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Abstract

Using diffusion theory, we show that a dual-slope method is more effective than single-slope 

methods or single-distance methods at enhancing sensitivity to deeper tissue. The dual-slope 

method requires a minimum of two sources and two detectors arranged in specially configured 

arrays. In particular, we present diffusion theory results for a symmetrical linear array of two 

sources (separated by 55 mm) that sandwich two detectors (separated by 15 mm), for which dual 

slopes achieve maximal sensitivity at a depth of about 5 mm for direct current (DC) intensity (as 

measured in continuous-wave spectroscopy) and 11 mm for phase (as measured in frequency-

domain spectroscopy) under typical values of the tissue optical properties (absorption coefficient: 

~0.01 mm−1, reduced scattering coefficient: ~1 mm−1). This result is a major advance over single-

distance or single-slope data, which feature maximal sensitivity to shallow tissue (<2 mm for the 

intensity, <5 mm for the phase).

1. INTRODUCTION

Near-infrared spectroscopy (NIRS) in the wavelength range 700–1000 nm finds applications 

in the noninvasive study of biological tissue over macroscopic spatial scales of millimeters 

to centimeters. Applications include functional brain imaging [1]; cerebral oximetry [2,3]; 

stroke [4]; neonatal cerebral, liver, gastro-intestinal, and peripheral oximetry [5]; skeletal 

muscle flow and oxygen consumption [6]; and optical mammography [7]. An important 

question for these noninvasive, diffuse optical measurements is the spatial extent of the 

probed tissue volume. In other words, what is the interrogated tissue volume, and how is the 

sensitivity of the measured signal distributed within this volume? These questions become 

especially important in the investigation of deeper tissue, say the brain or skeletal muscle, 

where superficial tissue (scalp, skull, skin, adipose layer, etc.) may provide confounding 

contributions to the measured optical signal. This paper studies this question for a variety of 

single-distance and multi-distance source-detector configurations, as well as for optical 

measurements in continuous-wave spectroscopy (DC, or direct current intensity) or in the 

frequency domain (AC, or alternating current amplitude, and phase).

As an alternative to sophisticated forward models of photon migration and even more 

computationally demanding inversion procedures in diffuse optical spectroscopy (e.g., 
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diffuse optical tomography) [8], we investigate the possibility of using simple functions of 

optical data types collected with special source-detector arrangements to enhance the 

sensitivity to deeper tissue regions and to spatially confine the region of sensitivity. 

Homogeneous models of photon migration are used for the data inversion by using the 

concept of equivalent absorption change. We show how in general it is possible to retrieve 

changes in the absorption coefficient by using different data types (and derived single or 

dual slopes) independently. This method has the advantage of not mixing data types with 

different features of spatial sensitivity. While this approach does not aim at solving the full 

inverse imaging problem, it can result in a robust approach to diffuse optical imaging of 

deep tissue. We focus on the slopes (or gradients versus source-detector separation) of three 

fundamental data types in frequency-domain NIRS (DC, AC, and phase), and we show how 

they can offer a better sensitivity to deeper tissue regions than data collected at a single 

source-detector separation. NIRS data slopes versus source-detector separation have been 

proposed for absolute measurements of tissue optical properties [9–11], for measurements of 

a tissue oxygenation index [12,13], and for reduced sensitivity to superficial layers [14]. 

Here we exploit the reduced sensitivity of multi-distance data to superficial layers, and we 

also take into consideration the different spatial distribution of the intensity and phase 

regions of sensitivities.

To avoid a number of drawbacks associated with the slopes obtained from single-source or 

single-detector configurations (which we identify as “single slopes” here), we propose the 

use of special source-detector arrays to measure two slopes and average them (we identify 

this approach as a “dual-slope” method). This dual-slope method features: (1) insensitivity 

to instrumental effects related to temporal variations in source emission and detector 

sensitivity properties; (2) insensitivity to changes in optical coupling between optical probe 

and tissue; (3) reduced sensitivity to localized as well as uniform superficial tissue 

inhomogeneities, resulting in a greater relative sensitivity to deeper tissue; and (4) localized 

sensitivity to a deep tissue volume, which does not feature the typical banana shape of NIRS 

regions of sensitivity. Similar symmetrical source-detector arrays were previously proposed 

for self-calibrating measurements of the absolute optical properties of homogenous media, 

demonstrating their effectiveness in achieving points (1) and (2) [15]. Also, DC 

measurements based on the self-calibrating approach (with the assumption of a wavelength-

independent reduced scattering coefficient) were translated into oxygen saturation 

measurements either on phantoms or in vivo human studies [16–20]. Self-calibrating DC 

measurements (with assumed values of the reduced scattering coefficient) have also been 

used for measuring changes in oxy- and deoxyhemoglobin concentrations in human or 

animal studies [18,21–23]. Finally, self-calibrating methods with DC measurements have 

been used to show their effectiveness in removing motion artifacts [24,25]. Some of the 

above studies mention the insensitivity of the self-calibrating approach to skin marks or 

other superficial inhomogeneities [16,19] and also to superficial tissue such as scalp and 

skull [17,18], but no quantitative descriptions have been previously provided, nor were AC 

and phase data considered.

In this work, we carry out a detailed theoretical study of the sensitivity of single-distance 

versus single-slope and dual-slope methods (based on DC, AC, and phase data types) to 

focal absorption perturbations, which proves points (3) and (4) above. The results show how 
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the dual-slope method is an effective approach to sense deeper tissue (for example, brain 

cortex) with minimal sensitivity to superficial tissue (for example, scalp) and instrumental 

artifacts. In particular, we show how phase dual slopes feature a more specific sensitivity to 

deeper tissue than intensity dual slopes. However, a drawback of phase measurements is 

their lower signal-to-noise ratio compared to intensity measurements. For cases of lower 

optical contrast, or for instruments that do not collect frequency-domain data, dual DC 

intensity slopes may be used, as they are still preferable over single slopes, but they would 

feature maximal sensitivity to shallower tissue than dual-phase slopes. Other theoretical 

computations were run to establish if the dual-slope method can correctly retrieve relative 

changes of oxy- and deoxyhemoglobin concentrations occurring in the brain in typical brain 

studies. We chose two scenarios: (a) a typical protocol of coherent hemodynamic 

spectroscopy [26] and (b) a typical brain activation case [27]. In the first case, systemic 

oscillatory hemodynamic changes are induced both in the extracerebral layer and in the 

brain rather uniformly, so in the simulations we have assumed layered changes in the 

absorption coefficients. In the second case, we have assumed more localized absorption 

changes deeper in the tissue and some absorption changes in the outer layer. The results 

show how the dual-slope method (in particular with phase data) can effectively retrieve the 

relative changes of oxy- and deoxyhemoglobin in deeper tissues.

2. THEORY

We start with fundamental formulas for the sensitivity of DC (direct current intensity), AC 

(alternating current amplitude) and phase (φ), measured at a single source-detector 

separation, to focal absorption changes within an arbitrary diffusing and absorbing medium 

(Section 2.A). We then proceed by deriving the sensitivity of the single slopes of these data 

types (where the independent variable is the source-detector separation) to focal absorption 

changes (Section 2.B). The derived formulas are general regardless of the geometry and 

optical heterogeneity of the medium. In a geometry of semi-infinite homogeneous diffusive 

medium it was demonstrated that ln(r2DC(r)), ln(r2AC(r)), and φ(r), where r is the source-

detector separation, are well approximated by straight lines [28]. In this work, we make the 

(reasonable) hypothesis that these properties are valid also for many types of real tissues if 

the measurements are carried out in a reflectance geometry, which is assumed in this work. 

Of course, in general the slope of a straight line and the way it changes in dynamic and 

heterogeneous conditions will not depend only on the source-detector separations but also on 

the source-detector arrangement on the tissue surface. In the following section, we address 

the sensitivity of a data type measured at a single distance or its slope to focal hemoglobin 

changes (Section 2.C). Then we introduce the method of the dual slope with two different 

types of source-detector arrangements (Section 2.D), and we provide the equations used for 

the numerical results of this work (Section 2.E). Finally, in Section 2.F we discuss the topic 

of noise-to-signal ratio (NSR) for the different methods. In the following sections, as a 

mathematical convention, a variable in bold means that the variable represents a position 

vector in the space, while an arrow on top of a variable indicates that the variable is not a 

vector in space, but an array of a specified dimension.
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A. Spatial Sensitivity of Raw Data Types (DC, AC, and Phase) at a Single Source-Detector 
Separation

Within first-order perturbation theory of the diffusion equation (DE) [29], one can write

1
DC(rs, rd)

∂DC(rs, rd)

∂μak
= − 〈l〉(rs, rk, rd) = − 〈lDC〉(rs, rk, rd), (1)

where rs is the position vector of a point source; DC(rs, rd) is the detected direct current 

intensity at the detector position rd; μak is the absorption coefficient of a region (labeled k) 

within the diffusive medium, which is identified by the position vector rk; and 〈l〉(rs, rk, rd) 

is the average partial path length traveled inside region k by photons emitted at rs detected at 

rd. In two previous works, we have reframed the perturbation theory of DE by using the path 

length moments in the three domains [continuous wave (CW), frequency domain (FD), and 

time domain (TD)] of near-infrared spectroscopy (NIRS), and we showed that the following 

formula similar to Eq. (1) is valid also for the FD reflectance [30]:

1

R(rs, rd, ω)

∂R(rs, rd, ω)

∂μak
= − 〈l〉(rs, rk, rd, ω), (2)

where R(rs, rd, ω) = AC(rs, rd, ω)exp(iφ(rs, rd, ω)) is the complex notation for the reflectance 

measured at rd, and 〈l 〉 is the associated complex path length, which reduces to the usual 

path length of Eq. (1) when the angular modulation frequency (ω) is zero. In fact, Eq. (2) 

reduces to Eq. (1) for ω = 0. One can easily verify that Eq. (2) implies two separate 

equations for AC and φ as follows:

1
AC(rs, rd, ω)

∂AC(rs, rd, ω)

∂μak
= − Re 〈l〉(rs, rk, rd, ω) = − 〈lAC〉(rs, rk, rd, ω), (3)

∂φ(rs, rd, ω)

∂μak
= − Im 〈l〉(rs, rk, rd, ω) = − 〈lφ〉(rs, rk, rd, ω), (4)

where “Re” and “Im” are the real and imaginary part of a complex number, respectively. An 

approximate formula for 〈l 〉(rs, rk, rd, ω) is given by [30]

〈l 〉(rs, rk, rd, ω), =
Φ(rs, rk, ω)R(rs, rd, ω)

R(rs, rd, ω)
V k, (5)

where Φ(rs, rk, ω), R(rk, rd, ω), and R(rs, rd, ω) are the FD Green’s function of fluence 

calculated at rk when photons are emitted from rs, the FD reflectance (output intensity) 

measured at the detector’s point rd when photons are emitted from rk, and the FD 

reflectance measured at the detector’s point rd when photons are emitted from rs, 

respectively. Vk is the volume of the k region (“centered” at rk) where a change in 

absorption occurs. Note that Eq. (5) is valid if the maximum linear size of the region 

(labeled k) is much smaller than |rs − rk| and |rd − rk|. If this approximation is not valid, the 

correct calculation of the partial path length requires a volume integration [30].
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The complex partial path length can be qualitatively interpreted as the fraction of the photon 

density wave detected at rd that reaches the region at rk. Because photon density waves are 

exponentially damped as a function of the modulation frequency, as we increase ω a smaller 

wave fraction will reach the k region before being detected. On the contrary, for the limiting 

case ω = 0 (DC case) the partial pathlength depends only on geometrical conditions and 

optical properties. We want to rewrite Eqs. (1), (3), and (4) in a concise way with a single 

formula (where the dependence on ω is implicit) as follows:

∂Y (rs, rd)

∂μak
= − 〈lY 〉(rs, rk, rd), (6)

where “Y’ is a data type (DC, AC, or φ); the bar on the top of the derivative means that the 

derivative is normalized, in the DC and AC cases, by dividing by DC or AC, respectively [as 

in Eqs. (1) and (3)]; and 〈lY〉 (rs, rk, rd) is the pathlength corresponding to the Y data type 

[as in Eqs. (1), (3), and (4)] when the focal change occurs at rk, the photons are emitted at 

rs, and they are detected at rd.

If we have M distinct focal changes in the absorption coefficient, within first-order 

perturbation theory (which assumes independent, i.e., non-interacting focal absorption 

changes) we can express the total change of the normalized data type as the sum of 

contributions due to each focal change as

ΔY (rs, rd) = −
k = 1

M

〈lY 〉(rs, rk, rd)Δμak . (7)

Many sophisticated algorithms [8] target the reconstruction of the true focal absorption 

changes Δμak by measuring ΔY (rs, rd) for multiple source-detector pairs on the medium 

boundary and using computationally complex inversion procedures. In this work, we study 

the “equivalent” homogeneous absorption change that yields the same ΔY (rs, rd) that is 

associated with a collection of M localized absorbers. In fact, based on Eq. (6), if we assume 

that ΔY (rs, rd) arises from a homogeneous absorption change in the medium, we have

ΔY (rs, rd) = − 〈LY 〉(rs, rd)ΔμaY (rs, rd), (8)

where 〈LY〉(rs, rd) is the average total path length traveled (in the whole medium) by 

photons emitted at rs and detected at rd for data type Y, and ΔμaY(rs, rd) is the equivalent 

homogeneous absorption change estimated by data type Y {we note that when Y = DC, Eq. 

(8) is the modified Beer–Lambert law [31,32]}. The equivalent homogeneous absorption 

change is related to the set of M true absorption changes by the relationship

ΔμaY (rs, rd) =
k = 1

M
〈lY 〉(rs, rk, rd)

〈LY 〉(rs, rd)
Δμak . (9)

For a single focal change in absorption at rk, we define the sensitivity (S) of data type Y 

detected at rd as follows:
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SY (rs, rk, rd) =
〈lY 〉(rs, rk, rd)

〈LY 〉(rs, rd)
=

ΔμaY (rs, rd)

Δμak
. (10)

We note that SY(rs, rk, rd) is always positive for DC data because 〈lDC〉(rs, rk, rd) and 

〈LDC〉(rs, rd) represent the actual physical mean partial and total path lengths, respectively. 

This is true also for AC data, at least for typical values of ω used in NIRS [even though 

〈lAC〉(rs, rk, rd) and 〈LAC〉(rs, rd) do not represent mean physical path lengths], but this is 

not generally true for phase data. Therefore, given a single focal change (Δμak), the 

equivalent homogeneous absorption change estimated with DC and AC data (ΔμaDC, ΔμaAC) 

will always have the same sign of the true change, while this is not always the case for phase 

data. The behavior of phase data with respect to a focal absorption change can be understood 

if we consider that, for typical modulation frequencies used in NIRS such that ω ≪ vμa 

(where v is the speed of light in the medium), φ(rs, rd) ≅ (ω/v)〈LDC〉(rs, rd). If we consider 

a focal absorption increase occurring deeper in tissue, photons travelling along longer paths 

will have a higher chance to be absorbed, and the overall effect will be a shortening of 

〈LDC〉(rs, rd) and therefore a decrease of phase. If an absorption increase occurs closer to 

the medium boundary, the effect on phase is more complex, and it is possible that photons 

with shorter path lengths be preferentially absorbed, resulting in an increase in 〈LDC〉(rs, rd) 

and therefore an increase of phase. A more rigorous reasoning is based on the observation 

that the change in phase due to a focal change in absorption depends on both the variance of 

the path lengths inside the focal region and the covariance of the path lengths travelled 

inside and outside the region. While the variance is always positive, the covariance can be 

either positive or negative [33] and may prevail on the other term. However, we observe that 

a homogenous increase in absorption will always cause a decrease in phase. These properties 

can be summarized by saying that, in the case of an absorption increase: 〈lφ〉(rs, rk, rd) 

maybe >0, <0, or = 0, whereas 〈Lφ〉(rs, rd) is always >0. The fact that 〈Lφ〉 is always >0 is 

linked to the definition of 〈LDC〉, where the pathlength of each detected photon (L) is 

weighted by the factor e−μaL, which penalizes photons traveling longer paths with respect to 

photons traveling shorter paths. Therefore, as we uniformly increase the absorption 

coefficient of the whole medium, 〈LDC〉 decreases, and so does the phase (this statement can 

be proven mathematically by using the properties of the radiative transfer equation). We 

stress that all the equations written in this section are general, regardless of the geometry of 

the medium (except media with concave boundaries) and heterogeneity of the optical 

properties. The only assumption is the validity of the first-order perturbation theory of the 

DE. In a practical situation, the equivalent absorption change is found by inverting Eq. (8), 

which requires the knowledge of the total path lengths. For particular geometries, like the 

semi-infinite homogeneous medium geometry, the total path lengths are easily calculated 

once one knows the absolute optical properties of the medium (see Section 2.E).

B. Spatial Sensitivity of Single Slopes of DC, AC, and Phase

In this section, we simplify the notation by using scalar source-detector distances (ri) instead 

of position vectors for one source (rs) and multiple detectors (rdi where i = 1, …, N), which 

are on the tissue surface. In other words, ri = |rs − rdi| will be used instead of the whole set of 

position vectors for the source and the detectors. However, we note that in a heterogeneous 
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medium (like we are assuming) the partial and total path lengths when photons are collected 

at rdi depends on both rs and rdi (and on rk for the partial path lengths) and not only on the 

distance ri. We will only retain the three-dimentional (3D) position vectors that identify the 

focal regions where absorption changes occur. We want to provide formulas for the 

sensitivity of the slopes of ln(r2DC(r)), ln(r2AC(r)), and φ(r) to focal absorption changes. 

The general solution for the best straight line (in a least-squares sense) through N points 

having coordinates (xi, yi) where i = 1, …, N yields a slope equal to cov(x , y )/var(x ), where 

“cov” and “var” are the covariance and variance, respectively. In our case, xi = ri is a set of N 

source-detector separations (with respect to a single source) and yi = y(ri) is ln ri
2DC(ri) , 

ln ri
2AC(ri) , or φ(ri), which can be considered new data types (“y”) derived from the “Y’ data 

types. More specifically, in this section we consider slopes that are obtained using a single 

source and multiple detectors (or, equivalently, a single detector and multiple sources), and 

we refer to these slopes as “single slopes.” Therefore, by indicating the single slope of data 

type “y” as “SSlY,” one can write

SSlY =
cov( r , y )

var( r )
. (11)

If we now calculate the derivative of Eq. (11) with respect to a focal change in absorption at 

(rk), after some algebra we find

∂SSlY (rk, r )

∂μak
= −

( r − 〈 r 〉)〈lY 〉(rk, r )

Nvar( r )
, (12)

where 〈 r 〉 is the average source-detector separation (〈 r 〉 = Σ
i = 1

N
ri ∕ N), ( r − 〈 r 〉) is a 1 × N 

array with elements ri − 〈 r 〉, 〈lY 〉(rk, r ) is an N × 1 array with elements 〈lY〉(rk, ri), and 

var( r ) = 〈 ∣ r − 〈 r 〉 ∣
2

〉. We observe again that 〈lY〉(rk, ri) is a simplified notation for 〈lY〉
(rs, rk, rdi), where i = 1, …, N. In the derivation of Eq. (12), we have used Eqs. (2)–(4) and 

the property that 
∂yi

∂μak
=

∂Y (ri)

∂μak
= − 〈lY 〉(rk, ri). Within first-order perturbation theory, we 

can easily derive the change in the slope of a data type due to M focal absorbers at rk, where 

k = 1, …, M, as follows:

ΔSSlY ( r ) =
( r − 〈 r 〉)〈lY 〉Δμa

Nvar( r )
, (13)

where 〈lY 〉 is an N × M matrix [with elements 〈lY〉(rk, ri)], and Δμa is an M × 1 absorption 

change array (with elements Δμak). We note that 〈lY 〉(rk, r ) of Eq. (12) is the k th column of 

〈lY 〉. Similarly to Eq. (7) for the raw data types, Eq. (13) shows how the changes in the slope 

of a data type are related to the true localized changes in the absorption coefficients in the 

medium. Also, for the slopes, we can estimate an equivalent homogeneous absorption 

change (ΔμaY) associated with ΔSSlY that satisfies the equation
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ΔSSlY (rs, r ) = −
( r − 〈 r 〉)〈LY 〉( r )ΔμaY ( r )

Nvar( r )
, (14)

where 〈LY 〉( r ) is an N × 1 array with elements 〈LY〉(ri), where i = 1, …, N. In this case, we 

note that the homogeneous equivalent absorption change ΔμaY ( r ) depends not only on the 

data type (Y) but also on the set of source-detector distances ( r ). The relationship between 

the true focal absorption changes and ΔμaY is easily derived as

ΔμaY ( r ) =
( r − 〈 r 〉)〈lY 〉Δμa

( r − 〈 r 〉)〈LY 〉( r )

. (15)

Based on Eq. (15), one can define the sensitivity of the single slope of a data type (where the 

set of source-detector distances r  is used) with respect to a focal absorption change at rk as

SSSlY
(rk, r ) = −

( r − 〈 r 〉)〈lY 〉(rk, r )

( r − 〈 r 〉)〈LY 〉( r )

=
ΔμaY ( r )

Δμak
. (16)

We note that similarly to the sensitivity of the phase data type, the sensitivity of the slopes of 

the three data types can also be either positive or negative. This can be easily seen for the 

simple case of two source-detector separations r1 and r2 (with r2 > r1) and one focal change 

at rk. In this case, Eq. (16) becomes

SSSlY
(rk, r ) =

〈lY 〉(rk, r2) − 〈lY 〉(rk, r1)

〈LY 〉(r2) − 〈LY 〉(r1)
. (17)

The interpretation of Eq. (17) is easier for the DC or AC data type. In this case, for focal 

changes of the absorption coefficient, the denominator is always positive, while the 

numerator can be either positive or negative. For example, if a focal change occurs in 

proximity of the detector at r1 [where 〈lY〉(rk, r1) > 〈lY〉(rk, r2)], the sensitivity becomes 

negative. If a focal change occurs in proximity of r2 or deeper in the tissue, the sensitivity is 

positive. Also, there are deep regions of the medium where the slope method has a higher 

sensitivity to focal absorption changes than that of the corresponding data type [Eq. (10)]. In 

fact, in this case we have that 〈lY〉(rk, r2) ≫ 〈lY〉(rk, r1), and Eq. (17) has almost the same 

numerator as Eq. (10) but a smaller denominator. In general, the meaning of Eqs. (16) and 

(17), at least for DC and AC data types, is clear: all the detectors located at distances less 

than 〈 r 〉 give a negative contribution to the sensitivity, while all the detectors located at 

distances larger than 〈 r 〉 give a positive contribution to the sensitivity. The reason for this 

property is that the partial and total path lengths of these two data types are always positive, 

as discussed in Section 2.A. Which contribution prevails, or whether they compensate for 

each other, depends on the location and size of the region where a change in absorption 

occurs. For layered changes in the absorption coefficient, we will show that the two 

contributions compensate for each other for a superficial layer location, yielding an almost 
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null sensitivity. On the contrary, the contributions add up to be positive and bigger than the 

sensitivity of the corresponding data type for a deeper location of the layer.

To correct, at least partially, for the drawback of negative sensitivities in the single-slope 

method, we propose to use a special source-detector arrangement (typically but not 

necessarily symmetrical) that was previously proposed for a self-calibrating measurement of 

optical properties in a homogeneous medium [15]. With this special source-detector array, 

which is described in Section 2.D, we can measure two matched single slopes and take their 

average. We refer to this approach as a dual-slope method. Finally, we note again that also 

the equations of this section are general, regardless of the geometry of the medium and 

heterogeneity of the optical properties. The only assumption we made (beside the validity of 

first-order perturbation of the DE) is that functions y(r) are linear. In a practical situation, the 

equivalent absorption changes are found by inverting Eq. (14), which requires the knowledge 

of total path lengths, as already discussed in the previous section.

C. Spatial Sensitivity to Focal Changes in Oxy- and Deoxyhemoglobin Concentrations

By reframing the changes of a data type (or its slope) to focal absorption perturbations with 

generalized path lengths, it is easy to define the sensitivities to focal changes in 

chromophore concentrations. In the case of NIRS of blood-perfused tissue, oxy- and 

deoxyhemoglobin are the dominant chromophores. Following the procedure described in 

previous works [34,35], Eqs. (9) and (15) can be written for two wavelengths (λ1 and λ2), 

and then we obtain two new equations that relate equivalent homogeneous changes in oxy- 

and deoxyhemoglobin (O and D, respectively) concentrations to their true focal changes. 

More precisely, the left sides of the new equations contain a linear combination of OY and 

DY (or OSSlY and DSSlY), i.e., the equivalent changes of oxy- and deoxyhemoglobin for the 

Y data type (or the slope of the Y data type), and the right sides contain a linear combination 

of the true focal hemoglobin changes (Ok and Dk). We can prove that if SY(λ1) ≈ SY(λ2) 

(for raw data Y) and SSSlY(λ1) ≈ SSSlY(λ2) (for the slopes of data Y), Eqs. (10) and (16) 

also represent with good approximation the sensitivity for a single focal change in 

hemoglobin concentration at rk (Ok or Dk) estimated with data type Y or its slope, 

respectively. In other words, we claim that SY ≈ OY/Ok ≈ DY/Dk, and SSSlY ≈ OSSlY/Ok ≈ 
DSSlY/Dk. We observe that the condition of the similarity of the absorption sensitivities at 

two wavelengths for Eq. (10) or Eq. (16) implies that the crosstalk between the equivalent 

hemoglobin species (OY and DY or OSSlY and DSSlY) is negligible.

D. Dual-Slope Method

In this work, we propose a dual-slope method that considers the average of two matched 

slopes obtained with a specially configured array of sources and detectors. The requirements 

of the array configuration are similar to those previously proposed for the self-calibrating 

measurement of the optical properties of a homogeneous medium, which features 

insensitivity to source and detector drifts, and to changes in opto-mechanical coupling 

between probe and tissue [15]. Here, rather than considering absolute measurements of 

optical properties, we explore the benefits of the dual-slope method to enhance the optical 

sensitivity to deeper tissue regions. These dual slopes offer some key advantages with 

respect to standard single-source or single-detector multi-distance methods used in NIRS 
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[28]; namely, they are less sensitive to localized superficial tissue inhomogeneities, and they 

feature a localized sensitivity to a deep tissue volume, as opposed to the typical banana 

shape of NIRS regions of sensitivity.

One possible configuration is a symmetrical source-detector array, like the one previously 

proposed for the self-calibration method [15], which comprises two sources (S1 and S2) and 

two detectors (A and B), where the distance between S1 and A is equal to the distance 

between S2 and B (short distance), and the distance between S1 and B is equal to the 

distance between S2 and A (long distance). However, we observe that what needs to be equal 

is the difference between the long and short distances associated with each source. This 

configuration may be realized in a linear array [as shown in Fig. 1 (top panel)] or in a two-

dimentional (2D) array with the sources and the detectors on the vertices of a rectangle. 

Alternatively, one may use two sources and multiple detectors (A–G) that feature the same 

set of source-detector separations as the two sources [as shown in Fig. 1 (bottom panel)]. 

Even in this case, the conditions for applying the dual-slope method are less strict, and 

source S2 can be moved closer or farther to detector G (Fig. 1). In either case, the idea is to 

collect two matched slopes, for which the role of each source (and each detector) is 

switched, i.e., any given source (or detector) that generates data at a short(er) distance for 

one slope simultaneously generates data at a long(er) distance for the other slope.

The formulas we present here are developed for a source-detector arrangement comprising 

two sources and several detectors placed such that their distances from the two sources are 

pair-wise symmetric with respect to the average source-detector distance 〈 r 〉. Here, we 

derive the formulas for the DC slope, but the same procedure can be used for the AC and 

phase slopes. If we apply the DC single-slope method (where y = ln[r2DC(r)] according to 

the previous section) for source S1 (Fig. 1), we have

SSlDC1 =
( r − 〈 r 〉)ln(r2DC1(r))

Nvar( r )
=

i = 1

N
(ri − 〈 r 〉)ln(ri

2DC1(ri))

Nvar( r )
, (18)

where SSlDC1 is the DC single slope calculated with respect to source S1 and N is the 

number ofdetectors. The formulas can be derived for either even N or odd N. However, we 

note that for odd N, one of the detectors is placed at 〈 r 〉 [it is the one at 〈 r 〉 = 20 mm in 

Fig. 1 (bottom panel)]. This detector does not contribute to the slope values or to its changes 

in time; therefore, here we derive the formula for even N, in which case we have rN−k − 〈r〉 = 

−[rk+1 − 〈r〉] with k = 0, 1, …, N/2 − 1. By using the properties of logarithms, Eq. (18) 

becomes

SSlDC1 =
k = 0

N/2 − 1
(rN − k − 〈 r 〉) 2ln

rN − k

rk + 1
+ ln

DC1(rN − k)

DC1(rk + 1)

Nvar( r )
.

(19)

Similarly, if we consider the source S2, we have
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SSlDC2 =
k = 0

N/2 − 1

(rN − k′ − 〈 r ′〉) 2ln
rN − k′

rk + 1′
+ ln

DC2(rN − k′ )

DC2(rk + 1′ )

Nvar( r ′)
.

(20)

In Eq. (20), the prime indicates distances calculated with respect to source S2. In Fig. 1 it is 

assumed that rk = rk′ , which means, for example, that the distance between S1 and detector B 

is the same as the distance between S2 and detector F. However, this is not strictly necessary 

for the validity of the dual-slope method, which can be applied under more general 

conditions. By using the same arguments as in the original work on the self-calibrated 

method for absolute measurements [15], we note that in a real experiment, the measured DC 

signal from source S1 includes contributions related to source emission, detector response, 

and probe-to-tissue coupling as follows:

DC1(rN − k) = P1C1Z(rN − k)CZ(rN − k)dc1(rN − k), (21)

DC1(rk + 1) = P1C1Z(rk + 1)CZ(rk + 1)dc1(rk + 1), (22)

where P1 is the power emitted by source S1, C1 is the optical coupling factor between source 

S1 and the tissue, Z(rN−k) [Z(rk+1)] is the sensitivity of detector Z at rN−k [rk+1], CZ(rN−k) 

[CZ(rk+1)] is the optical coupling factor between detector Z at rN−k [rk+1] and the tissue, and 

dc1 (rN−k) and dc1 (rk+1) are the theoretical values of DC intensities at a longer (rN−k) and 

shorter (rk+1) distances. The factors C1, Z, and CZ account for random or systematic 

temporal fluctuations, drifts in source or detector characteristics, displacement of the optical 

probe, etc., whereas dc1 does not include any kind of noise or experimental confounds. 

Similarly, we can write the following for source S2:

DC2(rN − k′ ) = P2C2Z′(rN − k′ )CZ′′ (rN − k′ )dc2(rN − k′ ), (23)

DC2(rk + 1′ ) = P2C2Z′(rk + 1′ )CZ′′ (rk + 1′ )dc2(rk + 1′ ) . (24)

Because of the symmetrical source-detector arrangement, we can rewrite Eqs. (23) and (24) 

as

DC2(rN − k′ ) = P2C2Z(rk + 1)CZ(rk + 1)dc2(rN − k′ ), (25)

DC2(rk + 1′ ) = P2C2Z(rN − k)CZ(rN − k)dc2(rk + 1′ ), (26)

If we take the average of the single slopes SSlDC1 and SSlDC2 and substitute Eqs. (21) and 

(22) in Eq. (19) and Eqs. (25) and (26) in Eq. (20), all the terms affected by temporal 

fluctuations will cancel out, and we are left with
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SSlDC1 + SSlDC2

2

=
k = 0

N/2 − 1

(rN − k − 〈 r 〉) 2ln
rN − k

rk + 1
+

1

2
ln

dc1(rN − k)

dc1(rk + 1)

dc2(rN − k′ )

dc2(rk + 1′ )

Nvar( r )
,

(27)

where we have used the assumption that rk = rk′ , but no assumption is made on the 

homogeneity of the medium. We note that Eq. (27) defines an average “true” slope, which 

depends only on the distribution of the optical properties in the medium (and the position of 

the source and the detectors), and that is not affected by any instrumental characteristics 

(laser power, detector sensitivity, coupling). For the case of a homogeneous semi-infinite 

medium, Eq. (27) defines the true slope that in principle could be calculated by using only a 

single source and N detectors under ideal conditions (i.e., same detector sensitivities, same 

detector coupling). Under general conditions we define the dual slope as the average of the 

slopes obtained from S1 and S2 as

DSlDC =
SSlDC1 + SSlDC2

2
. (28)

Similarly, the dual slopes of AC and phase are respectively defined as

DSlAC =
SSlAC1 + SSlAC2

2
, (29)

DSlφ =
SSlφ1 + SSlφ2

2
. (30)

The sensitivity associated with the dual-slope method is

SDSlY
=

SSSlY 1
+ SSSlY 2

2
, (31)

where SSSlYi is the sensitivity associated with the single slope calculated with respect to 

source “i” [Eq. (16)]. Equation (31) implies also that the equivalent absorption change 

derived with the dual-slope method is the average of the equivalent absorption changes 

obtained with the two single slopes [Eq. (15)]. We stress again that with these source-

detector arrangements, not only do we achieve a signal that is not affected by source power, 

detector sensitivity, and optical coupling fluctuations, but we also partially correct for the 

negative sensitivity of single slopes present in some regions of the diffusive medium as 

pointed out in Section 2.B. In fact, if we consider a focal region close to the medium 

boundary and located in between source S1 and detector A [Fig. 1 (top panel)], this region 

has a negative sensitivity with respect to the single slope calculated by using S1 and 

detectors A and B but a positive sensitivity with respect to the symmetric single slope, which 

uses source S2 and the same two detectors. By averaging the two single slopes according to 

the dual-slope method, we achieve a partial compensation of the negative sensitivity. Finally, 

we note that the dual slope can be defined under more general conditions: in particular, it is 
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not required that rk = rk′  but only that rk − 〈 r 〉 = rk′ − 〈 r ′〉 in other words, source S2 can be 

moved closer to or farther from detector G [Fig. 1 (bottom panel)].

E. Solution of the Diffusion Equation in the Semi-Infinite Geometry Considered in This 
Work

We have studied the sensitivity of the raw data at a single source-detector separation [Eq. 

(10)] and the slope of the raw data [Eq. (16)], the latter for both single-slope and dual-slope 

methods, for a semi-infinite medium geometry (Fig. 1). For the single-distance data, we have 

reported only the sensitivity at the farthest distance. In this geometry, the calculations of the 

partial path lengths [Eq. (5)] are based on the following expression:

ϕ(rs, rk, ω) =
1

4πD
e

−μeffr1

r1
−

e
−μeffr2

r2
, (32)

which is the solution of the FD diffusion equation with an extrapolated boundary condition 

for the fluence. The solution is calculated for a point-like source located at rs = (x0, 0, 0) 

(where x0 = 1/ μs′ ; μs′  is the reduced scattering coefficient) and calculated at point rk = (xk, 

yk, zk) inside the diffusive medium. The extrapolated boundary is located at xb = −2AD, 

where A is a parameter that considers the refractive index mismatch between diffusive 

medium and the outer medium [36], and D is the diffusion factor (D = 1 ∕ (3μs′)). By the 

method of images for solving partial differential equations, the virtual source is located at 

rs′ = ( − x0 + 2xb, 0, 0), and therefore r1 = |rk − rs| and r2 = ∣ rk − rs′ ∣. The complex effective 

coefficient μeff is μeff =
μa

D
− i

ω

vD
. By applying Fick’s law to Eq. (32) [37,38], we can 

obtain the complex reflectance (the output complex intensity at rd when photons are emitted 

from rs) as

R(rs, rd, ω) =
1

4π
x0

1
r1

+ μeff
e

−μeffr1

r1
2

+ (x0 − 2xb)
1
r2

+ μeff
e

−μeffr2

r2
2

, (33)

where, in this case, r1 = |rd − rs|, r2 = ∣ rd − rs′ ∣. As for R(rk, rd, ω), Eq. (33) is used with xk 

replacing x0 and r1 = |rd − rk|, r2 = ∣ rd − rs′ ∣. In fact, for this case, the real and virtual 

sources are rk and rk′ = ( − xk + 2xb, 0, 0), respectively. The complex total path length 

〈L〉(rd, ω) is calculated as

〈L〉(rs, rd, ω) =
1

8πDR(rs, rd, ω)

x0

r1
e

−μeffr1 +
x0 − 2xb

r2
e

−μeffr2 , (34)

where r1 and r2 have the same meaning as in Eq. (33). We note that Eqs. (32)–(34) are valid 

for all the data types in FD and reduce to the DC expressions when ω = 0. The calculations 

of the mean partial path lengths were carried out by numerical integration by dividing a 

region into smaller voxels of 1 mm3 volume. All our FD results were obtained at a 

modulation frequency f = 140 MHz (ω = 2πf). The geometrical arrangement of sources and 

detectors is illustrated in Fig. 1.
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F. Considerations on Noise-to-Signal Ratio (NSR)

So far, we have derived theoretical results without considering the noise affecting different 

data types and the associated slopes. In this section we are going to take noise into account. 

We define the noise-to-signal ratio (NSR) for data type Y as ΔY
‒

noise. For DC data, 

ΔY
‒

noise =
σDC

DC
, where σDC is the standard deviation and DC is the average of DC data 

calculated in a given time interval (a similar formula applies for AC). For phase data 

ΔY
‒

noise = σPh, where σPh is the standard deviation of phase. Typical values of 
σDC

DC
, 

σAC

AC
, and 

σPh are 0.1%, 0.1%, and 0.1°, respectively. For the single slope, where only two distances 

are used (r1, r2; r2 > r1), we remind that the changes in slope are given by

ΔSSlY =
ΔY (r2) − ΔY (r1)

r2 − r1
. (35)

By the formula of a priori error propagation, we obtain the following result for the noise 

level of a slope change:

ΔSSlY _noise × (r2 − r1) = 2ΔY noise, (36)

where ΔSSlY_noise indicates the noise level of slope change for data type Y, and where we 

assumed equal noise level at the two source-detector separations. By analyzing phantom data 

(not shown), we have found that a better representation of the error in the slopes is obtained 

by adding the errors of the raw data at the two distances quadratically to yield (for the case 

of equal NSR at both distances)

ΔSSlY _noise × (r2 − r1) = 2ΔY noise . (37)

We note that Eq. (37) is correct only if the raw data do not contain relevant drifts; otherwise, 

the error propagation will yield an overestimation of the errors in the slopes. The same is 

true for the error in the dual-slope method: adding the errors in the single slopes 

quadratically yields the correct representation of the error in the dual slope only if any 

relevant drift is absent in the two slopes. Making this assumption, and assuming equal errors 

in the two slopes, we have that

ΔDSlY _noise × (r2 − r1) = ΔY noise, (38)

where ΔDSlY_noise is the noise level of dual-slope change for data type Y. By using the 

relationship between change in data type (due to a focal change in absorption at rk, Δμa) and 

the corresponding partial path lengths, we have a useful way to determine a limit of 

detectability in simulated data (i.e., when the source of contrast is equal to the noise level). 

For the single-distance data Y, we have

ΔY noise = 〈lY 〉(rk, r)Δμa , (39)

where the left side is equal to 0.1% for DC or AC data and 1.7 · 10−3 rad (0.1°) for phase 

data. For the single-slope method, we have
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ΔSSlY _noise × (r2 − r1) = [〈lY 〉(rk, r2) − 〈lY 〉(rk, r1)]Δμa , (40)

where 〈lY〉(rk, ri) is the path length spent by detected photons (at the source-detector 

separation ri) inside the focal region at rk. The left side is equal to 2 ⋅ 0.1 % for DC and AC 

data and 2 ⋅ 1.7 ⋅ 10−3 rad for phase data. For the dual-slope method, we have that

ΔDSlY _noise × (r2 − r1) =
1
2

|{[〈lY 〉S1
(rk, r2) + 〈lY 〉S2

(rk, r2)] − [〈lY 〉S1
(rk, r1)

+ 〈lY 〉S2
(rk, r1)]}Δμa | ,

(41)

where 〈lY〉Sj(rk, ri) indicate the partial pathlength (for data type Y) inside the focal defect at 

rk when photons are detected at a source-detector separation ri calculated from source Sj 

(Fig. 1). The left-hand side is equal to 0.1% for DC or AC data and ~0.0017 rad (0.1°) for 

phase data. We note that in Eqs. (39)–(41) the right-hand sides are known from the 

simulations, and they are the absolute values of the source of contrast. The limits of 

detectability are defined when the source of contrast is equal to the noise level [left side of 

Eqs. (39)–(41)]. By using Eqs. (10) and (16) we can also determine the noise level of the 

equivalent absorption change and the noise level of oxy- and deoxyhemoglobin oscillations. 

We note that the noise level of equivalent absorption change is wavelength dependent, and 

therefore in a given scenario where oxy- and deoxyhemoglobin oscillations are associated 

with different tissue regions, it is possible that only the equivalent absorption change at one 

wavelength is above noise level. This may happen in situations when the NSR ~ 1. In this 

case, nothing can be concluded about the equivalent oxy- and deoxyhemoglobin changes 

derived with the method proposed (i.e., if they are below or above noise level), unless we 

propagate the errors to determine their noise levels. In the following discussions we have 

applied Eqs. (39)–(41) to determine the noise level for the change of data type (or the 

change of its slope) in the numerical results.

3. RESULTS

The results are presented in four sections: one for layered absorption changes (Section 3.A), 

two for focal absorption changes (Sections 3.B and 3.C), and one where we apply the NSR 

considerations to numerical results (Section 3.D). Both layered and focal changes are of 

interest for describing hemodynamics that are usually studied in functional near-infrared 

spectroscopy (fNIRS) of the human head. When one studies cerebral hemodynamics of 

systemic origin {like in coherent hemodynamics spectroscopy (CHS) [26]}, layered 

absorption changes may likely be a good approximation. For typical cases of brain activation 

[27], the hemodynamic changes are usually more complex, with focal changes occurring in 

the brain cortex and hemodynamic confounds occurring in the extracerebral tissue layers 

(scalp, skull, etc.). In each case, we show the sensitivity of single-distance data [Eq. (10)], 

single-slope data [Eq. (16)], and dual-slope data [Eq. (31)]. For the single-distance data, we 

will always refer to the farthest distance considered here (35 mm).

We also studied the performance of the different methods to recover periodic oscillations in 

oxy- and deoxyhemoglobin, which are described by the phasors O and D, respectively [26]. 

This part will be in Section 3.A for layered changes and in Section 3.C for focal changes. In 
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particular, in CHS we are interested in measuring D/O, i.e., the ratio of amplitudes and the 

phase difference between the two hemoglobin species. For the simulations, we have assigned 

two (true) phasors for O and D (OT and DT) to each region of the medium where oscillations 

occurred. We translated OT and DT phasors into (true) absorption phasors at two 

wavelengths (690 and 830 nm). We recovered the phasors corresponding to the equivalent 

absorption change for the single-distance data, for the single slope and dual slope by using 

Eqs. (9), (15), and the equation derived from Eq. (31), respectively. The recovered phasors 

of absorption oscillations were translated into estimated phasors for oxy- and 

deoxyhemoglobin OE and DE. Finally, we compared DT/OT (defined for each region) with 

DE/OE , which is the equivalent phasor ratio obtained for each method. In Section 3.D we 

revisit the numerical results of the previous three sections by adding a few comments 

onNSR.

A. Sensitivity to Layered Absorption Changes

One example of sensitivity for layered changes in the absorption coefficient is shown in Fig. 

2, obtained with the source-detector arrangement of Fig. 1 (top panel). The sensitivities were 

obtained according to Eq. (10) [Fig. 2 (top panel)] or Eq. (16) [Fig. 2 (bottom panel)] by 

scanning a layer of size 1 × 80 × 80 mm (in the x, y ,and z directions), along the depth of the 

medium (x axis) with 1 mm increments. The center of the layer was fixed in the (y and z) 

directions at (20 and 0) mm. The optical properties of the medium were μa = 0.01 mm−1 and 

μs′ = 1 mm−1; the refractive indices of the diffusive medium and outer medium were ni = 1.4 

and no = 1, respectively. The modulation frequency for AC and phase data was 140 MHz. 

We note that for this case of layered changes, the results of the slope method are the same 

regardless of which single slope we are considering (with respect to source S1 or S2 of Fig. 

1) or ifwe average them according to the dual-slope approach. Therefore, in this case, we 

will indicate both sensitivities (with single or dual slope) as SSlY. Two important features of 

Fig. 2 are (1) the shift towards the right (deeper regions of the medium) of the maxima of 

SSlY with respect to the maxima of SY and (2) the almost null sensitivity of SSlY when the 

layer is close to the medium boundary. This result is because the region of the layer close to 

detector A (close detector) has a negative sensitivity that is compensated for by the positive 

sensitivity of the region close to detector B (far detector). The reason why DC and AC do 

not have the maximum sensitivity when the layer is at x = 0.5 mm (top position) is because 

these data types have a high sensitivity mostly around source and detector but very little in 

the central region of the layer (this region is crossed mainly by a few photons with short 

paths). As we scan the layer further down to a depth of 5 mm, the sensitivity to the layer 

region close to source and detector is smaller, but it is bigger in the central part of the layer 

(now more photons with longer paths will cross the entire layer), causing an overall increase 

in sensitivity.

The negligible value of SSlY to absorption changes occurring at shallow depths shows that a 

slope method offers a natural “depth filter” for cases when hemodynamics oscillations occur 

both close to the boundary and deeper in the medium. We prove this point by considering 

two cases of D/O estimation. In the first case we consider hemodynamic oscillations, which 

occur only in two layers at the same time: a top layer 1 mm thick that occupies the region x 

∈ [0, 1] mm and a deeper layer 1 mm thick that occupies the region x ∈ [15, 16] mm. These 
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layers are representative of a skin layer (or top layer “T”) and a brain layer (or bottom layer 

“B”). The phasors describing the true oscillations are: O1 = O2 = 1ei0 μM, D1 = 0.4ei0 μM, 

and D2 = 0.4ei3/4π μM. The subscripts “1” and “2” indicate the top layer and bottom layer, 

respectively. Therefore, we have that 
D1T

O1T
= 0.4ei0 and 

D2T

O2T
= 0.4ei3 ∕ 4π. Figure 3 shows the 

comparison between the estimated ratio of phasors DE/OE with DC and the DC slope 

method (left panel) and with phase and the phase slope method (right panel). The true ratio 

of phasors relative to top and bottom layer DT/DT are indicated by the labels “T” and “B” 

(red arrows), respectively. We have not reported the ratio of phasors estimated with AC and 

the AC slope because they are almost identical to those obtained with DC and the DC slope, 

respectively. From the left panel we can see that while DC data yields a ratio of phasors 

“closer” to the true one of the top layer, the DC slope method yields a ratio of phasors very 

close to the true one in the bottom layer. Phase and the phase slope method yield phasor 

ratios almost overlapping with the true phasor ratio of the bottom layer. These results were 

obtained by using a modulation frequency of f = 140 MHz and background optical 

properties of μs′(690 nm) = 1.2 mm−1 and μs′(830 nm) = 1 mm−1, and the absorption 

coefficients at the two wavelengths were calculated by considering a total hemoglobin 

concentration ([HbT]) of 45 μM and a hemoglobin saturation (St) of 0.65. Similar results 

(not shown) were obtained for μs′(690 nm) = 1.5 mm−1 and μs′(830 nm) = 1.2 mm−1 and for the 

absorption coefficients at the two wavelengths relative to [HbT] of 75 μM and St of 0.65.

In the second case, we also consider hemodynamic oscillations that occur in two layers at 

the same time: a top layer 6 mm thick that occupies the region x ∈ [0, 6] mm (indicated by 

“T”) and a deeper layer 6 mm thick that occupies the region x ∈ [12, 18] mm (indicated by 

“B”). The phasors describing the true oscillations (red arrows) are the same as before for the 

top and bottom layers. The background optical properties and modulation frequency are also 

the same as those of the previous case. The results are shown in Fig. 4.

The case shown in Fig. 4 may be a closer representation of what happens during induced 

hemodynamic oscillations in CHS, with systemic oxy- and deoxyhemoglobin changes 

occurring both in the scalp and in the brain and most likely a region of negligible oscillations 

in the skull and cerebrospinal fluid (CSF) layers. As before, the ratios of phasors estimated 

with DC and the DC slope are on the left panel, while those estimated with phase and the 

phase slope are on the right panel. For this case, except the phasor’s ratio estimated with 

phase slope, which is coincident with the true phasor’s ratio of the bottom layer, all the other 

data types and slopes show a different degree of mixture between the true phasor ratio of the 

top and bottom layer. The phasor ratio estimated with DC is the closest to the true phasor 

ratio of the top layer (left panel); this is followed by the one obtained with the DC slope, 

which points at an angle in between the two true phasor ratios (left panel). The phasor ratio 

estimated by phase is closer to the true one of the bottom layer (right panel). If we changed 

the geometry of the two layers or the magnitude of oscillations (by keeping the true phasor 

ratio fixed), which in the real tissue might be stronger in the brain, we would have that all 

the phasor ratios estimated by the raw data and the slopes method would rotate 

counterclockwise toward the true phasor ratio of the bottom layer. We note that we could 

have obtained similar results if we had directly applied the sensitivity functions Eqs. (10) 
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and (16) to the ratio of phasors describing oxy- and deoxyhemoglobin oscillations (OE/OT 

and DE/DT). For the case of Fig. 3, the discrepancy between the phasors ratio retrieved by 

using the two methods is less than 5° and less than 9% for the angles and the amplitudes.

B. Sensitivity to Focal Absorption Changes

We now study the sensitivity of the single-distance data and their slopes to focal changes in 

absorption. We will report only DC and phase data because of the similarity of AC data and 

derived slopes with those of DC data. By considering the source-detector arrangement of 

Fig. 1 (top panel), we scan a rectangular cuboid of size 1 × 5 × 5 mm (in the x, y, and z 

directions, respectively) along the y (horizontal) and x (vertical) directions at 1 mm step 

increments. The sensitivity maps reported in Fig. 5 were obtained by considering the source-

detector pair S1B in Fig. 1 (top panel) (distance of 35 mm). As expected from Section 2.A, 

DC always shows a positive sensitivity, while the phase has a more complex behavior. The 

computations were performed for the optical properties and modulation frequency are the 

same as those of Fig. 3 and 4 at 690 nm. The white (saturated) pixels in the DC map 

represent values higher than approximately 4.5 × 10−3.

Both DC intensity and phase sensitivity maps have the well-known “banana” shape [39,40]. 

In Fig. 6 we show cross-sectional lines of the map of Fig. 5 at different depths (x = 0.5, 3.5, 

6.5, 9.5, 12.5, 15.5 mm). Some notable features of Fig. 6 are (a) DC always shows a positive 

sensitivity, while the phase can have either a positive or negative sensitivity (as described in 

Section 2.A); (b) with respect to DC, phase data are less sensitive close to the medium 

boundary and more sensitive in deeper regions of the diffusive medium; and (c) the 

asymmetric behavior of DC intensity at a depth of x = 0.5 mm results from the introduction 

of an effective source inside the medium, breaking the symmetry of the source-detector 

configuration. Also, the voxel discretization used for the calculation in this work caused 

more photons to be “absorbed” when the region was close to the detector than when it was 

close to the source. The asymmetry is not visible in phase data, because for focal absorption 

increases in both locations (i.e., close to the source and close to the detector), comparable 

fractions of short-path and long-path photons were “absorbed,” and the phase was affected 

almost equally. Figure 7 shows the sensitivity maps for single slopes of DC (top panel) and 

phase (bottom panel). The two sets of saturated pixels represent values less than −0.01 

(black) and higher than 0.02 (white). They were obtained by using the source-detector pairs 

S1A and S1B [Fig. 1 (top panel)] (distances of 20 and 35 mm). As discussed in Section 2.B, 

SSSlY can be either positive or negative. The locations of a focal region where SSSiY 

becomes negative are in proximity of the detector at the shortest distance from the source 

(detector A, which is 20 mm from S1). Even though the slope method features a greater 

sensitivity to deeper tissue regions with respect to single-distance data, the areas of negative 

sensitivity can be problematic for the interpretation of the data. Figure 8 represents some 

cross-sectional lines of the sensitivity maps of Fig. 7 for single slopes, where each plot refers 

to a different depth. From Fig. 8 we note that the phase slope has a smaller sensitivity than 

the DC slope at shallow depths (x = 0.5 and 3.5 mm) but a greater sensitivity in deeper 

regions of the tissue (x > 12.5 mm). All the single slopes show positive as well as negative 

sensitivities, especially for absorption changes close to detector A. For DC, the single-slope 

sensitivity is very large and negative in proximity of detector A (close detector) and very 
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large and positive (even greater than for single-distance data) close to detector B (see plot at 

x = 0.5 mm). By comparing the cross-sectional lines in Figs. 6 and 8, we note that deeper in 

the tissue (for example, x = 12.5 and 15.5 mm) the sensitivity of DC and phase single slopes 

are greater than for the corresponding single-distance data. The dual-slope method 

compensates, at least partially, for the drawbacks of the single slopes, i.e., the negative 

sensitivity and the strong positive sensitivity to focal perturbations close to the detectors. For 

the dual-slope method we use S1A (short distance) and S1B (long distance) for calculating 

one slope, and we use S2B (short distance) S2A (long distance) for calculating the other 

slope [Fig. 1 (top panel)]. However, we observe that the result would not change if we were 

to use S1A and S2A for one slope and S2B and S1B for the other slope. These two slopes are 

averaged according to the dual-slope method. The sensitivity maps of DC and phase with the 

dual-slope method are shown in Fig. 9.

In Fig. 9 the white pixels indicate regions where the sensitivity is higher than approximately 

7 × 10−3. A comparison of Figs. 9 and 7 confirms that the regions of negative sensitivity of 

the dual slopes feature a reduced sensitivity value with respect to the single slopes. This 

feature is more obvious when we look at the cross-sections of the sensitivity along the y axis 

at different depths as shown in Fig. 10 (DC dual slope) and Fig. 11 (phase dual slope). From 

Fig. 9, one can see that the phase dual slope has more desirable features than the DC 

intensity dual slope, in that its maximal sensitivity to focal absorption changes is deeper in 

the tissue (~11 mm versus ~5 mm), and its sensitivity to superficial (~2 mm depth) 

absorption changes is lower (−0.004 versus −0.0055). A quantitative comparison between 

the sensitivities obtained with the dual-slope method and those obtained with single-distance 

data shows that the advantages of the former outweighs its only drawback, which is the 

presence of some residual negative values close to the medium boundary. When we compare 

DC dual-slope and single-distance data, we observe that (a) the dual-slope DC has a much 

more spatially confined region of positive sensitivity than the typical “banana shape” of 

single-distance DC data (Fig. 5) and (b) the DC dual slope has a higher positive sensitivity 

than single-distance DC data (except for superficial tissue: x = 0.5 mm). Similarly, if we 

compare the sensitivities obtained with dual-phase slope and single-distance phase data, we 

see that (a) the dual-phase slope has a much more spatially confined region of positive 

sensitivity compared with the positive “banana” of the single-distance phase data (Fig. 5); 

(b) the dual-phase slope has a smaller positive sensitivity than the single-distance phase data 

down to a depth of x = 6.5 mm and a higher sensitivity deeper in the medium; and (c) the 

region of negative sensitivity is more spatially confined than that of the single-distance phase 

data, but the values are slightly more negative.

We can further reduce the negative sensitivities present in the dual-slope method if we 

consider a multi-detector arrangement [Fig. 1 (bottom panel)] as shown in Fig. 12. We note 

that this arrangement is currently only possible with DC instrumentations that feature a 

suitably large dynamic range [41]. Of course, one can choose other arrangements that use 

more than two detectors but require a smaller dynamic range. By comparing Figs. 9 and 12, 

we note that even though the negative sensitivities are smaller for the configuration featuring 

seven detectors, the regions of positive sensitivity are also slightly smaller and less spatially 

confined than those obtained with two detectors.
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C. Recovery of Localized Oscillations of Oxy- and Deoxyhemoglobin Concentrations

Let us now consider two examples of phasors ratio retrieval (D/O) as it was done for the 

case of layered absorption changes. These examples reflect situations of periodic brain 

activation (in response to a block paradigm) where a focal change in cerebral hemodynamics 

occurs synchronously with hemodynamic changes in the extracerebral tissue layers. The 

hemodynamic changes in the brain are often larger than in the extracerebral layers. The 

geometry is shown in Fig. 13. In both cases, we will compare only the results obtained with 

the single-distance data and with the dual-slope methods because the single-slope methods 

yielded results that are almost coincident with those of the dual-slope methods. This is true 

because of the particular focal perturbations used (which involve absorption changes over a 

superficial layer with a relatively large area in the y – z plane).

In a first case, we consider three top regions (6 mm thick and 22 × 40 mm in lateral 

dimensions) that are characterized by the same oscillations of oxy- and deoxyhemoglobin 

concentrations, expressed by the phasors O1 = O2 = O3 = 1ei0 μM, and D1 = D2 = D3 = 

0.4ei0 μM, which represent a blood volume oscillation. We also consider a deeper region (a 

cube of 10 mm side) that is characterized by the phasors O4 = 5ei0 μM and D4 = 5ei3/4π μM, 

which represent an almost pure blood flow oscillation (for a pure blood flow oscillation 

deoxy- and oxyhemoglobin would be shifted by π).

Figure 14 shows the retrieval of the phasor ratio DE/OE by using single-distance DC and 

dual-slope DC (left panel) and single-distance phase and dual-slope phase (right panel). In a 

second case (Fig. 15) we consider different hemodynamics in the top three regions O1 = O2 

= O3 = 1ei0 μM, D1 = 0.4ei0 μM, D2 = 0.4eiπ/3 μM, and D3 = 0.4eiπ/2 μM and in the deeper 

region O4 = 5ei0 μM and D4 = 5ei3/4π μM. As we can see in Figs. 14 and 15, the closest 

measure of the phasor ratio for the deeper region is obtained with the phase dual-slope 

method. Specifically, the fractions between the estimated amplitude of the phasor ratio and 

the true amplitude of the phasor ratio in the deepest region 4 (i.e., |DE/OE|/|D4/O4|) for the 

single-distance DC, dual-slope DC, single-distance phase and dual-slope phase, respectively, 

are ~0.25, ~0.47, ~0.62, and ~1.1,in Fig. 14and ~0.34, ~0.66, ~0.69,and ~1.1 in Fig. 15. The 

DC dual slope and single-distance phase gave similar results. In both cases, the single-

distance DC data always yielded a phasor ratio closer to the one of the three top regions. 

Note that the amplitudes of the retrieved phasors with the different methods, OE, DE, are 

comparable to values measured in a typical CHS protocol [42].

D. Analysis of Signal-to-Noise Ratio: Application to Numerical Results

In this section, by using the equations describing the NSR [Eqs. (39)–(41)], we revisit the 

example of Fig. 15 and add a few considerations about the signal-to-noise ratio [SNR(λ), 

which is the inverse of NSR]. The purpose is twofold: (1) to understand why a retrieved ratio 

of phasors is in the direction it is found and (2) which region (characterized by certain 

phasors) in the medium is detectable (i.e., has SNR ≥ 1). This is done for a “typical” case of 

brain activation with some superficial confound (Fig. 15). For answering the first question, 

one does not need to use the concept of SNR, it suffices for each region to calculate the 

source of contrast (right side of Eqs. (39)–(41), i.e., the signal) and compare them. We 

remind that the source of contrast (or signal) in one region depends on the partial path length 
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spent by detected photons in that region and by the change in the absorption coefficient. 

Since we have specified the oscillations of oxy- and deoxyhemoglobin in each region, we 

can determine the contrast in each region. If the source of contrast in one region is much 

bigger than the others, the retrieved ratio of phasors will be very close to the true ratio of 

phasors in that region. If the sources of contrast in different regions are similar, the retrieved 

ratio of phasors will be pointing in an “intermediate” direction. These considerations apply 

also if none of the regions are detectable. On the contrary, by dividing the source of contrast 

by the noise we add the information if a region is detectable or not. Note that several regions 

may not be detectable separately, but they do when they are combined.

In a final example, we will also report the SNR maps for changes of absorption coefficient 

derived from localized changes of oxy- and deoxyhemoglobin concentration where both the 

volume of the region and the changes of hemoglobin concentrations are typical of brain 

activation. The purpose is to understand which method can be used to detect a focal 

perturbation in a realistic case of brain activation. We define the SNR as 

SNRY
‒(λ) = ΔY

‒
(λ) ∕ ΔY

‒
noise(λ) for the single-distance data Y, SNRSSlY(λ) = ΔSSlY(λ)/

ΔSSlY_noise(λ) for the single slope, and SNRDSlY(λ) = ΔDSlY(λ)/ΔDSlY_noise(λ) for the 

dual slope. More precisely ΔY
‒
, ΔSSlY, and ΔDSlY (the signal levels) are given by the right-

hand sides of Eqs. (39)–(41), respectively, and ΔY
‒

noise, ΔSSlY_noise, and ΔDSlY_noise (the 

noise levels) are those discussed in Section 2.F. We recall that in our simulations we have 

used only two wavelengths, λ1 = 690 nm and λ2 = 830 nm, and that for each data type Y, 

the SNR analysis is carried out only at the farthest source-detector separation (and 

specifically for source S1 and detector B of Fig. 13). For the single slopes, we have 

considered only source Si and detectors A and B of Fig. 13. In the example of Fig. 15, 

different oscillations of oxy- and deoxyhemoglobin concentrations were assigned to 

different focal regions of the medium and assumed to be present at the same time. Even in 

this case, our proposed method always retrieves one equivalent oscillation for oxy- and 

deoxyhemoglobin (for each single-distance data type or associated single-slope or dual-

slope case), which is the result of the combined effect of all the concentration oscillations in 

the medium. However, by calculating the right-hand sides of Eqs. (39) and (41) (which 

represent the signal level) separately in each region where oscillations occur, we can 

calculate their SNR, which tells us how closely the retrieved equivalent oscillations will 

reproduce the real ones in each region.

The SNR results for the example of Fig. 15 are reported in Table 1 for single-distance and 

dual-slope data (for both DC intensity and phase) associated with absorption changes in 

regions 1, 2, 3, and 4 (4 being the cubic region). With single-distance and dual-slope phase 

data, only the cubic region 4 yielded a SNR above the noise level. With the single-distance 

phase, we have that SNRφ(λ1) = 3.5 and SNRφ(λ2) = 1.3; however, these two SNRφ account 

for 77% and 56% of the total SNRφ at λ1 and λ2, respectively. In fact, even if no other 

region yielded a SNR above noise when considered individually, the combined effect of 

regions 1, 2, 3 did. For these reasons, the retrieved phasors ratio with single-distance phase 

is not exactly coincident with the true phasors ratio of the cubic region. With dual-phase 

slope we have SNRDSlφ(λ1) = 3.3, SNRDSlφ(λ2) = 1.2, which account for 95% and 91% of 

the total SNR, respectively. Therefore, the phasor ratio obtained with dual-phase slope 
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should be the closest to the true one of the cubic region as shown in Fig. 15. These numbers 

give some indication about the retrieved phasor ratio with the different methods. For 

example, for DC single-distance data, regions 1, 2, and 4 contribute almost equally to the 

total SNR at λ1 (33%, 32%, and 35%, respectively), while at λ2 the SNR originates mostly 

from regions 1 and 2 (41% and 40%, respectively) and less from region 4 (18%). For the DC 

dual slope, region 1 has a small contribution to the total SNR (4% at λ1). Slightly bigger 

contributions with respect to DC data come from region 2 (34% and 54% at λ1 and λ2, 

respectively). The largest increase of SNR with respect to DC single-distance data achieved 

with DC dual slope is found in the cubic region (59% and 37% at λ1 and λ2, respectively). 

These considerations are consistent with a ratio of phasor retrieved with DC dual slope, 

which is closer to the true ratio of phasors of the cubic region than that obtained with DC 

single-distance data (Fig. 15). Similar reasoning applies also for phase single-distance and 

phase dual-slope data (Fig. 15), as discussed above.

Finally, we want to study the SNR for the case of a “realistic” brain activation. As reported 

[27] during visual stimulation, a local increase of about 30% in cerebral blood volume has 

been measured. We model a focal brain activation as a cuboid of sides 2 × 10 × 10 mm in the 

x, y, and z directions, where 2 mm is representative of the thickness of the brain cortex. The 

cuboid was scanned in a semi-infinite medium geometry with 1 mm step in both the x and y 

directions. We used the background optical properties of Fig. 3 (at λ1 = 690 nm) and for the 

perturbation we increased [HbO] by 9 μM and [Hb] by 5 μM [which caused Δμa(λ1) = 

0.0033 mm−1], in this way we kept hemoglobin saturation (St) fixed at 0.65. To be consistent 

with the sensitivity maps [Figs. 5, 7, and 9] we used Eqs. (39)–(41) with the right terms 

without absolute value and with a minus sign preceding them. In this way we can define a 

SNR with a sign, with the properties that its absolute value represents the true SNR (positive 

by definition), and its sign is the same of the equivalent absorption change. The maps of 

SNR are reported for DC, DC single slope, and DC dual slope (Fig. 16) and for phase, phase 

single slope, and phase dual slope (Fig. 17). Looking at Figs. 16 and 17 we can highlight the 

following points: (1) in general DC data (single distance, single slope, dual slope) are 

characterized by a much higher SNR at all depths than phase data; (2) in particular, while 

DC single-distance data shows the highest SNR at all depths, it is the highest in the top 4–5 

mm and especially in regions close to the source and the detector {saturated white pixels in 

[Fig. 16 (top panel)]}, which makes this data type particularly sensitive to superficial 

changes in absorption; (3) the DC single slope has a smaller and more spatially localized 

SNR compared to single-distance DC data, but it also features a region of negative SNR 

(reflecting the negative sensitivity) close to the detector at the shorter distance [Fig. 16 

(middle panel)]; (4) the signal obtained with DC dual slope has the most spatially confined 

positive SNR [Fig. 16 (bottom panel)], and the regions with negative SNR have smaller 

values when compared with single slope, and this is due to the partial cancellation of the 

negative sensitivities intrinsic in the dual-slope method; (5) phase data shows a “banana-

shaped” region of positive SNR (above noise level) with rather constant values down to 

depths of 12–13 mm. There is also a central top region (between source S1 and the farthest 

detector) of negative SNR, which is below the noise level, showing that phase data are not 

sensitive to absorption changes occurring close to the medium boundaries; (6) the phase dual 

slope has the most desirable features for imaging. In fact, not only does it show a negative 
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SNR below noise in the top 6–7 mm, it also shows a very confined region of positive SNR 

that spans the depths ~8 – 15 mm and about 10–15 mm width. The only drawback is the low 

SNR.

Similar results were also found for different background properties characterized by [HbT] 

of 75 μM, St of 0.65, μs′(λ1) = 1.5 mm−1, and μs′(λ2) = 1.2 mm−1. In this case the 30% 

increase in [HbT] (by keeping a constant St) was obtained by increasing the oxy- and 

deoxyhemoglobin concentrations at the defect by 15 μM and 8 μM, respectively, relative to 

background values.

4. DISCUSSION

In this work, we have shown through diffusion theory that dual slopes based on DC intensity, 

AC amplitude, or phase data types achieve a greater relative sensitivity to deep versus 

shallow regions in a diffusive medium with respect to single slopes. Compared to single-

distance and single-slope data, the dual-slope method also features a more spatially confined 

region of sensitivity that does not extend to the medium surface (as it is the case for banana-

shaped regions of sensitivity) and reaches more deeply into the medium when phase rather 

than intensity data are used. We have used the concept of equivalent absorption change, 

which is defined as the homogeneous change in the absorption coefficient of the whole 

medium that yields the same data type change (or change in the slope of a data type) that is 

measured when one or more focal absorption changes are present in the medium. The 

definition of equivalent absorption change for each data type (and derived single and dual 

slopes) uses generalized path lengths introduced in our previous work [30]. This method is 

general and applies to any geometry of diffusive medium and any distribution of the optical 

properties within the medium. Also, it has the advantage of not mixing data types with 

different features of spatial sensitivity. The sensitivity is defined for a single focal absorption 

change as the ratio of the equivalent absorption change to the true focal change. Equivalent 

absorption changes to focal absorption perturbations calculated with single slope feature 

regions of negative sensitivities, particularly close to the short-distance detector when the 

single slopes are calculated by using one source and two detectors. The dual-slope method 

by using a symmetric source-detector arrangement also achieves a partial correction and 

cancellation of the negative sensitivity. This arrangement was proposed in the literature for 

the so-called “self-calibrating” approach to absolute estimation of the optical properties, by 

which it is possible to measure absolute optical properties of a diffusive medium without 

previous calibration. The self-calibrating method features high insensitivity to light source 

power and detector sensitivity fluctuations as well high insensitivity to changes in the 

coupling between the input source and the probed medium as well as the medium and the 

detectors (usually trough optical fibers). The self-calibrating approach has also been used in 

several studies for measuring dynamic changes of oxy-, deoxyhemoglobin, and oxygen 

saturation. In these studies, it was also assumed that the changes in DC slope originated 

from homogeneous changes in the absorption coefficient. In the present work, we moved 

away from such homogeneity assumption and provided a rigorous and general framework 

for this approach (not restricted to DC data only) to sense tissue heterogeneities, which in 

principle could be extended toward the inverse imaging problem [see, for example, Eq. (13), 
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which correlates the change in slopes and the focal changes in the absorption coefficient]. 

We have used source-detector arrangements similar to those proposed in the literature, and 

we have shown their imaging capabilities through sensitivity maps, at the same time 

retaining the benefits in terms of stability of the signals of the self-calibrating method.

For the single-distance data, we have shown that the sensitivity of DC is higher than that of 

the phase at shallow depths, while the opposite is true deeper in the medium. This is the case 

for single-distance, single-slope, and dual-slope data. However, we point out that DC data 

are characterized by a much greater SNR than the phase data. Therefore, even though phase 

dual-slope has some of the most desirable features for imaging purposes, due to its low SNR 

it may not be always applicable to experimental data, depending on the nature (absorption 

contrast, size, and duration) of the target optical contrast. In this case, one can use the DC 

dual-slope method, which features a higher SNR and a better ratio of sensitivities between 

deep and shallow regions than DC single-distance data.

The dual-slope method requires a minimum of two sources and two detectors, and we have 

made the case, contrary to a large portion of the literature, that we do not necessarily need a 

“short” source-detector separation to suppress extracerebral hemodynamic contributions to 

signals collected at “large” source-detector distances, since the dual-slope method 

(especially with phase data) is intrinsically weakly sensitive to localized changes close to the 

surface. However, we note that we can apply the dual-slope method also with multiple 

source-detectors [Fig. 1 (bottom panel)] and therefore benefit also from the information of 

several single-distance data.

Through theoretical results, we have made a case that dual-phase slope, despite the low 

SNR, can be used for typical scenarios of NIRS. In particular, we have focused on the 

retrieval of the ratio of oxy- and deoxyhemoglobin oscillations in a typical protocol used in 

CHS, which is a novel method to obtain information on cerebral microvascular integrity and 

autoregulation. We have also retrieved the ratio of oxy- and deoxyhemoglobin oscillations in 

a typical case of periodic brain activation. In both cases, the dual-slope methods (particularly 

with phase data) yielded a ratio of hemoglobin oscillations very close to the true one in the 

brain. However, we stress that the dual-slope method could be used in other applications of 

NIRS as a simpler alternative to more complex methods typical of diffuse optical 

tomography. In a complementary work, we show that the dual-slope method can be 

successfully applied to experimental data from the human head during a typical protocol of 

coherent hemodynamic spectroscopy, and the in vivo results are consistent with the claims 

of this work [43].

Finally, we observe that a common multi-distance formula used in the semi-infinite medium 

geometry [28] uses both AC and phase slope to retrieve the absolute value of the absorption 

and the reduced scattering coefficients. The formula for the retrieval of the absorption 

coefficient can also be used for estimating equivalent absorption changes due to arbitrary 

focal changes in the medium. However, both phase slope and AC slope changes will 

contribute to the absorption changes, and these two data types have very different spatial 

sensitivities, causing a poorer sensitivity to deeper regions than that obtained with dual-

phase slope data alone.
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5. CONCLUSIONS

Our study on the sensitivity of single-distance data types and derived slopes to focal 

absorption changes has demonstrated the advantages of a dual-slope method. While the 

spatial resolution in diffuse optics is intrinsically limited by the high ratio (a few hundred) 

between source-detector separation and scattering mean free path, we have shown a family 

of source-detector configurations that achieve a deeper and more localized region of 

sensitivity than with typical source-detector configurations used in diffuse optics. In 

particular, a 55 mm linear array of two sources and two detectors allows for the 

determination of dual-slope intensity and phase data with maximal sensitivity at a depth of 5 

mm and 11 mm, respectively, under typical conditions of NIRS of blood-perfused tissue. 

This is a marked improvement over the maximal sensitivity at depths of <2 mm and <5 mm 

for single-distance intensity and phase data, respectively. This result points to more effective 

noninvasive measurements of brain and skeletal muscle under superficial layers of skin, 

skull, adipose tissue, etc.

In addition to a deeper sensitivity, the proposed dual-slope method features significant 

practical advantages that were previously demonstrated in a self-calibrating approach for 

absolute measurements of optical properties [15]. These advantages include an insensitivity 

to instrumental drifts (source emission properties or detector sensitivity response) and 

variable opto-mechanical coupling between optical probe and tissue (as may result from 

subject movement or probe adjustment over time) that occurs over a longer time scale than 

the time resolution of data collection. This is a crucially important feature to enhance the 

reliability of the data collected on living tissue over relatively long periods of time on 

moving subjects.
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Fig. 1. 
Top panel: linear source-detector arrangement for the dual-slope method with two sources 

(S1 and S2) and two detectors (A and B). Bottom panel: extended dual-slope method using 

two sources and seven detectors (A–G). In the bottom panel the distances are calculated with 

respect to the source S1. Given the symmetric arrangement, these are also the distances 

between the detectors and S2 but in the reverse order. Note that the x axis is the depth 

coordinate, while the y axis is along the line that contains all sources and detectors.
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Fig. 2. 
Sensitivity of raw data at a single-distance SY (top panel) and their slopes SSlY (bottom 

panel) according to Eqs. (10) and (16), respectively, are obtained for the three data types 

(“Y”: DC intensity, AC amplitude, and φ phase; labeled as “DC”, “AC”, and “ϕ”, 

respectively) by scanning a layer of size 1 × 80 × 80 mm along the x axis (depth) at 1 mm 

steps. For layered changes in the absorption coefficient we remind that SSSlY = SDSlY. The 

optical properties of the medium are μa = 0.01 mm−1, μs′ = 1 mm−1. The refractive index of 

the diffusive medium and the outer medium are ni = 1.4, no = 1. The modulation frequency 

is 140 MHz. SSlY were calculated by using the source-detector arrangement of Fig. 1 (top 

panel), while SY refer to the farthest distance (35 mm).
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Fig. 3. 
Ratio of estimated phasor DE/OE with DC intensity data and DC intensity slope labeled as 

“DC” (orange arrow, left panel) and “SlDC” (purple arrow, left panel), respectively. Phase 

data and phase slope data are labeled as “φ” (orange arrow, right panel) and “Slφ” (purple 

arrow, right panel), respectively. The true phasors ratio DT/OT for the top and bottom layers 

(red arrows) are indicated by the labels “T” and “B”, respectively. The layers are 1 mm thick 

and occupy the regions [0, 1] mm and [15, 16] mm, for “T” and “B”, respectively. We 

remind that for layered changes in absorption SSSlY = SDSlY; therefore, it is unnecessary to 

specify if we are considering single or dual slopes.
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Fig. 4. 
Ratio of estimated phasor DE/OE with DC intensity data and DC intensity slope indicated as 

“DC” (orange arrow, left panel) and “SlDC” (purple arrow, left panel), respectively. Phase 

data and phase slope data indicated as “φ” (orange arrow, right panel) and “Slφ” (purple 

arrow, right panel), respectively. The true phasors ratio DT/OT for the top and bottom layers 

(red arrows) are indicated by the labels “T” and “B,” respectively. The layers are 6 mm thick 

and occupy the regions [0, 6] mm [12, 18] mm for “S” and “B,” respectively. We remind that 

for layered changes in absorption SSSlY = SDSlY; therefore, it is unnecessary to specify if we 

are considering single or dual slopes.
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Fig. 5. 
Sensitivity maps for single-distance (35 mm) data (SY) for two data types (“Y”: DC 

intensity and φ phase) defined in Eq. (10), for DC intensity data (labeled as “DC,” top 

panel), and phase data (labeled as “ϕ,” bottom panel). The maps were obtained by scanning 

a 1 × 5 × 5 mm rectangular cuboid (in the x, y, and z) direction, along the depth (x axis) and 

horizontal directions (y and z axis) by steps of 1 mm. The optical properties of the 

background and modulation frequency were the same as those in Figs. 3 and 4 at 690 nm. 

The arrows indicate the position of the input source S1 and detector B (see Fig. 1).
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Fig. 6. 
Cross-sectional plots along the horizontal direction (y) of the sensitivity (SY) maps of Fig. 5 

for single-distance data and two data types (“Y”: DC intensity and φ phase). Each subplot 

includes both DC intensity and phase sensitivity (labeled as “DC” and “ϕ,” respectively) and 

it refers to a different depth (x) of the cuboid’s center in the medium (indicated on top of 

each subplot).
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Fig. 7. 
Sensitivity maps for single slopes (SSSlY) for two data types (“Y”: DC intensity and φ phase) 

defined in Eq. (16), for DC intensity slope (labeled as “SSlDC,” top panel) and phase slope 

(labeled as “SSlϕ,” bottom panel). They were obtained by scanning a 1 × 5 × 5 mm 

rectangular cuboid (in the x, y, and z) direction, along the depth (x axis) and horizontal 

directions (y and z axis) by steps of 1 mm. The optical properties of the background and 

modulation frequency are the same as those in Figs. 3 and 4 at 690 nm. The slopes were 

calculated by using the source detectors S1A and S1B of Fig. 1 (top panel) (distances: 20 and 

35 mm), which are represented by arrows on top of the DC sensitivity map.
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Fig. 8. 
Cross-sectional plots along the horizontal direction (y) of the single-slope sensitivity (SSSlY) 

maps of Fig. 7 for two data types (“Y”: DC intensity and φ phase). DC intensity single slope 

(labeled as “SSlDC”) and phase single slopes (labeled as “SSlϕ”). Each subplot refers to a 

different depth (x) of the cuboid’s center in the medium (indicated on top of each subplot).
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Fig. 9. 
Sensitivity maps for dual-slope data (SDSlY) for two data types (“Y”: DC intensity and φ 
phase) defined in Eq. (31), for DC intensity dual slope data (labeled as “DSlDC,” top panel) 

and phase dual-slope data (labeled as “DSlϕ,” bottom panel). They were obtained by 

scanning a 1 × 5 × 5 mm rectangular cuboid (in the x, y, and z) direction, along the depth (x 

axis) and horizontal directions (y and z axis) by steps of 1 mm. The optical properties of the 

background were the same as those in Figs. 3 and 4 at 690 nm. The dual slopes were 

calculated by using the source detectors S1A and S1B for one slope and S2BS2A for the 

matched slope [Fig. 1 (top panel)], which are represented by arrows on top of the DC dual-

slope sensitivity map.
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Fig. 10. 
Comparison of cross-sectional plots along the horizontal direction (y) of (1) the DC intensity 

dual-slope sensitivity map of Fig. 9 (black lines labeled as “DSlDC”); (2) the DC intensity 

single-slope sensitivity map of Fig. 7 calculated with S1A and S1B (red lines labeled as 

“SSlDC1”); (3) the sensitivity maps of the matched DC intensity single slope calculated with 

S2B and S2A (see Fig. 1 top panel) (green lines labeled as “SSlDC2”).
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Fig. 11. 
Comparison of cross-sectional plots along the horizontal direction (y) of (1) the phase dual-

slope sensitivity map of Fig. 9 (black lines labeled as “DSlϕ ”); (2) the phase single-slope 

sensitivity map pf Fig. 7 calculated with S1A and S1B (red lines labeled as SSlϕ1); (3) the 

sensitivity maps of the matched phase intensity single slope calculated with S2B and S2A 

(see Fig. 1 top panel) (green lines labeled as “SSlϕ2”).
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Fig. 12. 
Sensitivity maps for dual-slope data (SDSlY) for two data types (“Y’: DC intensity and φ 
phase) defined in Eq. (31) for DC intensity dual-slope data (labeled as “DSlDC,” top panel) 

and phase dual-slope data (labeled as “DSlϕ,” bottom panel). Obtained with two sources and 

seven detectors [Fig. 1 (bottom panel)]. The maps were obtained in the same situation of 

Fig. 9.
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Fig. 13. 
Schematic representation of a diffusive medium comprising three equal top regions with size 

(6,22,40) mm along (x, y, z) and one cubic deeper region of side 10 mm. The centers of the 

three top regions are (x, y, z) = (3, 5.5, 0) mm (region 1), (x, y, z) = (3, 27.5, 0) mm (region 

2), (x, y, z) = (3, 49.5, 0) mm (region 3). The cubic region 4 (10 mm side) is centered at (x, 

y, z) = (15, 27.5, 0) mm. The source-detector arrangement is the same as in Fig. 1. The 

background optical properties are the same as those of Fig. 3.
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Fig. 14. 
First case of the ratio of estimated phasor DE/OE with single-distance DC intensity data and 

DC intensity dual slope, labeled “DC” (green arrow, left panel) and “DSlDC” (blue arrow, 

left panel), respectively. Single-distance phase data and dual-slope phase, labeled “φ” (green 

arrow, right panel) and “DSlφ” (blue arrow right panel), respectively (right panel). The true 

phasor ratio DT/OT for the three top layers and one deeper region (red arrows) are indicated 

by the numbers 1, 2, 3, and 4 (see Fig. 13 for the labeling of the four regions). The ratio of 

phasors obtained with the single slopes (not shown) are almost coincident with those 

obtained with the dual slopes.
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Fig. 15. 
Second case of the ratio of estimated phasor DE/OE with single-distance DC intensity data 

and DC intensity dual slope, labeled “DC” (green arrow, left panel) and “DSlDC” (blue 

arrow, left panel), respectively. Single-distance phase data and dual-slope phase, labeled “φ” 

(green arrow, right panel) and “DSlφ” (blue arrow right panel), respectively (right panel). 

The true phasor ratio DT/OT for the three top layers and one deeper region (red arrows) are 

indicated by the numbers 1, 2, 3, and 4 (see Fig. 13 for the labeling of the four regions). The 

ratio of phasors obtained with the single slopes (not shown) are almost coincident with those 

obtained with the dual slopes.
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Fig. 16. 
Maps of signal-to-noise ratio (SNR) for DC intensity data labeled “DC” (top panel), DC 

intensity single-slope data labeled “SSlDC” (middle panel), and DC intensity dual-slope data 

labeled “DSlDC” (bottom panel). Same source detector arrangement shown in Fig. 1 (top 

panel) with S1 and S2 as sources and A and B as detectors (top panel).
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Fig. 17. 
Maps of signal-to-noise ratio (SNR) for phase (φ) data labeled “ϕ” (top panel), phase single-

slope data labeled “SSlϕ” (middle panel), and phase dual-slope data labeled “DSlϕ” (bottom 

panel). Same source detector arrangement shown in Fig. 1 (top panel) with S1 and S2 as 

sources and A and B as detectors (top panel).
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Table 1.

SNR Calculated for the Example of Fig. 15 by Using DC Single-Distance (SNRDC), DC Dual-Slope 

(SNRDSlDC), Phase Single-Distance (SNRφ), and Phase Dual-Slope (SNRDSlφ)
a

Region 1 2 3 4

SNRDC λ1 18.5 (33%) 17.7 (32%) <1 19.5 (35%)

λ2 17.3 (41%) 17.1 (40%) <1 7.5 (18%)

SNRDSlDC λ1 1.15 (4%) 11 (34%) <1 19 (59%)

λ2 <1 10.4 (54%) <1 7.2 (37%)

SNRφ λ1 <1 <1 <1 3.5 (77%)

λ2 <1 <1 <1 1.3 (56%)

SNRDSlφ λ1 <1 <1 <1 3.3 (95%)

λ2 <1 <1 <1 1.2 (91%)

a
The SNR is given for each region and each wavelength (λ1 = 690 nm and λ2 = 830 nm) whenever it is larger than 1 (limit of detectability). At the 

side of each SNR, its percentage with respect to the total SNR is also reported.
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