithm for the minimum compliance problem with a single

concave constraint are presented in Figure 5.3. For both sets of penalties, we present results for

two values of the applied external move limit (δ∞), namely δ∞ = 1 (which, given the bounds on

xi, amounts to applying no external move limit whatsoever) and δ∞ = 0.2.

For p = 1 and d = 0.35, MMA oscillates severely (Figure 5.3(c)), though it is evident that

reducing the move limit damps the amplitude of the oscillation somewhat. Hence, the topology

image presented has been chosen to correspond to the analysis in which δ∞ = 0.2. Given the

scale of the oscillations, the presented topology at iteration 100 is rendered fairly meaningless. It

is given for the purposes of maintaining consistency with the results presented in the remainder

of the chapter. Equally, there is little use in stating the optimal objective function value at 100
iterations and its associated black-and-white fraction. In instances such as this, we instead present

the minimum objective value found during the whole analysis (f∗
0 ), and the corresponding black-

and-white fraction (φ∗
B&W ).
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Lastly, for p = 3 and d = 0.35, large-scale oscillations again appear in the analysis (Figure 5.3(d)).

Curiously, the amplitude of the oscillations seems unaffected by the reduction of the move limit

from δ∞ = 1 to δ∞ = 0.2 in this case. Here again, we state f ∗
0 and φ∗

B&W .

The convergence behaviour of MMA on the minimum compliance problem using SIMP(1) without

volumetric penalisation is known to be very good. The foregoing results show that the presence of

a concave constraint complicates the optimisation problem, to the extent that the performance of

algorithms that rely on strictly convex approximations may be markedly degraded.

Nonconvex algorithm: exact representation of the constraint

The results generated using the nonconvex algorithm with the abovementioned penalty parameters

are presented in Figure 5.4. No plots are given depicting the constraint value, since said measure

is always of the order of 10−11. It is determined mainly by the tolerance imposed on the dual

maximisation scheme (i.e. for all intents and purposes, the constraint is always active, ν̄ being

satisfied exactly).

We here present results only for a reciprocal approximation to the objective function (5.12), and

we have used a move limit of δ∞ = 0.4. Since the constraint is represented exactly, the move limit

represents the only control over the global search characteristics of the algorithm, so one would

expect some sensitivity to δ∞.

For p = 3 and d = 0.35, two oscillations occur during the first six iterations, though they are not

visible on the graph in Figure 5.4(c). Reducing the move limit eliminates these oscillations, though

they are not important in terms of convergence anyway. It is evident from the results that the use

of a nonconvex approximation has produced a stable algorithm.

It is also possible to find results with improved black-and-white fractions by using an exponential

approximation (5.13) with r = −0.5. However, this leads to an increased sensitivity to δ∞ for large

p (p = 3, for example). We have, however, used the exponential approximation in combination

with a continuation strategy.

5.6.3 Preliminary comments on continuation methods

In the foregoing, we have used fixed values for the penalties p and d. This is certainly not rec-

ommendable in general; it is preferable to increase p (and decrease d) iteratively via some contin-

uation method [65]. This stabilises the global search by controlling the rate of convergence and

may reduce the likelihood of convergence to a local minimum (although convergence to the global

optimum can never be demonstrated, since problem (5.1) is intractable). However, it is not our

intention to exhaustively consider optimal continuation methods. Rather, we are interested in the

fundamental form of the subproblems that arise in the search for predominantly black-and-white

designs. Thus, we only present results for a single continuation strategy.

We keep p = 1 and d = 1 for the initial 15 iterations. Then p is slowly increased (by multiplication

by α1 = 1.02) and d is decreased (by devision by α2 = 1.01) per iteration. An upper limit on p
of p = 3 is set, as well as a lower limit on d of d = 0.35. The results are presented in Figure 5.5

for three finite element mesh discretisations. We use r = −0.5, δ∞ = 0.4 and x̌ = 10−3. In
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each case we allow the program to run to termination. The topologies are therefore well nigh zero-

one solutions. In addition, the results were obtained without any significant oscillatory behaviour

whatsoever; again, compare with Figure 5.3(c) for a typical convergence history obtained with

MMA. The topologies, objective function values and black-and-white fractions are reported at

termination; the superscripts represent the number of iterations that were required; they range

between 120 and 180.

5.7 Conclusions and recommendations

We have studied the minimum compliance topology optimisation problem with SIMP-like volu-

metric penalisation, in which minimum compliance is sought subject to a single concave constraint

on volume. We have shown numerically that the presence of the concave constraint may increase

the difficulty of the problem dramatically if one employs a method based on strictly convex approx-

imation. This is evidenced by the results obtained by the standard MMA algorithm, which exhibits

large-scale oscillatory behaviour unless (and sometimes even though) an additional external move

limit is applied.

Regardless of the problems posed by concavity to (dual) algorithms based on convex primal ap-

proximations, we have shown that it is sometimes possible to solve nonconvex problems directly

using a dual method. Accordingly, we have developed a nonconvex dual method that accommo-

dates the concave constraint function involved in volumetric penalisation directly, without resorting

to convex approximation. This is possible since strict convexity of the approximate subproblems is

sufficient, but not necessary, to ensure that the solutions of the primal and dual problems are iden-

tical. We present numerical results that show that the developed nonconvex algorithm is indeed

practicable, as the solutions obtained thereby are of a high quality for the considered problem.

Finally, our endeavours herein were merely aimed at drawing some attention to the idea that non-

convex forms may be amenable to solution via the Falk dual. We are not necessarily advocating

the use of the SINH method (although use of volumetric penalisation and/or the SINH method

may indeed constitute fruitful optimisation strategies). The ability of volumetric penalty methods

to assist in generating predominantly solid-void discrete solutions in particular is considered to be

of much importance.
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(a) p = 1, δ∞ = 0.2: f∗

0 = 752.78, φ∗

B&W = 0.003 (b) p = 3, δ∞ = 0.2: f∗

0 = 231.65, φ∗

B&W = 0.806
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Figure 5.3: The MBB beam. Optimal topologies and convergence histories obtained with MMA

using SIMP(1) material penalisation (p = 1) and (p = 3), as well as SIMP(2) volumetric penalisa-

tion (d = 0.35), and two different move limit strategies δ∞.

(a) p = 1, f100
0 = 208.56, φ100

B&W = 0.598 (b) p = 3, f100
0 = 234.55, φ100

B&W = 0.797
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(c) Objective function histories

Figure 5.4: The MBB beam. Optimal topologies and convergence histories obtained with the

nonconvex algorithm using SIMP(1) material penalisation (p = 1) and (p = 3), as well as SIMP(2)

volumetric penalisation (d = 0.35). The move limit is set to δ∞ = 0.4.
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(a) Objective function history for the half-beam

mesh discretisation of 150 × 50

(b) Mesh discretisation for the half-beam: 75 × 25,

f128
0 = 187.51, φ128

B&W = 0.9995
(c) Mesh discretisation for the half-beam: 150 × 50,

f177
0 = 187.72, φ177

B&W = 0.9999

(d) Half-beam mesh discretisation: 225 × 75, f162
0 = 188.24, φ162

B&W = 0.9999

Figure 5.5: The MBB beam. Optimal topologies and convergence histories obtained with the

nonconvex algorithm using r = −0.5 in the approximation of the objective function and a con-

tinuation strategy on the penalty parameters p and d. Optimal topologies are given for three mesh

discretisations. δ∞ = 0.4.
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Chapter 6

Nonconvex forms in weight minimisation

The current chapter is a reproduction of a paper titled “Nonconvex dual forms based on expo-

nential intervening variables, with application to weight minimisation” [36]. The paper is co-

authored by Prof. Albert A. Groenwold of the Department of Mechanical Engineering at the Uni-

versity of Stellenbosch, Stellenbosch, South Africa.

6.1 Abstract

We study the weight minimisation problem in a dual setting. We propose new dual formula-

tions for nonlinear multipoint approximations with diagonal approximate Hessian matrices, which

derive from separable series expansions in terms of exponential intervening variables. These gen-

erally nonconvex approximations are formulated in terms of intervening variables with negative

exponents, and are therefore applicable to the solution of the weight minimisation problem in a

sequential approximate optimisation framework.

Problems in structural optimisation are traditionally solved using sequential approximate optimi-

sation algorithms, like the method of moving asymptotes, which require the approximate subprob-

lems to be strictly convex. Hence, during solution, the nonconvex problems are approximated

using convex functions, and this process may in general be inefficient. We argue, based on Falk’s

definition of the dual, that it is possible to base the dual formulation on nonconvex approximations.

To this end we reintroduce a nonconvex approach to the weight minimisation problem originally

due to Fleury, and we explore certain convex and nonconvex forms for subproblems derived from

the exponential approximations by the application of various methods of mixed variables. We

show in each case that the dual is well defined for the form concerned, which may consequently

be of use to future code developers.

6.2 Introduction

In recent years, sequential approximate optimisation (SAO) has firmly been established as the op-

timisation methodology of choice for simulation-based optimisation problems. A notable example

105
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of such an algorithm is the well-known method of moving asymptotes (MMA) [3, 32], which is

almost exclusively used in topology optimisation when multiple constraints are present.

As a consequence of the expense associated with the evaluation and storage of second-order infor-

mation, most SAO methods aimed at simulation-based optimisation problems use only first-order

sensitivity information. Frequently, these methods then exploit the advantages of so-called inter-

vening variables, which can introduce some application-specific nonlinearities into the approxi-

mation functions used. In structural optimisation, for example, reciprocal intervening variables

are very popular; among others, they have been included in the well-known CONLIN algorithm

of Fleury and Braibant [4], whereas MMA uses reciprocal-like approximations with adjustable

asymptotes, which make the form of the approximations variable. While exponential intervening

variables are not quite as popular, they can potentially yield approximations of increased accuracy,

an example being the first-order exponential approximation proposed by Fadel et al. [44].

If second-order information is included in an SAO algorithm, it is normally restricted to the diago-

nal terms of the Hessian or higher-order matrices, so that the approximations obtained are separable

functions. Examples include the reputedly highly accurate TANA-2 and TANA-3 approximations

proposed by Grandhi and his co-workers [66, 67, 68].

Separability of the approximations is often considered important, since solution of the resulting

separable approximate subproblems may sometimes be easily effected using highly efficient dual

formulations. These dual methods are particularly efficient when the number of constraints is (far)

less than the number of design variables and when the primal-dual relationships can be determined

analytically. Both the CONLIN and MMA algorithms employ a dual approach in solving their

subproblems.

The most popular of the dual methods used in conjunction with SAO for continuous simulation-

based optimisation problems is the dual as defined by Falk [2]. With this definition, the upper and

lower bound constraints on the design variables do not have to be included explicitly as constraints

in the definition of the Lagrangian. Falk proved that strict convexity of the approximate objective

function, together with concavity of the approximate constraint functions (Falk defined the optimi-

sation problem in the positive-null sense), are sufficient conditions to guarantee that the resulting

dual function is concave and that its maximum corresponds to the minimum of the primal approx-

imate subproblem. Convexity is of course also a sufficient requirement to guarantee the existence

of a unique KKT point for the primal approximate subproblem. (Naturally, we assume herein that

the primal problem is feasible.)

Most, if not all, general-purpose SAO codes exploit convexity as a rule, which is to say that con-

vex functions (in the above sense) are used to construct the approximate subproblems, even if the

problem itself is locally nonconvex. This approach is judicious, of course, if no problem-specific

information is known a priori. Be that as it may, we wish to point out that, for certain popular

structural optimisation problems, it can be advantageous to use the more naturally arising noncon-

vex approximations in the construction of the approximate subproblems. This is true, for example,

of the minimum compliance topology optimisation problem if volumetric penalisation is used,

and of the weight minimisation problem. The minimum compliance problem was the subject of

Chapter 5, and in the current chapter we address the weight minimisation problem.

The solution of the weight minimisation problem via a dual method with the possible utilisation

of certain first-order nonconvex approximations was presented previously by Fleury [28]. The
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justification given for allowing these nonconvex approximations was that the resulting subproblem

is transformable into a convex subproblem. The argument is valid in this case, but does not easily

translate into a general rule, since its validity is dependent on the types of transformations that are

allowed. This question was not formally explored in Reference [28].

We argue that the type of nonconvex subproblem arrived at by Fleury is catered for directly in

the proof that Falk presented for convex problems. This is to say that Falk’s proof holds without

modification in this case, even though the subproblem is nonconvex. This obviates any discussion

of convex transformability for the problem. We have discussed under which conditions nonconvex

problems can be solved directly using the Falk dual in Section 2.3.2, and we here use Fleury’s

original nonconvex approach to the weight minimisation problem as a demonstrative example.

Fleury’s approach utilised approximations based on first-order Taylor series expansions, both in

terms of direct (design) variables and in terms of reciprocal intermediate variables. Both of these

approximations are special cases of the separable expansion in terms of exponential intermediate

variables [61] that we consider in this chapter. Previously, Groenwold et al. have presented an

incomplete series expansion (ISE) as a basis for function approximation [61, 69]. The exponential

function considered herein is one such expansion; it is expressed in terms of the ‘main’ or diagonal

terms of second, third and even higher orders, but excludes ‘interaction’ or off-diagonal terms.

That is, the function excludes all terms resulting from mixed partial derivatives.

Following on from our treatment of Fleury’s approach, we investigate how approximations that de-

rive from the general (higher-order) separable exponential expansion with negative exponents can

be used in a dual SAO framework, as this may be pertinent to the weight minimisation problem and

of interest to code developers. The exponential expansion includes nonconvex forms, and we dis-

cuss when such forms can be used in conjunction with the Falk dual. Two frequently encountered

problems in structural optimisation, namely the weight minimisation problem with sizing design

variables and the minimum compliance topology optimisation problem, represent degenerate cases

of the formulations we present.

The chapter proceeds as follows: In Section 6.3, Fleury’s (first-order nonconvex) treatment of

the classical weight minimisation problem is described. We use the tenets born of Section 2.3.2 to

demonstrate that the dual is properly defined for this problem, even though it is nonconvex. In Sec-

tion 6.4 we introduce the separable expansion in terms of exponential intervening variables, and

we explore whether a derivative form with negative exponents can be used to approximate func-

tions in a dual SAO setting. Having examined the structure of the approximation, in Section 6.5

we go on to suggest three general methods of mixed variables based on this function that addition-

ally incorporate other functions, which also derive from the exponential expansion. One of these

methods produces strictly convex subproblems, two retain the higher-order terms. Section 6.6

describes the construction of the dual approximate subproblem once the primal approximate sub-

problem has been defined in terms of these approximations. Two first-order examples are also

presented. In Section 6.7 we present a telling numerical example for a simple implementation.

Finally, Section 6.8 reiterates the main points made in the chapter and presents our conclusions.
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6.3 The weight minimisation problem

Fleury discussed the classical structural weight minimisation problem at length in Reference [28],

in which a dual method for solving this problem was also introduced. The general form of the

SAO subproblems given in Reference [28] is

min
x

f0(x) = a0 +
n∑

i=1

aixi

subject to fj(x) = c0j +
n∑

i=1

cij
xi

≤ 0 j = 1, 2, · · · ,m, (6.1)

ai > 0 i = 1, 2, · · · , n,

0 < x̌i ≤ xi ≤ x̂i, i = 1, 2, · · · , n,

which is also an exact representation of the problem for a statically determinate structure subject

to static stress and displacement constraints only. The subproblem is formulated as a first-order

Taylor series expansion about a given point in the domain using separable approximations. The

Taylor approximation of the objective function is given in terms of direct variables, whereas the

constraints are represented in terms of reciprocal intervening variables.

Problem (6.1) is convex only if all cij ≥ 0. However, the signs of cij reflect the signs of the

constraint gradients at a given point, and these can be either positive or negative. Hence prob-

lem (6.1) must in general be considered to be nonconvex. Since the adoption of general purpose

algorithms like CONLIN and MMA, it has become standard practice to solve the weight minimi-

sation problem (and other structural optimisation problems) using dual methods based on convex

approximations. We wish to show that this convexification is not a necessary aspect of solution

via the dual method, and it was not considered necessary in Fleury’s original treatment of (6.1).

Moreover, we argue that it is not even necessary if Falk’s proof for convex problems is espoused,

because, given the discussion in Section 2.3.2, the proof holds for certain nonconvex cases as well.

Fleury pointed out that, when expressed in terms of the reciprocals of the design variables, (6.1)

becomes strictly convex regardless of the signs of cij . Then, for this transformed problem, Falk’s

proof for convex problems obviously applies, in which case the Falk dual can be used to solve

the problem and, moreover, it possesses a unique KKT point. Expressing (6.1) in terms of the

reciprocals of the design variables really implies a coordinate transformation of the form xi →
1/x′i. Whether or not the properties of the transformed problem can be cited as being directly

indicative of the properties of the untransformed problem depends, in general, on the nature of

the transformation employed. In Chapter 7 the issue of convex transformability is examined more

closely. For the purposes of the current chapter, it is simply noted that Falk’s proof applies directly

to the untransformed problem (refer to Section 2.3.2), so that evocation of a transformation is

unnecessary, rendering questions regarding its validity irrelevant.
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6.3.1 A discussion of Fleury’s subproblem

For problem (6.1), each separable term in the Lagrangian has the form

Li = aixi +

(
1

xi

)( m∑

j=1

λjcij

)

= aixi +Bi

(
1

xi

)
, (6.2)

where ai is always positive and non-zero and Bi =
∑m

j=1 λjcij can be either positive, negative

or zero, depending on the constants cij and the values of the Lagrange multipliers. In accordance

with the argument presented in Section 2.3.2, in order that the Falk dual can be used it is necessary

that each Li possesses a unique minimum in C with respect to xi for every λ. Figure 6.1 shows the

general forms of Li for positive and negative Bi respectively.

L
i

xi

Linear term
Reciprocal term

Li

(a) Positive Bi

L
i

xi

Linear term
Reciprocal term

Li

(b) Negative Bi

Figure 6.1: The form of the one-dimensional separable terms in the Lagrangean for problem (6.1).

If Bi is positive, then

lim
x→0

Li = +∞ and lim
x→+∞

Li = +∞, (6.3)

the linear term dominating for large values of xi and the reciprocal term dominating for small

values of xi. The minimum is unique and sits either at the stationary point or at one of the bound

values on xi. To see this, recognise that the stationary condition

∂Li

∂xi

= 0 (6.4)

yields

xi(λ) =

(
Bi

ai

)1/2

, (6.5)

which has only one positive real solution when Bi is positive. Indeed, for Bi positive, the Li

are convex, and this observation would simplify the analysis for this specific problem. We resist

relying on convexity here, since we will unfortunately not be able to do so in the remainder of this

study, when neither monotonicity nor convexity will always hold. Haftka and Gürdal [27] note that
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(6.5) is only valid if Bi is positive, since it has no real-valued solution when Bi is negative. This

does not mean, however, that the dual cannot be used. When Bi is negative,

lim
x→0

Li = −∞ and lim
x→+∞

Li = +∞. (6.6)

The lack of a real-valued solution to (6.5) indicates that Li must be monotonic. It is, in fact,

monotonically increasing, as exemplified in Figure 6.1(b). When Bi = 0, (6.2) indicates that Li

will be an increasing linear function with gradient ai. In both instances, Li has a finite unique

minimum in C at xi = x̌i. The primal-dual relationship still exists uniquely and the dual is still

defined. Therefore, the following relationship between the primal and dual variables given by

Fleury in his ‘generalised optimality criteria approach’ to the weight minimisation problem [28] is

always valid, and derives rigorously from the application of the Falk dual methodology to the (in

general) nonconvex problem (6.1):

xi(λ) =





β
1/2
i (λ) if x̌2

i < βi(λ) < x̂2
i ,

x̌i if βi(λ) ≤ x̌2
i ,

x̂i if βi(λ) ≥ x̂2
i ,

(6.7)

where

βi(λ) =

(
Bi

ai

)
. (6.8)

We have shown here that (6.1) may be solved directly using the Falk dual, even though it is a

nonconvex problem. The proof of this last does not rely on the existence of a transformation that

makes (6.1) convex, but is instead contained within Falk’s original proofs for convex problems,

which apply to some more general problems.

6.4 Higher-order separable approximations based on exponen-

tial intervening variables

We have previously proposed a family of approximating functions derived from truncated Taylor

series expansions in which only the terms on the diagonals of the Hessian and higher-order matrices

are retained. This family of approximations was named the incomplete series expansion (ISE)

approximations [61]. Since all the coupling off-diagonal terms are dropped, these approximations

are separable and have the additional advantage of minimising the number of parameters that

need to be stored. Many popular approximations used in SAO frameworks can be thought of as

deriving from the ISE as special cases. Foremost among these are the reciprocal and exponential

approximations, which are commonly used only to first order. One reason for this is that, if they

are retained, the higher-order terms are not convex. In this section we examine the possibility of

retaining the higher-order terms.

Before discussing the use of the higher-order approximations, we consider it important to make

three points clearly. Firstly, we discuss here the consequences of using the nonconvex terms in

a dual approach to SAO, using, specifically, Falk’s notion of the dual. We do not intend to im-

ply that these higher-order terms automatically represent improved approximations over the usual
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first-order approximations (though they may well, since additional information about the original

functions is exploited in formulating the higher-order1 terms). Nor will we analyse under which

circumstances and for which problems the use of the higher-order terms is effective. We only wish

to point out whether or not the resulting approximations satisfy the prerequisites for the Falk dual

if they are used.

Secondly, we will limit our discussion to SAO subproblems in which all approximations used

derive in some way from a general higher-order separable series expansion in terms of exponential

intermediate variables (see Section 6.4.1). This expansion can be reduced to strictly convex, strictly

concave, linear and generally nonconvex forms, depending on how the parameters are chosen.

Lastly: we restrict our attention to problems whose bound domain C lies completely within the

positive orthant xi > 0 ∀ i. The approximating functions are generally only properly defined over

this space, and may contain asymptotes at xi = 0. (A given problem can of course be moved into

this space by defining a coordinate translation.) Structural optimisation problems are generally

defined only over this space anyway, since the variables in such a problem are normally physical

dimensions or material properties, which are non-negative. In the remainder of this chapter, the

general nonlinear programming problem considered will be referred to as PNLP. It is assumed to

be consistent with (2.15), and is represented in the negative-null form.

6.4.1 Expansion in terms of exponential intervening variables

When approximating PNLP as a separable expansion in terms of exponential intervening variables,

we replace the functions fα(x) by the expressions f̃Eα(x) to form the primal approximate sub-

problem [61], with

f̃Eα(x) = fα(x{k}) +
n∑

i=1

[
xaiα

i −
(
x
{k}
i

)aiα
]



(
x
{k}
i

)(1−aiα)

aiα



(
∂fα

∂xi

){k}

+

p̄∑

p=2

n∑

i=1

cipα

p!

∣∣∣xaiα

i −
(
x
{k}
i

)aiα
∣∣∣
p

,

(6.9)

or equivalently,

f̃Eα(x) = fα(x{k}) +
n∑

i=1

[(
xi

x
{k}
i

)aiα

− 1

](
x
{k}
i

aiα

)(
∂fα

∂xi

){k}

+

p̄∑

p=2

n∑

i=1

cipα

p!

∣∣∣xaiα

i −
(
x
{k}
i

)aiα
∣∣∣
p

.

(6.10)

1It is in order here to mention that higher-order terms may complicate the primal-dual relationships to the extent

that simple analytical relationships between the primal and dual variables cannot be formulated. Indeed, the primal-

dual relationships may require the solution of one-dimensional minimisations, e.g. see Reference [41]. However,

Duysinx [70] reports that the computational effort associated with this may be very reasonable (in particular if a sub-

stantial increase in accuracy is indeed realised due to the additional higher-order terms). An alternative computational

implementation is to use the quadratic approximations to the approximations with the higher-order terms, e.g. see Ref-

erence [71]. This results in a new and simple form of the dual, which does not depend on the specific approximations

used. We indeed hope to investigate these approaches in the future.
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Notationally, α = 0 indicates the approximate objective function, whereas 1 ≤ α ≤ m denotes the

corresponding approximate inequality constraint. We have introduced p̄ to indicate that the series

used contains only a finite number of terms. For the sake of notational simplicity, it is understood

that (
∂fα

∂xi

){k}

=
∂fα

∂xi

(x{k}) ,

being the partial derivative of fα with respect to xi at the point x{k}. The convexity of (6.9) depends

on the values of the aiα and the cipα, as well as on the signs of the ∂fα/∂xi. If the aiα are negative,

the second term on the right-hand side of (6.9) is strictly convex for all ∂fα/∂xi negative. Since the

third term is nonconvex over the interval xi > x
{k}
i , we are guaranteed to obtain a strictly convex

(or strictly concave) approximation only if

cipα = 0 ∀ i and p. (6.11)

If the aiα > 1, the first-order terms are strictly convex for ∂fα/∂xi > 0, although the higher-

order terms are still nonconvex. The expression in terms of exponential intervening variables (6.9)

represents a variety of specific approximations that can be obtained by specifying or limiting the

parameters aiα and cipα. For instance, by setting aiα = 1 ∀ i, we recover the direct approxima-

tion [61]

f̃Dα(x) = fα(x{k}) +
n∑

i=1

(
∂fα

∂xi

){k}

(xi − x
{k}
i ) +

p̄∑

p=2

1

p!

n∑

i=1

cipα

∣∣∣xi − x
{k}
i

∣∣∣
p

, (6.12)

and by setting aiα = −1 ∀ i we recover the reciprocal approximation [61]

f̃Rα = fα(x{k}) +
n∑

i=1

(
xi − x

{k}
i

)(x{k}i

xi

)(
∂fα

∂xi

){k}

+

p̄∑

p=2

n∑

i=1

cipα

p!

∣∣∣∣∣
1

xi

−
1

x
{k}
i

∣∣∣∣∣

p

. (6.13)

6.4.2 Analysis of a higher-order nonconvex form

We are interested in ascertaining whether or not the higher-order functions listed above can be

used in a general dual approach to SAO. The question, then, is whether a general method can be

defined for the solution of PNLP that utilises these forms. With reference to the attributes listed in

Section 2.3.2, we note that these functions are all continuous and differentiable everywhere to first

order at least, despite the existence of absolute value operators. Also, we assume that the set C has

the simple structure discussed in Section 2.3.2 for the types of problems that may be considered.

In other words, we take it as said that Attributes 2 and 3 hold when we apply these approximations

to a problem of interest. In the current section, we examine under which circumstances Attribute 1

also holds.

To this end, we first examine the basic form that the separable parts of the Lagrangian Li are

likely to take when approximations that derive from (6.9) are used. Hence, we consider a general
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function lf that contains the following terms:

lf (x) =
m∑

α=0

λα

[
xaα −

(
x{k}

)aα
] [(x{k}

)(1−aα)

aα

](
∂fα

∂x

){k}

+
m∑

α=0

p̄∑

p=2

λα
cpα

p!

∣∣∣xaα −
(
x{k}

)aα

∣∣∣
p

,

(6.14)

where we have dropped the subscript i. Here, λα for α = 1, 2, · · · ,m are the Lagrange multipliers

associated with the j constraints. They are always positive constants. Since α = 0 denotes the

objective function, λ0 = 1.

When cpα < 0, the associated term in the Lagrangian is a strictly concave and increasing function

over the interval x ∈ (0, x{k}) and monotonically decreasing over (x{k},∞). Also, a first-order

term is concave and monotonically decreasing whenever aα is positive and (∂fα/∂x)
{k}

is negative.

Since, for the moment, we want (∂fα/∂x)
{k}

to be able to take on either a positive or a negative

sign, to ensure that lf has a unique minimum in general it is necessary to require that

cpα ≥ 0 ∀ p ,

and that

aα < 0 ∀ α .

Equation (6.14) stems from the use of the general exponential expression (6.9). As it is given,

the powers aα may have different values for every α. This being the case, it is quite easy to find

examples for which Attribute 1 does not hold for lf in general (even if only the first-order terms

are present). Hence, another stipulation that must be made immediately is that

aα = a ∀ α .

With these preliminary considerations taken into account, and defining the constants

A =
m∑

α=0

λα

[(
x{k}

)(1−a)

a

](
∂fα

∂x

){k}

and

bp =
m∑

α=0

λα
cpα

p!

at the point x{k}, we are left with a function of the form

lf = A
[
xa −

(
x{k}

)a]
+

p̄∑

p=2

bp

∣∣∣xa −
(
x{k}

)a∣∣∣
p

. (6.15)

To simplify the discussion that follows we choose to write

lfA = A
[
xa −

(
x{k}

)a]
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and

lfB =

p̄∑

p=2

bp

∣∣∣xa −
(
x{k}

)a∣∣∣
p

.

Since a < 0 and bp ≥ 0, each term in the sum lfB has the general form depicted in Figure 6.2(b),

regardless of the exponent p. We demonstrate below that these functions are convex and decreasing

over x ∈ (0, x{k}), and nonconvex but monotonically increasing on the interval x ∈ (x{k},∞).
They possess unique minima, which are located at x = x{k}. As x → +∞, these functions tend

towards bp
(
x{k}

)ap
asymptotically. Of course, the sum itself has the same general characteristics

as its constituent functions.

As exemplified in Figure 6.2(a), the first term in (6.15), namely lfA, is either convex and monotoni-

cally decreasing or concave and monotonically increasing, depending on the sign of A. Regardless

of the sign of A, or of the values that A or the various bp might take, lf is a function that possesses

a unique minimum over x ∈ [x̌i, x̂i]. This is easy to see in the case that A = 0 or all bp = 0.

However, to verify the uniqueness of the minimum if neither of these eventualities transpires, note

firstly that the gradient of lf is

∂ (lf )

∂x
= axa−1

[
A+

p̄∑

p=2

pbp

[
xa −

(
x{k}

)a] ∣∣∣xa −
(
x{k}

)a∣∣∣
p−2
]
, (6.16)

or equivalently

∂ (lf )

∂x
= axa−1

[
A+

p̄∑

p=2

pbps(x)
∣∣∣xa −

(
x{k}

)a∣∣∣
p−1
]
, (6.17)

in which s(x) is an operator that assumes the sign of
[
xa −

(
x{k}

)a]
. Again, for the sake of clarity

we write

DB =

p̄∑

p=2

pbps(x)
∣∣∣xa −

(
x{k}

)a∣∣∣
p−1

and

DT =

[
A+

p̄∑

p=2

pbps(x)
∣∣∣xa −

(
x{k}

)a∣∣∣
p−1
]
.

l f
A

x

lfA, A > 0

(a) First-order term lfA

l f
B

x

lfB

(b) Higher-order terms lfB

Figure 6.2: The general form of lfA and lfB with a < 0.
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Properties of DB

Clearly, xa >
(
x{k}

)a
when x < x{k} and the difference between the two

[
xa −

(
x{k}

)a]
decreases

monotonically to zero as x approaches x{k} from below. From this, it is evident that all the terms

of which DB is comprised have a strictly positive value on the interval x ∈ (0, x{k}). DB inherits

this property and also decreases monotonically to zero as x approaches x{k} from below. Because

xa−1 is also a decreasing function with a positive value, the multiple of the two, namely

xa−1DB = xa−1

p̄∑

p=2

pbps(x)
∣∣∣xa −

(
x{k}

)a∣∣∣
p−1

, (6.18)

can only be a function of the same type. When the negative factor a is taken into account, we may

conclude that the function represented by lfB is convex over x ∈ (0, x{k}), since its gradient is

strictly negative and monotonically increasing over this interval.

Considering the interval x ∈ (x{k},∞), it is sufficient to point out that (6.18) is always negative

when x > x{k}, making lfB a monotonically increasing function on (x{k},∞). Also, realise that,

since DB has essentially the same structure as lfB over this interval, except that s(x) is negative

here, DB must be a negative-valued and monotonically decreasing function in this region. DB

decreases to some limiting value asymptotically.

Now we examine lf for two cases characterised by the sign of A.

For A > 0

In this case, lfA corresponds to a decreasing reciprocal function of order |a|, and is strictly convex.

Given the convexity of lfB on the interval x ∈ (0, x{k}), lf must itself be convex there. Given the

facts that A > 0, DB = 0 at x = x{k}, and that DB is monotonically decreasing on (x{k},∞),
we conclude that DT is also monotonically decreasing on (x{k},∞). It has a positive value at

x = x{k} and can pass through zero at most once if A is greater than the absolute value of the limit

to which DB converges. We call this point at which DT equals zero x∗, if it exists, and we know

that x∗ > x{k}.

Now, on the interval (x{k}, x∗), both DT and xa−1 are positive-valued decreasing functions, which

implies once again that lf is convex in this region. For x > x∗, DT is strictly negative, meaning

that the gradient of lf is strictly positive, implying that lf is monotonically increasing on (x∗,∞).

In summary, for A > 0: because lf is convex and decreasing over x < x∗, and monotonically

increasing over x > x∗, lf can have only one minimum. This minimum is located at x∗ if it exists.

Moreover, these facts imply that lf has a unique minimum over any convex and closed bounded

interval. If x∗ does not exist, lf is convex and monotonically decreasing over the whole real line,

in which case the minimum of lf over a bounded interval will be located at the upper bound on the

interval x̂i.

For A < 0

Both lfA and lfB are monotonically increasing functions on x > x{k} in this case and, conse-

quently, so is lf . Therefore, we focus on the interval (0, x{k}) in which lfA is monotonically
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increasing and strictly concave, whereas lfB is monotonically decreasing and convex.

It is evident that DB is here a positive-valued monotonically decreasing function, so we can con-

clude that there is once again a unique point x∗ that makesDT = 0, except that this time x∗ < x{k}.
By following a similar rationale as in the case for A > 0, we again are led to conclude that lf is

convex and decreasing over x < x∗ and monotonically increasing over x > x∗. For A < 0, the

point x∗ is bound to exist and defines the unbounded unique minimum of lf .

6.5 Methods of mixed variables

The methods presented here are based on the inverse exponential form discussed above, which is

pertinent to the weight minimisation problem. That is to say, we make the assumption that these

methods must be able to incorporate general inverse exponential forms (in which the exponents are

negative). Therefore, we take lf as a basis and we investigate which other forms can be added in

such a way as to guarantee that the Lagrangian functions Li still have unique minima. These meth-

ods are meant to be general. That is, each of them incorporates a range of specific approximations,

which are obtained by restricting or specifying parameter values.

6.5.1 Incorporating additional functions into lf

We have shown that functions of the form given in (6.15) have a unique minimum regardless of

the sign of A, provided that a < 0 and all bp > 0. This is to say that a Lagrangian, separably

composed of terms of the form given in (6.14), has a unique minimum on any interval of the form

xi ∈ [x̌i, x̂i] regardless of the signs of the partial derivatives, provided that all aiα are identical and

negative for a given i and that all cipα ≥ 0.

The Lagrangian associated with a problem PNLP would take this form if the objective and constraint

functions were all approximated as functions consistent with the following expression:

f̃Eα(x) = fα(x{k}) +
n∑

i=1

[
xai

i −
(
x
{k}
i

)ai
]



(
x
{k}
i

)(1−ai)

ai



(
∂fα

∂xi

){k}

+

p̄∑

p=2

n∑

i=1

cipα

p!

∣∣∣xai

i −
(
x
{k}
i

)ai
∣∣∣
p

.

(6.19)

Equation (6.19) is a restricted version of the general expression in terms of exponential intermedi-

ate variables (6.9). However, it can be thought of more properly as a generalisation of the reciprocal

approximation (6.13) to other fixed negative exponents.

Equation (6.15) is convex at first and strictly increasing thereafter. The addition of any other term

to lf that is convex over the same interval as lf is convex, and also strictly increasing thereafter,

would not change the basic structure of (6.15). The resulting function would still have a unique

minimum. Remember that if lfB = 0, lf = lfA could be concave but increasing everywhere

or convex but decreasing everywhere, so appropriate choices of functions are those that are both
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convex and strictly increasing over all x > 0. Therefore, for instance, one could add to (6.15)

terms of the form

lfC = dC

[
xq −

(
x{k}

)q]

in which dC > 0 and q ≥ 1. Such terms come from exponential approximations truncated to first

order

f̃Eβ(x) = fβ(x{k}) +
n∑

i=1

[
x

qiβ

i −
(
x
{k}
i

)qiβ
]



(
x
{k}
i

)(1−qiβ)

qiβ



(
∂fβ

∂xi

){k}

, (6.20)

for which the following restriction holds:

∂fβ

∂xi

> 0 .

Lastly, if one were to insist that (∂fα/∂xi) < 0 were to apply strictly to (6.19), in which ai < 0,

then terms of the form

lfD = dD

∣∣∣xq −
(
x{k}

)q∣∣∣
p

could also be added to (6.15), provided that dD > 0, q ≥ 1 and p ≥ 2. With these restrictions,

functions of the form lfD are nonconvex but monotonically decreasing over
(
0, x{k}

)
, unless q = 1,

in which case they are convex and decreasing over
(
0, x{k}

)
(see Figure 6.3). In either case they are

convex and increasing over
(
x{k},∞

)
. The observation that they can be added to lf as additional

terms stems from:

• For lf , x∗ > x{k} in this case.

• Both lf and lfD are monotonically decreasing and positive-valued over
(
0, x{k}

)
.

• Both lf and lfD are convex over
(
x{k}, x∗

)
.

• Both lf and lfD are monotonically increasing and positive-valued over (x∗,∞).

l f
C

,D

x

lfC

lfD

(a) When q = 1

l f
C

,D

x

lfC

lfD

(b) When q > 1

Figure 6.3: The general form of lfC and lfD with q ≥ 1.
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Functions of the form lfD come from the higher-order terms in a general exponential expansion in

which the exponents are greater than unity. This would appear to imply that, when (∂fα/∂xi) < 0
in (6.19), the full exponential form

f̃Eβ(x) = fβ(x{k}) +
n∑

i=1

[
x

qiβ

i −
(
x
{k}
i

)qiβ
]



(
x
{k}
i

)(1−qiβ)

qiβ



(
∂fβ

∂xi

){k}

+

p̄∑

p=2

n∑

i=1

cipβ

p!

∣∣∣xqiβ

i −
(
x
{k}
i

)qiβ
∣∣∣
p

,

(6.21)

with qiβ ≥ 1, all cipβ ≥ 0 and all (∂fβ/∂xi) > 0, could also be utilised for the approximation

of some functions fβ in PNLP. Unfortunately, this is not the case. Although the use of either of

the forms lfC and lfD presents no problems individually, it is possible to find cases of Lagrangian

functions Li, derived from (6.21), which do not have unique minima. If we wish to use such

approximations, we are forced to impose

qiβ = qi ∀ β .

Then the approximation becomes

f̃Eβ(x) = fβ(x{k}) +
n∑

i=1

[
xqi

i −
(
x
{k}
i

)qi
]



(
x
{k}
i

)(1−qi)

qi



(
∂fβ

∂xi

){k}

+

p̄∑

p=2

n∑

i=1

cipβ

p!

∣∣∣xqi

i −
(
x
{k}
i

)qi
∣∣∣
p

,

(6.22)

which is again a restricted version of the general exponential expression (6.9), and can be thought

of as a generalisation of the direct approximation (6.12) to other positive exponents. In (6.22), all

(∂fβ/∂xi) > 0, all cipβ ≥ 0 and all qi ≥ 1, and (6.22) can be used together with (6.19) whenever

all (∂fα/∂xi) ≤ 0 in (6.19).

We will not demonstrate explicitly that (6.22) always results in Lagrangian functions that have

unique minima. To do so would entail defining a function lf2 from the sum of forms lfC and lfD.

An analysis of lf2 would be similar to the one given in Section 6.4.2, for lf , except that, instead of

a < 0, we have q ≥ 1 and the coefficient A would always be non-negative. Suffice it to say that, if

both lfC and lfD are present in lf2, then lf2 would have the following characteristics:

• A point x† may exist at which (∂lf2/∂x) = 0.

• x† < x{k}.

• lf2 is monotonically decreasing over
(
0, x†

)
.

• lf2 is convex and strictly increasing over
(
x†,∞

)
.

• If x† does not exist, then lf2 is convex and strictly increasing everywhere.
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• Given the above, (lf + lf2) also has a unique minimum on any convex bounded interval.

These considerations motivate four possible courses of action for applying approximations derived

from the exponential expression (6.9) in Section 6.4 within a general SAO framework. The first is

simply to use the generalised reciprocal approximation with higher-order terms (6.19) to approxi-

mate all the functions fα in PNLP, irrespective of the signs of (∂fα/∂xi). In this case, the exponents

ai must be chosen a priori as negative numbers, and the same ai must be used for every f̃α. The

other three approaches are methods of mixed variables.

With each of the three methods listed below we develop the general form of the approximating

function specific to that method. It is crucial to understand that these methods require that the

same function approximation is applied to every function in a given problem. This ensures that the

Lagrangian functions associated with the approximate subproblem will have unique minima. The

approximations are quite general, however, so considerable scope is present for tailoring the func-

tions by restricting or specifying the various parameters. This will become clearer in Section 6.6.

6.5.2 An almost convex method of mixed variables

The second option is the most obvious, and requires that sets Sa
α and Sq

α are determined solely by

the sign of the partial gradients of the functions in PNLP at x{k}. Ergo, for each of the functions

fα, the sets are defined according to

Sa
α ={i :

∂fα

∂xi

≤ 0, i = 1, 2, · · · , n},

Sq
α ={i :

∂fα

∂xi

> 0, i = 1, 2, · · · , n}.

With the sets so defined, we can apply an approximation that is itself a combination of the two

generalised approximations (6.19) with aiα = ai < 0, and (6.22) with qiα = qi ≥ 1:

f̃AMα = fα(x{k})+
∑

i∈Sq
α

[
xqi

i −
(
x
{k}
i

)qi
]



(
x
{k}
i

)(1−qi)

qi



(
∂fα

∂xi

){k}

+
∑

i∈Sq
α

p̄∑

p=2

cipα

p!

∣∣∣xqi

i −
(
x
{k}
i

)qi
∣∣∣
p

+
∑

i∈Sa
α

[
xai

i −
(
x
{k}
i

)ai
]



(
x
{k}
i

)(1−ai)

ai



(
∂fα

∂xi

){k}

(6.23)

+
∑

i∈Sa
α

p̄∑

p=2

cipα

p!

∣∣∣xai

i −
(
x
{k}
i

)ai
∣∣∣
p

.

We call this an ‘almost convex’ approximation because the only nonconvex terms are the higher-

order terms. If the positive-valued parameters cipα are all small, then the deviation from convexity

of the associated Lagrangian functions is likely to be correspondingly small or even non-existent

within the allowable bounds.
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6.5.3 A partial method of mixed variables

The third possible course to follow assumes that something more is known about the forms of the

functions in PNLP. This knowledge is again used to split the terms in the series expansion of each

of the functions fα into two sets, Sa
α and Sq

α. Once more, for all terms contained in Sq
α it must be

true that
∂fα

∂xi

> 0 .

However, we now allow (∂fα/∂xi) to be positive or negative for the terms contained in Sa
α. Then,

it is possible to apply the following general approximation

f̃PMα = fα(x{k})+
∑

i∈Sq
α

[
xqiα

i −
(
x
{k}
i

)qiα
]



(
x
{k}
i

)(1−qiα)

qiα



(
∂fα

∂xi

){k}

+
∑

i∈Sa
α

[
xai

i −
(
x
{k}
i

)ai
]



(
x
{k}
i

)(1−ai)

ai



(
∂fα

∂xi

){k}

(6.24)

+
∑

i∈Sa
α

p̄∑

p=2

cipα

p!

∣∣∣xai

i −
(
x
{k}
i

)ai
∣∣∣
p

,

which is composed of the generalised reciprocal approximation (6.19), complete with its restric-

tions on aiα, and the truncated first-order exponential approximation (6.20), in which all qiα ≥ 1.

Here qiα may take different values for different α and i. Naturally, if the Sq
α are empty for all α,

the partial method in effect reduces to our first approximation strategy: the application of (6.19)

for the approximation of all functions in PNLP.

We call this a ‘partial method’ of mixed variables because the components of the functions do not

have to be partitioned solely according to the signs of their partial gradients. It may be possible

to exploit additional information about the functions in applying the set-partitioning strategy. We

have already seen an example of the application of this method. Fleury’s original approach to

the weight minimisation problem (6.1), described in Section 6.3, is an example of this method in

which all ai = −1, all qiα = 1 and all cipα = 0. There, all of the components of the objective

function f0 were placed in set Sq
0 , whereas the components of the constraint functions were all

placed in sets Sa
α, and such a partitioning strategy is but a special case of (6.24).

An extension of the weight minimisation problem was presented in Reference [4] as a motivation

for the introduction of CONLIN. This extension involves adding an additional set of linear con-

straints to (6.1). The solution approach detailed in Section 6.3 is inadequate for this new problem,

because the new constraints can appear as negative linear terms in the Lagrangian functions (6.2),

which generally destroys the uniqueness of their minima. The above partial method of mixed

variables (6.24) can be used to solve this extended weight minimisation problem if all new linear

components with negative gradients join a set Sa
α, while all new linear terms with positive gradients

join a set Sq
α. Otherwise, the original set-partitioning strategy for (6.1) still applies.
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6.5.4 A strictly convex method of mixed variables

Lastly, one can define a method of mixed variables using the functions discussed in which the

Lagrangian functions are always strictly convex. This comes about when sets Sa
α and Sq

α are

defined as

Sa
α ={i :

∂fα

∂xi

≤ 0, i = 1, 2, · · · , n},

Sq
α ={i :

∂fα

∂xi

> 0, i = 1, 2, · · · , n},

and an exponential approximation is used to first order that incorporates both inverse terms aiα < 0
and power terms qiα ≥ 1. The resulting approximation is

f̃SMα = fα(x{k})+
∑

i∈Sq
α

[
xqiα

i −
(
x
{k}
i

)qiα
]



(
x
{k}
i

)(1−qiα)

qiα



(
∂fα

∂xi

){k}

+
∑

i∈Sa
α

[
xaiα

i −
(
x
{k}
i

)aiα
]



(
x
{k}
i

)(1−aiα)

aiα



(
∂fα

∂xi

){k}

. (6.25)

At first glance, equation (6.25) looks like a special case of the almost convex method (6.23) in

which all cipα = 0. However, the omission of the higher-order terms allows us to drop the restric-

tions on the exponents, which are part and parcel of (6.23). In this case, both aiα and qiα may take

different values for different α and i, since all the functions involved are strictly convex.

6.6 Duality

We have presented a number of strategies for the approximation of PNLP (2.15) at a point x{k},

in such a way as to ensure that Falk’s dual method can be used to solve the resulting primal ap-

proximate subproblem PP [k], provided that its feasible region is non-empty. This itself implies

that PP [k] has a unique minimum (see Falk [2]), even though, in our case, it is not necessarily

convex. By construction, the form of PP [k] is consistent with (2.39), which is here re-presented in

the negative-null form.

Primal approximate subproblem PP [k]

min f̃0(x)

subject to f̃j(x) ≤ 0 j = 1, 2, · · · ,m, (6.26)

x̌i ≤ xi ≤ x̂i i = 1, 2, · · · , n.

In the notation PP [k], k denotes the iteration index (k = 1, 2, 3, · · · ). Consequently, x{k} is the

optimum of problem PP [k − 1], at which the new subproblem PP [k] is defined. We now de-

scribe explicitly how to go about defining and solving the dual approximate subproblem PD[k]
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for a few particular instances of the application of the methods of mixed variables outlined in Sec-

tion 6.5. Following the material presented in Section 2.3.1, we start by constructing the Lagrangian

L{k}(x,λ) in terms of our function approximations, given as

L{k}(x,λ) = f̃
{k}
0 (x) +

m∑

j=1

λj f̃
{k}
j (x) , (6.27)

where the λj , j = 1, 2, · · · ,m represent the Lagrangian multipliers; λj may be understood to be

indicative of the sensitivity of L{k}(x,λ) to constraint j. From Falk [2], as well as our observa-

tions in Section 2.3.2 and Reference [35], if Attributes 1 through 3 hold for primal approximate

subproblem (6.26), then the stationary saddle point (x∗,λ∗) of L{k} defines the global minimiser

x∗ of PP [k]. The definition of the saddle point (i.e. the KKT conditions satisfied by x∗) also needs

to take the bound constraints into account, because they are not included in the definition of L{k}.

For such a treatment of the KKT conditions, refer to Hadley [22], where lower bounds xi = 0 are

considered. The saddle point (x∗,λ∗) is given by

max
λ

min
x

{L{k}(x,λ) : x̌i ≤ xi ≤ x̂i} = max
λ

γ(λ) , (6.28)

where the bound constraints represent a closed and bounded set. The function γ(λ) defines the

Falk dual [2, 28]. A crucial requirement for the construction of efficient dual formulations is that

the primal approximate subproblem is formulated in terms of separable approximations. In this

case, the primal-dual relationships

x(λ) = arg min
x

{L{k}(x,λ) : x̌i ≤ xi ≤ x̂i} (6.29)

are determined by a set of n one-dimensional minimisations. We obtain γ(λ) in terms of the

approximation functions as

γ(λ) =L{k} (x (λ) ,λ)

= min
x

{[
f̃0(x) +

m∑

j=1

λj f̃j(x)

]
: x̌i ≤ xi ≤ x̂i, i = 1, 2, · · · , n

}
. (6.30)

With the assumption of separability, it is always possible to express the xi (λ) that minimise (6.30)

independently, in the form

xi = xi(λ) : x̌i ≤ xi ≤ x̂i, i = 1, 2, · · · , n. (6.31)

The saddle point (x∗,λ∗) is then found by maximising the dual using (6.31), so the dual approxi-

mate subproblem becomes

Dual approximate subproblem PD[k]

max
λ

{γ(λ) = f̃0(x(λ)) +
m∑

j=1

λj f̃j(x(λ))},

subject to λj ≥ 0, j = 1, 2, · · · ,m,

(6.32)
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with the f̃α(x(λ)), α = 0, 1, · · · ,m represented by any suitable combination of approximations,

which in this chapter are assumed to derive from (6.9). If negative (inverse) exponential forms

are present, the word ‘suitable’ implies that said combination is generally represented by one of

the methods discussed in Section 6.5. However, as we have mentioned, other combinations are no

doubt possible for particular cases in which the parameters are tailored specifically.

This simply constrained problem requires the determination of the m unknowns λj only, subject to

m non-negativity constraints on the λj . Recall that the primal approximate subproblem (6.26) has

n unknowns, m constraints, and 2n side constraints. Hence, the solution of the dual approximate

subproblem (6.32) is far more efficient than the solution of PP [k] if m ≪ n. In structural opti-

misation, a well-known example in which the dual method is efficiently applied is the (classical)

minimum compliance optimisation problem. For many other (structural) optimisation problems,

the number of effective constraints may be reduced using a constraint deletion strategy, which has

no effect on the final outcome whatsoever. Furthermore, even for m ≈ n, the dual approach may

still be expected to be efficient when compared to primal methods, because the dual is ‘essen-

tially unconstrained’. Finally, and obviously, if a given subproblem is unconstrained (in that no

approximate constraints are active), dual problem (6.32) still holds.

We will remark on suitable solvers for dual problem (6.32) in Section 6.6.3. First, though, the xi

that minimise (6.30), as given in (6.31), are derived for a few simple, illustrative cases based on

the weight minimisation problem with sizing design variables.

6.6.1 Weight minimisation with sizing design variables

Weight minimisation problems with sizing design variables are often formulated with linear ob-

jective functions, subject to nonlinear stress and displacement constraint functions; the objective

and constraint functions exhibit monotonicity with respect to the design variables, and are either

exactly or approximately known. In exploiting this knowledge, we would like to use the linear

approximation with direct (design) variables to describe the objective function, since this is exact,

and (other) exponential intervening variables for the constraints.

In fact, it may be counterproductive to approximate a linear objective by a nonlinear function, in

that the complexity of the approximate subproblem becomes unnecessarily high. Consider, for

example, a linear (univariate) objective function in x, approximated by a reciprocal intervening

variable y = 1/x. As x → 0, the approximation becomes increasingly inaccurate. The reader

is referred to the argument put forward by Groenwold et al. ‘there is no free lunch in function

approximation,’ briefly outlined in Reference [61].

Weight minimisation using a conservative mixed approximation

Along the lines of our arguments above, we use (6.12) for the objective function. Note that,

for the weight minimisation problem, the order of the approximation p̄ in (6.12) is irrelevant, as

c
{k}
0i will all be zero if the conditions we have previously proposed in Reference [61] are used to

determine the c
{k}
0i in (6.12). We use reciprocal intermediate variables (i.e. the exponential form

with aiα = −1) to represent the components of the constraints that have negative partial gradients,

while we express those that have positive partial gradients as linear functions of the direct variables.
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For the sake of brevity, we only present the simplest possible dual formulation here, being of order

1 for the constraint approximations, which means that the method of approximation just described

is equivalent to the application of CONLIN. The resulting dual approximate subproblem (6.32) has

the form

γ(λ) = f0(x
{k}) +

n∑

i=1

∂f
{k}
0

∂xi

(xi(λ) − x
{k}
i )

+
m∑

j=1

λj



fj(x

{k}) +
∑

i∈Sa
j

(
xi(λ) − x

{k}
i

)( x
{k}
i

xi(λ)

)(
∂fj

∂xi

){k}

+
∑

i∈Sq
j

(
xi(λ) − x

{k}
i

)(∂fj

∂xi

){k}



 .

(6.33)

This dual problem results, as a particular restriction, from the application of either (6.23), (6.24)

or indeed of (6.25) to the weight minimisation problem. All three can produce (6.33) by enforcing

various restrictions. Although not explicitly indicated, all of the components of the objective func-

tion are, of course, in set Sq
0 . As defined here, the approximate subproblem is convex with respect

to all xi. We apply the stationary conditions

∂

∂xi

L{k}(x,λ) = 0 (6.34)

and define

βi(λ) = −


∂f

{k}
0

∂xi

+
m∑

j=1

λj

∂f
{k}
j

∂xi

∣∣∣∣∣
i∈Sq

j




−1


m∑

j=1

λj(x
{k}
i )2

∂f
{k}
j

∂xi

∣∣∣∣∣
i∈Sa

j


 , (6.35)

where, for the sake of notational simplicity, it is understood that

∂f
{k}
j

∂xi

∣∣∣∣∣
i∈θ

=





∂f
{k}
j

∂xi

if i ∈ θ,

0 if i /∈ θ.

(6.36)

Then we obtain

xi(λ) =





β
1/2
i (λ) if x̌2

i < βi(λ) < x̂2
i ,

x̌i if βi(λ) ≤ x̌2
i ,

x̂i if βi(λ) ≥ x̂2
i ,

(6.37)

for i = 1, 2, · · · , n. These are the analytical expressions for evaluating the xi (λ) in (6.29), and are

all that is required for solving dual problem (6.32) when using the above approximation functions.

Incidentally, in the weight minimisation problem,

∂f
{k}
0

∂xi

> 0 ∀ i .
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Hence the denominator in (6.35) always exists, since

m∑

j=1

λj

∂f
{k}
j

∂xi

∣∣∣∣∣
i∈Sq

j

≥ 0 .

Alternatively, using a two-point mixed exponential approximation with negative exponents (still of

order 1), rather than reciprocal intermediate variables, we obtain a maximisation problem in which

γ(λ) = f0(x
{k}) +

n∑

i=1

∂f
{k}
0

∂xi

(xi(λ) − x
{k}
i )

+
m∑

j=1

λj



fj(x

{k}) +
∑

i∈Sa
j



(
xi(λ)

x
{k}
i

)a
{k}
ij

− 1



(
x
{k}
i

a
{k}
ij

)(
∂fj

∂xi

){k}

+
∑

i∈Sq
j

(
xi(λ) − x

{k}
i

)(∂fj

∂xi

){k}



 .

(6.38)

This is seen as a special case of the mixed variable method (6.25). We have introduced the su-

perscript {k} in a
{k}
ij to indicate that a

{k}
ij is determined at the inception of iteration k. This time,

application of the stationary conditions (6.34) results in

∂f
{k}
0

∂xi

+
m∑

j=1

λj

∂f
{k}
j

∂xi

∣∣∣∣∣
i∈Sq

j

+
m∑

j=1

λjx
(a

{k}
ij −1)

i

(
x
{k}
i

)1−a
{k}
ij ∂f

{k}
j

∂xi

∣∣∣∣∣
i∈Sa

j

= 0 .

Hence, we have nonlinear expressions in xi of the form

bi(λ) +
m∑

j=1

cij(λ)x
dij

i = 0 (6.39)

for i = 1, 2, · · · , n, which are best solved numerically for xi (λ). However, (6.39) is easily solved

analytically if we require that

a
{k}
ij = a

{k}
i ∀ j ,

in which case (6.38) can once again be thought of as arising from the application of (6.23) or

(6.24). By a similar argument as for the reciprocal intermediate variables, the primal subproblem

is convex with all a
{k}
ij < 0. (In a practical computer implementation, we set −3 ≤ a

{k}
ij ≤ ǫe < 0,

where −3 is selected rather arbitrarily; it merely serves to prevent very high negative exponents,

while most exponents are expected to be in the vicinity of −1.)

Allowing concave approximations in the weight minimisation subproblems

We here explicate the approach to the weight minimisation problem described in Section 6.3.1.

The direct approximation (6.12) is used to first order for the objective function, and (6.13) is used
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to first order for the constraint approximations, irrespective of the sign of their partial gradients.

We have already remarked in Section 6.5 that this approach is consistent with the application of the

‘partial’ method of mixed variables (6.24). The dual approximate subproblem now has the form

γ(λ) = f0(x
{k}) +

n∑

i=1

∂f
{k}
0

∂xi

(xi(λ) − x
{k}
i )

+
m∑

j=1

λj

(
fj(x

{k}) +
n∑

i=1

(
xi(λ) − x

{k}
i

)( x
{k}
i

xi(λ)

)(
∂fj

∂xi

){k}
)
.

(6.40)

Applying (6.34), and defining

βi(λ) = −

(
∂f

{k}
0

∂xi

)−1( m∑

j=1

λj(x
{k}
i )2

∂f
{k}
j

∂xi

)
, (6.41)

we obtain

xi(λ) =





β
1/2
i (λ) if x̌2

i < βi(λ) < x̂2
i ,

x̌i if βi(λ) ≤ x̌2
i ,

x̂i if βi(λ) ≥ x̂2
i ,

(6.42)

for i = 1, 2, · · · , n in (6.29). Once again,

∂f
{k}
0

∂xi

> 0 ∀ i ,

so the denominator in (6.41) always exists. However, the numerator in (6.41) may be positive or

negative and the turning point of L
{k}
i (xi,λ) is given by the square root of βi(λ). If the numerator

is negative, then there is a positive real solution for x∗i = β
1/2
i . In this case, L

{k}
i (xi,λ) is composed

of a reciprocal (always convex and decreasing) part and a linearly increasing part. L
{k}
i (xi,λ)

cannot continually decrease because of the presence of the linear term, so a turning point must exist

at finite xi. It might be that the turning point lies outside the defined bounds, but this eventuality is

catered for in (6.41) when deriving the minimum.

If the numerator is positive, however, there is no real solution for β
1/2
i , which would appear to

imply that L
{k}
i (xi,λ) has no turning point on xi > 0. This is absolutely correct and stems from

the inclusion of concave (general) reciprocal functions. In this context, Fleury [28] and Fleury

and du Veubeke [72] have demonstrated that the weight minimisation problem with sizing design

variables is strictly convex when the primal approximate subproblem is recast in terms of the

reciprocals of the design variables, which would relieve the problem. Although this is true, such a

recasting or transformation is unnecessary, as is an appeal to the recasting argument (as we have

already remarked upon in Section 6.3.1). This is because, although L
{k}
i (xi,λ) does not have a

turning point, it still has a unique minimum between the imposed bounds, which means that the

dual is always properly defined (refer to Sections 2.3.1 and 2.3.2).

When the numerator in (6.41) is positive, L
{k}
i (xi,λ) is composed of a concave increasing part and

a linear increasing part. It is, therefore, monotonically increasing over all xi > 0. Hence, there is
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no turning point. But there is a finite minimum, which obviously occurs at the lower bound on xi.

This minimum cannot be located by the condition

∂

∂xi

L
{k}
i (xi,λ) = 0 ,

which is invalid in this case, but the mere fact that there is no real solution for the resulting expres-

sion β
1/2
i is sufficient to indicate that the minimum is on the lower bound, given the structure of

the Lagrangian. In this case, βi(λ) < 0, and so (6.42) is still valid for determining the minimum

with respect to xi.

There are no problems with (6.42) in terms of the existence of the solutions xi (λ). The squared

form of the conditional parts that derive from the dual can always be evaluated. There is no reason

to resort to the conservative convex approximation proposed by Starnes and Haftka [73], since

imaginary numbers cannot result. Equation (6.42) is always logically consistent with the structure

of the Lagrangian and correctly yields the minimum. Now, if one chooses to use a two-point

exponential approximation with negative exponents (still of order 1) to approximate the constraints

in this case, one obtains

γ(λ) = f0(x
{k}) +

n∑

i=1

∂f
{k}
0

∂xi

(xi(λ) − x
{k}
i )

+
m∑

j=1

λj


fj(x

{k}) +
n∑

i=1



(

xi

x
{k}
i

)a
{k}
ij

− 1



(
x
{k}
i

a
{k}
ij

)(
∂fj

∂xi

){k}

 .

(6.43)

This structure does not in general possess unique minima with respect to xi for any given λ. In

fact, applying (6.34) and solving the resulting equations may even yield maxima for L
{k}
i (xi,λ)

instead of minima. Hence, xi (λ) may be either non-unique or flatly wrong, and the dual γ(λ) is

thus improperly defined.

As we noted in Section 6.4.2, if the partial derivatives ∂fj/∂xi are allowed to take on any sign, the

exponents aij cannot in general be calculated independently. However, with the stipulation that

aij = ai ∀ j, we may apply (6.19) to first order for the constraint approximation, and the resulting

dual function

γ(λ) = f0(x
{k}) +

n∑

i=1

∂f
{k}
0

∂xi

(xi(λ) − x
{k}
i )

+
m∑

j=1

λj


fj(x

{k}) +
n∑

i=1



(

xi

x
{k}
i

)a
{k}
i

− 1



(
x
{k}
i

a
{k}
i

)(
∂fj

∂xi

){k}



(6.44)

is uniquely defined and is again consistent with the partial method of mixed variables (6.24). The

primal-dual relationships are now given by

βi(λ) = −

(
∂f

{k}
0

∂xi

)−1( m∑

j=1

λj(x
{k}
i )ri

∂f
{k}
j

∂xi

)
(6.45)
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and

xi(λ) =





β
1/ri

i (λ) if x̌ri

i < βi(λ) < x̂ri

i ,
x̌i if βi(λ) ≤ x̌ri

i ,
x̂i if βi(λ) ≥ x̂ri

i ,

(6.46)

in which ri = 1 − a
{k}
i . This is simply a case in which fixed negative values other than ai = −1

are used in defining (6.40). In compliance optimisation, compliant mechanism design is a very

well-known example of such a strategy.

6.6.2 A general routine for the solution of PNLP

The two examples presented above are both first-order approximation strategies that have been

applied in the past to the weight minimisation problem. The subproblems created thereby have

unique minima and, moreover, can be solved using Falk’s dual method. However, the approxima-

tions used in the examples are just special cases of the application of one or other of the methods

described in Section 6.5, of which three allow for the use of higher-order terms.

We will not explicitly present an example involving the use of these terms; instead, we here run

through the method involved in defining and solving the approximate subproblem, with or without

higher-order terms.

Step 1: Choose an approximation (which may represent a method of mixed variables) rele-

vant to the given problem PNLP.

Step2: Define the primal approximate subproblem at x{k}; apply the approximation con-

sistent with the chosen method (or various special cases thereof) to all the functions

in PNLP.

Step 3: Define the Lagrangian. Actually, it is only necessary to note the general form of

L
{k}
i (xi,λ) explicitly, since L{k} is separable and all L

{k}
i have the same general

structure.

Step 4: Using L
{k}
i (xi,λ), derive the primal-dual relationship (6.29). With this, the dual

approximate subproblem is effectively defined.

Step 5: Maximise the dual (see Section 6.6.3).

The main difficulty lies in Step 4, which requires some elaboration. In the examples presented in

Section 6.6.1, the primal-dual relationship was defined by applying the stationary conditions (6.34)

to L
{k}
i and solving the resulting equation, which yielded (6.35) or (6.41). We also noted that

the conditions (6.34) are not always valid. They are only valid if L
{k}
i possesses a turning point

somewhere on the positive real line, but, when noting the special structure of L
{k}
i , criteria of the

form (6.42) were obtained.

This will be the case generally. We have indicated in Section 6.5 that L
{k}
i will always have a

unique minimum on any given interval x̌i ≤ xi ≤ x̂i. If L
{k}
i has no turning point within these

bounds, then it is monotonic over the interval. Hence, it is a good idea to check the sign of

∂L
{k}
i /∂xi at x̌i and x̂i. If

∂L
{k}
i

∂xi

∣∣∣∣∣
x̌i

≥ 0 ,
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then xi (λ) = x̌i. Alternatively, if

∂L
{k}
i

∂xi

∣∣∣∣∣
x̂i

≤ 0 ,

then xi (λ) = x̂i. If neither of these holds we would expect the minimum to be a turning point

in x̌i ≤ xi ≤ x̂i, which would be located by applying the stationary conditions. When deriving

and evaluating the gradients ∂L
{k}
i /∂xi, note that the absolute value operators in the higher-order

terms of the approximations have to be taken into account. These result in the unity-valued sign

operators s(xi), as in (6.17).

Lastly, the application of the stationary conditions is likely to yield a function that is not reducible

to an analytical expressions for xi (λ), especially if the higher-order terms are retained. How-

ever, these functions must have unique solutions and are always one-dimensional (since we have

demanded primal separability), but the solutions will generally have to be found numerically.

6.6.3 Solving the dual approximate subproblem

Dual approximate subproblem (6.32) may be solved efficiently using first-order or second-order

methods. First-order gradient-based methods are very simple; steepest descent, or preferably con-

jugate gradient solvers in the Fletcher-Reeves tradition, are suitable and obvious possibilities.

Second-order Newton methods may be very efficient, see for example Huang and Arora [28].

For the ‘standard’ minimum compliance topology optimisation problem, being expressed in terms

of a single linear (volume) constraint, one may even use an efficient linesearch method to solve

dual approximate subproblem (6.32), if so desired. The solvers used need only be modified to take

the simple non-negativity conditions on the Lagrangian multipliers λj ≥ 0, j = 1, 2, · · · ,m into

account.

Our current implementation uses a limited memory BFGS variable metric solver [74, 75], which

is able to take the simple non-negativity constraints into consideration. For the limited memory

BFGS solver, we only require the gradients of γ(λ) with respect to the λj . These are obtained as

∂γ(λ)

∂λj

= γ′(λ) = f̃j(x(λ)) j = 1, 2, · · · ,m. (6.47)

Note that the f̃j(x(λ)) in (6.47) would already be calculated anyway upon evaluating the dual. It

should be noted that discontinuity planes exist in the second derivatives of γ(λ) [2, 28]. These

discontinuity planes arise from the modified definition domains of dual approximate subprob-

lem (6.32), due to the bounds x̌i and x̂i in (6.31):

xi(λ) ∈ (x̌i, x̂i) i = 1, 2, · · · , n.

When any of the potential 2n discontinuity planes is crossed, the distribution of free and fixed

variables in the primal problem may be modified (free variables being those with inactive bounds).

In turn, this may result in the appearance of angular points in γ′(λ), and discontinuities in γ′′(λ),
being the second derivatives of γ(λ). This may also have implications for any linesearch procedure

used in the solvers.
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For reasons that we do not fully understand, the limited memory BFGS solver we have used [74,

75] seems to have few, if any, problems with the second-order discontinuities present in the dual.

What is more, second-order methods are often used in algorithms based on the Falk dual. An im-

portant example is the well-known MMA algorithm of Svanberg. However, the dual may of course

be solved perfectly well using first-order methods, e.g. conjugate gradient methods; to machine

precision, this results in exactly the same primal iteration path. We have opted for the second-order

method simply because there seems to be a computational advantage on the subproblem level (in

terms of the required effort).

For the weight minimisation problem with sizing design variables, illustrative examples of the

discontinuity planes and definition domains may be found in the paper of Fleury [28].

6.7 A numerical example

As an example of the potential implications of some of our aforementioned developments, we

consider the very well-known nonconvex 10-bar truss problem with displacement constraints, pre-

viously studied by so many authors. For the sake of brevity we do not reiterate the problem

formulation here. Instead, the reader is referred to Haftka and Gürdal [27], Section 6.7, Case B.

The optimal solution is f ∗
0 = 5060.854 (the units used in the example are imperial). The only

change we make to the data presented by Haftka and Gürdal is that we depart with all the variables

on the lower bound x̌i = 0.1, since this amplifies the phenomena we wish to illustrate.

Numerical results are presented in Figure 6.4, which depicts the objective function value f0 versus

the iteration number k, as well as the largest constraint value, defined as h = max(fj), j =
1, 2, , · · · ,m. In the figure, ‘nonconvex’ implies direct application of (6.1), whereas ‘convex’

implies CONLIN, or equivalently (6.25) with all qiα = 1 and all aiα = −1. Clearly, the convex

method of mixed variables impairs convergence. (This is not necessarily always the case. It is

possible to generate results for which the convex method of mixed variables actually yields faster

convergence, but our experiments suggest that this is marginal.)
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Figure 6.4: The effect of enforcing convexity for the nonconvex 10-bar truss problem with dis-

placement constraints.
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6.8 Conclusions

We have discussed the use of inverse (negative exponential) approximations in a dual approach to

sequential approximate optimisation. The approximations derive from a separable series expansion

in terms of exponential intervening variables that contains higher-order ‘main’ or diagonal terms,

but omits terms associated with mixed partial derivatives.

Since the exponential expansion is generally nonconvex, we have discussed under what conditions

nonconvex approximations can be used along with the dual method of solution introduced by Falk.

These conditions, together with an analysis of the functional forms that derive from the exponential

expansion, suggest four general approximation strategies that can accommodate negative exponen-

tials. Three of these represent methods of mixed variables, and three retain the higher-order terms,

and are thus generally nonconvex. Despite this, we have shown that the resulting subproblems

are amenable to solution via the Falk dual without necessitating a convex transformation. That

is: despite being nonconvex, the subproblems have unique solutions provided that they are primal

feasible. As such, we have not tried to investigate the conditions that ensure that Li has a unique

minimum. Such conditions, if they exist, are likely to be quite involved. For example, the easily

assessed stipulations that Li must be globally monotonic or globally convex are often too strict.

Many of the statements we have studied are neither, but nevertheless admit unique minima.

We have used the weight minimisation problem as an example and have reintroduced a noncon-

vex approach due to Fleury (and predating CONLIN) that is consistent with one of the methods

suggested.

We conclude that it is indeed possible to use higher-order nonconvex exponential approximations

for SAO and to retain a unique KKT point for the subproblems, provided that the various param-

eters that define the approximations are chosen or limited judiciously. This should be of interest

to code developers. However, whether or not the nonconvex higher-order approximations can be

used to improve algorithmic performance for a given problem is a matter that must be evaluated

numerically, and which we hope to pursue in the future.
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Chapter 7

Convex transformability and the Falk dual

The exposition below originates from a paper titled “On a link between convex transformability

and the solution of nonconvex problems via the dual of Falk” [76]. The paper is co-authored

by Prof. Albert A. Groenwold of the Department of Mechanical Engineering at the University of

Stellenbosch, Stellenbosch, South Africa.

7.1 Abstract

In structural optimisation, most successful sequential approximate optimisation (SAO) algorithms

solve a sequence of strictly convex subproblems using the dual of Falk. Previously, we have shown

that, under certain conditions, a nonconvex nonlinear (sub)problem may also be solved using the

Falk dual. In particular, we have demonstrated this for two nonconvex examples of approximate

subproblems that arise in important structural optimisation problems. The first is used in the SAO

solution of the weight minimisation problem, while the minimum compliance problem that results

from volumetric penalisation gives rise to the other. In both cases, the nonconvex subproblems

arise naturally in the consideration of the physical problems, so it seems counterproductive to

discard them in favour of using standard, but less well-suited, strictly convex approximations.

Although we have not required that strictly convex transformations exist for these subproblems in

order that they may be solved via a dual approach, we note that both of these examples can indeed

be transformed into strictly convex forms. In this chapter we explore the link between convex

transformability and the salient criteria that make nonconvex problems amenable to solution via

the Falk dual, and we assess the effect of the transformation on the dual problem. However,

we consider only a restricted class of problems, namely separable problems that are at least C1

continuous, and a restricted class of transformations: those in which the functions that represent

the mapping are each continuous, monotonic and univariate.

7.2 Introduction

Today, sequential approximate optimisation (SAO) is recognised as an efficient technique for the

solution of nonlinear structural optimisation problems. In the development of SAO methods, it has
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become almost standard practice to utilise strictly convex function approximations to define the

approximate subproblems, which are then optimised as surrogates for the physical problem, almost

invariably using a dual approach. This is typically true even if the physical problem is known to

be locally nonconvex. The reason for using convex approximations stems largely from the fact

that the minima of feasible strictly convex programs are bound to be unique (a fact that leads to

necessary and sufficient conditions on global optima, and facilitates the analysis of algorithmic

convergence).

Many well-known SAO methods used for structural optimisation solve their strictly convex sub-

problems using a dual method due originally to Falk [2]. This is done because significant gains can

be achieved in algorithm efficiency when the dual method is implemented. The dual problem has

a simple structure: it is concave and the only constraints present are non-negativity constraints on

the dual variables. The dual of Falk does not require dual variables for the primal bounds (albeit at

the cost of introducing discontinuities in the second derivatives of the dual function [28]). Also, it

is often the case that the dimensionality of the dual is less than that of the primal, since the number

of (active) primal constraints is often (far) less than the number of primal variables. Examples of

popular SAO algorithms that use the dual of Falk are the method of moving asymptotes (MMA)

of Svanberg [3], and the convex linearisation algorithm (CONLIN) of Fleury and Braibant [4].

Hence, the use of the Falk dual to solve strictly convex subproblems has become fairly standard.

However, we have previously indicated that it is also possible to use nonconvex approximate sub-

problems in combination with the Falk dual [35, 36]. This is not unprecedented: Fleury already

presented an example of this in 1979 [28] in his study of the nonconvex weight minimisation prob-

lem. However, this idea appears to be applied rarely. In Reference [28], Fleury justified the use of

a nonconvex subproblem by arguing that the subproblem could be transformed into a strictly con-

vex form, which has a unique KKT point. In Chapter 6 (and [36]), in which we address the same

problem, we argue instead that the theorems given by Falk, which prove that his dual approach

can be used to solve strictly convex programming problems, utilise certain attributes of strictly

convex problems and that these attributes are also exhibited by Fleury’s nonconvex subproblem,

and others. Therefore, we maintain that any nonconvex programming problems that possess these

attributes can also be uniquely solved using Falk’s dual approach.

This does not invalidate the transformation rationale, but it must be recognised that the transfor-

mation argument needs to be qualified. In other words, given a particular nonconvex problem,

the rationale is only true for bijective transformations, which are themselves only a subset of all

possible transformations that will yield convex problems. Transformations are ‘valid’ if they yield

a one-to-one correspondence between the transformed and untransformed problems.

Nevertheless, the transformation originally applied by Fleury in [28] was of course bijective, and

bijective transformations also exist for the problem discussed in Chapter 5 (based on [35]), which

addresses the nonconvex minimum compliance topology optimisation problem that results from

volumetric penalisation (aimed at generating predominantly solid-void designs). It would appear,

then, that a link may exist between the ability to find a strictly convex transformation for a noncon-

vex problem, and the ability to solve the problem directly using the Falk dual. Here, we investigate

this link for the continuous, separable subproblems that are prevalent in structural optimisation, but

we limit our investigation to cases in which the ‘bijective’ transformations are defined by univariate

functions that are at least C1 continuous.
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The arguments presented in this chapter follow from Falk’s definition of the dual of a nonlinear

programming problem introduced in Section 2.3.1, as well as our assertion, put forward in Sec-

tion 2.3.2, that the proof that Falk presented for strictly convex problems also holds for certain

nonconvex forms. First, a summary of the assumpions that are used in the subsequent analysis

is given. Said assumptions only serve to reiterate the particular form of the subproblems consid-

ered here. In Section 7.4 we go on to investigate how the possibility of finding a strictly convex

transform for such a subproblem relates to the possibility of solving it directly using the Falk dual.

7.3 Summary of assumptions

In light of the discussion presented thus far, it should be noted that the remainder of this chap-

ter deals specifically with the following general form for a programming problem, consistent

with (2.39), which is assumed to define an approximate subproblem in an SAO algorithm:

min
x

f̃0(x)

subject to f̃j(x) ≥ 0 j = 1, 2, · · · ,m, (7.1)

x̌i ≤ xi ≤ x̂i i = 1, 2, · · · , n.

The x̌i and x̂i denote the lower and upper bounds respectively on the variable xi, and the tildes

on f̃0 and f̃j denote that they are approximation functions defined at a particular point x{k} in the

design space. They are constructed to represent the real objective function f0 and the m constraint

functions fj around x{k}.

Typically, f̃0 and all f̃j are continuous and separable functions chosen so that the approximate

subproblem is strictly convex. This is the case in the popular SAO algorithms MMA and CONLIN,

for example. As such, a strictly convex approximation f̃0 is chosen for the objective, whereas

concave approximations f̃j are selected for the constraints1. The set C in (2.39) consists here of

only the upper and lower bounds on xi.

We herein consider problems of the form (7.1), in which f̃0 and f̃j are all separable functions that

are at least C1 continuous. However, we do not enforce the typical convexity assumptions on f̃0

and f̃j . Instead, we assume that they can all be chosen as separable nonconvex functions, but in

such a way that the resulting programming problem (7.1) possesses the three attributes discussed

in Section 2.3.2. We have argued that continuous problems for which Attributes 1 through 3 hold

can be solved by a dual method utilising the Falk dual, and that the proof of this is Falk’s proof for

convex problems.

Nonconvex examples to which the above applies are the subject of Chapters 5 and 6. In Chapter 5,

the following form of subproblem was discussed, which serves to approximate the minimum com-

pliance problem with volumetric penalisation:

1Please note that we here use the positive-null representation of an inequality constrained programming problem,

and its associated Lagrangian, to be consistent with Falk [2].
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Primal approximate subproblem P
{k}
T

min
x

f0(x) = a0 +
n∑

i=1

aix
ri

i

subject to fj(x) = c0j +
n∑

i=1

cijx
qij

i ≥ 0 j = 1, 2, · · · ,m,

0 < x̌i ≤ xi ≤ x̂i i = 1, 2, · · · , n, (7.2)

ai > 0 i = 1, 2, · · · , n,

α ≤ ri < 0 i = 1, 2, · · · , n,

cij < 0 i = 1, 2, · · · , n, j = 1, 2, · · · ,m,

0 < qij ≤ 1 i = 1, 2, · · · , n, j = 1, 2, · · · ,m.

The form of subproblem discussed in Chapter 6 that can be used in the weight minimisation prob-

lem is given as:

Primal approximate subproblem P
{k}
W

min
x

f0(x) = a0 +
n∑

i=1

aixi

subject to fj(x) = c0j +
n∑

i=1

cij
xi

≥ 0 j = 1, 2, · · · ,m, (7.3)

0 < x̌i ≤ xi ≤ x̂i i = 1, 2, · · · , n,

ai > 0 i = 1, 2, · · · , n.

7.4 Attribute 1 and convex transformability

Since Attribute 1 (see Section 2.3.2) holds for both subproblems (7.2) and (7.3), they can be solved

without reference or recourse to any transforms that may make the subproblems convex. However,

it is also true that both P
{k}
T and P

{k}
W can be transformed into strictly convex problems via separa-

ble one-to-one transformations. P
{k}
T becomes strictly convex under the application of

x′i = xpi

i , (7.4)

where

pi = min
j
qij j = 1, 2, · · · ,m,

while P
{k}
W can be transformed by

x′i =
1

xi

, (7.5)

as discussed in [28], though it should be noted that the range of validity of the transformations is

the positive orthant x > 0. The above raises the question of whether or not a link exists between
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Attribute 1 and the existence of a bijective convex transformation. We examine this question here,

but we consider only the restricted case of univariate transformations, where each coordinate in the

transformed space can be written as a function of a single coordinate in the untransformed space.

With this restriction, separability is preserved under transformation. If this is not the case, the

mapping is likely to be very difficult to define in practice, and the transformed problem may not

be as easily solved via the dual approach.

To investigate the connection between Attribute 1 and convex transformability, we start with a

strictly convex problem. It is well established that the optimum of a strictly convex problem

satisfies the necessary and sufficient KKT conditions for a saddle point on the Lagrangian. We

then apply a bijective transformation to the problem and examine what conditions the transform of

the optimum satisfies.

First, however, it will be necessary to clarify what the KKT conditions look like for a Lagrangian

consistent with the definition of the Falk dual, because the bound constraints (the set C) are not

used in the derivation of the Lagrangian.

7.4.1 A note on the KKT conditions

In this section we present the necessary KKT conditions for the bound constrained problem de-

fined in (7.1), bearing in mind that, in keeping with Falk, the bound constraints on the variables xi

are not explicitly included as constraints in the definition of the Lagrangian in (2.40). We do so by

first presenting Hadley’s treatment of the KKT conditions for a problem with non-negativity con-

straints on the primal variables [22]. These constraints similarly are not included in the definition

of the Lagrangian of the problem. We then simply extend Hadley’s result to account for bound

constraints, rather than non-negativity constraints. For the sake of completeness, we also point out

a possible degeneracy that may arise in the definition of the saddle point due to the existence of the

bounds on xi. We illustrate this by using the non-negativity constraints in Hadley’s problem.

In his treatment of the KKT conditions in [22], Hadley derives the necessary conditions for a saddle

point on the Lagrangian of a general nonlinear programming problem subject to non-negativity

constraints on its primal variables, i.e.:

min
x

f̃0(x)

subject to f̃j(x) ≥ 0 j = 1, 2, · · · ,m, (7.6)

xi ≥ 0 i = 1, 2, · · · , n.

In the analysis it is assumed that the objective and constraint functions are all at least continuous

to first order. Similarly to Falk, Hadley uses f0 and the fj , but not the lower bounds on the xi, to

define the Lagrangian of the problem. According to Hadley, for a Lagrangian so defined, a saddle

point is a point (x∗,λ∗) that satisfies the following conditions:

L (x∗,λ) ≤ L (x∗,λ∗) ≤ L (x,λ∗) , x∗i ≥ 0 ∀ i , λ∗j ≥ 0 ∀ j . (7.7)
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Such a point necessarily satisfies the conditions

∂

∂xi

L (x∗,λ∗) ≥ 0 ∀ i : x∗i ≥ 0 , (7.8)

x∗i
∂

∂xi

L (x∗,λ∗) = 0 ∀ i , (7.9)

∂

∂λj

L (x∗,λ∗) ≤ 0 ∀ j : λ∗j ≥ 0 , (7.10)

λ∗j
∂

∂λj

L (x∗,λ∗) = 0 ∀ j , (7.11)

and of course all λ∗j ≥ 0. The inequality in condition (7.8) occurs because the non-negativity

constraints are not taken into account explicitly to form the Lagrangian. Condition (7.9) exists

for the same reason. If these additional constraints are included explicitly, then the strict equality

would hold in (7.8) and (7.9) would be absent entirely, but the dimensionality of the Lagrangian,

as well as of the dual, would increase. The non-negativity constraints on xi are therefore catered

for not in the definition of the Lagrangian, but in the definition of the saddle point. Saddle points

denote local extrema, and Hadley shows that the above conditions are sufficient to define the global

minimiser in the case of strictly convex problems2 (actually [22] discusses the maximisation of

strictly concave problems).

For our purposes, we use [22] to state the necessary conditions that the optimum must satisfy for

separable bound-constrained problems of the form given in (7.1). Since (7.1) describes a problem

that satisfies Attribute 1, the saddle point of its Lagrangian is unique and corresponds to the op-

timum of the primal problem (analogously to the strictly convex case). By a simple extension of

Hadley’s arguments, the optimum must satisfy (7.10) and (7.11), as well as

∂

∂xi

L (x∗,λ∗) ≥ 0 ∀ x∗i = x̌i , (7.12)

∂

∂xi

L (x∗,λ∗) ≤ 0 ∀ x∗i = x̂i , (7.13)

(x∗i − x̌i) (x̂i − x∗i )
∂

∂xi

L (x∗,λ∗) = 0 ∀ i . (7.14)

Equation (7.9) is no longer a valid condition, because the problem is no longer one whose bound

constraints are only non-negativity constraints. It has been replaced by the condition (7.14). Now,

let us examine whether or not a saddle point defined in this way is unique. Consider the following

one-dimensional strictly convex example:

min
x

f0(x) = x2 − 1

subject to f1(x) = x− 1 ≥ 0 , (7.15)

x ≥ 0 .

A contour plot of the associated Lagrangian is shown in Figure 7.1. The Lagrangian is strictly

2Provided, of course, that a linear independence constraint qualification is also satisfied at the optimum.
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Figure 7.1: Contour plot of the Lagrangian for the one-dimensional convex problem (7.15).

convex in x, and therefore has a unique minimum with respect to x for any value of λ. The non-

negativity constraint on x defines the set C in Falk’s treatment of the dual. If this non-negativity

constraint were absent, the necessary conditions for a saddle point on the Lagrangian would be

satisfied at a unique point, namely (x, λ) = (1, 2).

The bounded minimum of the Lagrangian with respect to x is depicted by the broad line in Fig-

ure 7.1. This represents the Falk dual (2.41) of problem (7.15). When the bound constraint on

x is respected, the same primal coordinate x = 1 minimises the Lagrangian at all dual coordi-

nates on the subspace 0 ≤ λ ≤ 2. Hence, all points (x = 1, 0 ≤ λ ≤ 2) satisfy conditions (7.8)

through (7.11), since ∂L/∂λ = 0 on this subspace. For this particular example, then, the Falk dual

is constant on λ ≤ 2 (it is strictly concave and decreasing on λ > 2). The saddle is therefore a

degenerate form of saddle in this case, but all points that satisfy the necessary conditions map to

the same primal point x, so the conditions are still sufficient.

Falk proves that the dual is concave, but as the preceding example illustrates, it is not necessarily

strictly concave. In general, though, if the problem is strictly convex, or if it fulfils Attributes 1

through 3, all points in the space for which ∂L/∂λj = 0 ∀ j will map to the same primal point, so

the primal optimum will be referenced uniquely by conditions (7.8) through (7.11), even though

the dual maximum may be non-unique.

The purpose of the above discussion is to introduce the definition of the KKT point for the type

of problem considered herein, namely (7.1), and to point out that such a problem has a unique

optimum, due to Attribute 1. We will use the necessary conditions that define the KKT point in

Section 7.4.2 to examine the effects on the dual of imposing univariate convex transformations on

separable nonconvex problems. Secondly, we remark that the Falk dual, while being concave, is

not necessarily strictly concave for strictly convex problems, or for those problems that satisfy At-

tributes 1 through 3, because degenerate saddle points may exist along subspaces in the Lagrangian

due to the bound constraints on the primal variables.
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7.4.2 Convex transformability: Implications for the Falk dual

In this section we wish to examine the relationship between a nonconvex problem of the form

given in (7.1), which satisfies Attributes 1 through 3, and its strictly convex transform, which

would also be a problem of the same form (7.1). Hence, we assume that our nonconvex problem

does possess such a strictly convex transform, although we have not proved this to be true generally.

Additionally, as (7.1) is separable, we here consider only the univariate transforms discussed below.

We begin by discussing the transformed problem: consider a separable bound-constrained problem

of the form given in (7.1). Assume that f0 (x) is strictly convex and that all fj (x) are concave over

the compact set C defined by the bound constraints. Under these assumptions, (7.1) represents a

strictly convex problem, which for convenience we label PSC . The Lagrangian for PSC is

Lsc (x,λ) = f0 (x) −
m∑

j=1

λjfj (x) . (7.16)

Since PSC is separable, (7.16) can be written as the sum of n terms as in (2.42), with the ith term

given by

Lsc
i (xi,λ) = fi0 (xi) −

m∑

j=1

λjfij (xi) , (7.17)

which is itself a strictly convex function for all i. Assuming that a feasible solution exists, the

conditions given for a saddle point on the Lagrangian (namely (7.10) through (7.14)) are uniquely

satisfied by the optimum of PSC . If we consider only the univariate transformations alluded to

above, then under such a transformation, each Li can be written as a composite function in terms

of an intermediate variable yi

Lnc
i (yi,λ) =Lsc

i

(
q−1
i (yi) ,λ

)

=fi0

(
q−1
i (yi)

)
−

m∑

j=1

λj

[
fij

(
q−1
i (yi)

)]
, (7.18)

which yields the ith component of the Lagrangian of our associated nonconvex problem, which we

label PNC . We have taken Lsc
i (xi,λ) and expressed it as a function of yi, using

yi =qi (xi) ,

xi =q−1
i (yi) . (7.19)

Here, q−1
i denotes an inverse (reverse) mapping, not the operation 1/qi. The qi, i = 1, 2, · · · , n are

functions that together define a mapping, or transformation, from the set C ⊂ Rn to a set Y ⊂ Rn.

We require that the functions qi and q−1
i be C1 continuous and that the mapping corresponds to a

bijection between the sets C and Y . This guarantees that both qi and q−1
i are uniquely defined, so

that x‡i = q−1
i

(
qi

(
x‡i

))
for any arbitrary xi = x‡i in C. This being the case, problem PNC and

problem PSC are obviously identical, being only different representations of the same problem. We

can equally write the original Lagrangian Lsc
i (xi,λ) as a composite function by writing Lnc

i (yi,λ)
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Figure 7.2: Invertable univariate transformation functions.

in terms of xi:

Lsc
i (xi,λ) =Lnc

i (qi (xi) ,λ)

=fi0 (qi (xi)) −
m∑

j=1

λj [fij (qi (xi))] . (7.20)

It is known, however, that the only one-dimensional functions that meet these requirements on qi
and q−1

i are strictly monotone functions [77]. From this last we infer the following properties (refer

to Figure 7.2): firstly, either
∂qi
∂xi

≥ 0 , (7.21)

or
∂qi
∂xi

≤ 0 , (7.22)

for all points x̌i ≤ xi ≤ x̂i. If the equalities hold, then they can only hold at a number of discrete

(separated) points in the domain, and the inequalities will hold everywhere else.

The bounds on the set C transform to the bounds on the set Y . In the case that (7.21) holds, the

lower bound in xi, namely x̌i, becomes the lower bound in yi, namely y̌i = qi (x̌i), and the upper

bound x̂i transforms to the upper bound ŷi. However, the reverse occurs if (7.22) holds. In this

case, y̌i = qi (x̂i) and ŷi = qi (x̌i). Now, the optimum of PSC , which we label x∗, transforms

uniquely to the point y∗ under the above univariate transformation. Given (7.18), in Y we have

∂Lnc
i (y∗i ,λ)

∂λj

= − fij

(
q−1
i (y∗i )

)

= − fij (x∗i ) (7.23)

=
∂Lsc

i (x∗i ,λ)

∂λj
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for all i, which implies that, if (x∗,λ∗) satisfies the necessary conditions (7.10) and (7.11), where

λ∗ are the Lagrange multipliers λ associated with x∗ at the saddle point of PSC , then (y∗,λ∗)
satisfies

∂

∂λj

Lnc (y∗,λ∗) ≤ 0 ∀ j : λ∗j ≥ 0 , (7.24)

λ∗j
∂

∂λj

Lnc (y∗,λ∗) = 0 ∀ j . (7.25)

Using (7.20) and the chain rule we may also write

∂Lsc
i (xi,λ)

∂xi

=
∂

∂xi

[Lnc
i (qi (xi) ,λ)]

=
∂Lnc

i (yi,λ)

∂yi

∂qi
∂xi

. (7.26)

We examine below the case in which neither ∂qi/∂xi nor ∂q−1
i /∂yi can equal zero or become

infinite anywhere, i.e. the inequalities hold strictly in (7.21) and (7.22). In this case, ∂qi/∂xi is

non-zero for all xi and, moreover, has the same sign for all xi in C.

Observation 1: For x†i = arg min
xi

Lsc
i

(
xi,λ

†
)
, if x̌i < x†i < x̂i then Lnc

i

(
yi,λ

†
)

is strictly

monotone over the half-intervals yi < y†i and yi > y†i .

If x̌i < x∗i < x̂i, then condition (7.14) holds and y̌i < y∗i < ŷi. Then (7.26) implies that

∂Lnc
i (y∗i ,λ

∗)

∂yi

= 0 , y̌i < y∗i < ŷi . (7.27)

Since Lsc
i (xi,λ

∗) is strictly convex and ∂qi/∂xi has a constant sign, relation (7.26) implies that,

if (7.27) is satisfied in Y , then y∗i represents the minimum of Lnc
i (yi,λ

∗) over feasible yi, and that

∂Lnc
i (yi,λ

∗) /∂yi = 0 only at yi = y∗i . Furthermore, the same observation demands that, for every

λ† 6= λ∗ for which

x†i = x̌i < arg min
xi

Lsc
i

(
xi,λ

†
)
< x̂i , (7.28)

there exists a unique y†i = q
(
x†i

)
that represents the minimum of Lnc

i

(
yi,λ

†
)
. Here again, clearly,

∂Lnc
i

(
yi,λ

†
)
/∂yi = 0 only at yi = y†i . This, in turn, leads us to conclude that Lnc

i

(
yi,λ

†
)

must

be strictly monotone over the half-intervals yi < y†i and yi > y†i , where the sign of the gradient

∂Lnc
i

(
yi,λ

†
)
/∂yi changes across yi = y†i for any λ† (including λ† = λ∗).

�

Observation 2: For x†i = arg min
xi

Lsc
i

(
xi,λ

†
)
, if x†i is on the bounds of C then Lnc

i

(
yi,λ

†
)

is strictly monotone over the whole interval y̌i ≤ yi ≤ ŷi .

If (7.12) holds and ∂qi/∂xi < 0, or if (7.13) holds and ∂qi/∂xi > 0, then y∗i = ŷi. In this

case, (7.26) implies that
∂Lnc

i (y∗i ,λ
∗)

∂yi

≤ 0 , y∗i = ŷi , (7.29)
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and that ∂Lnc
i (yi,λ

∗) /∂yi < 0 for any other feasible (xi, yi = qi (xi) ,λ
∗). Also, if (7.12) holds

and ∂qi/∂xi > 0, or if (7.13) holds and ∂qi/∂xi < 0, then y∗i = y̌i. It follows that

∂Lnc
i (y∗i ,λ

∗)

∂yi

≥ 0 , y∗i = y̌i , (7.30)

and ∂Lnc
i (yi,λ

∗) /∂yi > 0 for any other feasible (xi, yi = qi (xi) ,λ
∗). Therefore y∗i is again a

minimum of Lnc
i (yi,λ

∗) over feasible yi. Clearly, for any other λ† for which

x†i = arg min
xi

Lsc
i

(
xi,λ

†
)

(7.31)

lies on the boundary of C, there will be a corresponding y†i that satisfies one of (7.29) or (7.30) at(
y†i ,λ

†
)

, and y†i will be the minimum of Lnc
i

(
yi,λ

†
)
. In this case, Lnc

i

(
yi,λ

†
)

must be strictly

monotone over y̌i ≤ yi ≤ ŷi .

�

Observation 3: A separable nonconvex problem that can be convexified by univariate

transformations satisfies Attribute 1 and possesses a unique point that

satisfies the necessary conditions for a saddle point of the Lagrangian.

Given a strictly convex problem consistent with (7.1), together with a transformation of the type

just discussed, the transformed problem is always one for which Attribute 1 holds. Additionally,

given (7.27), (7.29) and (7.30), we can infer that

(y∗i − y̌i) (ŷi − y∗i )
∂

∂yi

L (y∗,λ∗) = 0 ∀ i . (7.32)

Hence y∗ satisfies the necessary conditions for a saddle point of the Lagrangian of the transformed

problem L (y,λ) in Y , namely (7.24), (7.25), (7.29), (7.30) and (7.32). Notice that the above

discussion can just as easily be run in reverse, in which case one would start with the observation

that

∂Lnc
i (yi,λ)

∂yi

=
∂

∂yi

[
Lsc

i

(
q−1
i (yi) ,λ

)]

=
∂Lsc

i (xi,λ)

∂xi

∂q−1
i

∂yi

.

Then, by invoking the fact that Attribute 1 holds for Lnc
i (yi,λ), the type of monotonicity exhibited

by Lnc
i (yi,λ) and the constant sign of ∂q−1

i /∂yi, it is possible to show (analogously to the dis-

cussion above) that every saddle point of L (y,λ) would correspond to a saddle point of L (x,λ).
However, since L (x,λ) represents a strictly convex problem, its saddle (x∗,λ∗) is unique (up to

the degeneracy discussed in Section 7.4.1). Therefore, the transformed problem can similarly only

possess a single point, given by (y∗,λ∗), that satisfies the necessary conditions for a saddle on its

Lagrangian (up to the same degeneracy).

�
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Observation 4: The dual of the problem as defined by Falk is unchanged by convex

transformation.

Equations (7.28) and (7.31) are the primal-dual transformations that define the dual as given

in (2.41). The dual is the same whether it is defined from the nonconvex problem or from its

strictly convex transform, because

y†i = qi

(
arg min

xi

Lsc
i

(
xi,λ

†
))

and

Lnc
i

(
y†i ,λ

†
)

in Y = Lsc
i

(
x†i ,λ

†
)

in C.

�

Hence, every separable problem that is transformable to a strictly convex problem via the type of

transformation defined above also satisfies Attribute 1, and thus is solvable using a dual method

utilising the Falk dual. It is not necessary to actually apply the transformation. The untransformed

(possibly nonconvex) problem has the same dual as its convex transform.

These observations allow us to further motivate the use of nonconvex approximations for building

separable approximate subproblems in sequential approximate optimisation codes. It can be seen

that the convexifiable problems discussed herein are essentially equivalent to their strictly convex

counterparts. In some instances, such as with the example problems discussed in Chapters 5 and 6,

it may be both advantageous and convenient to use nonconvex subproblems that more naturally

fit the original problem, rather than either convexifying the subproblems or using other, less well-

suited, strictly convex approximations.

7.5 Conclusions

We have investigated the link between two properties of continuous, separable, nonlinear and

generally nonconvex programming problems. The first property is the ability of the problem to be

solved via the application of Falk’s dual method. The second is its ability to be transformed into

a corresponding strictly convex form. We have limited the generality of this analysis, however, by

considering only univariate bijective transformations.

We find that if such a nonconvex problem can be transformed into a corresponding strictly convex

form via the types of transformations discussed, then it is also amenable to direct solution via

Falk’s dual method (i.e. without the necessity of actually transforming it) because its Lagrangian

always has a unique minimum with respect to the primal variables. We have not established the

converse though. This analysis does not indicate whether or not nonconvex problems exist that

can be solved via the Falk dual but that cannot be transformed into a corresponding strictly convex

form via the considered transformations. We also indicate that, given the types of programming

problems and transformations discussed, the dual of a given problem remains unchanged upon

application of a transformation.

The discussion helps to motivate and encourage the use of nonconvex approximations in sequential

approximate optimisation algorithms that use Falk’s dual approach in the solution of the SAO sub-

problems. We argue that it can sometimes be both possible and theoretically defensible to construct
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separable nonconvex approximations to nonconvex problems, and to solve these subproblems in a

dual setting. It may also be numerically advantageous to utilise nonconvex subproblems that suit

the original problem more naturally, rather than using a standard, strictly convex approximation

that may represent the original problem poorly.
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Chapter 8

Bounding the dual for global convergence

The work presented in this chapter is reproduced from a paper titled “Placing upper bounds on

the dual to circumvent the requirement of relaxation in globally convergent SAO implementa-

tions” [78]. The paper is co-authored by Prof. Albert A. Groenwold of the Department of Me-

chanical Engineering at the University of Stellenbosch, Stellenbosch, South Africa, and Dr L.F.P.

Etman of the Department of Mechanical Engineering at the Eindhoven University of Technology,

Eindhoven, the Netherlands.

8.1 Abstract

We implement upper bounds on the popular Falk dual, and consider the use of the resulting

bounded dual in globally convergent sequential approximate optimisation (SAO) procedures. We

do so using conservative SAO sequences, but trust region sequences may equally well be used. We

show that, in combination with conservatism, relaxation of the approximate subproblems is not

required when such bounds are placed on the dual. Relaxation is commonly done to ensure that

a KKT point exists for each subproblem; using a bounded dual, it is adequate to terminate each

approximate subproblem at a non-stationary point. Under the assumption that the original problem

possesses a KKT point and is not multimodal, the SAO sequence is guaranteed to converge, firstly,

to a feasible point, and thereafter to the KKT point if the bounds on the dual variables are suffi-

ciently large. In most cases of practical interest, upper bounds in the order of say 108 suffice. The

bounded dual may be viewed as a simple penalty formulation to minimise the constraint infeasibil-

ity in some sense, but with the important advantage that the minimisation over the primal variables

is done analytically – this retains the advantage that dual methods present when the number of

design variables n is (far) greater than the number of constraints m. The proposed procedure has

important implications for very large-scale optimisation, since no artificial variables are required,

which may be demanding in terms of storage requirements.

145
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8.2 Introduction

In the current chapter, we consider a general continuous nonlinear programming problem of the

form stated in (2.15), and re-stated here for convenience (adopting the negative-null form for what

follows):

Problem PNLP

min
x

f0(x)

subject to fj(x) ≤ 0 j = 1, 2, · · · ,m, (8.1)

x̌i ≤ xi ≤ x̂i i = 1, 2, · · · , n.

The function f0(x) is a real-valued scalar objective function, and the fj(x), j = 1, 2, · · · ,m are

m inequality constraint functions. The objective function f0(x) and constraint functions fj(x) all

depend on the n real (design) variables x = {x1, x2, · · · , xn}
T ∈ Rn, and the symbols x̌i and x̂i

denote, respectively, lower and upper bounds on the continuous real variable xi. We do not here

assume any special form associated with structural optimisation problems, since what follows is

relevant to the solution of more general nonlinear programming problems.

The functions fα(x), α = 0, 1, 2, · · · ,m are assumed to be (at least) once continuously differ-

entiable. Problem PNLP represents the general nonlinear (possibly multimodal) inequality con-

strained optimisation problem. However, it is assumed that the feasible region of Problem PNLP is

non-empty, and that in fact at least one KKT point exists.

If the evaluation of any of the functions fα, α = 0, 1, 2, · · · ,m requires a numerical simulation,

problem PNLP is often solved using sequential approximate optimisation (SAO) methods. Most

SAO algorithms used in structural optimisation are based on convex and separable approximation

functions, which in turn makes using the Falk dual [2] attractive, since this allows for highly effi-

cient dual forms (in particular when the number of constraints m are far less than the number of

design variables n). For a discussion of the approximations often used in SAO, see Haftka and

Gürdal [27] and Barthelemy and Haftka [79]; examples of SAO algorithms based on these ap-

proximations include the CONLIN algorithm developed by Fleury and Braibant [4], the method of

moving asymptotes (MMA) developed by Svanberg [3, 32], generalisations of MMA by Bruyneel

et al. [80], and SAOi developed by Groenwold and Etman [31].

It is often deemed necessary to relax1 problem PNLP, largely for the following reasons:

• Relaxation ensures the existence of a feasible solution to the problem. Specifically, the

problem derived by relaxing PNLP is guaranteed to have at least one optimal solution (which

satisfies the KKT conditions), even if PNLP itself happens to lack feasible solutions [6].

• In the same way, relaxation ensures the existence of optimal solutions for each approximate

subproblem in an SAO implementation. If relaxation is not employed, it may happen (when a

point of approximation is infeasible with respect to PNLP) that the subproblem lacks feasible

solutions, even if PNLP does not.

1The term ‘relaxation’ in this chapters refers to the scalable modification of a problem to ensure that feasible

solutions exist. The same term is used elsewhere in this document to denote (a) the weakening of the discreteness

requirements often employed in the solution of material distribution problems and (b) the mechanism of allowing the

stresses in portions of a structure to exceed the imposed constraint values.
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• If the subproblem is constructed at a point that is infeasible with respect to PNLP, then a

relaxation exists that makes the point of approximation feasible with respect to the associated

relaxed problem.

Many forms for relaxation are possible. We will herein restrict ourselves to the form used by

Svanberg [3, 6], which is given as follows:

Problem P̄NLP

min
x,y

f0(x) +
m∑

j=1

(
cjyj +

1

2
djy

2
j

)

subject to fj(x) − yj ≤ 0 j = 1, · · · ,m, (8.2)

yj ≥ 0 j = 1, · · · ,m,

x̌i ≤ xi ≤ x̂i i = 1, · · · , n.

Typical settings are cj = 103 and dj = 1 (dj > 0 results in a strictly convex penalty). In [6],

Svanberg introduces a set of SAO methods based on conservative, convex and separable approxi-

mations (the CCSA methods). In the methodology, relaxation is used to make sure that the iterates

are always feasible, and it is shown that the use of conservative approximations then leads to the

robust global convergence characteristics that these methods possess. Concerning the optima of

the relaxed problem, Svanberg demonstrates that, if x∗ is a KKT point of problem PNLP and the

cj are selected sufficiently large, then (x∗,y∗ = 0) will be a KKT point of the relaxed problem

P̄NLP [3, 6].

While there are indeed various reasons why relaxation may be desirable, it is also possible to

imagine situations where the contrary may be true. Reasons for not enforcing relaxation may

include the increased storage requirements due to the auxiliary variables yj , j = 1, 2, · · · ,m, and

the sometimes unknown effect of the penalty parameters cj , dj on numerical performance. Hence,

we herein aim to overcome the need for relaxation; we will do so in the dual setting, and we retain

the use of conservatism for its global convergence characteristics.

More specifically, with reference to the reasons listed above for employing relaxation, we present

an alternative approach for dealing with the second and third of these in a CCSA infrastructure.

We develop a very straightforward (indeed trivial) modification to the dual originally proposed by

Falk [2], which is so popular in SAO. We simply impose upper bounds on the dual variables. Al-

though this is not unusual in and of itself, since upper bounds of some form must be imposed when

numerically maximising the dual function, the novelty in our approach is to accept the bounded

dual maximum as the next SAO iterate. If the dual upper bounds are selected large enough, then

feasible subproblems will possess dual maxima within the bounded dual space. If, however, the

subproblems are infeasible, then maximising the bounded dual corresponds to minimising the in-

feasibility. In this case we can show that a sequence of convex conservative subproblems will have

decreasing infeasibility.

Hence, we assert that the bounded dual does not require relaxation of the subproblems, which is

commonly done to ensure that a KKT point exists for each subproblem; it is adequate to terminate

each subproblem at a non-stationary point if no stationary point exists. The resulting algorithm

allows infeasible iterates and, more importantly, infeasible starting points; convergence to either a
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local KKT point or a local point of minimum infeasibility is assured. In the case that PNLP has a

non-empty feasible domain and a unique optimum, the SAO sequence is guaranteed to converge,

firstly to a feasible point, and thereafter to the KKT point, provided that the upper bounds on the

dual variables are sufficiently large.

We make the assumption throughout that PNLP has a non-empty feasible region, and we subscribe

to the opinion that, if this is not the case, the problem itself should be reformulated. In the general

case that PNLP is multimodal, a globally convergent SAO algorithm using a bounded dual will

converge to either a local KKT point, or to a local point of minimum infeasibility.

The chapter is arranged as follows: in Section 8.3, we discuss SAO using relaxation, followed in

Section 8.4 by a discussion of SAO without relaxation, using a bounded dual. We present two

numerical examples in Section 8.5, followed by concluding remarks in Section 8.6.

8.3 SAO using relaxation

Sequential approximate optimisation as a solution strategy for problem PNLP seeks to construct

successive approximate analytical subproblems P [k], k = 1, 2, 3, · · · at successive approxima-

tions x{k} to the solution x∗. The solution to subproblem P [k] is x{k∗} ∈ Rn, to be obtained

using any suitable continuous programming method. Thereafter, x{k+1} = x{k∗}, the minimiser of

subproblem P [k].

In the following we will restrict ourselves to continuous SAO subproblems that are strictly convex,

and that are constructed using separable approximation functions. More specifically: we will

require that the approximate objective function f̃0 is strictly convex, whereas the approximate

constraint functions f̃j are required to be convex.

8.3.1 The approximate primal subproblem

A suitable approximate continuous subproblem for problem PNLP, constructed at x{k}, is

Primal approximate subproblem P̃P [k]

min
x

f̃0(x)

subject to f̃j(x) ≤ 0 j = 1, 2, · · · ,m, (8.3)

x̌i ≤ xi ≤ x̂i i = 1, 2, · · · , n.

This primal approximate subproblem has n unknowns, m constraints, and 2n side or bound con-

straints; it may be solved using many a technique for constrained nonlinear programming.

8.3.2 The relaxed approximate primal subproblem

A suitable relaxed approximate continuous subproblem for problem P̄NLP, constructed at x{k}, is
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Relaxed primal approximate subproblem P̄P [k]

min
x,y

f̄0(x,y)

subject to f̄j(x, yj) ≤ 0 j = 1, 2, · · · ,m, (8.4)

yj ≥ 0 j = 1, 2, · · · ,m,

x̌i ≤ xi ≤ x̂i i = 1, 2, · · · , n.

Approximate primal subproblem P̄P [k] has n + m unknowns, m constraints, and 2n + m side or

bound constraints; it is more demanding of storage requirements than approximate primal sub-

problem P̃P [k]. Subproblems P̃P [k] and P̄P [k] are related via the relationships

f̄0(x,y) = f̃0(x) +
m∑

j=1

(
cjyj +

1

2
djy

2
j

)

and

f̄j(x,y) = f̃j(x) − yj, j = 1, 2, · · · ,m.

8.3.3 The approximate dual subproblem

If primal approximate subproblem (8.3) is strictly convex and separable, we may invoke the effi-

cient dual of Falk [2] and construct the following approximate dual subproblem:

Dual approximate subproblem P̃D[k]

max
λ

γ̃(λ) = f̃0 (x(λ)) +
m∑

j=1

λj f̃j (x(λ)) (8.5)

subject to λj ≥ 0 j = 1, 2, · · · ,m.

This bound constrained problem requires the determination of the m unknowns λj only, subject to

m non-negativity constraints on the λj . For what follows it is necessary to elaborate on the form

of γ̃(λ) in (8.5). We depart with the Lagrangian of the approximate subproblem during iteration

k, L̃{k}(x,λ), written as

L̃{k}(x,λ) = f̃
{k}
0 (x) +

m∑

j=1

λj f̃
{k}
j (x) ,

where the λj , j = 1, 2, · · · ,m, represent the Lagrangian multipliers. If the primal approximate

subproblem is chosen to be strictly convex, which is standard practice, then L̃{k}(x,λ) possesses

a unique saddle point (x{k∗},λ{k∗}). Dropping the superscript {k} for notational convenience, we

note that the saddle point of the subproblem is given by

max
λ

min
x

{L̃(x,λ) : x̌i ≤ xi ≤ x̂i} = max
λ

γ̃(λ)

if the bound constraints of the primal subproblem form a closed and bounded domain in Rn.

This being the case, the function γ̃(λ) is precisely the dual of Falk [2]. This dual becomes highly
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efficient if the primal approximate subproblem is formulated in terms of separable approximations.

As discussed in Section 2.3.3, minimising the Lagrangian in this case with respect to the n design

variables reduces to performing n one-dimensional minimisations. Provided the minima exist, the

dual is uniquely defined and the primal-dual relationships are derived from

xi(λ) = arg min
xi

{L̃(xi,λ) : x̌i ≤ xi ≤ x̂i} , (8.6)

which express the primal variables x (uniquely) as a function of the dual variables λ. It is often

necessary to employ a numerical method to solve (8.6) for the xi, given particular λ, even if the ap-

proximations used to construct the subproblem are strictly convex. However, for certain judicious

choices of simple approximation functions (like quadratic functions, for instance), operation (8.6)

results in algebraic expressions for the xi in terms of λ that can be hard-coded into the dual solver.

The dual function γ̃(λ) is expressed as

γ̃(λ) = min
x

[
f̃0(x) +

m∑

j=1

λj f̃j(x)

]
= f̃0 (x (λ)) +

m∑

j=1

λj f̃j (x (λ)) . (8.7)

8.3.4 The relaxed approximate dual subproblem

Similar to the foregoing, if relaxed primal approximate subproblem (8.4) is strictly convex and

separable, we may construct the following efficient relaxed approximate dual subproblem:

Relaxed dual approximate subproblem P̄D[k]

max
λ

γ̄(λ) = f̄0 (x(λ),y(λ)) +
m∑

j=1

λj f̄j (x(λ), yj(λ))

subject to λj ≥ 0 j = 1, 2, · · · ,m. (8.8)

This bound constrained problem also requires the determination of the m unknowns λj only, sub-

ject to m non-negativity constraints on the λj . Due to the introduction of the additional variables

y, there can be many more primal-dual relationships for relaxed subproblem P̄D[k] than for sub-

problem PD[k], particularly for m large.

8.3.5 Convergence of a relaxed approximate dual subproblem sequence

An arbitrary sequence of dual subproblems P̄D[k] will not necessarily converge, nor terminate.

However, if the sequence is cast in the framework of conservatism [6] or trust regions [24, 81],

global convergence may be demonstrated under some conditions.

We will herein restrict ourselves to conservatism, since it is so simple and elegant (but not nec-

essarily the best from a computational point of view for all possible problems); we do so in the

dual context. A conservative approximation is one for which f̃
{k}
α

(
x{k∗}

)
≥ fα

(
x{k∗}

)
for all

functions α = 0, 1, 2, · · · ,m.
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Proposition 1 A relaxed SAO sequence (λ{k∗},x{k∗},y{k∗}), k = 0, 1, 2, · · · resulting from a

sequence of dual approximate subproblems P̄D[k] will converge to a KKT point (λ∗,x∗,y∗) of

relaxed problem P̄NLP if the primal approximate subproblems P̄P [k] are conservative, convex and

separable2.

Moreover, if problem PNLP has a feasible global minimiser x∗, and the cj in problem P̄NLP are

selected sufficiently large, then there will exist a coincident solution to problem P̄NLP for which

y∗ = 0.

Proof: Firstly, from Theorem 11 of Falk [2], it follows that, if relaxed primal approximate

subproblem (8.4) is strictly convex, then γ̄(λ{k∗}) = f̃0(x
{k∗},y{k∗}) ∀ k. Secondly, Theo-

rem 7.1 of Svanberg [6] proves that if the approximations f̄α, α = 0, 1, 2, · · · ,m are conservative,

the SAO sequence will converge to a KKT point of P̄NLP (λ∗,x∗,y∗). Furthermore, Svanberg

also shows that, for every KKT point of PNLP, there will exist a coincident KKT point of P̄NLP

(λ∗,x∗,y∗) = (λ∗,x∗,0), provided that the corresponding cj are selected sufficiently large.

�

8.4 SAO without relaxation

It seems unnecessarily strict to require that a KKT point exists for each and every subproblem in

the SAO sequence. Certainly, one could argue that it is simpler, and probably less demanding of

computational resources, merely to show that a conservative subproblem sequence will eventually

go to the KKT point of some (feasible) subproblem. If this can be shown, then, by virtue of the

proof by Svanberg, convergence to a minimiser x∗ will occur if the approximations reside in the

CCSA class. Although the proof in [6] is phrased in terms of relaxed subproblems, it remains valid

for unrelaxed problems, provided that the original problem possesses a KKT point and that the

SAO is started at a feasible point. Then, each convex approximate subproblem has a unique KKT

point and, due to conservatism, each iterate remains feasible with respect to the original problem

PNLP. In light of this, we specialise Proposition 1 as follows:

Proposition 2 An SAO sequence (λ{k∗},x{k∗}), k = 0, 1, 2, · · · resulting from a sequence of dual

approximate subproblems P̃D[k] will converge to a KKT point (λ∗,x∗) of unrelaxed problem PNLP

if the primal approximate subproblems P̃P [k] are conservative, convex and separable, and if the

initial point in the sequence is feasible.

�

2We assume throughout that, if the problem is feasible, the constraint qualification is satisfied at its solution(s).
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8.4.1 The bounded approximate dual subproblem

Consider the following very simple bounded approximate dual subproblem:

Dual approximate subproblem P̂D[k]

max
λ

γ̃(λ) = f̃0 (x(λ)) +
m∑

j=1

λj f̃j (x(λ))

subject to 0 ≤ λj ≤ λ̂ j = 1, 2, · · · ,m, (8.9)

with λ̂→ ∞. We will interpret the operator ‘→ ∞’ to mean that, although λ̂ is a finite real number,

its value may be chosen unrestrictedly large3. Bound constrained dual approximate subproblem

P̂D[k] merely requires the determination of the m unknowns λj , subject to 2m bound constraints.

The addition of the upper bound on the λj does not influence the primal-dual relationships (8.6);

nor are the storage requirements increased notably (the storage of a single scalar λ̂ suffices).

8.4.2 Global convergence for a bounded approximate dual subproblem se-

quence

Proposition 2 indicates that relaxation is not required in a CCSA implementation when the original

problem has feasible solutions and the initial iterate is feasible. We now consider the more general

case of when the initial point is arbitrary, and potentially infeasible.

In this case, Proposition 1 argues that, when relaxation is employed, the solution found will be a

KKT point of the relaxed problem P̄NLP. If the auxiliary variables are non-zero at this optimum,

then the point of convergence will not correspond to a KKT point of the original unrelaxed problem

PNLP. This can occur when PNLP possesses no feasible solutions, and/or when PNLP is multimodal.

In the latter case it is possible that the method can converge on a KKT point of the relaxed problem

P̄NLP that corresponds to an infeasible solution for the unrelaxed problem PNLP, even though a

feasible solution to PNLP may exist. This is a familiar consequence of multimodality. Thus, for

CCSA methods employing relaxation, there are two types of points to which convergence can

occur. These are KKT points of P̄NLP that do correspond to KKT points of PNLP, and KKT points

of P̄NLP that do not correspond to KKT points of PNLP.

A similar situation arises when global convergence of the CCSA methods is examined when em-

ploying the bounded dual instead of relaxation. In this case, the convergence proof below implies

that the two types of points to which convergence can be proved are firstly KKT points of PNLP,

and secondly points at which the infeasibility of PNLP is locally minimised, in the case when the

set of KKT points is empty or when the problem is multimodal.

Noting the above, it is sufficient to follow the standard practice of presenting the convergence proof

under the assumption that the problem has at least one KKT point to which local convergence must

be demonstrated, starting from an arbitrary initial point inside its region of attraction.

3For many problems, the requirement that λ̂ is finite is not required in the primal-dual relationships, but making

this assumption here simplifies the step to the eventual computer implementation.
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In the context of general (global) optimisation, however, it should be noted that PNLP is an arbitrary

nonlinear problem and, as such, may have many local minima identified by KKT points, as well as

many points of minimal infeasibility, each with their own local regions of attraction. Convergence

to either a local KKT point or a local point of minimal infeasibility is assured.

Proposition 3 An SAO sequence (λ{k∗},x{k∗}), k = 0, 1, 2, · · · resulting from a sequence of

bounded dual approximate subproblems P̂D[k], will converge to a KKT point (λ∗,x∗) of prob-

lem PNLP, or to a point of minimal infeasibility, if the primal approximate subproblems P̃P [k] are

conservative, convex and separable, and if λ̂ is sufficiently large (i.e. λ̂ → ∞). This last implies

that λ̂ is required to be at least as large as the maximum component of λ∗.

Proof:

Consider the primal approximate subproblem P̃P [k], which is understood to have a strictly con-

vex objective function, and convex and/or strictly convex constraints. Let us define the function

[f̃j(x)]+ associated with a constraint function f̃j(x) to be

[f̃j(x)]+ = max{0, f̃j(x)} , (8.10)

and let us for the time being assume that all f̃j(x) are strictly convex. The function [f̃j(x)]+ is the

infeasibility associated with constraint f̃j(x) (it is non-zero only where f̃j(x) is infeasible). We

indicate below that the total infeasibility F̃ T (x) =
∑m

j=1[f̃j(x)]+ is either minimised uniquely or,

when this is not the case, that F̃ T = 0.

We use the term ‘level surface’ to denote the domain on which f = a for a given function f ,

where a is some (real) number. It is evident that the only closed, convex level surface that [f̃j(x)]+
can possess is the domain on which [f̃j(x)]+ = 0 (even if f̃j(x) is monotonic, its domain is

ultimately closed by the bound constraints on the xi). For any other value of a, the associated

level surface will not be convex. The function [f̃j(x)]+ is convex (constant) over this level surface

(associated with a = 0), and strictly convex on any convex domain that does not intersect with this

level surface. The feasible region of the subproblem is defined by the intersection of all the level

surfaces [f̃j(x)]+ = 0, i.e. ∩(f̃j(x) ≤ 0) = ∩([f̃j(x)]+ = 0), j = 1, · · · ,m.

Now, consider the function F̃ T (x). Given the above, the only closed, convex level surface of F̃ T

is the feasible region F̃ T = 0, if it exists. F̃ T is generally only convex, not strictly convex, but if

the feasible region is empty, F̃ T is strictly convex everywhere. F̃ T is non-smooth, as its gradient

is not continuous across the boundaries where the max operators take effect.

Due to the convexity of F̃ T , if the minimum of F̃ T is not unique, it must be part of a closed convex

level surface F̃ T = a, where a is some number that must satisfy a ≥ 0. But, since we know that

the only such level surface of F̃ T is defined by a = 0, it follows that, if the feasible region is

non-existent, F̃ T must have a unique minimum. Obviously, F̃ T does not have a unique minimum

if the feasible region exists, unless it consists of only a single point. The function F̃ T (x) is the

infeasibility at x for (8.3). When the feasible region is empty, we will denote the unique minimum

of F̃ T by x‡, while x⋄ denotes the unique feasible minimum of the subproblem P̃P [k], when it

exists.

Imagine that subproblem (8.3) is defined at point xk, and that it has no feasible solution. In this

case, the dual is a concave surface that has no unbounded extremum. Therefore, a direction can be
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found in the dual space, defined by (8.5), along which the dual of (8.3) increases without bound.

Hence, the bounded dual (8.9) will have a bounded maximum at which at least one of the dual

variables is on its upper bound. Denoting the dual coordinates of the dual maximum as λ†, and the

corresponding point in the primal space as x†, we have

γ̃
(
λ†
)

= L̃
(
x†
(
λ†
)
,λ†
)

= f̃0

(
x†
)

+
m∑

j=1

λ†j f̃j

(
x†
)
,

and the following conditions hold:

λ†j = 0 ∀ j ∈ {j1 :
∂γ̃

∂λj1

= f̃j1

(
x†
)
< 0} ,

0 ≤ λ†j ≤ λ̂ ∀ j ∈ {j2 :
∂γ̃

∂λj2

= f̃j2

(
x†
)

= 0} ,

λ†j = λ̂ ∀ j ∈ {j3 :
∂γ̃

∂λj3

= f̃j3

(
x†
)
> 0} ,

in which j1, j2 and j3 are sets of indexes. Hence, every

[f̃j1

(
x†
)
]+ = 0 ≤ [f̃j1

(
xk
)
]+

and [f̃j2

(
x†
)
]+ = 0 ≤ [f̃j2

(
xk
)
]+ . (8.11)

At λ† we know that

L̃
(
x†,λ†

)
≤ L̃

(
xk,λ†

)
,

where the equality holds only if x† = xk. Since all λ†j1 = 0 and all λ†j3 = λ̂, we have

f̃0

(
x†
)

+
∑

j2

λ†j2 f̃j2

(
x†
)

+
∑

j3

λ̂f̃j3

(
x†
)

≤

f̃0

(
xk
)

+
∑

j2

λ†j2 f̃j2

(
xk
)

+
∑

j3

λ̂f̃j3

(
xk
)
. (8.12)

Dividing through by λ̂ and defining λ′j2 as

0 ≤

(
λ′j2 =

λ†j2

λ̂

)
≤ 1 ,

we note that
∑

j3
f̃j3

(
x†
)

=
∑

j3
[f̃j3

(
x†
)
]+, all f̃j2

(
x†
)

= 0, and λ′j2 f̃j2

(
xk
)
≤ [f̃j2

(
xk
)
]+.

Therefore, equation (8.12) can be simplified to yield

f̃0

(
x†
)

λ̂
+
∑

j2

[f̃j2

(
x†
)
]+ +

∑

j3

[f̃j3

(
x†
)
]+ ≤

f̃0

(
xk
)

λ̂
+
∑

j2

[f̃j2

(
xk
)
]+ +

∑

j3

[f̃j3

(
xk
)
]+ .
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Using (8.11), we conclude that

f̃0

(
x†
)

λ̂
+
∑

j1

[f̃j1

(
x†
)
]+ +

∑

j2

[f̃j2

(
x†
)
]+ +

∑

j3

[f̃j3

(
x†
)
]+ ≤

f̃0

(
xk
)

λ̂
+
∑

j1

[f̃j1

(
xk
)
]+ +

∑

j2

[f̃j2

(
xk
)
]+ +

∑

j3

[f̃j3

(
xk
)
]+

or, more succinctly:

f̃0

(
x†
)

λ̂
+

m∑

j=1

[f̃j

(
x†
)
]+ ≤

f̃0

(
xk
)

λ̂
+

m∑

j=1

[f̃j

(
xk
)
]+ . (8.13)

We have already shown that the infeasibility is minimised uniquely for a strictly convex subprob-

lem with strictly convex constraints and no feasible solution, in which case (8.13) indicates that,

as λ̂ → ∞, x† → x‡. If the subproblem has a feasible solution x⋄, the primal coordinates x†

associated with the dual maximum must tend to (or become) x⋄ as λ̂ → ∞, because the dual has

a definite maximum in this case. For subproblems in which the f̃j, j = 1, · · · ,m are convex, but

not necessarily strictly convex, the infeasibility F̃ T (x) might not have a unique minimum. Instead,

the points at which the infeasibility is minimised in this case can generally occupy a convex set X
in the domain of the subproblem. However, the presence of the strictly convex term f̃0 in (8.13)

ensures that the primal-dual relationships exist uniquely for any finite value of λ̂. Furthermore, the

presence of f̃0 also ensures that the point x‡, to which x† tends as λ̂→ ∞, is again a unique point.

Obviously, x‡ will be a member of the set X .

Now, making use of conservatism implies that a set of conservative approximations can be found

for which fj

(
x†
)
≤ f̃j

(
x†
)

∀ j, and Svanberg has proved that conservatism can be satisfied

within a finite number of inner loop iterations [6]. Renaming the x† at which conservatism is

satisfied for outer iteration k as x{k∗}, and labelling the associated dual coordinates as λ{k∗}, we

assert that the bounded dual serves to reduce the infeasibility of consecutive iterates in an infeasible

conservative SAO sequence, because

m∑

j=1

[fj

(
x{k∗}

)
]+ ≤

m∑

j=1

[f̃j

(
x{k∗}

)
]+ ≤

m∑

j=1

[f̃j

(
xk
)
]+ =

m∑

j=1

[fj

(
xk
)
]+ . (8.14)

With the assumption that the original problem is unimodal and has a non-empty feasible region,

conservatism ensures convergence firstly to a feasible point, and then, by virtue of Proposition 2,

to a KKT point of PNLP.

The bounded dual may be viewed as a penalty formulation to minimise the constraint infeasibility.

The definition of the dual requires that the Lagrangian is minimised with respect to the primal

variables x. If the subproblem has no feasible solution, then (8.13) implies that, at the bounded

maximum of the dual, the equation

f̃0 (x) + λ̂

m∑

j

[f̃j (x)]+
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is minimised. This is a linear penalty function in which the total infeasibility has been penalised

with the factor λ̂. As λ̂ becomes unrestrictedly large, the resulting minimisation locates the point of

minimal infeasibility for the subproblem. If, in addition, the infeasibility of PNLP – now possibly

multimodal – is locally minimised at such a point, then it becomes a terminal point for the SAO.

�

8.4.3 Numerical considerations

In practice, we do not require λ̂ → ∞. Instead, we require that λ̂ is ‘sufficiently large’ in the

spirit of inexact minimisation methods (see Bertsekas [26], for example, who discusses inexact

minimisation in the context of augmented Lagrangian methods). It is, however, required that

λ̂ > max{λ∗j}. The magnitudes of the λ∗j are of course unknown, but, in practice, any large

number for the λ̂ suffices. We typically4 use λ̂ = 108, but larger values presented no problems

whatsoever to the bound-constrained BFGS [74, 75] solver that we often use to solve the dual

subproblems.

Reasonable estimates for λ̂ can sometimes even be made on the basis of knowledge of the optimi-

sation problem at hand, e.g. see Svanberg [3, 6], who argues in favour of using similar information

to estimate reasonable values for the relaxation penalties in his MMA algorithm.

We have assumed throughout that a feasible global minimiser x∗ for problem PNLP does exist. If

the contrary is true, then the constraint infeasibility
∑m

j=1[fj(x)]+ is clearly minimised in some

sense. In fact, the algorithm will terminate at a point of local minimum infeasibility (in terms

of a linear, unweighted sum of the infeasibilities), provided that such a point exists and if the

infeasibility of the problem is locally convex around such a point. However, reformulation of

problem PNLP may then be called for, rather than accepting this point.

Finally: for problems (mostly pathalogical in nature) that are ‘wildly’ infeasible, it may be com-

putationally demanding to find the point (λ{k∗},x{k∗}) on the subproblem level to a reasonable

accuracy, due to scaling effects. (Not that a high accuracy is required in practice under these con-

ditions.) A computational ‘shortcut’ then is to simply enforce λ
{k∗}
e = λ̂, where e represents the set

of constraints for which fj(x
{k}) > µ hold, with µ large, say 106, and then to eliminate these dual

variables from the maximisation of γ̃(λ). Fixing the eliminated variables λe at the upper bound

λ̂ implies that these dual variables still influence the primal variables, but that it is assumed that

a feasible solution to these constraints cannot be found in iteration k. In other words, we assume

that f̃e(x
{k∗}) > 0, which seems reasonable for f̃e(x

{k}) > µ = 106. By virtue of Proposition 2,

setting λ
{k∗}
e = λ̂ will still drive the subproblems to feasibility.

4We have performed extensive numerical experimentation with an upper bound of 108, using many test problems

popular in the SAO literature (not reported herein); this always proved adequate.
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8.5 Numerical experiments

8.5.1 The approximations used in the example

The approximations used in the following examples are the simple separable spherical quadratic

approximations that we have previously proposed [31] for use in convergent dual SAO algorithms.

These approximations derive from an incomplete series expansion (ISE) suggested by Groenwold

et al. as the basis for function approximation in separable SAO infrastructures [61]; they are

expressed as

f̃α(x) = fα(x{k}) +
n∑

i=1

(
∂fα

∂xi

){k}

(xi − x
{k}
i ) +

1

2

n∑

i=1

c
{k}
2iα

(
xi − x

{k}
i

)2

. (8.15)

For α = 0, we understand that the objective function is approximated; for 1 ≤ α ≤ m, inequality

constraint function j is approximated. It is also understood that

(
∂fα

∂xi

){k}

=
∂fα

∂xi

(x{k}) ,

being the partial derivative of fα with respect to xi at the point x{k}. Approximation (8.15) is

convex if c
{k}
2iα

≥ 0 ∀ i, while the approximation is strictly convex if the inequality holds for all i.

We select c
{k}
2iα

≡ c
{k}
2α

∀ i, which results in a spherical quadratic approximation [82], and requires

the determination of the single unknown c
{k}
2α

. This is the simplest instance of the ISE, and the

unknown parameter c
{k}
2α

may then be obtained by enforcing the condition

f̃α(x{k−1}) = fα(x{k−1}) , (8.16)

which implies that

c
{k}
2α

=
2[fα(x{k−1}) − fα(x{k}) − ∇

Tfα(x{k})(x{k−1} − x{k})]

‖x{k−1} − x{k}‖2
2

. (8.17)

To obtain strictly convex dual subproblems, we enforce c
{k}
2iα

= max{ǫn > 0, c
{k}
2iα

} ∀ i if α = 0,

and c
{k}
2iα

= max{0, c
{k}
2iα

} ∀ i if α > 0, with ǫn selected rather arbitrarily as 10−5. The curvatures

c
{k}
2iα

are also bounded above.

8.5.2 Nonconvex example

We start with a nonconvex example problem proposed by Svanberg [6]. The problem is expressed

in terms of the symmetric, fully populated n× n matrices S, P and Q, with elements given by

sij =
2 + sin(4πϑij)

(1 + |i− j|) ln(n)
, pij =

1 + 2ϑij

(1 + |i− j|) ln(n)
, qij =

3 − 2ϑij

(1 + |i− j|) ln(n)
,

where

ϑij =
i+ j − 2

2n− 2
∈ [0, 1] ∀ i and j,

Stellenbosch University    http://scholar.sun.ac.za



CHAPTER 8. BOUNDING THE DUAL FOR GLOBAL CONVERGENCE 158

and n > 1. The problem is formulated as

min
x

f0(x) = xT Sx

subject to f1(x) =
n

2
− xT Px ≤ 0,

f2(x) =
n

2
− xT Qx ≤ 0,

− 1 ≤ xi ≤ 1 ,

in which the objective function f0(x) is strictly convex, but the nonlinear constraint functions

f1(x) and f2(x) are strictly concave. The strictly convex approximation strategy described in

Section 8.5.1 is used to construct the approximate subproblems.

The iterations are terminated when ‖x{k−1} − x{k}‖ ≤ ǫx = 10−4 and we do not use any move

limit whatsoever. For λ̂ we selected a value of λ̂ = 105, and for the relaxation penalty parameters

we used cj = 103 and dj = 1. The conservative SAO algorithm used to generate the results is

presented in [31]. (The specific algorithmic settings used are not very interesting for our current

purposes; we merely wish to illustrate the working of the bounded dual).

The iteration paths for the bounded dual and the relaxed problems are presented in Table 8.1; for

the sake of brevity and clarity, we present results for n = 2 only. The infeasible starting point

(listed in the table) is randomly generated. In the table, h = max{f1, f2}, while Ns reflects the

required number of evaluations of the subproblems by the bound-constrained BFGS solver that we

mentioned in Section 8.4.3.

To machine precision, the trajectories of the bounded dual and the relaxed formulation are identi-

cal. The (unrelaxed) primal subproblems are strictly convex and, of course, are identical for both

algorithms. Their minimisers should therefore coincide. During the first iteration, however, the

constructed subproblem has no feasible minimiser. The algorithm employing relaxation locates a

relaxed feasible solution that is identical to the point of minimal infeasibility found by bounding

the dual. This correspondence makes sense (in retrospect), given the convexity of the relaxation

penalisation.

Hence, bounding the dual accomplishes exactly what relaxation does, although perhaps more sim-

ply. Note that the computational effort for minimising the subproblem is markedly less for the

bounded dual during the first iteration. Tentatively, this may indicate that finding the maximum of

a bounded dual is numerically easier than finding the turning point of the dual for the equivalent

relaxed subproblem if the subproblem is infeasible. On the bounded dual surface, the gradients of

the dual corresponding to the violated constraints are all positive, and the associated dual variables

‘sit’ at the upper bounds.

8.5.3 The snake problem

Next, consider the so-called ‘snake problem’, also proposed by Svanberg [83], in particular for

“anyone who wants to test a new method for nonlinear optimisation”. Let d be a given positive

integer, and let δs be a given ‘small’ positive real number. For i = 1, 2, · · · , d, let

ψi =
(3i− 2d)π

6d
, gi(x) =

x2
i + x2

d+i − 1

δs
and hi(x) =

x2d+i − 2xixd+i

δs
.
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Then consider the following problem in the variables x = (x1, · · · , x3d)
T :

min
x

f0(x) =
d∑

i=1

(xi cosψi + xd+i sinψi − 0.1x2d+1)

subject to

d∑

i=1

(x2
i + x2

2d+i) ≤ d ,

− 2 ≤ gi(x) + gi(x)7 ≤ 2, i = 1, 2, · · · , d ,

− 2 ≤ hi(x) + hi(x)7 ≤ 2, i = 1, 2, · · · , d ,

− 2 ≤ xj ≤ 2, j = 1, 2, · · · , 3d .

For a short discussion of the problem, see Svanberg, who considers the problem “rather difficult to

solve” if the following feasible, but far from optimal, starting point x{0} is chosen:

x
{0}
i = cos(ψi +

π

12
), x

{0}
d+i = sin(ψi +

π

12
) ,

and

x
{0}
2d+i = sin(2ψi +

π

6
), i = 1, 2, · · · , d .

We will present results for d = 10 (and hence, n = 30 and m = 41), and δs = 0.1. However, we

generate a random starting point, which is highly infeasible, and apparently far more difficult than

the feasible starting point given above. For this problem we use the default value for λ̂ in our code,

namely λ̂ = 108, while for relaxation we once again use cj = 103 and dj = 1.

Let h = max{fj}, j = 1, 2, · · · ,m, i.e. the maximum constraint violation. Results for the

bounded dual are depicted in Figure 8.1, which nicely illustrates how the infeasibility is decreased

after every conservative iteration until a feasible iterate is obtained at iteration 35. Thereafter, the

iterates remain feasible. Note the very large magnitude of h in the earlier iterations. Figure 8.1(b)

is deserved of some elaboration: after iteration 35, h is notably less than zero for many an iteration.

This is a result of the strategy used to enforce conservatism, in which the curvatures in the inner

loop are simply multiplied by 2. A smaller resolution in increasing the curvatures results in iterates

for which h is closer to zero.

Figure 8.1(c) illustrates the effect of the concavity of the dual on the values of the dual variables

associated with violated constraints. For the sake of clarity and brevity, we have only depicted

the value of the largest dual variable Λ = max{λj}, j = 1, 2, · · · ,m. For the snake example,

Λ∗ ≈ 0.494.

We have not been able to solve the snake problem with a random starting point using only relax-

ation in a numerically stable way. The reason, which once again is proposed tentatively, again

seems to be that finding the maximum of the bounded dual is numerically easier than finding the

turning point of the dual for the relaxed subproblem. Presumably, the dual subproblems become

badly posed for the very high values of relaxation needed. The initial infeasibilities at the random

starting point are of the order of 1013 for this problem, which means that (some of) the initial relax-

ations yj must be of the same order. And they are squared in the objective function of the relaxed

subproblem. It is widely known that, in order for convergence to be achieved using dual solvers,

the dual maximum must be located accurately, and the primal-dual relationships must likewise be
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determined precisely. At any rate, the bound constrained BFGS solver that we use to maximise the

duals appears to prefer the bounded dual for this problem.

The above comparison does not imply that we expect the bounded dual to always outperform

relaxation, nor that we believe bounding the dual to be an inherently superior procedure to relax-

ation. Any such assertion is a problem-specific statement, as a no-free-lunch-like argument would

of course suggest. Indeed, for some problems our preliminary experimentation suggests that it

sometimes may be attractive to use both. The purpose of these numerical examples is simply to

show that bounding the dual is a viable and simple alternative to implementing relaxation, and that

it also may be numerically more stable in some cases.

8.6 Conclusions

We have presented a simple modification to the popular dual proposed by Falk for use in conver-

gent SAO sequences. The modification requires only that upper bounds are placed on the dual

variables. This dual does not require relaxation of the approximate subproblems to ensure that a

KKT point exists for each approximate subproblem; if a subproblem has an empty feasible region,

it is adequate to terminate the search for its optimum at a non-stationary point. However, the con-

vergence of the SAO sequence is not influenced detrimentally. Indeed, the sequence is guaranteed

to converge firstly to a feasible point, and thereafter to a feasible minimiser, if the bounds on the

dual are sufficiently large and if a unique minimiser indeed exists. In most cases of practical inter-

est, extensive numerical experimentation suggests that upper bounds on the dual variables in the

order of 108 suffice.

We have demonstrated that the SAO sequence converges using conservative, convex and separable

approximations, but the same may also be demonstrated for dual trust-region methods, etc. In

addition, like relaxation, the bounded dual may also be used in SAO implementations that have no

facility to force global convergence.

The proposed bounded dual not only has important implications for large-scale optimisation, since

no artificial variables are required that may be demanding of storage requirements, but possi-

bly also for the restoration phases of incompatible subproblems in primal algorithms based on

the nonlinear filtered acceptance of iterates. The bounded dual may then be viewed as a simple

penalty formulation to minimise the constraint infeasibility, but with the important advantage that

the minimisation over the primal variables is done analytically. Finally, the bounded dual is also

extremely simple to implement.
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Bounded dual Relaxation

k f0 h x1 x2 λ1 λ2 Ns λ1 λ2 y1 y2 Ns

0 0.2536498 8.374 × 10−01 0.336 -0.224

1 1.2881137 2.909 × 10−02 0.736 -0.567 105 92843 28 1000.5 927.9 0.514 0.000 61

2 1.0592279 -3.840 × 10−02 0.611 -0.599 0.519 0.421 35 0.519 0.421 0.000 0.000 28

3 1.0011105 -5.423 × 10−04 0.589 -0.588 0.476 0.454 5 0.476 0.454 0.000 0.000 5

4 1.0000001 -2.312 × 10−07 0.588 -0.588 0.499 0.499 5 0.499 0.499 0.000 0.000 5

5 1.0000000 -6.087 × 10−14 0.588 -0.588 0.499 0.499 4 0.499 0.499 0.000 0.000 8

Table 8.1: The iteration paths for the nonconvex example problem. For relaxation, the columns f0, h, x1 and x2 are not shown, since

they are identical to those obtained with the bounded dual, except for h at the final iteration, which equals 2.948 × 10−10 in the case of

relaxation. (The values in the four mentioned columns are similar to at least the number of digits shown, but mostly more. For the primal

variables x1 and x2, for example, the first 10 significant digits are identical.)
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Figure 8.1: The snake problem: convergence history for d = 10, beginning at a highly infeasible,

randomly generated starting point.
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Chapter 9

Large-scale structural optimisation with

stress constraints

The bulk of the work presented in this chapter is intended for submission, as an article, in col-

laboration with Prof. Albert A. Groenwold of the Department of Mechanical Engineering at the

University of Stellenbosch, Stellenbosch, South Africa.

9.1 Abstract

This chapter is concerned with the solution of large-scale topology optimisation problems using

sequential approximate optimisation in combination with a dual method for the solution of the

generated approximate subproblems. Specifically, we solve standard examples of the weight min-

imisation problem with local stress constraints, as well as standard examples of the minimum

compliance problem subject to local stress constraints and the usual constraint on the maximum

allowable volume. In the context of sequential approximate optimisation using separable approxi-

mations, the procedure followed for solving the problems depends on a number of considerations.

Among these are the types of approximations used to construct the subproblems, the method of

constraint relaxation employed for the stress constraints, and the strategy used to determine which

constraints should be included in the definition of a subproblem (the pre-selection strategy). Ad-

ditionally, it is suggested that a computational advantage can be gained by limiting the number of

terms used to construct the Jacobian of the subproblem, since for structural optimisation problems

it is often the case that many elements in the Jacobian are orders of magnitude smaller than the

most significant elements and therefore would appear to be insignificant by comparison. Intuitively

it seems permissible to ignore the insubstantial elements when constructing the approximate sub-

problems; we investigate the effect of doing so. The aim of this chapter is to provide an indication

of how these aspects affect the numerical solution of large-scale topology optimisation problems.

Thus, the method applied is simply to chronicle the behaviour of the numerical solution procedure

and the quality of the solutions obtained, rather than to attempt a comparative theoretical justifi-

cation for the various algorithmic permutations available. In this way we hope to demonstrate the

utility of the solution algorithm for large-scale problems, as well as to provide useful indications

of the effect that various parameters have on the solution of the problem.

163
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9.2 Introduction

Topology optimisation, via the material distribution method explained by Bendsøe and Sigmund [8],

is able to provide an indication of the optimal distribution of material within a given domain subject

to physical constraints and under the application of applied loads. However, topology optimisation

inherently is a computationally expensive procedure, being a marriage of structural analysis and

numerical optimisation. The structural analysis component (we herein confine ourselves to the

prediction of structural responses using the finite element method) requires the numerical solution

of a system of equations arrived at by discretising the physical structure to solve the equilibrium

equations. In the material distribution method, it is the entire spatial domain that structural el-

ements may occupy that must be discretised and is subject to analysis. The larger the domain

size and the more refined the required scale of the structural details, the larger the analysis model

becomes and the more demanding is the solution of the associated equations.

The optimisation component is itself also a numerically demanding procedure and is, moreover,

iterative in nature for all but the simplest types of problems. It too becomes more demanding to

solve the greater the number of design variables and the greater the number of constraints con-

sidered – both of which are usually directly related to the discretisation employed in the analysis

component. Hence, we see that a barrier to the widespread adoption of these techniques in industry

is the computational expense of carrying out the process, which limits the application of topology

optimisation to either the design of small single components, or else to the design of larger struc-

tures using limited low-fidelity models in the analysis. For these reasons, it is necessary to employ

or develop solution and optimisation procedures for topology optimisation that, as regards their

required computational imperatives, are as efficient as possible.

Historically, two optimisation approaches to the solution of structural optimisation problems have

been pursued for their efficiency (refer to the brief introduction given in Section 2.2). The first is

the family of procedures known as the optimality criteria methods, explained, for example, in [27],

and the second is the use of sequential approximate optimisation utilising separable strictly con-

vex approximations, as used, for instance, in [28]. The two approaches were shown to be closely

related, and in some instances equivalent, by Fleury [1]. Using the weight minimisation problem,

Fleury showed that the iterative design updates arrived at by the favoured OC method of the time

could also be derived using an SAO approach in which explicit separable and strictly convex sub-

problems were derived based on a linearisation of the objective and constraint functions at a point

in the design space, and in which a dual method was employed in solving the subproblems.

The problem linearisation is constructed as a first-order Taylor expansion in terms of either the

design variable or the reciprocals thereof. In each case, the approximations reflect the sensitivi-

ties of the many structural dependencies well. For instance, in the weight minimisation problem

the objective function is linear and the stress or displacement constraints are well represented by

the reciprocal linearisations. On the other hand, in the minimum compliance problem the volume

constraint is linear, whereas the compliance objective is approximated well by the reciprocal func-

tions. Both of these approximation techniques require only first-order information to be evaluated

from the problem itself and then to be stored. This is another advantage of the type of SAO algo-

rithm advocated by Fleury for structural problems, as the use of second-order information greatly

increases the memory storage requirements and so places additional limits on the size of problem

that can be solved.
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It appears that first-order SAO algorithms using dual solvers are now recognised as the state of the

art for the solution of large-scale structural optimisation problems. Algorithms like CONLIN, due

to Fleury and Braibant [4], and MMA, due to Svanberg [3], having found widespread use, par-

ticularly in the topology optimisation community. Bendsøe and Sigmund, for example, advocate

the use of MMA in [8] as a generally applicable procedure to solve topology optimisation prob-

lems, while Duysinx and Bendsøe use CONLIN for their solution of large-scale stress-constrained

weight minimisation problems in [84].

In this chapter we thus consider the solution of large-scale topology optimisation problems using

the efficient separable SAO approach, and we briefly compare different approximation schemes for

the construction of the subproblems. We accept that an efficient finite element solution package is

available for the analysis component of the procedure. In our work we have used the FORTRAN-

based finite element code EDSAP, written by Edward Wilson of the University of California at

Berkeley and made available freely to academic researchers. This package is used chiefly to de-

velop and test different finite elements for finite element analysis, and direct access is thus provided

to the FEM source code.

For constrained optimisation, the size of the dual subproblems is dependent on the number of

constraints considered in the construction of the primal approximate subproblems. If a step-size

limitation or trust region is employed, or if sufficiently conservative approximations are used to

ensure robust global convergence characteristics, then it is only necessary to include the active

or near-active constraints when constructing the approximate subproblems. Limiting the number

of constraints included reduces the dimensionality of the dual subproblems, which are easier and

quicker to solve than larger ones (provided the conditioning of the dual is not adversely affected by

constraint selection). Naturally, the criterion whereby the constraints are considered significant in

the following subproblem is a relative determination. We briefly illustrate the effect of constraint

selection.

Additionally, it is proposed that omitting terms from the Jacobian of the constraints when con-

structing the subproblems may prove advantageous during the solution of large-scale problems,

since fewer elements need to be stored to define the subproblem. The idea of Jacobian filtering has

been voiced previously [85], and it is here formally incorporated into the applied SAO procedure.

Depending on the strategy used to select the ‘significant’ elements, this may result in a substantial

decrease in storage requirements, which is useful if sparse implementations of the optimisation

algorithms are used, and the resulting solution strategy may be more efficient. On the other hand,

by omitting terms from the Jacobian the accuracy of the approximations is decreased. We test

whether these effects are noteworthy.

The inclusion of local stress constraints in topology problems produces another complication quite

apart from the large size of the resulting optimisation problems. This complication is commonly

labelled the ‘singularity problem’, and stems from the observation that the feasible region in the

stress-constrained problem may contain degenerate domains in which the global optimum for the

problem is frequently located. Loosely, these degenerate domains are k-dimensional hyperplanes

emanating from the ‘bulk’ of the n-dimensional feasible region and protruding into the infeasible

space as infinitely thin slivers (k < n). The problem has been studied in the context of truss design,

for example, by Kirsch [86], and by Cheng and Jiang [87], who show that the degenerate regions

are a result of discontinuities in the stress constraints. An overview of the topic is presented in [88].
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Several methods have been suggested with a view to making the search for local optima more

tractable under these circumstances. Methods such as the introduction of smooth envelope func-

tions (SEF) [89] and ε-relaxation [90] entail a modification of the constraint formulation that re-

sults in a broadening of the degenerate regions, making them n-dimensional. Such methods were

introduced in the context of truss optimisation; seemingly, there has been less attention paid to the

solution of planar and 3D problems with similar constraints. When planar problems are consid-

ered, similar methods are used to deal with the singularity problem; Duysinx and Bendsøe [84]

use ε-relaxation, for example, while Bruggi [91] and Le et al. [92] introduce a particular form of

stress interpolation for material in the relaxed continuous form of the problem.

Since Bruggi and Venini formally relate the ε-relaxation and stress interpolation approaches in [93],

and the relationship between ε-relaxation and the use of SEF is pointed out in [88], these methods

are all really aspects of the same idea, which is to allow increased stresses in elements that have

near zero density1. Since our work follows mainly on the ideas set forth in [84], we too implement

ε-relaxation in a form closely related to that of Cheng and Guo [90]. However, we introduce a

numerical implementation that is contrary to what is suggested in [90], and applied in [84], but

which yields good numerical results.

The progression of this chapter is as follows: The formulations for both the minimum weight

and minimum compliance topology problems are discussed briefly in Section 9.3, as is the SIMP

method for encouraging the generation of solid-void designs. Then, in Section 9.4, we describe

the primal approximate subproblems that are used in this study, and the quadratic approximation

strategies that are utilised in their construction. Thereafter, the definition of the dual subproblems

is described. Two specific examples are given for different approximation schemes. In Section 9.5

the formulation of the local stress constraints is reviewed. We describe the calculation of the stress

sensitivities that are required in the construction of the approximate subproblems, as well as the

stress relaxation strategies that are employed in the generation of numerical results. Some numeri-

cal considerations are outlined briefly in Section 9.6, before the numerical results are presented in

Section 9.7. The results are presented by comparing the various approximation strategies consid-

ered, and the effect of constraint selection and filtering of the Jacobian is discussed. We also com-

pare two different stress relaxation strategies, and we illustrate the difference between the results

gained from a standard minimum compliance problem, the stress-constrained minimum compli-

ance problem and the stress-constrained minimum weight problem. Lastly, results for large mesh

refinements are given, before concluding remarks and thoughts for future research are profferred

in Section 9.8.

9.3 Problem formulation

The material distribution problems discussed in this chapter are fundamentally of the form rep-

resented by equation (2.1). The particular distribution of an isotropic material is sought within a

given domain2, constrained and loaded in some way, such that one or other structural objective

is minimised and one or multiple constraints on the structural responses are satisfied. Of key im-

1By ‘density’ we here mean the material occupancy of an element, namely xi for element i. The material property

ρ will be referred to as the ‘mass density’ where necessary.
2Only planar problems are considered.
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portance is the stipulation that, at any point in the domain, the material in question may either

be present or absent, but no other states are physically meaningful. When the design domain is

discretised so that the material distribution function is represented by a vector of finite length, each

element may assume only the binary values 0 or 1. As was explained in Section 2.1, the binary

requirements on the variables in such problems is usually relaxed in order to facilitate the use of

efficient continuous nonlinear programming algorithms to search for the optima. Variables having

values intermediate between 0 and 1 are then penalised in the relaxed problem in an effort to find

purely [0, 1] solutions, which are then solutions to the intended discretised but unrelaxed problem.

Despite penalisation, purely solid-void designs are seldom produced, which raises the following

conceptual questions. Firstly, how should intermediate values of the discretised material distribu-

tion function be interpreted in the context of solid-void isotropic topology design? Secondly, how

should two different solutions, neither purely binary, be compared?

The standard discretised and relaxed form of the weight minimisation problem with displacement

and/or local stress constraints was introduced in Section 2.1.3 as equation (2.13). The form of

the problem defined by (2.13) results from the consideration of both truss-like structures as well

as spatially discretised representations of continuum (planar and 3D) structures. One important

difference, however, is that truss problems are usually interpreted as sizing problems, in which

case there is no underlying [0, 1] problem. Since the design variables in this case represent cross-

sectional areas for truss elements (usually), the variables are not penalised to produce a binary

design, and any value that the variable assumes (at the optimum) in between the defined upper and

lower bound constraints is physically meaningful. The truss sizing problems discussed in [86],

[87] and [90], for example, are of this type.

As was discussed in Section 2.2.2, displacement and stress constraints have the same basic form:

both are reciprocal in the design variables for statically indeterminate problems. Only stress con-

straints will be considered in the current chapter, but the formulation and method of solution dis-

cussed below are obviously valid if displacement constraints are also present. Without loss of

generality, it is assumed that the structural domain is discretised by the finite element method us-

ing a regular mesh of n elements (each element being square, undistorted and identical in size),

and so we here commence by stating the weight minimisation problem as follows:

Minimum weight topology problem PW

min
x

f0(x) =
n∑

i=1

ρiνixi

subject to fj(x) = σm
j ≤ σ̄ j = 1, 2, · · · , n, (9.1)

K(x)q = w,

0 < x̌ ≤ xi ≤ x̂ i = 1, 2, · · · , n.

The symbols x̌ and x̂ represent, respectively, the lower and upper bounds on xi, the density of

element i. We assume that these bounds are the same for all elements. The optimal distribution of

a single isotropic material is sought within the defined domain such that the mass of the structure

is minimised and the defined (static) loads w are supported without risk of static failure occurring.

Hence, νi in the objective function f0 represents the elemental volume, and we assume a 2D design

domain that has unit thickness. The symbols K and q denote the global assembled finite element

stiffness matrix and the global vector of nodal displacements respectively, and the constraints fj
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represent upper bounds on a chosen stress-related failure criterion. The stress constraints are point-

wise (local) in nature, so in the spatially discretised problem each element must satisfy a constraint

on its internal stresses. For our purposes, a limit on the equivalent von Mises stress, calculated at

the element centroids, will be used. Other choices are of course also possible, and the symbol σm
j

thus represents the desired stress measure, whereas σ̄ denotes the limiting value for said criterion.

Since we discretise the design domain using a regular mesh, each element being square and iden-

tical in size, and since we consider only the distribution of a single isotropic material with uniform

mass density, we replace the objective function in (9.1) with

f0(x) =
n∑

i=1

xi ,

which serves the same purpose. The standard, or ‘classical’, discretised minimum compliance

problem, in which the solid-void material distribution is sought that minimises the structural com-

pliance subject to a single constraint on the allowable structural volume, was introduced in Sec-

tion 2.1.2. With the addition of local stress constraints, the problem may be written as

Minimum compliance topology problem PC

min
x

f0(x) =
n∑

i=1

qT
i Kiqi

subject to fj(x) = σm
j ≤ σ̄ j = 1, 2, · · · , n, (9.2)

fn+1(x) =
1

ν0

n∑

i=1

νixi ≤ ν̄,

K(x)q = w,

0 < x̌ ≤ xi ≤ x̂ i = 1, 2, · · · , n.

The subscripts i in the objective function indicate elemental quantities, while the ν0 and ν̄ in the

volume constraint are, respectively, the total volume of the design domain and a limiting value for

the volume of material within the domain. From the finite element equations, for a structure in

static equilibrium we have

qT Kq = qT w . (9.3)

For linear elastic structures, the right-hand side of this equation corresponds to twice the work done

by the applied loads w in producing deformation q. The left-hand side is equivalent to twice the

internal strain energy within the structure, and the equation expresses the requirement that these

be balanced at static equilibrium.

The ‘classical’ minimum compliance problem takes no account of the strength of the material in

searching for optimal topologies, so the solutions derived may not be useful for physical design

because the local stresses at points in the optimal topologies may exceed the maximum stress that

the material can support. One may seek a topology that will not fail by increasing the allowable

structural volume, but material will not necessarily be added only in the vicinity of the highly

stressed areas. By employing stress constraints, the algorithm is encouraged to distribute the al-

lowable material in a way that reflects, first, the necessity to maintain structural integrity, with the
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minimisation of compliance being subordinate to this necessity. This in itself restricts the solution

space of the compliance problem.

Since the stress constraints are local in nature, one constraint is associated with each element

in the finite element mesh. The optimisation problem therefore requires the consideration of an

n-dimensional problem with at least n constraints. In contrast with the ‘classical’ minimum com-

pliance problem, which has n primal variables but only a few constraints (a volume constraint

and perhaps a perimeter constraint, for example), problems with local stress constraints scale very

badly with n in terms of the effort required to solve them.

Due to the fact that there often are much fewer constraints than primal variables, these structural

problems are frequently solved using a dual method. Since the dual is defined in the space of the

Lagrange multipliers associated with the constraints, it is much smaller than the primal. Therefore,

operating on the dual facilitates the efficient solution of what would otherwise be an extremely

large and challenging problem in the primal space. This advantage is diminished when local stress

constraints are present, because the dual becomes very large as well. Indeed, while it is common to

see classical compliance problems solved with several thousand design variables (see for example

the results in Chapter 5, which can be solved without prodigious effort), it is quite rare to see

examples of similarly large stress-constrained problems. As an example, Duysinx and Bendsøe, in

their influential paper on the subject [84], use CONLIN to solve 2D weight minimisation problems

discretised by a mesh of 60×20 elements. Their test problems therefore have 1200 primal variables

as well as 1200 stress constraints. We are unaware of any larger test problems incorporating local

stress constraints having been cited in the literature to date.

Both formulations, PW and PC , are continuous relaxed forms (in the design variables x) of what

should ideally be discrete problems, since solid-void material distributions are sought. The relax-

ation is introduced into the material description via the elasticity matrix associated with element i,
as

Ci (xi) = xiC0 . (9.4)

Hence, the material properties for element i, embodied by the elasticity matrix Ci, are scaled

linearly with xi relative to the elasticity matrix of the solid isotropic material C0. As we have

mentioned, relaxation is employed so that efficient methods of continuous nonlinear programming

(NLP) may be used to solve the optimisation problems, avoiding the usually more demanding

methods for integer programming, but then something else must be done to encourage the gener-

ation of solid-void designs. The method used here for both PW and PC is a method of penalising

intermediate-density material, known as SIMP (for ‘solid isotropic microstructure with penalisa-

tion’), also introduced briefly in Section 2.1.2.

9.3.1 SIMP

Suggested independently by Bendsøe [18] and Rozvany and Zhou [19], the SIMP approach intro-

duces a penalty into the linearised material description presented above, by modifying it so that

Ci (xi) = xp
i C0 p > 1. (9.5)

We will use the standard value for the penalisation, p = 3. This can be interpreted as a material

law, describing the material properties of elements with ‘densities’ intermediate between 0 and
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1. By introducing the penalty parameter p, the elements of Ci are decreased relative to the linear

scaling law (9.4) for non-binary values of xi, but Ci = C0 for xi = 0 and xi = 1. An element with

0 < x < 1 is “uneconomical” in the classical compliance problem because, as described in [8],

“the stiffness obtained is small compared to the cost (volume) of the material”. This material

penalisation affects the compliance objective directly, which in the relaxed penalised case is

f0(x) = qT Kq =
n∑

i=1

xp
i qT

i Kiqi . (9.6)

Although superficially it looks like the compliance would decrease for values of xi < 1 relative to

xi = 1, due to the implicit dependence of q on x through the finite element equilibrium equations,

the sensitivity of the compliance objective to small changes in the design variables can be shown

to be
∂f0

∂xi

= −pxp−1
i qT

i Kiqi . (9.7)

Thus, given some point x{k}in the design space, to first order the change in compliance achieved

by a small increase in xi, namely △xi, is

△f0 =

(
∂f0

∂xi

){k}

△xi = −p
(
x
{k}
i

)p−1 (
qT

i Kiqi

){k}
△xi .

Clearly, in the relaxed but unpenalised case, △f0 is not explicitly dependent on x
{k}
i , whereas in

the penalised case the decrease in △f0 is greater when x
{k}
i ≈ 1 than when x

{k}
i < 1. This would

tend to indicate that, for penalised compliance problems, the minima x∗ are characterised by the

prescribed volume being distributed efficiently amongst elements for which xi ≈ 1.

In the weight minimisation problem the penalisation does not enter into the objective function

directly. The local stresses, however, are still dependent on the material penalisation, which then

provides the propensity for generating [0, 1] solutions. As discussed in Section 2.1.3, with

σij = xp
iC0ǫij (9.8)

for a given strain ǫij , if a stress constraint σm
i = f (σij) is active, the value of xi would be higher

for p > 1 than for p = 1. The minimisation of structural weight ensures that the stress constraints

become active.

9.4 The dual SAO procedure

A sequential approximate optimisation procedure is employed for the iterative solution of problems

PW and PC . During each iteration k, the original problem, being either PW or PC , is replaced by an

explicit surrugate subproblem P
{k}
SUB, which is derived as an approximation to the original problem

at the current iteration point x{k}. The solution to the subproblem yields the approximate x{k+1},

at which the following subproblem is constructed. Under certain conditions, such as continuity

and convexity of the subproblems and the imposition of a method to ensure global convergence

(like the use of CCSA approximations [6] or trust regions [24]), the sequence of iterates x{k+1}can
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be shown to converge to a KKT point of the original problem as k increases (provided a sensitivity

filter is not used in the problem formulation). Thus, during each iteration, the solution of the

following problem is considered

Explicit approximate subproblem P
{k}
SUB

min
x

f̃0(x)

subject to f̃j(x) ≤ 0 j = 1, 2, · · · ,m, (9.9)

0 < x̌ ≤ xi ≤ x̂ i = 1, 2, · · · , n,

where m = n when PW is considered, whereas m = n + 1 when PC is solved. The tildes over

f̃0 and f̃j denote function approximations. The various SAO algorithms are distinguished by the

particular form of function approximation(s) chosen to construct the subproblems, as well as the

method chosen to solve the subproblems.

While the approximate subproblem can be solved using any applicable method for constrained

nonlinear programming, we utilise the dual solution method. In the field of structural optimisation

there are various methods available that utilise a sequential approximate optimisation procedure in

which the subproblems are constructed from strictly convex and separable functions, and in which

a dual method of solution is used that relies on a definition of the dual problem due to Falk [2].

Examples are the method of moving asymptotes, due to Svanberg [3], and CONLIN, due to Fleury

and Braibant [4]. Such methods were popularised originally, and formally linked to the widely

used OC methods, by Fleury [1, 28], and subsequently also by Groenwold and Etman [43]. While

Fleury specifically considered the weight minimisation problem in the cited references, Groenwold

and Etman regarded the minimum compliance problem.

9.4.1 Approximate subproblem

In the consideration of PW , the objective function may be represented exactly, namely f̃0 = f0,

and in the consideration of PC the volume constraint may be represented exactly (f̃n+1 = fn+1),

since both are linear in the design variables. Equivalently, they can be written as the first-order

Taylor series expansion

f̃ (x) = f (x) +
n∑

i=1

(
xi − x

{k}
i

)( ∂f
∂xi

){k}

. (9.10)

The particular form of function approximation favoured herein to approximate the stress con-

straints for both PW and PC , as well as the compliance objective for PC , in the construction of

the subproblems, is the quadratic approximation previously developed by Groenwold et al. for

structural topology optimisation [33]. This is a separable quadratic approximation, in which the

off-diagonal terms in the Hessian matrix are all zero; it is given as

f̃ (x) = f (x) +
n∑

i=1

(
xi − x

{k}
i

)( ∂f
∂xi

){k}

+
1

2

n∑

i=1

c
{k}
i

(
xi − x

{k}
i

)2

. (9.11)
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The curvatures c
{k}
i are chosen very carefully to ensure that the reciprocal-like behaviour of many

of the dependencies in structural problems can be well represented. Thus, the constants c
{k}
i are de-

rived from a consideration of the separable first-order exponential approximation (5.13), expressed

here again for convenience:

f̃E(x) = f(x{k}) +
n∑

i=1



(

xi

x
{k}
i

)r
{k}
i

− 1



(
x
{k}
i

r
{k}
i

)(
∂f

∂xi

){k}

. (9.12)

The curvatures are found by enforcing the condition that (9.11) is the quadratic approximation

to (9.12) at the point x{k}, the curvatures in the quadratic function being the second-order partial

derivatives of the exponential function at the point x{k}, which results in

c
{k}
i =

∂2f̃E

∂x2
i

(
x{k}

)
=
r
{k}
i − 1

x
{k}
i

(
∂f

∂xi

){k}

. (9.13)

The exponents r
{k}
i are calculated from historic data by enforcing

∇f̃E

(
x{k−1}

)
= ∇f

(
x{k−1}

)
,

in which f (x) is the true function being approximated. From this, the exponents are derived as

r
{k}
i = 1 +

ln

{(
∂f

∂xi

){k−1}

/

(
∂f

∂xi

){k}
}

ln
{
x
{k−1}
i /x

{k}
i

} . (9.14)

We call the resulting approximation T2:E; it is a quadratic approximation to the exponential ap-

proximation. This function is strictly convex when ∂f/∂xi < 0 and r
{k}
i < 1, as is the case when

the compliance objective f0 in PC is approximated. For the stress constraints considered in this

chapter, the partial derivatives ∂fj/∂xi may be positive or negative. Since it is desired that the

quadratic approximation (9.11) be strictly convex, we replace (9.13) by

c
{k}
i =

∂2f̃E

∂x2
i

(
x{k}

)
= −

r
{k}
i − 1

x
{k}
i

∣∣∣∣
∂f

∂xi

∣∣∣∣
{k}

(9.15)

and restrict r
{k}
i by enforcing r

{k}
i < 0, which serves for both the compliance objective and the

stress constraints. Finally, if we set r
{k}
i = −1 for all i, instead of applying (9.14), then as a special

case we generate the quadratic approximation to the reciprocal approximation, which we denote

T2:R and for which

c
{k}
i =

2

x
{k}
i

∣∣∣∣
∂f

∂xi

∣∣∣∣
{k}

. (9.16)

In the same manner, strictly convex separable quadratic approximations may be derived for many

of the other popular forms of function approximations used in SAO, such as CONLIN, MMA and

the TANA approximations proposed by Grandhi and his collaborators [67, 68]. For further details,

the reader is referred to our previous efforts [33].
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In Section 9.7 a brief comparison is carried out using a weight minimisation problem with a coarse

mesh to assess which of CONLIN, T2:CONLIN, T2:R, T2:E or T2:MMA can be used most effi-

ciently to solve the problems considered. Superficially, we find little difference between them; we

continue with T2:R to investigate the effect of other parameters, and then with T2:CONLIN for the

solution of larger problems, as the solution using T2:CONLIN appears marginally more efficient.

These approximation strategies have in common that no historic information is required for the

definition of the associated subproblems, and we are also not faced with the additional complexity

of adjusting the asymptotes for MMA.

9.4.2 Dual solution procedure

The use of the dual method allows the subproblems to be solved by considering instead a dual

subproblem, defined in the space of the Lagrange multipliers associated with the constraint func-

tions in the primal subproblem. If the primal subproblem is strictly convex and continuous, it can

be shown that the maximum of the dual subproblem corresponds to the solution, the minimiser,

of the primal. The advantage of using the dual formulation is that the dual problem has a very

simple structure. In Reference [2], Falk showed that the dual problem is concave. Additionally, it

is simply constrained, the only constraints being non-negativity constraints on the dual variables.

The gradients of the dual, which are invariably required by the NLP technique chosen to accom-

plish the dual maximisation, are also straightforward to evaluate. They are simply the values of the

primal constraints, evaluated at the primal coordinates corresponding to a given point in the dual

space, said correspondence being dictated by the primal-dual relationships. Thus, there are several

reasons why a dual solution strategy might be preferred. Most importantly, however, is that the

number of constraints in the primal problem is frequently far less than the number of primal vari-

ables, so the dual typically is much smaller than the primal. In the case of the classical minimum

compliance problem, for instance, which has only a single constraint on the allowable volume of

the design, the dual is one-dimensional. Being concave, it is extremely straightforward to optimise

and so to identify the corresponding optimum of the original primal subproblem.

When stress constraints are present in the problem formulation, as is the case for both PW and

PC , the primary advantage afforded by the use of the dual method, namely its (typically) small

dimensionality, is (partially) eradicated. One is still able to take advantage of this characteristic of

the dual formulation by considering in each iteration only the active constraints, and possibly also

the most critical inactive constraints, in the definition of the primal subproblem. Even in the event

that the dual is of the same size as the primal, it still retains its simple structure, which in itself may

be reason enough to attempt to solve the dual rather than the primal. It must be remembered that

an additional computational cost is incurred in evaluating the primal-dual relationships, relative to

primal solution algorithms. Also, although it is concave, the dual can be badly scaled, so despite the

fact that the dual is only simply constrained its maximisation is not necessarily trivial, particularly

if there are a large number of active constraints. For the stress-constrained topology problems

presented herein, we retain the used of the dual method of solution.

The dual problem is derived from the Lagrangian function, which is defined as follows in terms of
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the functions involved in the SAO subproblems:

L (x,λ) = f̃0 (x) +
m∑

j=1

λj f̃j (x) .

The KKT point of the primal problem is identified with the saddle point of the Lagrangian function

(which is unique by construction, due to the convexity of the primal subproblem, provided that the

subproblem has a feasible solution) and may be found by maximising the dual function, defined

according to Falk by

γ(λ) = min
x

L(x,λ)

subject to x ∈ C , (9.17)

and λ ≥ 0 .

When separable approximations such as (9.10) and (9.11) are used to construct the primal sub-

problems, the corresponding Lagrangian function is separable in the primal variables xi. The

minimisation with respect to x in (9.17) can then be carried out as n separate minimisations with

respect to xi, which yields a set of expressions xi (λ) that define the relationship between the

primal and dual variables.

The set C typically, and certainly in our case, consists of the box constraints on the primal vari-

ables x̌ ≤ xi ≤ x̂, which are then not included as constraint functions f̃j in the definition of the

Lagrangian. Given the strict convexity of L with respect to the primal variables x, if L (xi,λ)
possesses a stationary point on the interval x̌ ≤ xi ≤ x̂, then the minimum of L with respect to xi,

namely

arg min
xi

L (x,λ) ,

can be located using the stationarity condition as the solution of

∂

∂xi

L (x,λ) = 0 .

Otherwise, the minimiser will be located either at x̌ or x̂. This is reflected in the conditional form of

the primal-dual relationships given below, where two explicit examples are given for constructing

the dual for two particular primal approximate subproblems, T2:R and T2:CONLIN. Note that we

introduce the notation A to designate the set of active and critical constraints used to define the

primal subproblem.

The dual problem for PW using T2:R

When employing T2:R to build the approximate subproblems for the weight minimisation problem,

the objective function reduces to (9.10), while the constraints are represented as (9.11) with the ci
given by (9.16). The dual is

γ (λ) = f0

(
x{k}

)
+

n∑

i=1

(
xi (λ) − x

{k}
i

)(∂f0

∂xi

){k}

+

∑

j∈A

λj

(
fj

(
x{k}

)
+

n∑

i=1

(
xi (λ) − x

{k}
i

)(∂fj

∂xi

){k}

+
1

2

n∑

i=1

c
{k}
ji

(
xi (λ) − x

{k}
i

)2
)
.
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Applying the stationary condition, and with ∂f
{k}
0 /∂xi = 1, we obtain

βi (λ) = x
{k}
i −

(∑

j∈A

λjc
{k}
ji

)−1(
1 +

∑

j∈A

λj

(
∂fj

∂xi

){k}
)
, (9.18)

so that the primal-dual relationships can be expressed as

xi(λ) =





βi(λ) if x̌ < βi(λ) < x̂ ,
x̌ if βi(λ) ≤ x̌ ,
x̂ if βi(λ) ≥ x̂ .

(9.19)

The dual problem for PC using T2:R

For the compliance minimisation problem, the objective function as well as the j stress constraints,

j = 1, 2, · · · , n, are all described by (9.11), with the ci again given by (9.16). The volume con-

straint (j = n + 1) is linear, so the curvatures in the quadratic approximation fall away and the

constraint is represented by (9.10). The compliance objective has negative partial derivatives ev-

erywhere, with the result that the volume constraint is always active at the solution of every sub-

problem. Hence we denote by A the set of active and critical stress constraints, and explicitly

include the volume constraint in the following equation for the dual:

γ (λ) = f0

(
x{k}

)
+

n∑

i=1

(
xi (λ) − x

{k}
i

)(∂f0

∂xi

){k}

+
1

2

n∑

i=1

c
{k}
0i

(
xi (λ) − x

{k}
i

)2

+

∑

j∈A

λj

(
fj

(
x{k}

)
+

n∑

i=1

(
xi (λ) − x

{k}
i

)(∂fj

∂xi

){k}

+
1

2

n∑

i=1

c
{k}
ji

(
xi (λ) − x

{k}
i

)2
)

+

λn+1

(
fn+1

(
x{k}

)
+

n∑

i=1

(
xi (λ) − x

{k}
i

)(∂fn+1

∂xi

){k}
)
.

In this case (with ∂f
{k}
n+1/∂xi = 1),

βi (λ) = x
{k}
i −

(
c0i +

∑

j∈A

λjc
{k}
ji

)−1((
∂f0

∂xi

){k}

+
∑

j∈A

λj

(
∂fj

∂xi

){k}

+ λn+1

)
(9.20)

and

xi(λ) =





βi(λ) if x̌ < βi(λ) < x̂ ,
x̌ if βi(λ) ≤ x̌ ,
x̂ if βi(λ) ≥ x̂ .

(9.21)

The dual problem for PW using T2:CONLIN

Instead of directly representing the constraints by (9.11), we respect the method of mixed variables

underlying the CONLIN algorithm when generating the subproblems for PW. For each constraint

function fj , if
∂fj

∂xi

< 0 ,

Stellenbosch University    http://scholar.sun.ac.za



CHAPTER 9. LARGE-SCALE PROBLEMS WITH STRESS CONSTRAINTS 176

the corresponding dependence of the approximation on xi is given by

d̃ji (xi) =
(
xi − x

{k}
i

)( ∂f
∂xi

){k}

+
1

2
c
{k}
i

(
xi − x

{k}
i

)2

, (9.22)

with the ci still given by (9.16). We define the set Qj for fj , which contains all indices i for which

the above holds. On the other hand, if
∂fj

∂xi

> 0 ,

then the corresponding dependence of the approximation on xi is given by the linear term

d̃ji (xi) =
(
xi − x

{k}
i

)( ∂f
∂xi

){k}

. (9.23)

The dual of the subproblem for T2:CONLIN can therefore be expressed as

γ (λ) = f0

(
x{k}

)
+

n∑

i=1

(
xi (λ) − x

{k}
i

)(∂f0

∂xi

){k}

+

∑

j∈A

λj


fj

(
x{k}

)
+

n∑

i=1

(
xi (λ) − x

{k}
i

)(∂fj

∂xi

){k}

+
1

2

∑

i∈Qj

c
{k}
ji

(
xi (λ) − x

{k}
i

)2


 ,

and we thus obtain the βi (λ) for (9.18) as

βi (λ) =

x
{k}
i

∑

j∈A

λj (cji)
{k}
Qj

−

(
1 +

∑

j∈A

λj

(
∂fj

∂xi

){k}
)

∑

j∈A

λj (cji)
{k}
Qj

, (9.24)

where the term (cji)
{k}
Qj

is interpreted as

(cji)
{k}
Qj

=

{
cji if i ∈ Qj ,
0 otherwise.

The primal variables are again determined from (9.19). It is now possible, however, that the de-

nominator in (9.24) is zero if the set Qj is empty for all j. In this case the Lagrangian is strictly

linear in the variable xi, with gradient gi, and the design update xi (λ) will correspond to either x̌
or x̂, to be determined by the sign of gi. Alternatively, it is numerically expedient simply to add

quadratic terms with very small curvatures cji to all terms d̃ij that do not belong to Qj in (9.23).

The resulting βi (λ) would again be given by (9.18).
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The dual problem for PC using T2:CONLIN

Applying the same method of mixed variables as described above to the constraints in PC, the

expression for the dual becomes

γ (λ) = f0

(
x{k}

)
+

n∑

i=1

(
xi (λ) − x

{k}
i

)(∂f0

∂xi

){k}

+
1

2

n∑

i=1

c
{k}
0i

(
xi (λ) − x

{k}
i

)2

+

∑

j∈A

λj


fj

(
x{k}

)
+

n∑

i=1

(
xi (λ) − x

{k}
i

)(∂fj

∂xi

){k}

+
1

2

∑

i∈Qj

c
{k}
ji

(
xi (λ) − x

{k}
i

)2


+

λn+1

(
fn+1

(
x{k}

)
+

n∑

i=1

(
xi (λ) − x

{k}
i

)(∂fn+1

∂xi

){k}
)
.

From the stationary condition,

βi (λ) = x
{k}
i −

(
c0i +

∑

j∈A

λj (cji)
{k}
Qj

)−1((
∂f0

∂xi

){k}

+
∑

j∈A

λj

(
∂fj

∂xi

){k}

+ λn+1

)
, (9.25)

and x is still given by (9.21). The denominator in (9.25) cannot be zero due to the presence of the

c0i.

9.5 Local stress constraints

9.5.1 Constraint formulation

Consider the simple one-dimensional textbook example illustrated in Figure 9.1, in which two

parallel bars of the same material are acted on by an applied load F . Each bar has variable cross-

sectional area Ai, and the force internal to each bar is denoted Pi. The bars have equal deformation

δ, the problem being a one-dimensional illustration. It is straightforward to show that the free-end

F

P1, A1

P2, A2

δ

Figure 9.1: A one-dimensional example illustrating the non-zero stress in a truss element as its

area tends to zero.
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F

11 2

Figure 9.2: A three element truss example of stress discontinuity.

displacement is given as

δ =
FL

E (A1 + A2)

in terms of the variable bar areas, where L denotes the length of the bars and E represents Young’s

modulus for the material. In terms of the displacement, the internal loads are

Pi =
δAiE

L
,

from which the stress in each member is calculated in terms of the applied load as

σi =
F

(A1 + A2)
.

Notice that if A2 is kept constant and A1 is reduced towards zero, although the internal force P1

tends towards zero the stress in element 1 tends towards a finite value. The same behaviour is

observed in more complex truss problems, as well as in continuum problems, and may prevent

the removal of elements whose areas (in truss examples) or ‘densities’ (in discretised continuum

problems) are on their lower bounds.

Take, for instance, the illustrative truss problem discussed in [90], the salient features of which are

depicted in Figure 9.2. As a function of the truss cross-sections xi, the stress constraints take the

form

σ̄i =
ai

x1 + x2

≤ 1 , (9.26)

where the ai are constants. The feasible region is graphically represented by the un-hatched region

in Figure 9.3(a). Once again it is evident that the stress in each element tends to a non-zero value

as its cross-section tends to zero. Consider, for instance, the point (a2, 0) at which the stress

constraint for element 2 is active, but at which element 2 has zero cross-section. The element

therefore makes no contribution to the internal energy of the structure, but an algorithm would

be prevented from approaching the more optimal point (a1, 0) because the stress constraint for

element 2 would apparently be violated. The result is unrealistic, of course, but algorithmically

these elements are difficult to identify and remove in a consistent way.
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σ̄2

a2

a1

a1

σ̄1

a2

x2

x10

(a) Feasible region: original constraints

σ̄2

a2

a1

a1

σ̄1

a2

x2

x10

(b) Feasible region: constraint 2 relaxed

Figure 9.3: The feasible regions defined by the stress constraints for the three-element truss exam-

ple.

With the stress constraints defined as above, the line joining (a1, 0) and (a2, 0), which represents

the removal of element 2 from the structure, is excluded from the feasible region. However, the

constraints may be reformulated as

xi (ai − x1 − x2) ≤ 0 , (9.27)

which provides an equivalent representation of the feasible region, except that the line joining

points (0, 0) and (a2, 0) is now feasible with respect to constraint 2. Similarly, the line joining

points (0, 0) and (0, a1) is now feasible with respect to constraint 1. Physically, these reformu-

lated constraints represent the fact that the stress measure in a non-existent element should not

contribute to the infeasibility of the design. Mathematically, such a reformulation unfortunately

also introduces the point (0, 0) into the feasible region if all the constraints are relaxed, which is

spurious. To complicate matters, it is usually necessary to set a finite lower bound on an element

cross-section or density to prevent numerical ill-conditioning in the analysis of the structure.

Algorithmically, this reformulation of the stress constraints doesn’t help matters much, because,

although the lines along which xi = 0 are now added to the feasible regions of their respective

constraints i, these lines are infinitely thin, and thus are virtually inaccessible to the optimiser. The

method of ε-relaxation, introduced by Cheng and Guo [90], allows sizing algorithms to approach

the singular optima such as (a1, 0) in the example above, and thus make it possible for sizing algo-

rithms to be used in the topology optimisation of truss problems. The method works by ‘relaxing’

the stress constraints for structural elements close to their lower bounds, which basically allows

the stresses (as calculated by (9.26)) in these elements to climb well above the limiting values set

by the failure criterion. Graphically, the relaxation ‘opens up’ the feasible domain, as depicted

in Figure 9.3(b), to allow an optimiser to approach the singular optima. The relaxed form of the

constraints (9.27), with ε > 0, is

xi (ai − x1 − x2) ≤ ε , (9.28)
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and the value of ε controls the extent to which the feasible domain is opened up, and thereby also

the amount by which the stresses in the elements may exceed the limit set by the failure criterion.

The form of stress relaxation suggested by Cheng and Guo in [90], and adopted by Duysinx and

Bendsøe in [84], is

xi

(
σm

i

σ̄
− 1

)
≤ ε with ε2 = x̌ ≤ xi . (9.29)

In the above, σm
i represents the stress measure calculated for element i demanded by the particular

failure criterion in use, whereas σ̄ denotes the limit on said stress measure. Additionally, x̌ is the

lower bound on the elements of x. Equation (9.29) asserts a fixed relationship between ε and x̌.

Hence, if ε is changed during the optimisation process, x̌ is modified concordantly.

Cheng and Guo show that, with this relaxation, the sequence of problems defined by non-zero

ε (and their KKT points) converges to the original unrelaxed problem (and its KKT points) as

ε → 0. While the unrelaxed problem has a degenerate feasible domain, none of the relaxed

problems do. Thus, applying a continuation strategy on ε enables an optimiser to converge towards

a singular optimum of the original problem, which would be inaccessible without ε-relaxation. In

Reference [84], ε is reduced to a lower limit of 0.01, the corresponding value of x̌ being 1× 10−4.

The fixed relationship between ε and x̌ in (9.29) is apparently unnecessary. For convergence it is

apparently only necessary that xi is limited by “a higher order term smaller than ε as ε tends to

zero” [90]; it is permissible simply to set x̌ at a constant, x̌ = 1 × 10−4 for instance.

Relaxation schemes

By reshuffling equation (9.29) we may discover the values that the stress in element i is allowed to

attain.

σm
i ≤ σ̄

(
ε

xi

+ 1

)
. (9.30)

Thus, if ε = 0.01 and x̌ = ε2, for an element on its lower bound the stress measure is allowed

to attain a value of 101σ̄ before the relaxed constraint is violated. Similarly, the stress for an

element on its upper bound xi = 1 can reach 1.01σ̄. However, ε may be much larger earlier in the

optimisation process. If the initial value of ε is 0.2, for instance, the stress in the solid elements

may exceed the allowable stress by 20 percent. For this reason, other relaxation schemes have been

proposed that do not affect the stress limit for elements on their upper bounds. An example of such

a scheme, presented in [8], is
σm

i

σ̄
−

ε

xi

+ ε ≤ 1 . (9.31)

For the results presented in the current chapter, we utilise the following relaxation,

σm
i

σ̄
(1 + θε) −

ε

xi

≤ 1 , (9.32)

which reduces to (9.29) for θ = 0. In the results presented we use θ = 1 exclusively, so that σm
i is

limited by

σm
i ≤

σ̄

1 + ε

(
1 +

ε

xi

)
. (9.33)
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Whatever the particular form of the ε-relaxation utilised, the conventional method of applying it

in topology problems is to begin by considering a problem in which all the constraints are relaxed,

and then, as the optimisation progresses, to gradually ‘close down’ the feasible domain by reducing

the value of ε via some continuation. Obviously the reason for doing so is to maintain consistency

with the proof presented in [90], which intimates that the solution produced hereby corresponds to

a solution of the original unrelaxed problem.

We propose an alternate method of continuation, in which we first solve the unrelaxed problem and

then ‘open up’ the feasible region in an effort to penetrate the degenerate portions of the unrelaxed

design space. This is exactly opposite to what is normally adopted. The reasoning behind such

a scheme is that the initial ‘opened up’ problem considered in the conventional ‘closing down’

scheme would appear to have a greater degree of multimodality than the unrelaxed problem, the

feasible region being potentially highly nonconvex. Therefore, there may be a greater propensity

to converge on inferior local minima if the ‘closing down’ scheme is used. In using the alternative

‘opening up’ scheme, the object is to first encourage convergence to a good local optimum of

the unrelaxed problem, and then to proceed to improve on this solution by opening up whatever

originally degenerate subspace may be connected to said solution.

Naturally we can no longer claim that the set of solutions that may be approached using this

scheme can approach the strict set of KKT points of the unrelaxed problem (that is, the problem

without stress relaxation). One should recall, however, that these KKT points are the solutions to

the relaxed (in the sense of not discretised) continuous problem. Strictly speaking, we are only

interested in these solutions if they can be made to approach [0, 1] solutions via penalisation. If

‘opening up’ allows optimal designs with higher black-and-white fractions to be found, then this

in itself would make the use of the approach defendable because these solutions would better

represent the desired [0, 1] solutions to the underlying discrete problem.

9.5.2 Material strength

Writing equation (9.8) in terms of the elasticity matrix for the solid material C0, the nodal dis-

placements qi and the strain displacement operator Bi for an element i in the finite element mesh,

and representing the elemental stresses vectorially, we have

σi = xp
i C0Biqi .

For a given vector of nodal displacements, it is evident that the elemental stresses scale accord-

ing to xp
i for intermediate-density material when SIMP penalisation is employed. There are a

variety of stress-related failure criteria defined for solid isotropic materials, but how such criteria

should extend to the unphysical intermediate-density material is not well defined. Duysinx and

Bendsøe [84] consider the question by viewing intermediate-density material in the context of the

homogenisation approach to topology optimisation, in which porous material has a physically sig-

nificant microstructure. Based on their analysis, they then suggest a material strength law for power

law material descriptions like SIMP, arguing that physically relevant strength laws should mimic

the microstructural considerations that they identify in their analysis of materials with anisotropic

microstructure. One of these considerations is that the material law should allow the local stress

measure to tend towards a finite non-zero value, even as the local material density tends towards

zero.

Stellenbosch University    http://scholar.sun.ac.za



CHAPTER 9. LARGE-SCALE PROBLEMS WITH STRESS CONSTRAINTS 182

Duysinx and Bendsøe demonstrate that the local, microstructural stress for so-called rank 2 layered

materials3, which is different from the apparent macroscopic stress experienced by the material,

tends towards a non-zero value as the local macroscopic density measure tends to zero, if the

macroscopic strain field remains non-zero at zero density. They contend that these microstruc-

tural considerations are also highly relevant for a description of the strength of isotropic ‘porous’

material if sensible numerical results are to be achieved. Duysinx and Bendsøe go on to define a

local microstructural stress for the intermediate-density material, which is then limited by the ma-

terial yield stress. They point out that this is equivalent to modifying the overall material strength,

which limits the maximum value of the macroscopic elemental stresses according to the elemental

material density xi. We here utilise this modification of material strength.

It is suggested in [84] that the local material strength for intermediate-density material should be

interpolated using the same power law that is used for the interpolation of the material elasticity.

Thus

σ̄ = xp
iσ0 , (9.34)

where σ0 is the relevant limit for the isotropic solid material (typically the yield stress of the

material, as is used in both the Tresca and von Mises failure criteria).

The stress measure σm
i that is used for the results presented in this chapter is the von Mises stress,

calculated for a state of plane stress (2.12). The limiting value σ0 is therefore the material yield

stress, although, since the examples are only illustrative, a set of normalised material properties

is used. We therefore henceforth adopt the notation σvm
i specifically for the von Mises stress in

element i. For the discretised planar problems considered, element stresses may be represented

vectorially as

σT
i = [σx σy τxy]i ,

and the von Mises stress for element i can be written in matrix notation as

σvm
i =

√
σT

i [VM]σi ,

where

[VM] =




1 −1
2

0
−1

2
1 0

0 0 3


 .

9.5.3 Stress relaxation and scaling of the material strength

In Reference [84], Duysinx and Bendsøe suggest a power law scaling of the material strength for

porous material of the form

σ̄ = xq
iσ0 , (9.35)

and show that if q is chosen so that q < p, the stress constraints derived thereby are no longer

discontinuous at zero density, and so no relaxation needs be employed. Moving on, however,

they warn that choosing too small a value for q results in unphysical structures characterised by

an overexaggerated removal of material, and they advocate that q = p for coherence with their

3See the homogenisation literature, beginning with [8].
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analysis of rank-2 homogeneous material. Using p = q, the stress discontinuity survives, so it is

necessary to apply stress relaxation, but the material description is consistent with physics.

Drawing on the work presented in [84], Bruggi [91] has suggested that (9.35), with q < p, may

itself be used as a method of stress relaxation, instead of ε-relaxation, in which case (9.35) is no

longer strictly interpreted as a material description. In Reference [93], Bruggi and Venini go on

to formally demonstrate the close relationship between ε-relaxation and the use of this alternative

scaling law, denoted the qp approach

Now, let us take the view that (9.34) is the correct (that is, physically meaningful) scaling law for

material with intermediate density. The relaxation (9.35) limits the allowable stress measure for

element i to

σm
i ≤ xq

iσ0 ,

which may then be written in terms of (9.34) as

σm
i

σ0

≤ xp
i

[
1

xp−q
i

]
.

The term in square brackets [ · ] corresponds to a limiting value for what might be called a stress

multiplier Sm = σm
i /σ̄, which expresses the multiple by which the stress measure in an element

of intermediate density can exceed the limiting value of said stress measure, given by (9.34), due

to the stress relaxation. For the qp approach in which q < p, the stress multiplier Sm is an inverse

exponential function, so that Sm = 1 at xi = 1 and Sm → ∞ as xi → 0. By substituting (9.34)

into the ε-relaxed constraint (9.33), we may similarly write

σm
i

σ0

≤ xp
i

[
(1 + ε)−1

(
1 +

ε

xi

)]
, (9.36)

in which the stress multiplier function Sm is clearly reciprocal. As is pointed out by Rozvany

in [88], the functions here referred to as the Sm recall the smooth envelope functions introduced

in [89].

Figure 9.4(a) graphs the Sm from (9.36) for a few values of ε. Clearly, higher values of ε allow the

stresses in elements of intermediate density to transgress the physically acceptable limiting value

given by (9.34) by quite a margin. This is not an issue, of course, for elements at or near their

minimum densities (near xi = 0), because these elements contribute to the strain energy stored in

the structure only imperceptibly, and ε-relaxation serves its purpose by creating the freedom for

the densities in some elements to approach zero without violating the (now modified) stress con-

straints. However, the stresses in elements with not-insignificant densities are similarly allowed to

be unphysically high. One assumes that these elements therefore store an unphysical and dispro-

portionately high fraction of the strain energy in the structure. This is surely one reason why ε is

reduced during the optimisation of truss structures. At the optimum, with ε = 0.01 (for instance),

Sm is only appreciably different from unity for members whose cross-sections (or densities) are

close to zero, as can be seen in Figure 9.4(a).

For the topology problems on which we focus in this chapter, we are interested in finding [0, 1]
solutions, or at least to get as close as we can to such solutions. In this context, it may well be

possible to use larger relaxations, provided that the optimum designs found are characterised by

high black-and-white fractions.
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Figure 9.4: The effect of ε-relaxation on the allowable stresses in material of intermediate density.

Lastly, Figure 9.4(b) graphs the right-hand side of (9.36) for different values of ε. Depicted in this

way, ε-relaxation can be interpreted as a scaling of the material strength, in the manner advocated

by Bruggi [91] and also by Le et al. [92].

9.5.4 Stress sensitivities

All of the subproblem forms mentioned in Section 9.4.1 utilise the first-order sensitivities of the

objective and constraint functions in their construction. Thus it is necessary that the gradient vector

of each of the constraint functions be calculated at each iteration point in the SAO sequence x{k}at

which the approximate subproblems are defined. In terms of the various finite element matrices,

the von Mises stress is expressed as

σvm
i =

(
x2p

i qT
i V iqi

) 1

2 , (9.37)

in which

V i = BT
i CT

0 [VM] C0Bi .

From (9.32), the constraint functions fj are

fj (x) =
σvm

j

σ̄
(1 + ε) −

ε

xj

− 1 ≤ 0 ,

taking into account the fact that we use θ = 1 throughout, and that we utilise the von Mises stress

specifically. Each constraint fj is an explicit function of xj , but also depends implicitly on the

remaining variables xk, k 6= j. Taking cognisance of (9.34), the partial derivatives of the stress

constraints may be expressed as

∂fj

∂xi

=
∂σvm

j

∂xi

(
1 + ε

xp
jσ0

)
− δij

(
p
σvm

j

xp+1
j σ0

(1 + ε) −
ε

x2
j

)
.

The partial derivatives of the von Mises stress, which is a function of the partial derivatives of the

elemental stress vector, are not a standard output of the finite element code, nor are they calculable
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directly from the information at hand upon solution of the finite element system, as is the case with

the compliance objective and its gradients, equations (9.6) and (9.7). Furthermore, given the large

number of design variables and constraints, finite difference calculations are not feasible. Two

alternative, efficient methods of deriving the stress sensitivities, known as the direct and adjoint

methods, are suggested in [27]. Following [84] we implement the latter, as it allows further com-

putational advantage to be gained by incorporating an active set strategy. By differentiating (9.37)

we obtain
∂σvm

j

∂xi

=
1

σvm
j

[
δij
(
px2p−1

j

)
qT

j V jqj + qT
j V j

(
∂qj

∂xi

)]
.

If the design loads are independent of the design variables (as we assume they are), from the finite

element system
∂K

∂xi

q + K
∂q

∂xi

= 0 .

Therefore, ∂q/∂xi is the solution v to the finite element system

Kv = z , (9.38)

with z being a global vector of pseudo-loads defined by

z = −
∂K

∂xi

q ,

in which only the components corresponding to the degrees of freedom of element k are non-zero,

said non-zero sub-vector being given as

zi = pxp−1
i Kiqi .

Finally, ∂qj/∂xi is the sub-vector of v containing only the components corresponding to the de-

grees of freedom of element j. Thus, if there are n constraints it is necessary to run n additional

finite element solutions (with the n pseudo-load vectors as the applied loads) in order to fully de-

scribe the SAO subproblem during only one iteration of the optimisation. This, in turn, means that

the weight or compliance minimisation of even structures with relatively modest mesh refinements

becomes, numerically, a daunting proposition. Hence the requirement of an active set strategy.

9.6 Numerical considerations

The optimisation code used to determine the optimal topologies for PW and PC is SAOi [31], a

FORTRAN-based sequential approximate optimisation package developed by Groenwold and Et-

man4 for the solution of large-scale nonlinear inequality constrained optimisation problems. SAOi

uses approximating functions that are convex, separable and quadratic. This allows one of two

solvers to be chosen: a dual solver for problems in which the primal variables outnumber the con-

straints, and a QP solver in cases where the reverse is true. We use the dual solver exclusively for

the results presented herein.

4Freely available for academic use from the originator, Albert A. Groenwold, via email.
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Although the approximations are quadratic, the curvatures are tailored in such a way that they

approximate the local monotonic behaviour of the structural responses well [33]. The algorithm

allows the user to select the types of function approximations used in the construction of the SAO

subproblems from a library of available convex, separable and quadratic forms. It is equipped with

a sparse implementation of the dual solver, which is used in the generation of the forthcoming

results. The dual problems themselves are solved using a limited memory BFGS solver, devel-

oped by Zhu and co-workers [75], that is able to handle the non-negativity constraints on the dual

variables.

To avoid checkerboarding we employ displacement-based Q8 elements in the finite element anal-

ysis of the structure, using a package called EDSAP. This program was written with an efficient

means of handling memory allocation and addressing, and has been used for the development and

testing of different finite element formulations. Since access is allowed to the source code, the

use of this program allows us to implement the adjoint method for the calculation of the sensitiv-

ities of the stress constraints in a fairly efficient manner. EDSAP uses an active column equation

solver to solve the finite element system Kq = w, in which the following three processes occur

in sequence:

1. The re-ordered global stiffness matrix is factorised by LDL factorisation.

2. The load vector is modified by forward reduction.

3. The system is solved for q by back substitution.

If multiple load cases are considered, the factorisation step is carried out once, after which the

solution for each load case is obtained by multiple application of the forward reduction and back

substitution phases. We make use of this and the access ESDAP affords us to minimise the amount

of memory that needs to be used to define and store the pseudo-load vectors and stress sensitivities,

and thereby to reduce as far as possible the RAM usage and the number of disc read-writes.

As is evident from Section 9.5.4, the calculation of the sensitivities of the stress constraints via

the adjoint method requires the solution of the finite element system using a pseudo-load vector,

there being one pseudo-load vector corresponding to every element in the mesh for which the

stress sensitivities are required. To construct the pseudo-load vector it is first necessary to obtain

the nodal displacements q, as well as the elemental stresses. Having first obtained the elemental

stresses, we may decide whether or not the stress constraint in a given element is critical, and

thus whether that constraint should be considered in the definition of the SAO subproblem for the

following iteration. For each element in which the stress is deemed critical, a pseudo-load vector is

generated and submitted to the FE solution subroutine, entering the solution process at the forward

reduction phase. The resulting solution vector v in (9.38) can then be used to calculate the vector

of stress sensitivities for element j, namely

∂σvm
j

∂xi

∀ j ∈ A, i = 1, 2, · · · , n.

Whether or not a particular stress constraint is considered critical is controlled by a parameter Clim

that is set prior to the optimisation. Only constraints for which σvm
j > Clim are considered in

the definition of the subsequent subproblem, and Clim is set as a small negative number to ensure
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that the inactive but near-active constraints at the solution to P
{k}
SUB are utilised in the definition of

P
{k+1}
SUB .

For a stress constraint that is considered critical, all the sensitivities are provided by the adjoint

method. However, not all of these need to be passed to the optimiser to take part in the definition

of P
{k+1}
SUB . As has been suggested, from the point of view of the necessitated computational effort

and computational storage requirements in the context of sparse solvers, an advantage may be

gained by simply omitting the ‘insignificant’ partial derivatives of the constraint functions. We

investigate this idea by filtering out small partial derivatives of the stress constraint functions prior

to the construction of the subproblems for PW and PC .

We introduce another parameter Glim, again defined a priori, which acts as a lower limit on the

size of the elements of the gradient vectors of the stress constraints. Thus, if
∣∣∂σvm

j /∂xi

∣∣ < Glim

it is considered insignificant and is not passed to the optimiser. In this way, the sparsity of the

Jacobian matrix of the critical stress constraints can be influenced. The reason for filtering out

some of the Jacobian elements is simply to reduce the storage requirements for the algorithm

in the hope of being able to solve larger problems more efficiently. Obviously, filtering out the

Jacobian elements leads to the construction of subproblems that are not strictly first-order accurate.

It may therefore be expected that the convergence characteristics of the SAO algorithm will be

affected adversely by this strategy, certainly if the omission of Jacobian elements is applied too

aggressively. We investigate whether or not a sizable computational advantage can be gained by

applying this heuristic.

Lastly, it must be noted that, with the exception of two of the minimum compliance results for

the MBB beam, we do not apply a mesh independence filter (nor any other restriction method)

during the solution of the topology problems, as is advocated in Section 2.1.1. We prefer to use

the sensitivity filter in numerical implementations but, as explained in Chapter 3, this somewhat

complicates the interpretation of the results. The implementation of a restriction method per se

adds to the computational burden of solving the topology problems (particularly the non-filter-

based methods) and, as our primary goal is simply to solve large topology problems using the

dual SAO method and to test the stress relaxation and Jacobian filtering strategies that we have

introduced, it is unnecessary for us to enforce mesh independence in this case.

9.7 Results

We here present some of the results obtained when applying a dual SAO algorithm to solve the

structural optimisation problems described in Section 9.3. For each of the problems specified,

two specific ground structures will be considered, both of which are well-known ground structures

that are often used in standard test problems. The first is the two-bar truss structure, illustrated

in Figure 9.5(a). The second is the MBB beam structure, shown in Figure 9.5(b); symmetry is

invoked in the analysis of the MBB beam so that only half the beam is modelled.

Both problems PW and PC possess multiple local minima, but we do not implement a continuation

strategy on the penalty parameter p (as has been recommended, for example in [65], to stabilise

the global search and avoid as far as possible convergence to inferior local minima, particularly

for the compliance problem). A continuation strategy on ε is already required in the constraint
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Figure 9.5: Ground structures for the example problems (PW = 6N , PC = 1N , l = 6m, h = 1m,

E = 1N/m2, ν = 0.3).

relaxation strategy, and we wish to limit the number of permutations that arise in trying to identify

an acceptable set of parameters for the optimisation. In producing the results below, we have

focused instead on the following:

• Testing the concept of ‘opening up’ the design domain, which is an alternative continuation

strategy for the relaxation of the stress constraints.

• Testing whether or not a good percentage of the partial derivatives of the stress constraints

can be omitted when defining the subproblem, without upsetting the ability of the algorithm

to converge to a local optimum.

• Using these last two ideas in the solution of larger problems (‘large’ being relative, of

course).

As such, we first briefly present some results from weight minimisation of the two-bar truss, us-

ing a coarse mesh discretisation, to motivate our choice of parameter settings and approximation

strategies. Thereafter, results are presented for weight minimisation of the MBB structure and

the minimum compliance design of both structures (at various mesh refinements) using the set

of parameter values standardised upon. The mesh discretisation for a particular problem will be

stated in terms of a mesh multiplier m; the height of the given ground structure is divided into 5m
elements, and the length into 15m. The total number of elements in the mesh is therefore 75m2.

The various optimisation runs have been carried out on different computers, principally because the

larger meshes require machines with greater capacity to carry out the optimisation in reasonable

time, and larger storage capacity to store the information used to define the subproblems (despite

Stellenbosch University    http://scholar.sun.ac.za



CHAPTER 9. LARGE-SCALE PROBLEMS WITH STRESS CONSTRAINTS 189

the fact that only first-order information is utilised). The specific computer used to generate a given

set of results will be identified by the labelMi (machine i). Details for the machines are as follows:

Computer M1

Processor: Intel(R) Core(TM) 2 CPU 6700 @ 2.66GHz (using only one of the cores)

Memory: Total memory (RAM), 3.8 GiB

Operating system: Linux 2.6.34-12-default x86-64 on openSUSE 11.3 (x86-64)

Computer M2

Processor: Intel(R) Xeon(TM) 8 core CPU 3.73GHz (using only one of the cores)

Memory: Total memory (RAM), 31.5 GiB

Operating system: Linux 2.6.34-12-desktop x86-64, openSUSE 11.3 (x86-64)

9.7.1 The selection of standard settings

Weight minimisation of the two-bar structure is used initially to define the program parameters

to be used in the generation of the remainder of the results presented. For these tests, the design

domain is discretised with m = 4 as the mesh multiplier.

The expected optimal design consists of two bars (truss members) forming a V whose vertex sup-

ports the applied shear load. It is easy enough to get an idea of the minimum required area of

the structural members necessary to support the applied load if one considers a simplified sym-

metric structure consisting of two uniaxial truss members supporting a point load. Using this

one-dimensional simplification and considering only constraint satisfaction and not weight reduc-

tion, one finds that the minimum bar areas occur when the legs of the V are oriented at ±45 degrees

to the vertical. We use the areas calculated in this way as a check on the topologies obtained, by

calculating lower bounds on the widths of members allowed for feasible designs, assuming that

the topologies possess two members, and assuming unit depth for the FEM mesh. Table 9.1 uses

the minimum required thicknesses of the truss members to express the necessitated dimension as

the number of element diagonals Nel required to span the width of each bar for various mesh re-

finements. The mesh refinement is stated in terms of the mesh multiplier m in the table and, for a

given mesh refinement, ld is the length of an element diagonal.

Due to the weight minimisation objective, we expect that the optimal topologies will have narrower

V shapes (to reduce the leg lengths as far as possible) and the corresponding member widths would

have to be larger than the indications given in the table. The exact optimal configuration therefore

depends on the mesh discretisation, as layers of material can only be added or subtracted in discrete

chunks. Figure 9.6(a) illustrates nicely the type of two-bar topology expected in the planar case.

The minimum width of each member is indeed greater than three element diagonals predicted in

Table 9.1.

The initial starting point for all the optimisation runs is xi = 0.5 ∀ i = 1, 2, · · · , n. The two

topologies depicted in Figure 9.6 are gained on M1 by using marginally different continuation

strategies on the parameter that controls the relaxation of the stress constraints ε. Both strategies

are consistent with that used in [84]. They are strategies in which the design domain is ‘closed

down’, which is to say that ε is made smaller as the optimisation progresses, thereby closing the
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m ld (meters) Nel m ld (meters) Nel

1 0.2828 0.75 8 0.0354 6.00

2 0.1414 1.50 9 0.0314 6.75

3 0.0943 2.25 10 0.0283 7.50

4 0.0707 3.00 11 0.0257 8.25

5 0.0566 3.75 12 0.0236 9.00

6 0.0471 4.45 13 0.0218 9.75

7 0.0404 5.25 14 0.0202 10.50

Table 9.1: Expected widths of the truss members for optimal topologies in the minimum weight

two-bar truss problem.

degenerate domains caused by the stress constraints that are more accessible with ε larger. For the

result in Figure 9.6(a), ε is initially set to a value of 0.1 for the first 30 iterations. Thereafter, ε is

decreased as ε = ε/1.1 whenever the maximum constraint violation is less than 0.001. A lower

bound of 1 × 10−2 is set for ε. The minimum allowable value for xi during any iteration is linked

to ε as x̌ = ε2 for all i.

The result depicted in Figure 9.6(b) is generated using an identical continuation strategy, except

that the initial value of ε is 0.2, rather than 0.1. Clearly, the final topology is a different local

minimum. The design is feasible, and correlates with the expected truss dimensions from Table 9.1,

except that the material is distributed among four members rather than two. Both designs were

generated using CONLIN. We standardise on the first strategy (that used to generate 9.6(a)) for the

remainder of the results that are generated using the ‘opening up’ continuation, since it mimics the

settings adopted by Duysinx and Bendsøe in [84].

Different approximations

We have tried various approximation strategies to determine which is able to generate superior

solutions and, perhaps more importantly, which makes for the most efficient algorithm. While

comparing the approximation strategies we have used the ‘closing down’ continuation on stress

relaxation and a dense infrastructure in all cases. Although the comparison is inevitably problem

dependent, it is expected that, due to the stress constraints, the forms of PW and PC will be suf-

(a) εinit = 0.1 (b) εinit = 0.2

Figure 9.6: Local optima found using a continuation strategy on ε with different initial settings for

ε.
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CONLIN Fleury’s standard convex linearisation algorithm, see [4].

NONCON A method of approximation, suggested initially by Fleury, in which the stress

constraints are represented by the reciprocal approximation (the objective is kept

linear). Unlike CONLIN, the reciprocal terms are allowed to have positive or

negative gradients, so the resulting functions are generally nonconvex. As the

resulting subproblems possess a convex transform, they can still be solved using

Falk’s dual method. This approximation was used in Chapter 6 for the solution

of the nonconvex minimum weight problem.

T2:CONLIN This is an implementation of CONLIN in which the reciprocal terms produced

by CONLIN are replaced with the quadratic approximation to the reciprocal ap-

proximation.

T2:R For the weight minimisation problem, the objective remains linear, while the

constraints are represented as the quadratic approximation to the reciprocal ap-

proximation.

T2:E The objective is kept linear, while the constraints are represented as the quadratic

approximation to the exponential approximation, derived using historic informa-

tion. The first iteration is carried out using T2:R.

T2:MMA The objective is kept linear, while the constraints are represented as the quadratic

approximation to the MMA approximation. Refer to [33] for further details.

Table 9.2: The approximation strategies that are compared for the weight minimisation of the

two-bar truss.

ficiently similar so that the same approximation scheme will work well for both problems. As it

happens, there is in any case very little difference between the optimal topologies and their associ-

ated function values found using the different approximation strategies. A list of the approximation

strategies that were tested is given in Table 9.2, as well as a brief description of each. The results

are tabulated in Table 9.3, which are all produced on M1.

In Table 9.3, f ∗
0 is the objective function value at the optimum that was found, and Niter is the

number of iterations k required for convergence. Results marked with an asterisk∗ have failed to

converge due to small-scale oscillation. These were terminated artificially after 150 iterations. The

process is deemed to have converged if the following criterion is satisfied:

n∑

i=1

∣∣∣x{k}i − x
{k−1}
i

∣∣∣ ≤ 1 × 10−4 .

The column heading Esub indicates the average number of subproblem evaluations carried out per

iteration k, while φB&W is the black-and-white fraction of the solution, calculated by

φB&W =
n[0] + n[1]

n
. (9.39)

Here, n[0] is the number of elements on their lower bounds (xi = x̌ = 1× 10−4), n[1] is the number

of elements on their upper bounds (xi = x̂ = 1), and n is the total number of elements in the
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Approximation f ∗
0 Niter Esub φB&W T 75

avg T I
90

CONLIN 281.50 90 1086 0.837 18.8 18.1

T2:CONLIN 281.50 90 510 0.837 4.7 6.6

T2:R 286.05 89 556 0.837 13.8 20.1

T2:E 285.41 85 732 0.838 6.7 10.2

T2:MMA 285.47 126 1897 0.843 11.8 26.1

NONCON∗ 281.90 150 1515 0.828 37.9 74.0

Table 9.3: Summary of results obtained for the weight minimisation of the two-bar truss using

various approximations.

FE mesh. Furthermore, T 75
avg represents the average CPU time (in seconds) required per iteration,

calculated for the first 75 iterations (since none of the runs have terminated by then and later

iterations near termination are usually comparatively quick). The time required to complete an

iteration can vary considerably due to the large variation in the effort required to solve individual

subproblems. Often, one or two subproblems can require orders of magnitude more effort than

the others, which skews T 75
avg somewhat. Therefore, T I

90 is also stated. Ninety percent of all the

iterations individually require less than the time indicated by T I
90.

Comparing the approximation strategies in Table 9.3, it appears that CONLIN is able to locate

slightly superior solutions from the point of view of the optimal objective function values obtained,

whereas T2:R is able to perform the optimisation more efficiently, requiring both fewer subproblem

evaluations on average and less time than CONLIN. However, it is the combination of the two,

namely T2:CONLIN, that performs best for this problem, apparently representing ‘the best of both

worlds’, as it were.

Visually, the optimal topologies generated using these approximation strategies are all quite simi-

lar. They are all instances of the V-shaped, two-member topology expected, with their main differ-

ences being the width of the V and the black-and-white fractions obtained. Figure 9.7 depicts the

range of the topologies obtained, T2:E having produced the narrowest V-shaped structure, while

NONCON produced the widest (albeit that it did not finally converge). The solutions with narrow

V shapes have three elements on their upper bounds, plus one additional element (usually grey)

spanning the width of the bar. In the wider structure, the additional element is often absent.

(a) T2:E approximation, f∗

0 = 285.41 (b) Nonconvex approximation, f∗

0 = 281.90

Figure 9.7: Representative optimal topologies for the weight minimisation of the two-bar truss

using various approximations.
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The effect of Clim and Glim

The effect of introducing a constraint selection strategy and a ‘filtering out’ strategy on the con-

straint sensitivities is now investigated. We use the T2:R approximation for these tests and the

‘closing down’ constraint relaxation strategy, with the initial value of ε being ε = 0.1. The results

are generated on M1, and may be compared with the result for T2:R in Table 9.3. The first row in

Table 9.4 summarises the solution obtained when only the constraints j that satisfy

fj

(
x{k}

)
≥ −10

are included when defining the subproblem in each iteration k. For the constraints that are included,

all of their partial derivatives are carried over into P
{k}
SUB. The second row corresponds to including

all the constraints, but omitting any of the partial derivatives for which

∣∣∣∣∣
∂fj

(
x{k}

)

∂xi

∣∣∣∣∣ < 1 × 10−6 .

The last row represents the combined application of both the constraint selection and Jacobian

filtering strategies simultaneously. By comparison with the third row in Table 9.3, the solution

appears unaffected by these heuristics, as both the optimum f ∗
0 and the black-and-white fraction

φB&W are identical in all cases. The number of iterations required and the average number of

subproblem evaluations required also do not change appreciably. However, the average CPU time

required is roughly halved by each of the two schemes individually, and roughly quartered by the

combined application of the two.

Figure 9.8 graphically depicts the number of constraints and Jacobian terms considered throughout

the optimisation process for the parameterisation given in the first two rows of Table 9.4. With

Clim = −10 or Glim = 1.0 × 10−6, the bulk of the constraints and their sensitivities are retained

during the global phase of the search, while in the region of the local minimum only about one

third of the constraints are selected, or approximately half of the Jacobian terms in the case of

filtering the Jacobian only. There is a stable, monotonic transition between the two regimes. These

heuristics lead directly to an appreciable reduction in the necessitated storage requirements, albeit

that initially the implementation is effectively a dense one. Still, the reduction in CPU effort is

important if larger problems are to be considered.

Figure 9.8 also graphs the behaviour of more aggressive selection and filtering schemes. Although

further gains are made in terms of reducing the size of the subproblems, the behaviour of the

Clim Glim f ∗
0 Iter Esub φB&W T 75

avg T I
90

-10 All 286.05 89 559 0.837 6.2 13.2

All 10−6 286.05 90 576 0.837 7.2 11.7

-10 10−6 286.05 89 566 0.837 2.8 8.7

Table 9.4: Solutions obtained using a selection strategy on the constraints, the partial derivatives

of the constraint functions, or both simultaneously.
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Figure 9.8: The effect of implementing (a) a constraint selection strategy and (b) a selection strat-

egy on the partial derivatives of the constraint functions.

optimisation is now more oscillatory and unstable. Neither implementation using one of the more

aggressive settings managed to converge to a local solution in under 150 iterations. In all of the

results to follow we have used both heuristics in combination.

The effect of ‘opening up’

Lastly, we implement the alternative continuation strategy on the constraint relaxation parameter

ε, the motivation for which having been discussed in Section 9.5.1. Initially, ε is set to ε =
0.01. As with the ‘closing down’ strategy, ε is not changed during the first thirty iterations of the

optimisation. Thereafter, ε is increased as ε = 1.1ε whenever the maximum constraint violation is

less than 0.001, and a maximum limiting value is set at ε = 1.0. The tests were again carried out

on computer M1.

Table 9.5 summarises the solution obtained by applying ‘opening up’ in combination with two

different methods of approximation. In both cases, the constraint selection and Jacobian filtering

heuristics have also been applied. The results may be compared with the corresponding results

from Table 9.3; ‘opening up’ the design domain apparently allows solutions with superior function

values to be found, as well as superior black-and-white fractions. There is very little difference

in the size of the generated subproblems when comparing the ‘opening up’ and ‘closing down’

schemes, as is indicated by Figures 9.9(a) and 9.9(b). The graphs are generated by comparing the

optimisation runs using T2:R, and on the scale at which the graphs are drawn the differences are

imperceptible. Figure 9.10 depicts the optimal solutions found in this case.

Approximation Clim Glim f ∗
0 Iter Esub φB&W T 75

avg T I
90

T2:R -10 10−6 279.17 77 423 0.865 2.5 8.6

CONLIN -10 10−6 275.40 84 683 0.857 3.0 7.1

Table 9.5: Solutions obtained when ‘opening up’ the design space.
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Figure 9.9: A comparison of ‘closing down’ versus ‘opening up’ the design space using T2:R.

It is very difficult to compare the quality of the solutions generated by ‘opening up’ and ‘closing

down’ directly because, as was discussed in Section 9.5.3, the two different relaxations employed

can be interpreted as defining two different material behaviours for intermediate-density material.

So, if the strategy of ‘opening up’ allows intermediate-density material in the optimum design to

feasibly attain higher stresses relative to the optimum found by ‘closing down’, then it follows that

less material is required in the structure at the point of static failure. This may be all that we are

seeing when we note that the function values are superior when the ‘opening up’ strategy is used.

Hence, it is difficult to make a meaningful comparison of the optimal topologies based solely on

the basis of their function values, unless they are each purely [0, 1] designs.

Table 9.6 shows how the strain energy in the optimal structures is divided between the solid el-

ements [1] and elements of intermediate density [i] (the strain energy associated with the large

number of elements on the lower bound is insignificant – as it should be). The strain energy is cal-

culated using the left-hand side of equation (9.3), in which the elasticity matrix of the material with

intermediate density is given by the SIMP scaling (9.5). Also shown are the number of elements

on their lower bounds n[0], the number of solid elements n[1] and the number of elements of inter-

mediate density n[i] in the design, as well as the total compliance of the structure fc. The symbols

%C[i] and %C[1] denote what percentage of the total compliance resides in the intermediate-density

elements and the solid elements respectively. We see that the result obtained by ‘opening up’ the

design space has fewer elements of intermediate density, and although the stresses in these ele-

ments are allowed to be higher than in their ‘closed down’ counterparts, they are still cumulatively

responsible for a smaller portion of the strain energy in the structure5.

Again, this comparison is by no means a rigorous justification for preferring one result over the

other. The fact remains that, in both cases, the intermediate-density material plays a very large role

in determining the nature of the resulting structure. In the ‘closed down’ result, the intermediate-

density material behaves more closely in accordance to the physical law enunciated by Duysinx

and Bendsøe in [84], but the structure obtained has more such material that, unlike in the case

of the truss problems described earlier, is itself ‘unphysical’, given the strictly [0, 1] nature of the

underlying discrete problems for both PW and PC . Ultimately, we follow the example of Le et

5It must be said, however, that they have a higher average compliance per element than the intermediate-density

elements in the ‘closed down’ solution.
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(a) Solution obtained using ‘closing down’ (b) Solution obtained using ‘opening up’

Figure 9.10: A comparison of the optimal topologies resulting from ‘closing down’ versus ‘open-

ing up’ the design space (using T2:R).

al. by preferring to adopt a promising numerical procedure for generating good solutions with

high black-and-white fractions. The unphysical scaling of the material properties of the already

unphysical intermediate-density material is, for the time being, relegated to secondary importance.

Thus, we prefer to use the ‘opening up’ continuation in generating the rest of our results, as it

shows promise in producing optima with higher black-and-white fractions.

For the sake of interest, Figure 9.11 provides a further comparison of the optimal topologies

achieved using the two continuation strategies. In these pictures, with the exception of 9.11(c)

and 9.11(d), the material plotted in uniform grey indicates all the elements for which xi is above

the lower bound value. The black elements in Figures 9.11(a) and 9.11(b) indicate the elements in

which the relaxed stress constraint is active at the solution. From equation (9.32), with θ = 1, the

relaxed elemental stress constraints are given as

σR
i =

σvm
i

σ̄
(1 + ε) −

ε

xi

− 1 ≤ 0 .

In creating these plots, the stress constraints have been considered active if σR
i > −1× 10−6. Fig-

ures 9.11(c) and 9.11(d) depict the elements in which Sm > 1, see equation (9.36). The von Mises

stress in these elements exceeds the ‘physically relevant’ allowable limiting stress for material of

intermediate density suggested, by Duysinx and Bendsøe, equation (9.34). None of these elements

are on their upper bounds, of course. The grey scale of the figure indicated relative values of Sm

for the non-white elements. The maximum value of Sm (pure black in the figure) for the ‘closed

down’ result is Smax
m = 3.58, while for the ‘opened up’ result it is Smax

m = 3.35.

Figures 9.11(e) and 9.11(f) indicate which elements are on their upper bounds in the optimal

topologies. Although both topologies have black-and-white fractions above 80%, the ‘black frac-

tion’ of the elements that actually makes up the structure is far lower. Given the difficulty of

interpreting intermediate-density elements, as well as their effect on the optimal topologies (il-

Relaxation strategy n[0] n[i] n[1] %C[i] %C[1] fc

Closing 892 196 112 59.8 40.2 234.37

Opening 904 162 134 50.6 49.4 240.90

Table 9.6: The distribution of strain energy between the ‘solid’ elements and elements of interme-

diate density for the solutions obtained by ‘closing down’ and by ‘opening up’.
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(a) Closing down: Elements with σR
i > −1 × 10−6 (b) Opening up: Elements with σR

i > −1 × 10−6

(c) Closing down: Elements for which Sm > 1 (d) Opening up: Elements for which Sm > 1

(e) Closing down: Elements on the upper bound (f) Opening up: Elements on the upper bound

(g) Closing down: Elements for which xi > 0.85 (h) Opening up: Elements for which xi > 0.85

Figure 9.11: Further comparison of the optimal topologies obtained when using the ‘closing down’

and ‘opening up’ continuation strategies on the ε-relaxation.

lustrated for instance by the differences induced because of these elements when using the two

dissimilar continuation strategies), the figures suggest that we still need to improve at finding [0, 1]
solutions. Lastly, Figures 9.11(g) and 9.11(h) record what elements of intermediate density in the

optimal topologies have densities below 0.85 (the grey material in the figures).

We now proceed to catalogue the remainder of the results that we have obtained using the settings

discussed. We first present solutions for weight minimisation of the two-bar truss with denser mesh

discretisations, and then we illustrate the type of topologies generated when minimising the com-

pliance for the two-bar ground structure. Lastly, we present similar results (weight minimisation

and compliance minimisation) for the MBB beam structure.

To be clear, we use the SAOi algorithm in which the subproblems are defined using the T2:CONLIN

approximation and the subproblems are solved using the sparse dual solver. The stress constraints

are relaxed using the ε-relaxation (9.32), and we employ the ‘opening up’ continuation strategy

on ε described here. For the two-bar truss problems we employ a constraint selection strategy
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with Clim = −10, and we filter out small terms in the Jacobian of the stress constraints using

Glim = 1 × 10−6. For the MBB beam problems, these settings are changed to Clim = −1.0 and

Glim = 1×10−4; many more inactive constraints have values between −1.0 and −10 for the MBB

beam than in the case of the two-bar structure.

9.7.2 Optimal designs for the two-bar truss

Minimum weight results for the two-bar truss structure are presented in Figure 9.12, beginning

with a mesh multiplier of m = 4. The objective function value, the weight, is stated in the more

convenient form of a volume fraction fv, given by

fv =
1

n

n∑

i=1

xi ,

and the compliance of the design fc is given for comparison with the minimum compliance results.

Also indicated are the number of elements on their upper bounds n[1], the number of elements of

intermediate density ni, the black-and-white fraction φB&W given by equation (9.39), the number

of active constraints in the final design Nact, the number of iterations to termination Niter, the

average CPU time (in seconds) per iteration T I
avg and, finally, the number of elements in the mesh.

Note that the stated times correspond only to the times required by the optimizer, and exclude the

times devoted to the FEM analyses.

We have not used a filter in generating the results and the optimal design clearly is mesh dependent.

As the mesh discretisation increases, the optimal objective function value decreases as a result of

the increased detail in the successive designs. With the exception of the m = 6 result, the trend is

also for the compliance of the designs to decrease (slightly) with increased mesh refinement. The

most refined mesh we present has 14700 elements.

Minimum compliance results for the two-bar truss are shown in Figure 9.13. The structures pre-

sented in Figures 9.13(a) and 9.13(b) were solved with a prescribed limiting volume fraction of

fv = 0.5 and m = 4. Figure 9.13(a) is the solution to the standard compliance optimisation

problem without stress constraints, whereas Figure 9.13(b) depicts the solution achieved when the

problem is rerun with identical settings and the addition of stress constraints. Again, neither de-

sign is solved with the aid of a filter, and consequently the black-and-white fraction is close to

1 for both. None of the stress constraints is active in Figure 9.13(b), the load being too low and

the volume fraction too high to force the stresses in any of the elements to the failure stress. Fig-

ure 9.13(c) and 9.13(d) are similar results for a prescribed volume fraction of fv = 0.235, chosen

as such to be close to the optimal minimum weight result for m = 4, Figure 9.12(a). In this case,

the optimiser could not find a stress-constrained solution that is feasible with respect to the volume

constraint, and instead terminated at the solution depicted. The compliance value of this structure

is close to that of the minimim weight result, as is the number of active constraints.

Figures 9.13(e) and 9.13(f) are generated with the allowable volume fraction set to fv = 0.25, close

to the optimal minimum weight result but with enough leniency to allow feasible stress-constrained

minimum compliance results to be found. The addition of stress constraints to the minimum com-

pliance problem has a marked effect on the optimal topology, even for this simple structure. The

design produced is much narrower than the optimal topology without stress constraints. No doubt,
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there are over-stressed elements in this design, and the response to the addition of stress constraints

is to narrow the V shape, thickening and shortening the legs so as to keep the volume of the design

constant, at the expense of compliance.

The stress-constrained minimum compliance results take markedly longer to generate than the

minimum weight results. The largest we have produced is with m = 12, shown in Figure 9.13(g).

On the whole (with the exception of the topology in Figure 9.13(d), in which the volume constraint

is violated) the minimum compliance designs have higher black-and-white fractions than do the

minimum weight designs.
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Weight minimisation

(a) Result for m = 4: fv = 0.234, fc = 233.81, Nact = 144, n[1] = 106,

n[i] = 196, φB&W = 0.837, T I
avg = 6.7, Niter = 26, n = 1200

(b) Result for m = 6: fv = 0.225, fc = 236.76,

Nact = 174, n[1] = 270, n[i] = 372, φB&W = 0.862,

T I
avg = 10.6, Niter = 75, n = 2700

(c) Result for m = 10: fv = 0.221, fc = 232.51,

Nact = 373, n[1] = 914, n[i] = 796, φB&W = 0.894,

T I
avg = 118.8, Niter = 88, n = 7500
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(e) Convergence plot m = 6: Black-and-white

fraction φB&W

(f) Result for m = 14: fv = 0.217, fc = 232.44, Nact = 1395, n[1] = 1751,

n[i] = 1521, φB&W = 0.897, T I
avg = 614.6, Niter = 240, n = 14700

Figure 9.12: Optimum topologies generated by weight minimisation of the two-bar truss structure.

The results for m = 4 and m = 6 were produced using computer M1; those for m = 10 and

m = 12 were run on M2.
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Minimum compliance

(a) No stress con. m = 4: fv = 0.50, fc = 94.66,

Nact = 1, n[1] = 596, n[i] = 4, φB&W = 0.9967,

T I
avg = 0.0, Niter = 92, n = 1200

(b) With stress con. m = 4: fv = 0.50, fc = 94.35,

Nact = 1, n[1] = 598, n[i] = 2, φB&W = 0.9983,

T I
avg = 5.21, Niter = 28, n = 1200

(c) No stress con. m = 4: fv = 0.235, fc = 220.83,

Nact = 1, n[1] = 276, n[i] = 8, φB&W = 0.993,

T I
avg = 0.0, Niter = 50, n = 1200

(d) With stress con. m = 4: fv = 0.237, fc = 233.5,

Nact = 147, n[1] = 128, n[i] = 174, φB&W = 0.855,

T I
avg = 12.30, Niter = 102, n = 1200

(e) No stress con. m = 4: fv = 0.25, fc = 202.53,

Nact = 1, n[1] = 298, n[i] = 2, φB&W = 0.9983,

T I
avg = 0.0, Niter = 61, n = 1200

(f) With stress con. m = 4: fv = 0.25, fc = 212.99,

Nact = 25, n[1] = 272, n[i] = 30, φB&W = 0.975,

T I
avg = 2.30, Niter = 71, n = 1200

(g) With stress con. m = 12: fv = 0.25, fc = 202.07, Nact = 71, n[1] = 2588,

n[i] = 120, φB&W = 0.989, T I
avg = 3714, Niter = 95, n = 10800

Figure 9.13: Optimal topologies generated by compliance minimisation of the two-bar truss struc-

ture. The m = 4 results were produced using machine M1, while m = 12 was run on M2.
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9.7.3 Optimal designs for the MBB beam

Minimum weight designs for the MBB beam are presented in Figure 9.14 for two mesh refine-

ments, m = 4 and m = 6. The optimal topologies constitute a nested series of arches, which are

more numerous and more refined in m = 6 than in m = 4, as expected when no filter is used. Also

shown are plots depicting the number of active constraints Nact and the black-and-white fraction

φB&W as they change over the course of the optimisation for m = 6. Whereas the number of

active constraints oscillates over the entire period of the search, convergence of φB&W is fairly

monotonic. The same can be noted for the two-bar truss results in Figures 9.12(d) and 9.12(e).

The optimisation of the MBB structure proves to be a much more difficult problem to solve than

the optimal design of the two-bar truss, which can be appreciated by comparing their average CPU

times per iteration T I
avg. The dual subproblems that result for the MBB beam are more intractable

than those that are formed in the two-bar truss optimisation, and take much longer to maximise.

Our preliminary testing indicated that the difficulty in solving the dual is scale related, the dual

surface being more badly scaled in the case of the MBB beam than for the two-bar problems.

Figure 9.15 contains minimum compliance results for the MBB beam, and we again first gen-

erate minimum compliance results without the application of stress constraints in Figures 9.15(a)

and 9.15(b), using a volume fraction of fv = 0.5. As was the case with the two-bar truss results, the

inclusion of stress constraints yields entirely different topologies, as is evident in Figures 9.15(c)

and 9.15(d). In particular, the algorithm appears to prefer arching the bottom of the beam when

stress constraints are present, at the expense of compliance.

Figures 9.15(e) and 9.15(f) depict the optimal topologies generated for the stress-constrained com-

pliance minimisation of the MBB beam when Sigmund’s mesh independence filter is included as

a restriction method (refer to Chapter 3) to filter the objective function. As required, the addition

of the filter yields mesh-independent results. Although the compliance values are not influenced

detrimentally (at least for m = 6), the filtered solutions have comparatively low black-and-white

fractions. Note that neither of the optimisation runs in which the filter was used was able to satisfy

the convergence criterion employed. Both were terminated artificially after 250 iterations. This

skews T I
avg somewhat, as the majority of the later iterations are run very quickly relative to the

initial iterations.

Lastly, Figures 9.15(g) and 9.15(h) show minimum compliance results generated using a limiting

volume fraction of fv = 0.36. No filter is used, and the results may be compared with the mini-

mum weight topologies. Strangely, the volume constraint is not active for either of the topologies

depicted. Instead, local minima with volume fractions near fv = 0.34 are located. Both minimum

compliance results have smaller volume fractions than the corresponding minimum weight results,

and the minimum weight design for m = 6 has a lesser compliance than the minimum compliance

result for m = 6. This illustrates the difficult, multimodal nature of both the minimum weight and

minimum compliance problems, and the improbability of finding true global minima.
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Weight minimisation

(a) Result for m = 4: fv = 0.340, fc = 317.89, Nact = 54, n[1] = 205, n[i] = 242,

φB&W = 0.798, T I
avg = 35.5, Niter = 88, n = 1200

(b) Result for m = 6: fv = 0.353, fc = 311.09, Nact = 94, n[1] = 565, n[i] = 482,

φB&W = 0.821, T I
avg = 229.4, Niter = 99, n = 2700
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(c) Convergence plot m = 6: Number of active

constraints Nact

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50

φ
B

&
W

Iteration

(d) Convergence plot m = 6: Black and white

fraction φB&W

Figure 9.14: Optimum topologies generated by weight minimisation of the MBB beam structure.

Both were produced using machine M2.
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Minimum compliance

(a) No stress con. m = 4: fv = 0.50, fc = 189.69,

Nact = 1, n[1] = 543, n[i] = 67, φB&W = 0.944,

T I
avg = 0.0, Niter = 45, n = 1200

(b) No stress con. m = 6: fv = 0.50, fc = 189.05,

Nact = 1, n[1] = 1291, n[i] = 68, φB&W = 0.975,

T I
avg = 0.0, Niter = 33, n = 2700

(c) With stress con. m = 4: fv = 0.50, fc = 194.31,

Nact = 3, n[1] = 564, n[i] = 41, φB&W = 0.966,

T I
avg = 101, Niter = 54, n = 1200

(d) With stress con. m = 6: fv = 0.50, fc = 196.09,

Nact = 27, n[1] = 1299, n[i] = 56, φB&W = 0.979,

T I
avg = 408, Niter = 74, n = 2700

(e) With filter. m = 4: fv = 0.50, fc = 196.65,

Nact = 7, n[1] = 408, n[i] = 569, φB&W = 0.526,

T I
avg = 18.95, Niter = 250, n = 1200

(f) With filter. m = 6: fv = 0.50, fc = 196.49,

Nact = 17, n[1] = 935, n[i] = 1210, φB&W = 0.552,

T I
avg = 139.98, Niter = 250, n = 2700

(g) With stress con. m = 4: fv = 0.336, fc = 311.5,

Nact = 101, n[1] = 217, n[i] = 229, φB&W = 0.809,

T I
avg = 30.55, Niter = 161, n = 1200

(h) With stress con. m = 6: fv = 0.34, fc = 323.04,

Nact = 118, n[1] = 504, n[i] = 517, φB&W = 0.809,

T I
avg = 286.89, Niter = 114, n = 2700

Figure 9.15: Optimal topologies generated by compliance minimisation of the MBB beam struc-

ture. All were run on computer M2.
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9.8 Conclusions and recommendations

The optimisation of large-scale problems using a dual SAO approach has been studied by applying

the approach to two well-known structural optimisation problems. These are the minimum weight

and minimum compliance problems, and local stress constraints have been included in both. Two

standard ground structures are considered: the two-bar truss and the MBB beam. The problems are

large-scale in the sense that they have as many constraints as primal variables, and the sensitivities

of the constraints are not straightforward to evaluate. To calculate the vector of stress sensitivities

for an element requires the solution of the finite element system for the structure, with a different

pseudo-load vector in place of the structural loads (we use the adjoint method to obtain the stress

sensitivities). In a dense implementation it therefore would be necessary to run n+1 finite element

analyses per iteration of the optimisation algorithm simply to define the SAO subproblem. The dual

of the subproblem is also potentially very large, there being one dual variable for every constraint.

The large number of constraints therefore turns the optimisation of a relatively simple structure

into a cumbersome enterprise, heavily demanding of computational resources.

To solve the problems we have implemented various techniques with a view to minimising the

computing resources required. Firstly, the SAO algorithm utilised, called SAOi, uses separable

quadratic approximations with diagonal Hessian matrices to construct the subproblems, using only

(up to) first-order information from the original problem. Since the Hessian matrices are diago-

nal, an n-vector is stored for the curvatures, rather than an n × n matrix. The type of quadratic

approximations used in SAOi still allow the local monotonic behaviour of the structural responses

to be satisfactorily represented. Secondly, we have used an efficient FORTRAN-based finite el-

ement package called EDSAP that allows access to its source code. EDSAP uses an FE solver

that performs multiple forward reduction and back substitution steps when multiple load cases are

present, using the same factorised global stiffness matrix resident in memory. We make use of

this to reduce the required memory usage entailed in defining and storing the pseudo-load vectors

required by the adjoint method.

To reduce the memory requirements further, and to reduce the size of the dual subproblems, a

constraint selection strategy has been implemented so that only the gradient vectors of the active

and near-active constraints are evaluated and passed to the optimiser. Additionally, it is proposed

that insignificant elements of these gradient vectors can simply be omitted, so that only the ‘large’

partial derivatives are saved and passed to the optimiser to be used in the definition of the subprob-

lems. We have shown that the combined application of constraint selection and constraint Jacobian

filtering results in smaller dual subproblems that are solved more easily than those that result from

a dense implementation. SAOi has a sparse dual solver, so full advantage can be taken of these two

heuristics, and the combined application of the two resulted in a four-fold decrease in the solution

time for the test problem considered.

Despite the above, the largest problem we present for weight minimisation has 14700 elements, and

the largest for compliance minimisation has 10800. Both are solutions for the two-bar truss ground

structure. Although these are larger than similar problems presented in the relevant literature (that

we are aware of), they are not representative of the requirements of industry, particularly given

the time required to solve them. The MBB beam is more difficult to solve. For both weight

minimisation and compliance minimisation, the largest results we present for the MBB beam have

2700 elements.
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Further gains can be made by incorporating other methods that allow for the size of potential

problems to be increased. First and foremost, in our opinion it is necessary to run these types of

problems on parallel computing infrastructures. Many of the processes involved in solving the

problems discussed herein are parallelisable, from the large numbers of matrix and vector multi-

plications inherent in the dual SAO, to the definition of the pseudo-load vectors and subsequent

solution of the stress sensitivities using the adjoint method.

Another line of research lies in the utilisation of element patches, which is the definition of sub-

domains constituting many elements, and whose important responses are a condensation of the

responses of the underlying elements in some way. It is the responses of these patches that are then

constrained, resulting in a reduction in the size of the optimisation problem. An extrapolation of

this is the definition of global stress constraints, wherein the critical state of the structure is reduced

to one global measure, instead of being reflected by many local ones.

Otherwise, and perhaps specifically for material distribution problems, there is the possibility of

element deletion together with selective mesh refinement. That is, to begin by solving a problem

using a coarse mesh and then to increase the mesh refinement in stages. In so doing, however,

one would delete the elements constituting the holes in the structure and allow greater detail to be

sought within the solid domain, starting the more refined problem from a topology derived from

the result with a coarse discretisation. Ordinarily, the argument against such a strategy would

be that, in deleting elements, one constrains the optimal topologies to be similar to the topology

found using a coarse mesh, which might not reflect the true optimum. However, in the context of

the restriction methods used to combat mesh dependence, element deletion is defensible. It is a

more forceful method of ensuring that the basic structure remains the same upon mesh refinement,

but it permits greater detail to be defined in the solid areas. In combination with this there is

also the possibility of leaving elements of larger size within the solid areas wherever the stress is

fairly uniform, and in so doing reducing the number of degrees of freedom of the resultant analysis

model.

Apart from attempting to use the dual SAO method for the solution of large problems, the work

presented here has also been concerned with the quality of the solutions obtained. The impor-

tance of finding solid-void solutions is reiterated, both because the spatially discretised material

distribution problem is a discrete one, and because it is difficult to assess and (particularly) to

compare different solutions that have material of intermediate density whose material properties

are not physical. Hence, we point out that a need remains to increase the black-and-white fraction

of the solutions, especially since the black-and-white fraction is often dominated by the number

of elements on their lower bound densities, and that there can be roughly the same number of

solid elements as elements of intermediate density, even in solutions with high black-and-white

fractions.

To this end, we introduce a different method of continuation on stress relaxation, which is con-

trary to the conventional ‘theoretically defensible’ one. Whereas the conventional method of con-

tinuation is motivated by the need to make sure that the feasible region and KKT points of the

stress-relaxed problem are ultimately the same as the relaxed continuous (but not stress-relaxed)

topology problem considered, our method is motivated more by the desire to achieve designs of

higher black-and-white fraction. In our opinion, it may be important to encourage convergence to

the KKT points of the standard SIMP-relaxed continuous problem, but only if those KKT points
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themselves coincide with (or closely approximate) solutions of the original discrete problem. Oth-

erwise, other (perhaps heuristic) methods of finding good solutions with high black-and-white

fractions cannot be ruled out as inferior. We show that the proposed new continuation on the

stress relaxation does produce high-quality results, at least competitive with the standard method

of relaxation.
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Chapter 10

Conclusion

Problems in structural optimisation have many characteristics that make them potentially very dif-

ficult to solve. Firstly, they are simulation-based problems, meaning that the evaluation of the

objective or constraint functions requires that an analysis be performed to determine the structural

responses, and this can be very time consuming. Secondly, the optimisation problem may depend

on a large number of variables and, furthermore, may be subject to a large number of constraints.

Both of these, together with the requirements of the structural analysis, result in structural op-

timisation problems being heavily demanding of computational resources, both in terms of the

memory required to store the description of the structure and optimisation problem, as well as the

processing ability required to manipulate the equations in the structural analysis and optimisation

procedures.

The optimisation problems themselves are often also inherently difficult to solve, falling under the

general categorisation of mixed integer nonlinear programming (MINLP) problems. However, the

underlying nature of the structural responses can often be exploited to develop efficient optimisa-

tion procedures. One class of procedures that is now widely used is dual sequential approximate

optimisation (SAO), in which a series of surrogate approximate subproblems is constructed and

solved to iteratively converge to the optimum of the actual system. The subproblems are solved

using a dual solver. This type of procedure has proved to be comparatively efficient and has there-

fore seen widespread application. Briefly, the efficiency of such algorithms can be attributed to the

following:

1. From the perspective of numerical optimisation, the solution of NLP problems by means of

solving a sequence of surrogate approximate problems with simple structures is recognised

as a very efficient procedure, provided that the global convergence characteristics can be

controlled. Indeed, this procedure underlies some of the most successful optimisation algo-

rithms available, sequential quadratic programming perhaps being the foremost example.

2. The dependence of the structural responses on the design variables is known, at least to

first order, for the standard structural problems. This dependence is built into the SAO

subproblems used for structural optimisation by informing the selection of the approximating

functions used in the construction of the subproblems. Thus, the local responses of the

system can be closely approximated.

208

Stellenbosch University    http://scholar.sun.ac.za



CHAPTER 10. CONCLUSION 209

3. The number of constraints that need be considered is often less than the number of design

variables. Even in cases where the structure is subject to a large number of constraints, like

local stress constraints, active set strategies can be used to limit the number of constraints

that are included in the definition of the subproblems. Hence, the dimension of the dual

subproblem is usually less than (and sometimes considerably less than) the dimension of the

primal subproblem. Also, the dual usually has a much simpler structure than the primal,

being concave and simply constrained. For these reasons, the use of a dual solver often

proves to be more efficient than the use of primal solution algorithms.

4. In using dual SAO, one has some ability to limit the necessitated computational storage

requirements. For instance, subproblems can be constructed from first-order separable ap-

proximations that are fairly accurate locally, instead of having to use higher-order functions

with densely populated Hessians (or even higher-order curvature information). The size of

the dual can be controlled using an active set strategy, and the Falk dual formulation can be

used so that bound constraints are handled efficiently.

The work that has been presented in this dissertation investigates the application of the dual SAO

approach to specific structural optimisation problems. Various extensions to traditional SAO im-

plementation are suggested, which serve to increase the efficiency of the algorithm for these prob-

lems. All of the work presented assumes the use of an SAO algorithm that constructs separable

primal subproblems, and a dual solver that utilises Falk’s definition of the dual. Contributions have

been made in areas pertaining to each of the four points listed above.

Firstly, concerning point 1, a method has been suggested that allows global convergence to be

achieved through the utilisation of conservative convex and separable approximations, but without

the necessity of first having to relax the subproblems in order to ensure that they are feasible.

The approach, termed the ‘bounded dual’, utilises a trivial extension of the standard Falk dual

in which the dual surface is maximised subject to the addition of sufficiently large upper bound

constraints on the Lagrange multipliers. It is argued that, when a subproblem is infeasible, the

bounded dual can be interpreted as a penalty formulation in which a linear combination of the

constraint infeasibilities is minimised. A proof is presented that shows that the iterative use of the

bounded dual results in a restorative sequence that gains feasibility, whereafter convergence to a

KKT point of the problem is assured by the normal working of the CCSA scheme. Implementation

of the bounded dual in numerical examples has shown it to be a viable and easily implemented

alternative to relaxation in the context of a CCSA strategy.

Point 2 is augmented by the inclusion of nonconvex functions in the formulation of the subprob-

lems for two material distribution problems. The minimum compliance problem is solved in com-

bination with volumetric penalisation, in which the volume constraint is formulated as a power-law

SIMP-like function that results in a nonconvex feasible region. It is observed that, despite being

concave, the constraint can be included in the approximate subproblems without affecting the

uniqueness of the primal and dual solutions, or their correspondence. Furthermore, it is argued

that the direct use of the nonconvex function can result in a more efficient solution strategy, rela-

tive to the standard practice of constructing strictly convex approximations to nonconvex (or even

concave) behaviour. Numerical testing has supported this conlusion. The nonconvex SIMP-like

volumetric penalisation method that is implemented in the numerical test problems yields very

high black-and-white fractions for the optimal designs produced when a continuation strategy is
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implemented on both the curvatures of the volume constraint and the objective function.

The impetus for investigating whether nonconvex approximations can be used in the construction

of the subproblems in a dual SAO method stems from the observation that the structural responses

themselves sometimes suggest simple nonconvex dependencies, and we point out under what con-

ditions the dual formulation can accommodate nonconvex forms. In these instances it may be

counterproductive to ignore these in favour of popular, strictly convex functions. The weight min-

imisation problem is discussed as a second example, in which the first-order behaviour of the stress

or displacement constraints may be concave. More generally, we present a number of methods of

mixed variables for the construction of separable subproblems in dual SAO that derive from the

higher-order separable exponential function, which is generally nonconvex.

Finally, the link between convex transformability for a nonconvex problem and the ability to use

dual SAO to solve the problem directly (in its nonconvex form) is investigated in the context

of separable problems. It is concluded that the dual of such a separable nonconvex problem is

identical to the dual of its convex transform, provided it permits such a transform.

With reference to point 3, a large-scale problem is explored concerning the optimal design of or-

thotropic FRC plates. Solid-void minimum compliance design is combined with the simultaneous

selection of the optimum point-wise fibre orientation throughout the planar structure. The prob-

lem is solved in a discrete sense, and its formulation, based on the application of the technique

of discrete material optimisation, gives rise to a dual with a heavily decoupled, partially separable

and piecewise-linear structure. Thus, even though the dual subproblems have a higher dimension

than the primal subproblems in this case, we are able to take advantage of the peculiar structure of

the dual to devise an efficient method for its maximisation. Due to its decoupled structure, max-

imising the dual involves the maximisation of n + 1 two-dimensional piecewise-linear surfaces,

each of which shares the independent variable λn+1 (n being the number of primal variables). Said

maximisation can be accomplished efficiently using nothing more complicated than a linesearch

strategy. The separable dual stems from a novel application of discrete material optimisation, and

the results that are generated represent a very large application of the discrete dual in terms of the

size of both the primal and dual subproblems.

Large-scale stress-constrained minimum weight and minimum compliance problems are also ad-

dressed, which pertains to point 4. These problems are defined in the continuous real space, and

no special structure for the dual can be taken advantage of to make the solution strategy more ef-

ficient. Instead, the SAOi algorithm is used, which constructs separable quadratic approximations

to the problem that are able to represent the local monotonic behaviour of the structural responses

very well. The algorithm utilises a sparse dual solver, and the gradients of the constraints can be

stored in sparse form. Therefore, we implement a novel strategy that omits inconsequential ele-

ments of the Jacobian of the constraints, and it is verified that this does not adversely affect the

convergence of the algorithm to solutions of the problem, provided the Jacobian elements are not

filtered too aggressively. Additionally, a constraint selection strategy is used that includes only the

active and near-active constraints in the definition of the subproblems. Together with the exclusive

use of separable quadratic approximations, these two algorithmic expedients result in substantial

reductions in the amount of information that needs to be stored and manipulated for the definition

and solution of the SAO subproblems. A non-standard method of stress relaxation is also pre-

sented, as it appears to be advantageous in generating topologies with increased black-and-white
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fractions. Results are presented for the weight minimisation and compliance minimisation of both

large two-bar truss and MBB beam test problems.

Lastly, although not related directly to the subject of dual SAO, a chapter is presented regarding the

interpretation of Sigmund’s mesh independence filter, which is widely used as a restriction method

in topology optimisation. An interpretation is suggested that stems from the application of SAO

to such problems in which the filter is used, and we suggest that the filter actually forms part of

the definition of the approximate subproblems. The subproblems that result from the application

of the filter are not first-order accurate. Moreover, it is noted that the gradient field obtained by

applying the filter to the sensitivities of the actual compliance objective in a minimum compliance

problem does not correspond to any scalar objective function. Some thoughts of what this might

mean for the convergence of SAO algorithms that use the filter are given, as are suggestions for

further research.

Suggestions for future research

The research presented in this dissertation has touched on and contributed to various topics that

fall under the general heading of “the application of dual sequential approximate optimisation to

structural optimisation problems”. The theory underlying these procedures (at least those discussed

herein, and particularly in the context of its application to structural optimisation problems) has

been around for upwards of thirty years. Falk developed his dual formulation in the late 1960s.

Fleury developed the idea of SAO based on convex and separable approximations that reflect the

sensitivities of important structural responses in the late 1970s and early 1980s. He also addressed

the weight minimisation problem using the natural nonconvex form of the displacement constraints

at around the same time. Though they are continually being specialised, the procedures for locating

the dual maximum, such as the method of feasible directions and the quasi-Newton methods, are

essentially even older. This in itself speaks of the robust nature and efficacy of the dual SAO

strategy.

However, the fact that the well-known dual SAO algorithms like CONLIN and MMA, which are

continually referenced in the structural optimisation literature, have existed for some time, indi-

cates that there is diminishingly little scope for further advantages to be gained by developing new

SAO strategies. Having said this, the size and complexity of the structural optimisation problems

that can be attempted in a reasonable time and with reasonable computing resources is still disap-

pointingly small, while the use of structural optimisation in industry is probably not as widespread

as it should be. Thus, in my opinion, the most pertinent research in future will likely be directed

towards the computational aspects of tackling larger and more representative problems, taking

increasing advantage of (for example) the promise offered by sparse implementations and (par-

ticularly) parallelisation. Along with this, further theoretical work is required to devise problem

formulations that can profit from the advances made in improving the computational aspects (for-

mulations that are more amenable to parallelisation and solvers that better utilise parallelisation,

for instance).

In addition, there are certainly gains to be made by finding ways of reducing the size of the sub-

problems in SAO. The development of better formulations for global stress constraints and the
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grouping of elements and their important responses into multiple-element patches are examples.

Such effort would result in subproblems that may not be strictly first-order accurate, in which case

their effect on the convergence characteristics of an algorithm would also need to be understood.

In general one might ask how much information could be omitted in a system of approximation

before one loses the ability to find solutions to the actual problem.

In terms of the topics addressed in this document, some are in areas where further research is

demanded, while others simply represent problem-specific strategies that can be applied fruitfully

in certain instances. They are each touched on below.

Sigmund’s mesh independence filter is used throughout the topology optimisation community and

offers a way of combating mesh dependence that is straightforward to implement. It is, however,

not yet properly understood and, given its widespread use, understanding the filter remains an open

and provocative research question. It is argued herein that the use of the filter on the sensitivities

of the objective function does not cause a modified objective function to be solved (in compliance

minimisation). It is also noted that the filter disturbs the first-order accuracy of the approximate

subproblems that are generated in an SAO solution strategy, which means that the convergence

characteristics of SAO algorithms using the filter are questionable. Certainly, further research into

understanding the action of the filter is merited.

The discrete dual has limited application as a general method for integer programming, for the rea-

sons given in the text. However, it is a useful method for solving binary discrete problems of large

dimensionality, and it is probably the only method available for material distribution problems that

guarantees purely solid-void solutions. Research is warranted primarily in three areas. Firstly, in

developing convenient and efficient primal-dual mappings from a broader range of approximation

functions. Secondly, in developing efficient and stable methods of controlling the global conver-

gence of the algorithm in both the fully discrete as well as the mixed integer settings. Lastly, the

application of the discrete dual to problems with multiple constraints and the development of max-

imisation schemes that can cope efficiently with the unique faceted structure of the dual surface,

particularly if the dual has large dimensionality and is not separable.

The use of nonconvex approximations in a dual SAO procedure is very problem specific. Certainly,

for some applications, nonconvexity can be exploited to reduce the number of iterations necessary

to solve a problem. Better local approximations allow larger step sizes to be taken before upsetting

the stability of the global convergence of the algorithm. The methods given herein for nonconvex

approximation all yield subproblems that are convex transformable, so they can be used as general

methods of approximation in SAO. However, in most instances the approximations give rise to

primal-dual relationships that must be solved using a line search. Unless they happen to track

the local behaviour of the actual problem well, there is little to be gained by incorporating them

into SAO. That said, the local behaviour of some structural dependencies are known a priori,

and this is no doubt true of problems in other fields. Hence, future development of nonconvex

approximation strategies lies in the recognition and exploitation of the nonconvexities inherent in

specific problems.

From a theoretical perspective, it remains to be shown whether convex transformability is a re-

quirement to allow a nonconvex problem to be solved via the Falk dual. Falk’s original paper on

the subject does not limit the dual to strictly convex problems, but then the dual is not necessarily

uniquely defined and discontinuities may enter into the formulation. We have shown that noncon-
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vex problems that possess a convex transform can be solved using the dual, without transformation.

We do not know whether nonconvex problems exist that are not convex transformable but that can

still be solved (practicably) using the dual. Also, we have confined out attention to separable prob-

lems, and it would be interesting if the arguments were to be extended to non-separable problems.

This most likely would only be of theoretical interest, however, since separability itself is crucial

to the efficient practical implementation of dual solvers in SAO. Also, equality constraints are in-

frequently, if ever, included in the dual SAO approach in structural optimisation, and this is an area

that could profitably be pursued.

The bounded dual is already in use in the SAOi optimiser, as part of the mechanism that encourages

global convergence. It is extremely straightforward to implement, and seems to handle infeasibility

very well. Herein we have presented an explanation of how it does so in the context of a global

convergence scheme based on the use of conservatism, but it can equally well be used with other

schemes, such as within a trust region infrastructure. Theoretical justification of its efficacy within

other schemes is still required, and is deserved of some attention.

Bounding the dual cannot be said to work well for all problems. As with the maximisation of

the dual itself, the efficacy of employing the bounded dual is probably related to the scaling of

the dual, which, in terms of the efficient solution of dual subproblems, is really the area that

merits further attention. Whereas relaxation affects the dual scaling, and therefore may make the

dual easier to maximise in some instances, bounding the dual does not affect the shape of the dual

surface. It has been our experience that there can be a significant variation in the times necessary to

solve successive dual subproblems in an SAO infrastructure, and preliminary investigations (in the

context of the solution of large-scale problems) have pointed to this being related to scaling. Given

the importance of locating the dual maximum accurately, efficient methods of preconditioning or

otherwise improving the condition of the dual are necessary, and constitute an important avenue

for future enquiry.

Lastly, the work presented in this document has been concerned with the application of dual SAO

techniques to large-scale problems. It is in this area that advances are required to make the use of

structural optimisation more attractive and more feasible in industrial applications. The develop-

ments in computing are continually making the use of optimisation procedures more practicable,

and the procedures themselves need to be designed to make optimal use of the available computing

resources. Advances can be made in the increased utilisation of parallelisation as well as sparse

computing methods, and the dual SAO algorithms should be developed to take better advantage of

these. Additionally, avenues may be followed in the formulation of the subproblems that can be

used to reduce their potential size. Formulations of global stress constraints or element patches are

existing examples that merit further investigation, as are robust methods of constraint selection.

Along these lines, the ideas that have been advanced herein are the formulation of partially separa-

ble duals (where possible) and filtering of the constraint sensitivities. This last may be generalised

to the construction of subproblems that are not first-order accurate, but that have increased sparsity.

The limits and viability of this concept still require investigation.
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[55] G. Duvaut, G. Terrel, F. Léné, and V.E. Verijenko. Optimization of fiber reinforced compos-

ites. Composite Structures, 48:83, 2000.
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