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Abstract

Current state-of-the-art semantic segmentation method-

s often apply high-resolution input to attain high perfor-

mance, which brings large computation budgets and limits

their applications on resource-constrained devices. In this

paper, we propose a simple and flexible two-stream frame-

work named Dual Super-Resolution Learning (DSRL) to ef-

fectively improve the segmentation accuracy without intro-

ducing extra computation costs. Specifically, the proposed

method consists of three parts: Semantic Segmentation

Super-Resolution (SSSR), Single Image Super-Resolution

(SISR) and Feature Affinity (FA) module, which can keep

high-resolution representations with low-resolution input

while simultaneously reducing the model computation com-

plexity. Moreover, it can be easily generalized to other

tasks, e.g., human pose estimation. This simple yet effective

method leads to strong representations and is evidenced by

promising performance on both semantic segmentation and

human pose estimation. Specifically, for semantic segmen-

tation on CityScapes, we can achieve ≥2% higher mIoU

with similar FLOPs, and keep the performance with 70%

FLOPs. For human pose estimation, we can gain ≥2%

mAP with the same FLOPs and maintain mAP with 30%
fewer FLOPs. Code and models are available at https:

//github.com/wanglixilinx/DSRL.

1. Introduction

Semantic segmentation is a fundamental task for scene

understanding, which aims to assign dense labels for all pix-

els in the image. It has several potential applications in the

fields of autonomous driving, robot sensing and so on. For

most such applications, it is a challenge to simultaneously

keep efficient inference speed and impressive performance,

especially on mobile devices with limited resources.

Owing to the development of deep learning, semantic

segmentation has also achieved significant improvements,
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Figure 1. Accuracy vs. Input size for different networks on C-

ityScapes validation set. Green points denote results for DeepLab-

v3+ with different input size: 256×512, 320×640, 384×768,

448×896, 512×1024 and 1024×2048, and blue triangles mark

the results for ESPNetv2. Red ones represent the results with our

method based on DeepLabv3+ and ESPNetv2, respectively.

in which high-resolution deep feature representation plays

an essential role in achieving promising performance. Cur-

rently, there are two main lines to keep high-resolution

representation. One is to explicitly maintain the high-

resolution representations by using atrous convolution to re-

place strided convolution, such as DeepLabs [2, 3, 4]. The

other one is to hallucinate higher-resolution feature maps

by combining a top-down pathway and lateral connections,

such as encoder-decoder frameworks like UNet [27]. How-

ever, these approaches often involve expensive computation

cost. Besides, they usually take the original high-resolution

image as input, which further increases the amount of cal-

culation. Recently, compact segmentation networks have

also attracted much attention due to their application advan-

tages in resource-constrained devices. Nevertheless, their

performance is far inferior to the state-of-the-art methods.

In order to narrow the accuracy gap, these methods are often

combined with a high-resolution input (e.g., 1024×2048 or

512×1024), which also brings notable computation costs.

Once restricting the input size, regardless of large networks

or compact networks, their performance degrades consider-
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ably. Figure 1 shows the performance of two representa-

tive segmentation networks: ESPNetv2 [24] and DeepLab-

v3+ [4] with various input resolutions. We can observe

that when the input resolution decreases from 512×1024

to 256×512, the accuracy of both networks is reduced by

more than 10%.

Therefore, in this paper, we design a clear and simple

framework to alleviate this dilemma. Specifically, moti-

vated by the image super-resolution, which aims to recon-

struct a high-resolution image with a low-resolution input,

we propose a novel Dual Super-Resolution Learning (DSR-

L) paradigm to keep high-resolution representation. Such

a learning method is unified in a two-stream framework,

which consists of Semantic Segmentation Super-Resolution

(SSSR), Single Image Super-Resolution (SISR) and a Fea-

ture Affinity (FA) module. More specifically, we integrate

the idea of super-resolution into existing semantic segmen-

tation pipelines, thus formulating a Semantic Segmentation

Super-Resolution (SSSR) stream. Then, the high-resolution

features of the SSSR stream are further enhanced by the

fine-grained structural representation from the SISR stream

with Feature Affinity (FA) module. Moreover, these t-

wo streams share the same feature extractor, and the SISR

branch is optimized with reconstruction supervision during

training, and it will be freely removed from the network in

the inference stage, thus causing cost-free overhead. We

note that the proposed method can easily achieve a higher

mIoU with similar FLOPs, and keep the performance with

less FLOPs. As shown in Figure 1, our proposed DSRL can

significantly improve the accuracy under different resolu-

tions, especially for low-resolutions, thus can significantly

reduce the computation cost with comparable performance.

Compared to ESPNetv2 with an input size of 320×640, our

method using a lower-resolution input image of 256×512

can gain 2.4% of mIoU and reduce 36% FLOPs at the same

time. Last but not least, our framework can be easily ex-

tended to other tasks requiring high-resolution representa-

tion, like human pose estimation. Extensive experiments

demonstrate the effectiveness and efficiency of the proposed

method on both two challenging datasets, e.g., CityScapes

[5] for semantic segmentation and MS COCO [19] for hu-

man pose estimation.

In summary, our main contributions include:

(1) We propose a dual super-resolution learning frame-

work to keep high-resolution representation, which can im-

prove the performance while keeping the inference speed;

(2) We validate the generality of the DSRL framework,

which can be readily extended to other tasks requiring high-

resolution representation, like human pose estimation.

(3) We demonstrate the effectiveness of our method both

on semantic segmentation and human pose estimation. With

a similar computation budget, we can improve ≥ 2% accu-

racy, while reducing FLOPs with comparable performance.

2. Related Work

Semantic Segmentation. Semantic segmentation is a

dense image prediction task, which plays a key role in high-

level scene understanding. Driven by the rapid development

of convolutional neural networks (CNNs), various works,

FCN [21], DeepLabs [2, 3, 4], PSPNet [38] always adop-

t sophisticated feature extraction networks (e.g., ResNet-

s [12] and DenseNets [13]) to learn discriminative fea-

ture representations for dense prediction. Besides, existing

methods also develop critical strategies to further improve

the performance, including atrous convolution [2, 3, 4],

pyramid pooling module [38], attention mechanism [14],

context encoding [37] and so on. However, these method-

s always involve expensive computation which limits their

applications on resource-constrained devices.

Meanwhile, designing lightweight semantic segmenta-

tion models attracts much attention from the community.

Most works focus on lightweight networks design by accel-

erating the convolution operations with factorization tech-

niques. ESPNets [23, 24] exploit split-merge or reduce-

expand principles to accelerate the convolution computa-

tion. Some others adopt efficient classification networks

(e.g., MobileNet [28] and ShuffleNet [22]) or some com-

press techniques (e.g., pruning [9] and vector quantization

[34]) to accelerate segmentation. In addition, [20] exploits

knowledge distillation to help the training of compact net-

works by making use of large networks. However, their

performance is far inferior to the state-of-the-art models.

Different from previous methods, we exploit the high-

resolution features of single image super-resolution to guide

the correlation learning of spatial dimension, thus benefiting

the task of semantic segmentation. Our method can improve

the performance significantly while keeping similar FLOPs.

Single Image Super-Resolution. SISR refers to the

process of recovering high-resolution images from low-

resolution images. Deep learning-based SISR methods have

been widely proposed and achieve state-of-the-art perfor-

mance on various benchmarks. Recently, there are four

main kinds of supervised image super-resolution methods.

(1) Pre-upsampling SR [7, 6] applies a traditional upsam-

pling operation (e.g. bilinear or bicubic) to obtain a high-

resolution image, and then refine it using a deep learning

convolution network. This framework needs higher compu-

tation cost since most operations are performed in the high-

dimensional space. (2) Post-upsampling SR [29, 16, 32]

replaces the predefined upsampling operations with end-to-

end learnable upsampling layers integrated at the end of the

models, which can greatly reduce the computational com-

plexity. (3) Progressive-upsampling SR [16, 15, 33] is in-

troduced based on post-upsampling SR, it aims to reduce

the learning difficulty by gradually reconstructing high-

resolution images, and can cope with the need for multi-

scale SISR. (4) Iterative up-and-down SR [13, 10, 31] ex-
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Figure 2. The overview of the proposed DSRL framework, which includes three parts: Semantic Segmentation Super-Resolution (SSSR)

branch, Single Image Super-Resolution (SISR) branch, and Feature Affinity (FA) module. The encoder is shared between the SSSR branch

and the SISR branch. The architecture will be optimized with three terms: MSE loss for SISR branch, FA loss and a task-specific loss, e.g.,

the Cross-Entropy loss for semantic segmentation.

ploits iterative upsampling and downsampling layers to gen-

erate intermediate images and then combine them to re-

construct final high-resolution images. In consideration of

high-quality results and low computation cost, we follow

the spirit of the post-upsampling SR methods for our SISR

branch in this work.

Multi-task Learning. Multi-task learning is generally

used with CNNs to model related tasks jointly, e.g., pose

estimation and action recognition [8], object detection and

instance segmentation [11]. These methods usually treat

multiple tasks equally both during training and testing phas-

es. However, different from those methods with cross-task

module design, we treat segmentation as the main task and

SISR as an auxiliary task, where the image super-resolution

branch will be removed during the inference stage and no

extra computation cost is introduced.

3. Proposed Approach

In this section, we first review the most popular Encoder-

Decoder architecture for semantic segmentation. We then

present the proposed DSRL framework in detail and finally

introduce the optimization function briefly.

3.1. Review of EncoderDecoder Framework

We begin by briefly reviewing the traditional encoder-

decoder architecture for semantic segmentation. As we

know, the Encoder employs deep convolutional neural net-

works to extract hierarchical features with a scaling step of

2. Here, we denote output stride (OS) as the ratio of input

image spatial resolution to the Encoder output resolution.

In order to ensure high performance, OS usually equals

16 (or 8) by replacing the last one (or two) strided con-

volution block(s) with atrous convolutions corresponding-

ly. Based on the down-sampled feature maps, the Decoder

either directly exploits a bilinear upsampling layer with a

scaling factor of OS (e.g., PSPNet [38]) or a simple de-

signed sub-network (e.g., two consecutive upsampling lay-

ers in DeepLabv3+ [4]) to refine the segmentation result-

s. However, most of existing methods can only upsample

the feature maps to the same size as the input image for

prediction, which might be smaller than the original im-

age, e.g., sub-sampling the original image of 1024×2048

to 512×1024 as the network input in CityScapes, thus the

ground truth needs to be down-sampled for supervision. On

the one hand, this may result in the loss of effective label

information. On the other hand, it is difficult to recover the

original details only relying on the Decoder, which restricts

the performance improvement.

3.2. Dual SuperResolution Learning

To alleviate the above dilemmas, we propose a simple

and effective framework, named as Dual Super-Resolution

Learning (DSRL), to effectively improve the performance

without computation and memory overload, especially with

a low-resolution input. As shown in Figure 2, our ar-

chitecture consists of three parts: (a) Semantic Segmen-

tation Super-Resolution (SSSR); (b) Single Image Super-

Resolution (SISR), and (c) Feature Affinity (FA) module.

Semantic Segmentation Super-Resolution. For the se-

mantic segmentation, we simply append an extra upsam-

pling module to produce the final prediction mask, the

whole process named as Semantic Segmentation Super-

Resolution (SSSR), e.g., as shown in Figure 4 (a), tak-
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ing an input of 512×1024, we will generate an output of

1024×2048, which is 2× than the input image. Compared

with most recent systems, which predict a 512×1024 mask

for training and testing (then re-scaling to 1024×2048 in

the post-processing stage), our method can make full use of

the ground-truth and avoid the effective label information

loss caused by pre-processing. Our extra semantic segmen-

tation upsampling module consists of a stack of deconvolu-

tion layers, followed by BatchNorm and ReLU layers and it

requires only a fewer parameters.

Single Image Super-Resolution. As discussed above,

only relying on the decoder module is not enough to re-

cover analogous high-resolution semantic feature represen-

tation obtained by using the original image as the input.

Because the decoder is either a bilinear upsampling lay-

er or a simple sub-network, it will not bring any addition-

al information since the input is in a low-resolution (e.g.,

512×1024). SISR aims to build a high-resolution image

from the low-resolution input. This means that SISR can

effectively reconstruct fine-grained structure information of

the image under the low-resolution input, which is always

helpful for semantic segmentation. To show a better under-

standing, we visualize the features of SSSR and SISR in

Figure 3. By comparing (b) and (c) in Figure 3, we can eas-

ily find that the SISR contains more complete structures of

objects. Although these structures do not explicitly imply

the categories, they can be effectively grouped by the rela-

tionships between pixel and pixel or region and region. As

we know, the relationships can implicitly deliver semantic

information, thus benefiting the task of semantic segmenta-

tion. Therefore, we apply the high-resolution features re-

covered from SISR to guide the learning of high-resolution

representation of SSSR, and these details can be modeled

by the correlation or relationships between internal pixels.

The relationship learning can make up for the simple design

of the decoder. For the SISR branch, it shares the feature ex-

tractor with SSSR, as shown in Figure 4 (b), and we follow

the design of [29] to reduce the computation and generate

high-quality results. The whole branch is trained with the

supervision of the original image and will be freely removed

during the inference phase.

Feature Affinity Learning. Since SISR contains more

complete structure information than SSSR, we introduce

feature affinity learning to guide SSSR to learn high-

resolution representation. As shown in Equation 1, FA aim-

s to learn the distance of similarity matrix between SISR

and SSSR branch, where the similarity matrix, as shown

in Equation 2, mainly describes the pairwise relationship

between pixels. Specifically, for a W ′ × H ′ × C ′ feature

map F , where W ′ × H ′ means the spatial dimension, we

formulate the relationship between every two pixels, so the

relation graph contains W ′H ′×W ′H ′ connections, and Sij

denotes the relationship between the ith and the jth pixels

Figure 3. Feature-level visualization for SSSR and SISR under the

same input (0.5×). (a) Input image, (b) SSSR feature visualiza-

tion, and (c) SISR feature visualization.

Figure 4. (a) Semantic Segmentation Super-Resolution (SSSR)

branch; (b) extends (a) with a Single Image Super-Resolution

(SISR) branch. ’Encoder’ denotes the shared feature extractor.

on feature map F . Theoretically, it’s better to compute the

affinity of every pair of pixels, but due to the high mem-

ory overheads, we subsample the the pairs of pixels to its

1/8 in practice. Besides, in order to reduce the training

instability caused by the discrepancy of feature distribution

between SISR and SSSR branch, we append a feature trans-

form module on the feature map of the SSSR branch before

applying the FA loss, which consists of a 1× 1 convolution

layer followed by BatchNorm and ReLU layers.

Lfa =
1

W ′2H ′2

W ′H′∑

i=1

W ′H′∑

j=1

||Sseg
ij − Ssr

ij ||q (1)

and

Sij = (
Fi

||Fi||p
)T · (

Fj

||Fj ||p
)

(2)

Sseg and Ssr refer the semantic segmentation similarity

matrix and SISR similarity matrix, respectively. p and q
denote the norms used to normalize the features for stability.

Here we set p = 2 and q = 1.
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3.3. Optimization

The whole objective function, as shown in Equation 3,

consists of a conventional multi-class Cross-Entropy loss

Lce in Equation 4 for semantic segmentation, a Mean

Squared Error (MSE) loss Lmse in Equation 5 for SISR,

and the structured relation term Lfa given in Equation 1.

L = Lce + w1Lmse + w2Lfa (3)

and

Lce =
1

N

N∑

i=1

−yilog(pi) (4)

Lmse =
1

N

N∑

i=1

||SISR(Xi)− Yi||
2 (5)

where SISR(·) and Y refer the super-resolution output and

its corresponding ground truth, pi and yi refer the segmen-

tation predicted probability and the corresponding category

for pixel i, N means the pixel number. w1 and w2 are set

as 0.1 and 1.0, making these loss value ranges comparable.

We minimize the whole objective function end-to-end.

4. Experiments for Semantic Segmentation

4.1. Datasets and Evaluation Metrics

The CityScapes dataset [5] focuses on urban visual scene

understanding which consists of 2,975 training, 500 valida-

tion and 1525 test images with fine-grained annotations. It

was captured across 50 cities in different seasons. The task

is to segment an image into 19 classes. All images are in a

resolution of 1024×2048. We perform detailed comparison

experiments on its validation set and report the final results

on the test set using the Online Server.

The CamVid dataset [1] is another automotive dataset.

There are 11 valid different classes. The original frame res-

olution for this dataset is 960×720. We evaluate the perfor-

mance on the validation and test set over 11 classes.

We use the common metric of mean Intersection over

Union (mIoU) for semantic segmentation on both datasets.

We also report the FLOPs of segmentation models to com-

pare their computation cost.

4.2. Implementation Details

Networks. We conduct ablation studies on two rep-

resentative segmentation architecture: ESPNetv2 [24] and

DeepLabv3+ [4]. We also verify the effectiveness of our

method on some other structures, such as PSPNet [38] and

lightweight models: BiseNet [36] and DABNet [17].

Training setup. Our method is implemented in PyTorch.

All the segmentation networks in this paper are trained by

mini-batch stochastic gradient descent (SGD) with the mo-

mentum (0.9) and the weight decay (0.0005). The learning

rate is initialized as 0.01, and we apply the poly learning

rate strategy with power 0.9. Other than this, we follow the

settings in the corresponding publications to reproduce the

results of all the networks.

4.3. Ablation Study

Effect of algorithmic components. We first investigate

the proposed method of our dual super-resolution learning

system. The experiments are conducted on ESPNetv2 and

DeepLabv3+ (with ResNet101 as the backbone) represen-

t the compact and the large network, respectively, and we

evaluate the mean Intersection over Union (mIoU) on the

CityScapes validation set. Here, we resize the image to

256×512 as the input for accelerating the training of ex-

periments. As shown in Table 1, taking ESPNetv2 as an

example, we can see that the SSSR learning can improve

the performance from 54.5% to 55.7% since it reduces the

scaling times of ground truth. By adding the SISR branch,

the mIoU can be effectively improved by 2.4%. While com-

bining with the FA loss, the performance can be further im-

proved to 59.5%(5.0% higher than the baseline), thus indi-

cating that transferring the structure information between

SISR and SSSR is necessary. The results on DeepLab-

v3+ can also draw the same conclusion, which consistently

demonstrates the effectiveness of the proposed DSRL.

In order to better understand the DSRL, we also visualize

the final segmentation features between the baseline ESP-

Netv2 and our DSRL. As shown in Figure 5 (c), our method

can significantly enhance the sharpness of the boundary and

improve the completeness of different categories, e.g., road,

car and so on, thus undoubtedly strengthening the final dis-

crimination ability of the model.

Method Input size Output size Val. (%)

ESPNetv2 [24] 256×512 256×512 54.5

+ SSSR 256×512 512×1024 55.7

+ SSSR + SISR 256×512 512×1024 56.9

+ SSSR + SISR + FA 256×512 512×1024 59.5

DeepLabv3+ [4] 256×512 256×512 56.5

+ SSSR 256×512 512×1024 57.1

+ SSSR + SISR 256×512 512×1024 57.4

+ SSSR + SISR + FA 256×512 512×1024 59.2

Table 1. The effect of different components in the proposed

method with an input in 256 × 512. + SSSR: adding the SSSR

learning method. + SISR: adding the SISR learning method. +

FA: adding the FA module between SSSR and SISR.

Effect of various input resolutions. We also compare

the adaptability of the proposed method under different in-

put resolutions, which ranges from 256×512 to 512×1024.

As shown in Table 2, which proves the generality of our
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Methods 256×512 320×640 384×768 448×896 512×1024

ESPNetv2 [24] 54.5 57.1 61.4 63.2 64.5

ESPNetv2(ours) 59.5 61.9 64.0 65.7 66.9

∆mIoU(%) +5.0 +4.8 +2.6 +2.5 +2.4

FLOPs(G) 1.35 2.11 3.04 4.13 5.40

DeepLabv3+ [4] 56.5 59.3 62.0 63.7 70.0

DeepLabV3+(ours) 59.2 61.7 64.3 65.7 72.0

∆mIoU(%) +2.7 +2.4 +2.3 +2.0 +2.0

FLOPs(G) 243.57 380.58 548.06 745.94 974.30

Table 2. Performance comparison with our DSRL on the C-

ityScapes validation set with various input resolutions: 256×512,

320×640, 384×768, 448×896 and 512×1024, and we keep the

same aspect ratio of height : width = 1 : 2. ∆mIoU refers the

improved mIoU with the same input resolution.

method. With our method, two networks (ESPNetv2 and

DeepLabv3+) outperform the accuracy of its corresponding

baseline with the same input size. What’s more, compared

with a larger input resolution e.g., 448×896, our method

with 384×768 can reduce 26% FLOPs and even improve

the mIoU by 0.8% and 0.6% for ESPNetv2 and DeepLab-

v3+, respectively. Thus, our method can improve accuracy

with the same computation budget, while reducing FLOPs

with comparable performance, which consistently demon-

strates the efficiency of the proposed DSRL.

4.4. Results on CityScapes

To further verify the effectiveness of our method, we ap-

ply our dual super-resolution learning method to some oth-

er architectures, e.g., PSPNet with ResNet101 as the back-

bone and several compact networks designed for real-time

application, e.g., DABNet and BiseNet which is based on a

ResNet18. Table 3 presents the segmentation accuracy and

model complexity, respectively. We use FLOPs to evaluate

the network complexity which is calculated at the resolu-

tion 512×1024. We can see that our approach can improve

the results over different complexity networks: ESPNetv2,

BiseNet, DABNet, PSPNet, and DeepLabv3+. For the net-

work with a naive decoder such as PSPNet, the improve-

ment is significant with 4.3% on the test set compared with

the baseline of 69.3%. Compared to the distillation method

[20], we provide another effective pipeline to achieve higher

performance with the same FLOPs.

Figure 6 shows the IoU score for each class over

DeepLabv3+. Our DSRL scheme improves the perfor-

mance significantly, especially for the small categories with

low IoU scores, e.g., 10.44% improvement for pole and

10.03% for rider. The qualitative segmentation results in

Figure 8 demonstrate the effectiveness of our method, espe-

cially for structured objects, such as car, person and so on.

4.5. Results on CamVid

Table 4 shows the performance of ESPNetv2, BiseNet

and DeepLabv3+ with and without the proposed DSRL

Figure 5. The visualization of segmentation features (better visual-

ized in color). (a) input image. (b) the final segmentation features

of baseline [24] method. (c) the final segmentation features of our

DSRL.

Method Val. (%) Test (%) GFLOPs

Current state-of-the-art results

ENet [25] - 58.3 7.24

ESPNet [23] - 60.3 8.86

ERFNet [26] - 68.0 25.60

PSPNet(ResNet18(0.5))[20] - 54.1 133.40

PSPNet(ResNet18(0.5))[20]† - 60.5 133.40

PSPNet(ResNet18(1.0))[20] - 67.6 512.80

PSPNet(ResNet18(1.0))[20] † - 71.4 512.80

FCN [21] - 65.3 1335.60

RefineNet [18] - 73.6 2102.80

Results w/o and w/ DSRL scheme

ESPNetv2 [24] 64.5 65.1 5.40

ESPNetv2(ours) 66.9 65.9 5.40

DABNet [17] 62.6 65.0 20.44

DABNet(ours) 65.4 66.2 20.44

BiseNet [36] 62.6 61.8 49.20

BiseNet(ours) 66.8 64.9 49.20

DeepLabv3+ [4] 70.0 67.1 974.30

DeepLabv3+(ours) 72.0 69.3 974.30

DeepLabv3+(ours)‡ 73.4 71.8 8464.23

PSPNet(ResNet101) [38] 71.5 69.1 287.48

PSPNet(ResNet101)(ours) 74.4 73.4 287.48

PSPNet(ResNet101)(ours)‡ 75.7 74.8 3575.54

Table 3. The segmentation results comparison with other state-of-

the-art methods on the CityScapes validation (Val.) and test (Test)

set. We report GFLOPs at the same image resolution used for

computing the accuracy. †: refers to with knowledge distillation

method in [20]. ‡: refers the network is tested on multiple scales.

schemes on CamVid. We train and evaluate the networks at

the resolution 368×480 1. We can see that our method de-

1Both ESPNetv2 and DeepLabv3+ require the input resolution to be a

multiple of 16
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Figure 6. Illustrations of the effectiveness of DSRL method in

terms of class IoU scores on the network DeepLabv3+ over the

CityScapes validation set. The performance is improved signifi-

cantly, especially for the hard classes with low IoU scores, such as

pole and traffic light.

Figure 7. Qualitative SISR results comparison on the CityScapes

validation. (a) low-resolution images. (b) the SISR results.

livers a competitive performance. Under the same computa-

tional constraints, our method consistently outperforms the

baseline methods by a large margin. Notably, our method

based on ESPNetv2 provides 3.1% improvement compared

with ENet [25], with only 50% FLOPs. The results demon-

strate the effectiveness of the proposed DSRL method.

4.6. Results for Single Image SuperResolution

We also present the results for image super-resolution

with a scale factor of 2×. For SISR, Peak Single-to-Noise

Ratio (PSNR) [35] is used to measure the image recon-

struction quality, and Structural Similarity Index (SSIM)

is proposed for measuring the structural similarity between

output image and ground truth [35]. Our method achieves

0.35/0.78 for PSNR and SSIM on the CityScapes validation

set, respectively. Figure 7 shows examples of our image

super-resolution results.

Method Test (%) GFLOPs

ENet [25] 51.3 3.61

ESPNet [25] 57.8 3.09

ESPNet [20] 61.4 3.09

ESPNet-C [25] 56.7 3.09

ESPNet-C [20] 60.3 3.09

ESPNetv2 [24] 50.9 1.82

ESPNetv2 (ours) 54.4 1.82

BiseNet [36] 53.4 4.14

BiseNet (ours) 57.0 4.14

DeepLabv3+ [4] 60.4 326.13

DeepLabv3+ (ours) 63.7 326.13

Table 4. Segmentation results on the CamVid test set.

5. DSRL for Human Pose Estimation

Our framework can be readily extended to human pose

estimation, which further exhibits the generality of our

method. Human pose estimation is another challenging

computation vision task, in which a high-resolution repre-

sentation is also required for keypoint localization accuracy.

Dataset. The MS COCO dataset [19] contains over

200K images and 250K person instances labeled with 17

keypoints. We train our model on MS COCO train2017

dataset, including 57K images and 150K person instances,

and do evaluation on the val2017 set containing 5K images.

Evaluation metric. The standard evaluation metric is

based on Object Keypoint Similarity (OKS) [30]. We re-

port standard average precision and recall scores: AP@0.5

(AP at OKS = 0.50), AP@0.75 (AP at OKS = 0.75), mAP

(the mean of AP scores at 10 positions, OKS = 0.50, 0.55,...,

0.90, 0.95), AP(M) for medium objects, AP(L) for large ob-

jects, AR@0.5 (AR at OKS = 0.50), and AR@0.75 (AR at

OKS = 0.75). More details can be referred to [30].

Implementation details. Models are trained on

train2017 and evaluated on the val2017. We follow the

same training settings as in [30]: we extend the human

detection box in height or width to a fixed aspect ratio

height : width = 4 : 3, and then crop the box from the

image, which is resized to various fixed sizes, 256×192,

160×128, and 128×96.

Architecture. We adopt a two-stage top-down paradig-

m, HRNet-w32 [30] to verify our proposed method, which

uses the offline person detection results to predict the hu-

man keypoint. HRNet is one of the state-of-the-art archi-

tectures for accurate human pose estimation. The network

input is a person instance that is resized to a fixed size, e.g.,

256×192, and the keypoint head produces a heatmap with

the resolution of 64×48. Following the same design for se-

mantic segmentation, we append an extra upsampling mod-

el at the end of the existing network to predict the keypoint,

meanwhile, the SISR branch shares the same feature extrac-

tor. The total objective function is a weighted sum of three
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Figure 8. Comparison of segmentation results. (a) Input image. (b) Ground truth. (c) The baseline results of DeepLabv3+ [4] with

512×1024. (d) Results of DeepLabv3+ with our DSRL method.

Method Input size mAP(%) AP@0.5 AP@0.75 AP(M) AP(L) AR AR@0.5 AR@0.75 GFLOPs

HRNet-w32 [30] 256×192 74.4 90.5 81.9 70.8 81.0 79.8 94.2 86.5 7.12

HRNet-w32(ours) 256×192 75.6 92.2 83.0 72.1 82.8 81.2 93.8 88.5 7.12

HRNet-w32 [30] 160×128 69.2 89.3 78.1 66.7 75.2 75.7 93.6 83.7 2.97

HRNet-w32(ours) 160×128 71.5 89.6 79.4 68.6 77.5 77.5 93.7 84.5 2.97

HRNet-w32 [30] 128×96 64.6 87.8 73.9 62.7 69.8 71.7 92.8 80.2 1.78

HRNet-w32(ours) 128×96 67.9 88.3 76.7 65.6 73.5 74.5 92.8 82.4 1.78

Table 5. Human pose estimation results with HRNet-w32 on the MS COCO2017 validation set.

items: keypoints regression loss, MSE loss, and the FA loss.

Results on the validation set. Table 5 summarizes

the performance comparations between the baseline HR-

Net method and the proposed DSRL method. With different

resolutions of person instances as input, our method consis-

tently surpasses HRNet by 1.2% to 3.3%. The experimental

results demonstrate the effectiveness and generality of our

method. Figure 9 shows some keypoint prediction results

with our method on the COCO validation set.

6. Conclusion

In this work, we propose a dual super-resolution learn-

ing framework for semantic segmentation. The semantic

segmentation super-resolution branch helps learn higher-

resolution representations for dense label prediction, the

single image super-resolution branch can recover detailed

structure information, and the feature affinity module is in-

troduced to enhance the high-resolution representations of

semantic segmentation through the detailed structural in-

formation. We demonstrate the effectiveness of our ap-

Figure 9. Qualitative results on the MS COCO 2017 validation set

produced from HRNet-w32 with our proposed DSRL.

proach with several recently-developed networks, and it can

be readily extended to other tasks like human pose estima-

tion, which further exhibits the generality of our method.
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