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Abstract. The stagnation-point flow of an incompressible non-Newtonian Casson
fluid over a stretching sheet in the presence of Soret and Dufour effects is investi-
gated. The resulting partial differential equations are reduced to a set of nonlinear
ordinary differential equations using similarity transformations and solved using the
Matlab bvp4c package. A comparison is made with the results available in the litera-
ture and found to be in good agreement. Dual solutions for the velocity, temperature,
concentration and skin friction were obtained for some special cases when the stretch-
ing parameter is negative. The effect of the Casson parameter on the skin friction, heat
transfer and mass transfer rates is discussed.

Keywords. Casson fluid; stretching/shrinking sheet; Soret effect; Dufour effect.

1. Introduction

Boundary layer flow and heat transfer over a stretching sheet is significant due to its many appli-
cations in engineering processes such as in the extraction of polymer sheets, paper production,
wire drawing and glass-fibre production. During the manufacturing process, a stretching sheet
interacts with the ambient fluid both thermally and mechanically. The study of boundary layer
flow caused by a stretching surface was initiated by Crane (1970) who gave an exact similar-
ity solution in closed form. Mahapatra & Gupta (2001) reconsidered the steady stagnation point
flow towards a stretching sheet taking different stretching and stagnation point velocities and
observed two different kinds of boundary layer structure near the sheet. Recently, several papers
on the dynamics of the boundary layer flow over a stretching surface have appeared in the liter-
ature (Dutta et al 1985; Kameswaran et al 2012, 2013). Mukhopadhyay (2013) has studied the
effects of Casson fluid flow and heat transfer over a nonlinearly stretching surface. She found
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that temperature increases with an increase in nonlinear stretching parameter and the momentum
boundary layer thickness decreases with an increase in Casson parameter.

When heat and mass transfer occur simultaneously in a moving fluid, the relationship between
the fluxes and the driving potentials is complex. It has been observed that an energy flux can
be generated not only by temperature gradients but also by concentration gradients. The energy
flux caused by a concentration gradient is termed as the diffusion-thermo (Dufour) effect. On
the other hand, mass fluxes can also be created by temperature gradients and this is termed
as the thermal-diffusion (Soret) effect. Soret and Dufour effects have been utilized for isotope
separation, in areas of hydrology, petrology, geosciences, etc. Srinivasacharya & RamReddy
(2011) have investigated the Soret and Dufour effects on heat and mass transfer along a semi-
infinite vertical plate embedded in a non-Darcy porous medium. Soret and Dufour effects on the
magnetohydrodynamic (MHD) flow of a Casson fluid over a stretched surface were also studied
by Hayat et al (2012a, b) and Nawaz et al (2012). Chamkha & Aly (2010) presented an analysis
on heat and mass transfer in stagnation point flow of a polar fluid towards a stretching surface
in porous media in the presence of Soret, Dufour and chemical reaction effects. Their study
reveals that the velocity of fluid increased as the Soret number increased and the Dufour number
decreased.

Casson fluids have a yield stress below which no flow occurs and a zero viscosity at an infinite
rate of shear. The nonlinear Casson constitutive equation was derived by Casson (1959) and
describes the properties of many polymers. At low shear rates when blood flows through small
vessels, the blood flow is described by the Casson fluid model (McDonald 1974; Shaw et al
2009).

Non-Newtonian fluid flow generated by a stretching or shrinking sheet has many applica-
tions in industry. The flow of various non-Newtonian fluids over stretching or shrinking sheets
was analysed by Liao (2003), Hayat et al (2008) and Ishak et al (2012). Stagnation point flow
and heat transfer in a Casson fluid flow from a stretching sheet was studied by Mustafa et al
(2012). An exact solution of the steady boundary layer flow of Casson fluid over a porous
stretching or shrinking sheet was studied by Bhattacharyya et al (2011, 2013a, b). The effect of
mass transfer on the magnetohydrodynamic flow of a Casson fluid flow over a porous stretch-
ing sheet was studied by Shehzad et al (2013). Hayat et al (2012a, b) studied the effects
of mixed convection stagnation point flow of Casson fluid with convective boundary condi-
tions. In their model, they showed that heat transfer characteristics depending on the embedded
parameters.

The objective of this paper is to study the effect of the Casson parameter on the stagnation
point flow of a Casson fluid over a permeable stretching or shrinking sheet subject to Soret and
Dufour effects. We determine the dual fluid property solutions in the case when the surface is
shrinking.

2. Mathematical formulation

Consider steady, incompressible two-dimensional flow of a Casson fluid near the stagnation
point on a permeable stretching or shrinking sheet. The Cartesian coordinates x and y are along
the surface and normal to it, u and v are the respective velocity components. The flow is gener-
ated by the stretching or shrinking of the sheet, caused by the simultaneous application of two
equal forces along the x-axis. Keeping the origin fixed, the surface is stretched or shrunk with a
linear velocity uw(x) = cx, where c is a constant with c > 0 for a stretching sheet, c < 0 for a
shrinking sheet and c = 0 for a static sheet. We assume that the rheological equation of state for
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an isotropic and incompressible flow of a Casson fluid can be written as (Nakamura & Sawada
1988)

τij =
{

(μB + τy/
√

2π)2eij π > πc

(μB + τy/
√

2πc)2eij π < πc ,
(1)

where μB is plastic dynamics viscosity of the Casson fluid, τy is the yield stress of fluid, π is the
product of the component of deformation rate with itself, namely, π = eij eij , eij is the (i, j)th
component of the deformation rate, and πc is the critical value π . The momentum, temperature
and concentration equation under the above assumptions are written as

∂u

∂x
+ ∂v

∂y
= 0, (2)

u
∂u

∂x
+ v

∂u

∂y
= ue

due

dx
+ ν

(
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β
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∂2u

∂y2 + gβT (T − T∞), (3)

u
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∂2C

∂y2
, (4)

u
∂C

∂x
+ v

∂C

∂y
= Dm

∂2C

∂y2 + DmKT

Tm

∂2T

∂y2 . (5)

The boundary conditions for equations (2)–(5) are given in the form:

u = uw(x) = cx, v = 0, T = Tw(x) = T∞ +bx, C = Cw(x) = C∞ +dx, at y = 0,

u → ue(x) = ax, T → T∞, C → C∞, as y → ∞, (6)

where the ambient fluid moves with a velocity ue(x) = ax, a is a constant, β = μB

√
2πc/τy

is the Casson parameter, g is the acceleration due to gravity, βT is the coefficient of thermal
expansion, T is the fluid temperature, T∞ is uniform ambient temperature, αm is the effective
thermal diffusivity, Dm is the effective solutal diffusivity of the medium, KT is the thermal
diffusion ratio, Cs is the concentration susceptibility, Cp is the specific heat capacity, Tm is the
mean fluid temperature. The continuity equation (2) is satisfied by introducing a stream function
ψ(x, y) such that

u = ∂ψ

∂y
and v = −∂ψ

∂x
,

where ψ = (aν)
1
2 xf (η), f (η) is the dimensionless stream function and η = (a/ν)

1
2 y. The

velocity components are given by

u = axf ′(η) and v = − (aν)
1
2 f (η). (7)

The temperature and concentration are represented as

T = T∞ + 
T θ(η) and C = C∞ + 
Cφ(η), (8)
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where θ(η) and φ(η) are the dimensionless temperature and dimensionless concentration. On
using equations (7) and (8), equations (2)–(5) transform into the following two-point boundary
value problem

(
1 + 1

β

)
f ′′′(η) + f (η)f ′′(η) − f ′2(η) + 1 + λθ(η) = 0, (9)

1

P r
θ ′′(η) + f (η)θ ′(η) − f ′(η)θ(η) + Df φ′′(η) = 0, (10)

1

Sc
φ′′(η) + f (η)φ′(η) − f ′(η)φ(η) + Srθ ′′(η) = 0, (11)

f (0) = 0, f ′ (0) = c

a
, f ′ (∞) → 1, (12)

θ (0) = 1, θ (∞) → 0, (13)

φ (0) = 1, φ (∞) → 0, (14)

where the primes denote differentiation with respect to η. The non-dimensional constants in
equations (9) – (14) are the buoyancy or free convection parameter λ, Prandtl number P r , Dufour
parameter Df , Schmidt number Sc, Soret parameter Sr and the velocity ratio parameter c/a.
These are defined as

λ = gβT b

a2
, P r = ν

αm

, Df = DmKT (Cw − C∞)

CsCpν (Tw − T∞)
, Sc = ν

Dm

,

Sr = DmKT (Tw − T∞)

Tmν (Cw − C∞)
.

3. Skin friction, heat and mass transfer coefficients

The quantities of practical interest in this study are the skin friction Cf . The shearing stress at
the surface of the wall τw is given by

τw =
(

μB + τy√
2πc

)[
∂u

∂y

]
y=0

=
(

μB + τy√
2πc

)(
a3

ν

)1/2

xf ′′(0). (15)

The skin friction coefficient is defined as

Cf = τw

ρ ue(x)2
(16)

and using equation (15) in the equation (16), we obtain

Cf Re
1
2
x =

(
1 + 1

β

)
f ′′(0). (17)
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The heat transfer rate at the surface flux at the wall is given by

qw = −k

[
∂T

∂y

]
y=0

= −k (Tw − T∞)
(a

ν

) 1
2
θ ′ (0) . (18)

The local Nusselt number is defined as

Nux = xqw

k (Tw − T∞)
. (19)

Using equation (18) in equation (19), the dimensionless Nusselt number can be represented as
below

Nux

Re
1
2
x

= −θ ′ (0) . (20)

The mass flux at the surface of the wall is given by

qm = −Ds

[
∂C

∂y

]
y=0

= −Ds (Cw − C∞)
(a

ν

) 1
2
φ′ (0) . (21)

The local Sherwood is defined as

Shx = xqm

Ds(Cw − C∞)
. (22)

Using (21) in (22) the dimensionless Sherwood number obtained as

Shx

Re
1
2
x

= −φ′ (0) , (23)

where Rex = xue(x)/ν is the local Reynolds number.

4. Results and discussion

The system of ordinary differential equations (9)–(11) subject to the boundary conditions (12)–
(14) were solved using the Matlab bvp4c ODE solver. To benchmark the numerical results, we
have compared our results for the skin friction coefficient with those reported by Bhattacharyya

Table 1. Comparison of f ′′(0) values with Bhattacharyya (2011) and Ishak et al (2010) for λ = Pr =
Df = Sc = Sr = 0 and β = 108.

Present study Bhattacharyya (2011) Ishak et al (2010)

c/a 1st solution 2nd solution 1st solution 2nd solution 1st solution 2nd solution

−0.25 1.4022408 1.4022405 1.402241
−0.50 1.4956698 1.4956697 1.495670
−0.75 1.4892982 1.4892981 1.489298
−1.00 1.3288169 0 1.3288169 0 1.328817 0
−1.15 1.0822312 0.1167021 1.0822316 0.1167023 1.082231 0.116702
−1.20 0.9324734 0.2336497 0.9324728 0.2336491 0.932474 0.233650
−1.2465 0.5842817 0.5542962 0.5842915 0.5542856 0.584295 0.554283
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Table 2. Critical c/a value for different Casson parameter β.

β = 3.5 β = 4.0 β = 4.5

(c/a)crit −1.25182704 −1.25182390 −1.25181905

(2011) and Ishak et al (2010) in table 1. The results are in very good agreement thereby lending
confidence as to the accuracy of the present method.

This investigation confirms that the existence and uniqueness of solution depends on the
stretching ratio parameter. We found that for a stretching sheet, solutions of equations (9)–
(11) may be found for all values of c/a, while for a shrinking surface, solutions exist only for
c/a > (c/a)crit , where (c/a)crit is a critical value of c/a which depends on other parameters.
There are no solutions when c/a < (c/a)crit . Dual solutions of the fluid properties appear when
(c/a)crit < c/a < −1. The critical value (c/a)crit for different Casson parameters is given
in table 2. It is evident that the critical value of c/a is not significantly influenced by the Casson
parameter β within the chosen range.

In the absence of Soret and Dufour effects, for a particular values of other parameters, in order
to validate our results, we have compared the results of heat transfer −θ ′(0) for various values of
c/a (table 3.) with those of Wang (2008) and found that the results are excellent in agreement. It
can also be noticed that for the values of c/a<0 heat transfer decreases and increases for c/a>0.

Table 4 shows that the values of heat transfer coefficient for different c/a and β. It is observed
that heat transfer rate increases with an increase in ratio of c/a.

The dual solution is of the skin friction, heat transfer and mass transfer coefficients for differ-
ent values of the Casson parameter are shown in figure 1. The Casson parameter β is inversely
proportional to the yield stress, hence a decrease in the Casson parameter indicates an increase
in the yield stress. With an increase in β, the skin friction coefficient increases in the case of
the first solution but is reduced in the second solution. It is interesting to note that the values
of the heat transfer rate (Nusselt number) and mass transfer rate (Sherwood number) coincide
when plotted against the stretching ratio parameter c/a as shown in figure 1(b). An increase in
the Casson parameter enhances both the heat and mass transfer rates. This is because the ther-
mal and concentration boundary layer thicknesses decrease with β causing the temperature and
concentration gradients at the surface to increase.

Two velocity and temperature solutions were obtained when c/a < −1. These solutions are
shown in figure 2 for three different values of c/a = −1.23, − 1.24, − 1.25. As observed by
Merkin (1985), Merrill et al (2006), Paullet & Weidman (2007), Postelnicu & Pop (2011), the

Table 3. Comparison of −θ ′(0) with Wang for particular value
of c/a.

c/a Present study Wang (2008)

−0.25 0.6685728 0.66857
−0.5 0.5014476 0.50145
−0.75 0.2937625 0.29376
0 0.8113013 0.811301
0.1 0.8634517 0.86345
0.2 0.9133028 0.91330
0.5 1.0514584 1.05239
1 1.2533141 1.25331
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Table 4. Heat transfer coefficient −θ ′(0) for different values of c/a and β for fixed values of λ = 0.01 =
Pr = Df = Sc = Sr = 0.1.

β = 3.5 β = 4.0 β = 5

c/a 1st solution 2nd solution 1st solution 2nd solution 1st solution 2nd solution

−1.25 0.0291102 0.0583329 0.0324337 0.0613653 0.0371985 0.0657208
−1.20 0.053657 0.1128705 0.0494951 0.1154347 0.0435444 0.1191202
−1.10 0.2132429 0.1549802 0.2067033 0.1571813 0.1974351 0.1603466
−1.00 0.1822328 0.1841972 0.1870228
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Figure 1. Effects of the stretching rate c/a on the (a) skin friction and (b) heat transfer/mass transfer rates
when λ = 0.01, P r = Df = Sc = Sr = 0.1.
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Figure 2. Effects of the stretching rate c/a on the (a) velocity and (b) temperature solutions when β =
3.1, λ = 0.01, P r = Df = Sc = Sr = 0.1.
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Figure 3. Effects of the stretching rate c/a on (a) the concentration when β = 0.5, λ = 1, P r =
0.7, Df = 0.5, Sc = Sr = 0.8 and (b) dual concentration solutions when β = 3.1, λ = 0.01, P r = Df =
Sc = Sr = 0.1.

first solution is stable and physically realizable, while the second solution is unstable. Although
the second solution seems to be deprived of physical significance, it is interesting in the theory
of nonlinear differential equations since a similar equation may appear in other situations where
the solution could have physical significance. As the shrinking ratio increases, the free stream
velocity decreases reducing both the momentum and thermal boundary layer thicknesses.

The effect of the stretching (c/a > 0) and shrinking (c/a < 0) ratios on the concentration
profiles are shown in figure 3. With an increase in the stretching ratio, the velocity of the fluid
increases which in turn reduces the concentration layer thickness. In the case of a shrinking
sheet we obtain dual solutions. For the first solution, the concentration boundary layer thickness
increases with increase c/a while for second solution in figure 3(b), the concentration profiles
decrease with the shrinking ratio.

The influence of the Casson parameter on the velocity, temperature and concentration profiles
is shown in figures 4 and 5 when c/a = −1.25. The magnitude of the velocity is greater in the
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Figure 4. Effects of the Casson parameter on the (a) velocity and (b) temperature profiles when λ =
0.01, P r = Df = Sc = Sr = 0.1, c/a = −1.25.
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Figure 5. Effects of the Casson parameter on the concentration profiles when λ = 0.01, P r = Df =
Sc = Sr = 0.1, c/a = −1.25.

case of a Casson fluid when compared with a viscous fluid. Hence in general, with an increase
in β, the velocity of the fluid decreases for a stretching sheet. However, for a shrinking sheet
the opposite is true and the velocity profiles increase with β. Consequently, the thermal and
concentration boundary layer thicknesses decrease with an increase in β in the case of a shrinking
sheet.

5. Conclusions

The Soret and Dufour effects on a Casson fluid are investigated about a stagnation point on
a stretching sheet. The momentum, temperature and concentration equations are written as a
system of ordinary differential equations using a suitable similarity transformation and then
solved numerically using the Matlab bvp4c package. Two solutions were obtained when c/a <

−1. We have shown that Dufour number enhances the velocity and temperature throughout the
boundary layer. The concentration boundary layer thickness is enhanced by an increase in the
Soret number. The shrinking ratio reduces the velocity of the fluid but enhances the concentration
layer thickness in the case of the first solution. The skin friction and heat and mass transfer rates
increase with the Casson parameter.
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