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Abstract

There is a substantial theory (modelled on permutation representations of groups) of representations of an
inverse semigroup S in a symmetric inverse monoid ^x . that is. a monoid of partial one-to-one selfmaps
of a set X. The present paper describes the structure of a categorical dual J$ to the symmetric inverse
monoid and discusses representations of an inverse semigroup in this dual symmetric inverse monoid. It
is shown how a representation of S by (full) selfmaps of a set X leads to dual pairs of representations
in Jx and J^ , and how a number of known representations arise as one or the other of these pairs.
Conditions on S are described which ensure that representations of S preserve such infima or suprema as
exist in the natural order of S. The categorical treatment allows the construction, from standard functors,
of representations of S in certain other inverse algebras (that is, inverse monoids in which all finite infima
exist). The paper concludes by distinguishing two subclasses of inverse algebras on the basis of their
embedding properties.

1991 Mathematics subject classification (Amer. Math. Soc): primary 20M18; secondary 2OM3O.

1. Background information

In this paper we consider (i) the dual symmetric inverse monoid ^ of all bijections
between the quotient sets of a given set X, and more generally, the dual symmetric
inverse monoid J ^ of all isomorphisms between the quotient objects of an object A in
any sufficiently well-endowed category; and (ii) representations of arbitrary inverse
monoids in dual symmetric inverse monoids. To do so with sufficient generality
requires that we first recall the category-theoretic framework of symmetric inverse
monoids. This approach directs consideration to both duality, and to the existence
of extra structure (that of complete inverse algebras) in both the symmetric and dual
symmetric cases.
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346 D. G. FitzGerald and Jonathan Leech [2]

We adopt the concepts and notation of category theory given in [9] and the theory
of inverse semigroups given in [10], with the following exceptions. Firstly, rather than
use the standard definition of a subobject as an equivalence class of monies into Y, we
wish 'X is a subobject of V to be read in the naive sense that there is a monic from
the object X to the object Y. Secondly, morphisms (arrows) in a category, such as set
functions and group homomorphisms, will be written to the right of their arguments,
and so composition will occur from left to right, in diagram order. Functors, however,
will be written to the left of their arguments and their composition read from right to
left, as usual in [9].

A monosetting is a pair (M, X), where M is a category and X is a distinguished
object of M, such that every object of M is a subobject of X, every morphism of M
is monic, and M has finite intersections. We define in dual fashion an episetting. An
equivalence [duality] of settings is an equivalence [duality] between the categories
preserving the distinguished objects. Settings are encountered in ordinary categories
as follows:

If X is an object in a category K which has finite intersections, denote by M(X)
the subcategory of all monomorphisms between subobjects of X in K. Then the
pair (M(X), X) is a monosetting. If K is well powered (locally small), then every
monosetting (M(X), X) is equivalent to a small approximation (M, X), where M
is a small subcategory of M(X) which also contains X and for which the inclusion
M c M(X) is an equivalence. Any pair of small approximations of (M(X), X) are
equivalent. Our interest in small approximations rests on the following

CONSTRUCTION 1.1. Let (M, X) be a small monosetting. Consider parallel pairs
of morphisms (g, g') : A —* X in M (where the common domain A varies with the
pair). Two such pairs (g, g') and (h, h') are equivalent if there is an isomorphism
u € M such that both h — ug and h! = ug'. A fractional morphism is an equivalence
class of pairs, with the class of (g, g') denoted by [g, g']. Let J^(M, X) denote the
set of all such fractional morphisms. A multiplication is defined on J^(M, X) by
setting [g, g'][h, h'] = [mg, nh'] where m and n arise from the intersection in M of
the middle pair: mg' = nh.

It is easy to check, using the universal property of intersections, that the multiplic-
ation is well defined. In fact it is straightforward to verify the following theorem, a
dual (and slightly more abstract) version of which may also be found in [6] or in [4,
Section VII.8]

THEOREM 1.2. (i) Under the multiplication described above, J^M, X) forms

an inverse monoid. The idempotents are classes of the form [g, g], with the identity

given by [lx, 1*] and inversion by [g, #']"' = [g', g].

(ii) An equivalence F : (M, X) ~ (N, Y) of small monosettings induces an
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isomorphism F* : J?(M, X) S c/(N, Y) given by the rule [g, g'] —> [Fg, Fg'].

Conversely, if derived inverse monoids . / (M, X) and J^(N, Y) are isomorphic, then

their settings are equivalent.

The inverse monoid J?(M, X) is thus called the classifying monoid of the mono-
setting (M, X). Clearly any small episetting (E, X) also has a classifying monoid

J^CE, X) defined on the set of equivalence classes [g, g'] of pairs (g, g') of epi-
morphisms from X to some common codomain. Upon defining multiplication by
[g, g'][h, h'] = [gm, h'n], where g'm = hn is the co-intersection of g' with h, the
dual assertions of the above theorem also hold.

Let K be a well-powered category with object X. If M(X) is a monosetting,
then the symmetric inverse monoid of X in K is the classifying monoid of any small
approximation (M, X) of (M(X), X), and is denoted J2* (or J^(K, X) when the
ambient category needs reference). Since any two choices for (M, X) are equivalent,
^x is well defined to within isomorphism. For each object X in a mathematically
interesting concrete category K, there is usually a standard choice for (M, X) and
thus a standard form for <?x. Given the dual conditions at X, the dual symmetric

inverse monoid J ^ of X in K is the classifying monoid of any small approximation
(E, X) of the episetting (E(X), X). (Equivalently, J2^ in K is the classifying monoid
of the monosetting at X in the dual category K.opp.) Again ^* is unique to within
isomorphism. A category K has [dual] symmetric inverse monoids if such monoids
exist at each of its objects. In many categories both types of monoids exist at each
object, with the two monoids usually being nonisomorphic. Clearly we have:

COROLLARY 13. A well-powered category has symmetric inverse monoids if and

only if it has finite intersections. Dually, a co-well-powered category has dual sym-

metric inverse monoids if and only if it has finite co-intersections.

Most important categories of mathematical objects are usually complete and cocom-
plete. It follows that the [dual] symmetric inverse monoids of their objects must be
correspondingly well endowed. To see what occurs, recall first that any inverse mon-
oid 5 comes equipped with a natural partial ordering defined in S by x > y if and
only if v = yy~lx, or equivalently v = xy~ly, so that y is in some sense a restriction
of x. This ordering is compatible with both multiplication and inversion: x > y and
u > v imply xu > yv and x~l > y"1 . This leads us to the following definitions.
An inverse algebra is an inverse monoid which forms a meet semilattice under the
natural partial ordering: for all x, y e 5, x A y exists in S. Equivalently, an inverse
algebra may be defined as an inverse monoid 5 such that for each x e S, there exists
a greatest idempotent f[x] e E(S) which annihilates x. Thus x > f[x], and for any
idempotent e e 5 such that x > e it follows that f[x] > e. We refer to f[x] as the
fixed point idempotent of x, and to the induced unary operator / : S -*• E(S) as the
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fixed point operator of S. The binary operation x Ay and the unary operator f[x] are
connected by the identities: x A y = f[xy~l]y = xf[x~'y] and f[x] = 1 A x.

An inverse algebra is complete if all nonempty subsets have infima. For an inverse
algebra S to be complete, it is necessary and sufficient that its set of idempotents
E(S) form a complete lattice under the natural partial ordering. In the complete case,
infima of nonempty subsets are induced from infima in £(5) by inf{jc, | i e /} =
xk inf{/[x,~'jc;] | i, j e / } , where k is any element of the index set / . Inverse algebras
are introduced and described in [7].

A category K has [dual] symmetric inverse algebras if it has [dual] symmetric
inverse monoids existing at each of its objects, with all such monoids being inverse
algebras. If the algebras are also complete, we say that K has complete [dual]

symmetric inverse algebras. When does a category have possibly complete [dual]
symmetric inverse algebras? The answer is given by the following extension of
Corollary 1.3 together with its epic dual.

THEOREM 1.4. A well-powered category has [complete] symmetric inverse algebras

if and only if it has finite [arbitrary] intersections and parallel pairs of monomorphisms

have equalizers. In particular, a finitely complete [small-complete], well-powered

category has [complete] symmetric inverse algebras.

The details of the proof, as well as a more thorough discussion of foundational
issues, are given in [8]. We remark, however, that in the fractional construction given
above, the fixed point idempotent of the class [g, g'], if it exists, is the class [mg, mg']

where m is the equalizer of g and g' in the monosetting.
The final assertion of Theorem 1.4 explains why [dual] symmetric inverse monoids

of objects in categories of interest to mathematicians typically form complete inverse
algebras: such categories tend to be both complete and cocomplete as categories. This
is indeed the case with the following categories of interest in this paper: the category
Set of sets and functions between them; the category of all algebras in a given variety
y of algebras of a given type, together with all homomorphisms between them; in
particular, for a given ring R, the category /?-Mod of left /?-modules and module
homomorphisms; and the category Ab of abelian groups and homomorphisms.

In what follows we shall be particularly interested in three questions: What can
be said about dual symmetric inverse monoids? How do they differ from symmetric
inverse monoids? What can be said about representations of inverse monoids and
algebras in dual symmetric inverse algebras of objects in the above categories?

We begin in the next two sections by examining the dual symmetric inverse monoid
J>x of a set X and comparing it, both as monoid and inverse algebra, with the more
familiar symmetric inverse monoid Jx- The fourth section treats representations of
inverse monoids in dual symmetric inverse monoids of sets, and the fifth, repres-
entations of inverse monoids and algebras in [dual] symmetric inverse algebras of
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members of a variety, particularly abelian groups. In these final sections, particular

attention will be given to the question of when an inverse algebra has a faithful rep-

resentation as an algebra in the dual symmetric inverse algebra of a set or of some

abelian group. Our study will involve Cayley-like representations such as the [dual]

Wagner-Preston Theorem, as well as induced representations obtained as instances of

the following useful result and its dual.

THEOREM 1.5. Suppose K has symmetric inverse monoids, and let F : K —>• K'

be a functor. If F preserves monies and intersections, then at each object XofK, F

induces a homomorphism of symmetric inverse monoids fx : J*x -»• ^FX given by:

[gi gl h ^ [Fg, Fg']. If F also preserves equalizers of parallel pairs of monies, then

fx is a homomorphism of inverse algebras. If, further, F reflects isomorphisms, then

fx is injective.

2. The dual symmetric inverse monoid of a set

When X is a set (an object in the category Set) one may identify J ^ = J^(M(Z), X)

with the symmetric inverse monoid (also denoted J^x) of all partial 1-1 selfmaps of

X, under the isomorphism [g, g'] i-> g~xg' for pairs of monies (g, g') with codomain

X. We now describe ^ = J^(E(X), X) using the notions of block bijections and

biequivalences.

Recall that, on partitioning X into disjoint, nonempty subsets or blocks A, B,...,

there results the quotient set [A, B,...}. Then a block bijection of X is a bijection fj,

between two quotient sets of X. Such a /x may be depicted using a variant form of

the usual permutation notation where, for example, /x = I ' 2 I indicates
\ Bx B2 ••• /

that (A i | A2 | • • •) and (B, | B2 \ • • •) are respectively the domain and codomain

partitions of X, and that, for each member / of a common index set / , block At

maps under \i to block B,. Since U / 6 / (A x ^<) *s t n e n a special kind of binary

relation, it is convenient to make the following definition. A binary relation a on

X is a biequivalence if it is both/w//, that is Xa = aX = X, and bifunctional, as

we translate difonctionelle [12]; that i s , a o f f " ' o a C a where o denotes the usual

composition of binary relations on a set. Since the inclusion a o a~l o a D a always

holds, the condition a o a'1 o a c a is equivalent to asserting that a o a~l o a = a.

Note that the relational inverse a"1 of a biequivalence a is also a biequivalence. Now

biequivalences are essentially block bijections:

LEMMA 2.1. If a is a biequivalence on X, then both a o a"1 and a"1 o a are

equivalence relations on X. Moreover the map a defined by a : x(a oa" 1 ) i->- xa for

x € X is a block bijection of X/a o a"1 to X/a~x o a. Conversely, given equivalence
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relations P and y on X together with a block bijection /x : X/ft —>• X/y, a unique

biequivalence fi, onX inducing ix is given by: xjxy if and only ifxfi i-> yy under the

block bijection /x (in which case p =^fi o /t~' and y = /2~' o fi). Finally, the two

processes are reciprocal: a = a and fi = \x.

We now define the dual symmetric inverse monoid on a set X, also denoted by J^J,
to consist of all biequivalences on X with multiplication

ayS = a o ( a " ' oa v p o £"') o 0,

where v denotes the familiar join in the lattice of equivalence relations. It is straight-
forward to check that J ^ is an inverse monoid. Equivalent formulations of the product
are

ap = p |{y e y* | a o p C y) = (J{a o P o (/T1 o a"1 o a o P)n | n e N }.

It is also useful to record here that aa~l = aooT1 andaa"'a = aoa~{ oa foranya,
and that aft = a v ft when a and /3 are equivalence relations. Further, a biequivalence
is an idempotent if, and only if, it is an equivalence, and the zero and identity elements
of J ^ are V = X x X and A = [(x,x) | x e X] respectively. Lastly, it is easy to
check that J ^ forms a complete inverse algebra, with the infimum of any srf c J'*

given by inf srf — f}{f} € J ^ | a c p for all a e sf), and the fixed point idempotent
of a 6 ^x by the equivalence relation generated by a.

Regarding biequivalences as block bijections, the connection with the categorical
definition of J ^ becomes apparent: an equivalence class [/, g] (where / and g are
mappings from X onto some common codomain Y) induces a block bijection /z from
the partition {yf~l | y e Y] to the partition {yg~l | y e Y] defined by the rule
/x : yf~l i—> yg~l. It is again easy to check that this produces a well-defined 1-1
correspondence, and that the multiplication in the categorical description of Section 1
matches the multiplication of biequivalences as described above.

Biequivalences are studied by Schein in [14], where they are termed bifunctional
multipermutations. However, for a multiplication operation, Schein considers only
composition of binary relations, and in contrast to the multiplication in </£ defined
above, the set of all biequivalences on a set is not closed under composition.

Note that the empty function e : 0 —> 0 in Set is an epi, so that Ĵ 0* consists of the
single element [e, e] (corresponding to the empty biequivalence on 0). Henceforth we
consider only those J ^ with X nonempty. Let aa"1 and a~'or be termed respectively
the left and right equivalences (or partitions) of a. By the rank of a is meant the
cardinality of X/aoT1. Combining basic inverse semigroup theory with elementary
combinatorics allows aspects of the local structure of J ^ to be described as follows.
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THEOREM 2.2. Leta,p e J^*.

(i) aJifp [respectively, a&fi] if and only if a and fi have the same right [left]

equivalences.

(ii) @ = ^'; moreover, aQlfi if and only if a and fi have the same rank.

(iii) For each cardinal X such that 1 < k < \X\ there is a ^ -class Dk of that

rank. Moreover, in the usual ordering of ^-classes, Dk < £>M if and only ifX < fi,

so that the J? -classes of' J ^ are totally ordered.

(iv) The maximal subgroup associated with an idempotent of rank r is isomorphic

with 6r, the symmetric group of all permutations on a set of cardinality r.

(v) When X is finite with \X\ = n, then for all 1 < r < n the number of

idempotents in the ^ -class Dr of rank r is the Stirling number of the second kind

5nr , andDr has cardinality r\S*r.

(vi) When X is finite with \X\ = n, then the total number of idempotents ofJ^ *s

the Bell number Bn = £? = 1 Sn,r and \J*X\ = C = , r\S2
nr.

From this theorem follow two immediate observations.
First, upon comparing the size of J ^ as given by Theorem 2.2(vi) above with

\Sx\ = E"r=0 (") Pn,r = E"=0 r' (")' ^^^ « = 1*1). i l foll°WS t h a t ' fOT " > 4 '
\<?x\ > \^x\ anc*m ^act \^x\l\^x\ ->• oo as n -*• oo. Comparative values for small
n are given in the following table:

\X\ 0 1 2 3 4 5 6
\IX\ 1 2 7 34 209 1546 13 327

1 1 3 25 339 6721 179 643

Second, for all finite nonempty X, ^x cannot be embedded into J^ . Indeed if
|X| = n, then a maximal chain of idempotents in J ^ has n + 1 elements, while by
Theorem 2.2(iii) a maximal such chain in J ^ has only n elements. Setting Xo —

X U {0} where 0 £ X, an embedding 6X : Jx - • ^Xo ' s defined as follows. Given
a € */x, first identify a with the subset o f X x X given by its graph {(x, y) | xa = y}

and then set

9X (a) = a U (Aa x Ba) c Xo x Xo,

where Aa = Xo\domain(a) and Ba = X0\codomain(a). The map 9X is clearly well-
defined and one-to-one. That it is a homomorphism is easy to check directly (and is
also a consequence of Theorem 4.1 below). Composing 6X with the Wagner-Preston
embedding of S in J'x, it follows that any given inverse monoid S can be embedded
in a dual symmetric inverse monoid on a set X of cardinality at most |5 | + 1. In
Section 4, where we examine embeddings and more generally representations, it will
be seen that this cardinality may be reduced to 15|, by virtue of a dual of the Wagner-
Preston Theorem. It will also be seen that ^x and J^£ differ in their properties as the
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codomains of embeddings; for this, we need first to distinguish certain aspects of their
structures.

3. Comparing the structures of ,?x and J ^

Recall that an inverse monoid S with group of units G and semilattice of idem-
potents E is factorizable if S = GE; or equivalently, if for each x e S there is some
g € G such that x < g. In general, F(5) = GE = EG is the greatest factorizable
inverse submonoid of any 5. If X is finite, then J ^ is factorizable; otherwise, F{^x)

is a proper submonoid of <?x. For |X| > 2, every element in F(^x), except for
those partial bijections a for which both the domain and range of a have singleton
complements in X, may be expressed as the infimum of some nonempty subset of the
group of units. By contrast, in the dual symmetric inverse monoid we have

PROPOSITION 3.1. // |X| > 3, then &* = F{J*) is a proper submonoid of

For all X, each element of ^^ arises as the infimum of some nonempty subset of the

group of units &x of

PROOF. Given a e <?£, a e &x if and only if a c « for some permutation
a of X. But this is equivalent to asserting that each pair of corresponding blocks
A and A' under the induced block bijection a have common cardinality. In this
case a and a are called uniform. Suppose that |X| > 3 and let x e X. Then
the block transposition interchanging {x} with X\{x] is not uniform. The assertion
about «^J being generated from &x via infima is a consequence of the following
observation: let A and B be subsets of common cardinality, and let F(A, B) denote
the set of all bijections y : A —> B with each bijection viewed as a subset of A x B.

Then A x B = (J T{A, B). Hence if the uniform biequivalence a decomposes as
a = Uie/(^i x AO. t n en a is the union of all permutations p of X of the form
p = (J i e / Yt where y, e T(Aj, Bt) for all i e / . That is, in the algebra «^J , a is the
infimum of all such p. •

The ^-classes of ^ J , unlike those of J>x and J^ , are not linearly ordered by
rank. Let |X| = n. A partition r? of X is of type V'2r2 ... nr" if there are r, blocks
of size i for i = 1,2,... ,n. If n has rank r, then the restrictions on the integers r,
are that r, > 0, YH=\ r> = r ' an<* Yl"=\ ' r/ = " • Due to uniformity, ^-classes in
&x are classified by type, with a ^-class D consisting of all biequivalences a whose
left and right equivalences era"1 and a~la share the common type of D. If this type
is V'2r2... nr-, then any maximal subgroup of D is isomorphic to the product of the
permutation groups &rj and so contains gD = r\ !r2! • • • rn! elements. The number of
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idempotents in D equals the number of partitions of type V'2r2... nr-, which is

nD =

Since the number of elements in D is gD^2
D, the cardinality of &\ is

the sum being taken over all non-negative integer n-tuples (ru r2, •. • rn) such that
£"_, ift = n . A brief table of computed values for \^x\ is given below.

|X| 0 1 2 3 4 5 6
\&x\ 1 1 3 16 131 1496 22 482

Our present interest in ^ lies in the way the fixed point structure of elements in
J?£ distinguishes </£ from J'x and other inverse algebras. First we summarise some
arithmetic information which follows from the description in the proof of Proposition
3.1.

PROPOSITION 3.2. Let o be a permutation of finite order n > 1 having orbits

O\, O2, • • • with | Ot | = nk. Then (i) n is the least common multiple of the nk, and

(ii) the equivalence classes of f[a] in &x (and in <#*) are precisely the orbits Ok. It

follows that ifx is a permutation of differing order, then f[o] ^ / [ T ] . In particular,

(iii) ifm and p are distinct positive divisors ofn, then f[crm] ^ f[<Jp]; and (iv) if
m is relatively prime to n, then /[<7m] = f[a] since am and a have the same orbits.

Thus, (v) a creates distinct idempotents f[om] in ^*, for distinct positive divisors m

ofn.

EXAMPLE 3.3. In JK\XIA\> by contrast, /[(1234)] = /[(13)(24)] where (13)(24) =
(1234)2 has order 2. Hence, while the monoid ^1,2,3,4] can be embedded into
J^o, 234), it cannot be embedded as an inverse algebra (that is, with preservation
of fixed point idempotents or equivalently of natural meets) into the dual inverse
algebra y* of any set X.

Recall (see [7], Section 1) that inverse algebras form a variety of (universal)
algebras of type (2, 2, 1, 0). An inverse algebra S is generated by x € S if it is the
only subalgebra containing x. If, in addition, x satisfies x" = 1 for some n > 1 with
n the least such exponent, then 5 is said to be n-cyclic on x. It is freely n-cyclic on x

if x" = 1 determines the structure of S, in which case the group of units is cyclic on x

of order n. S is just freely cyclic on x if S is generated by x and is determined solely
by the relations xx'1 = 1 = x~]x, in which case the group of units is infinite cyclic
on x.
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Either type of freely cyclic inverse algebra is unique to within isomorphism and
may be constructed as follows. If G is a cyclic group on x, let K(G) denote the coset
algebra consisting of cosets (xm) xk of subgroups (jcm> of G, where m divides n if
n < oo. Multiplication is given by {xm) xk • (xp) xq = ({xm) v {xp))xk+q with the
fixed point operator given by / [ {xm) xk ] = {xm} v (xk). If we identify x with the coset
{l}x, then results in [7, Section 3] imply that K(G) is the freely (rt-)cyclic algebra on
x.

THEOREM 3.4. Let a be a permutation on X, and let S be the subalgebra generated

by a in J?^. If a has order n, then S is freely n-cyclic on a. IfX is infinite and o has

an infinite orbit, then S is freely cyclic on a.

PROOF. If G is the subgroup of J ^ generated from a, then the inclusion [a} c j ^
induces an algebra homomorphism of K(G) upon 5 defined by (om) ak !-»• f[am]ak.

By [7, Proposition 1.18], in order to show that this map is one-to-one, we need only
show that it is one-to-one on idempotents. So suppose that subgroups (am) and
{ap) map to the same idempotent f[crm] = f[crp] in J$- If ° n a s ^n^te OT^eT n»
then m and p are positive divisors of n, so that by Proposition 3.2(v), m = p. If
(... X-2 x_t x0 X\ x2 . . . ) is an infinite cycle of o corresponding to an infinite orbit,
then /[crm] has the equivalence class {xkm \ k e 1), f[ap] has the class [xkp \ k € 1],

and again m = p. •

The infinite orbit is required in Theorem 3.4. For consider the permutation x =
(12)(3456)(78...)... of infinite order, with orbits of increasing orders 2,4, 8, 16, . . . ,
but having no infinite orbit. In «^£, f[x] — f[x3], so that the subalgebra generated
by r is not freely cyclic.

The ^x variant of the above theorem fails. A finite counterexample is provided by
the 4-cycle (1234) in ^1,2,3,4). For an infinite counterexample, take X as the set 2 of
integers, and a as the infinite cycle (..., - 2 , - 1 , 0, 1, 2, . . . ) . Then for all n^0,an

has no fixed points and so f[crn] = /[ex] = 0. Thus the subalgebra of J^ generated
from a is G°, where G is the cyclic group on a, while K(G) is a lattice of infinitely
many cyclic groups.

We have seen how the behavior of cyclic subalgebras distinguishes dual symmetric
inverse algebras J ^ from symmetric inverse algebras Jx. We now consider an-
other distinguishing feature involving permutations of order 2, and more generally,
biequivalences a such that or3 = a.

PROPOSITION 3.5. If a, 0 e J$ with a3 = a and a >fi> f[a], then P3 = p.

PROOF. Suppose first that a is a permutation, and so factors as a product of disjoint
transpositions (a,, bt). Thus each equivalence class of f[a] is a binary subset {a,-, bt}
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or a singleton {c}, with c <£ [J. {a,, £,}. All biequivalences £ such that a > @ > f[a]

arise by replacing, in / [ a ] , some of its subrelations {a,, bt} x {a,, bt} by the original
transposition (a,, &,), and all such y3 satisfy £3 = /}. In the general case where a3 = a,
a is its own inverse a~' and lies in the maximal subgroup of the idempotent e = a2.
Now if fi be such that a > /? > / [ a ] , then a, /Jand / [a ] all lie in the local monoid
£ J^£, which is isomorphic with the dual symmetric algebra Jy, where Y denotes the
quotient set X/e. Then $3 = /3 follows by the first part of the proof. •

This proposition allows the strengthening of an observation in Example 3.3.

COROLLARY 3.6. If\X\ > 2, then no semigroup embedding of J*x into some J1*

exists which preserves all instances affixed point idempotents and natural meets.

PROOF. Let a and b be distinct elements of X and let a be the transposition (a, b)

interchanging a and b, but fixing all other elements of X. In J^ , f[<r] is the identity
map on the subset X \ [a, b}. Next let x be the partial bijection which sends a to b

and fixes all x e X \ {a, b). Note that a > x > / [ a ] and x2 = f[cr], so that r3 ^ x.

Let 0 : L/X -> J* be a monoid embedding with a 6 = a and x6 = fi. Then in J^*,
a3 = a, p ^ fi, but a > 0 > (/[CT])0. By Proposition 3.5, (/[<r])# cannot be
f[cr9] and so 0 does not always preserve fixed point idempotents. By the identity
f[x] = 1 A x, neither are meets always preserved. •

We conclude this section with some further comparisons and contrasts between J^x

and Jx- F° r I*I - 2, both Jx and J ^ have a unique 0-minimal ^-class M, lying
directly above the 0-class: in J'x this is the class of singleton relations, in J^J the class
D2 of biequivalences of rank 2. In both Jx and J ^ one has a = sup{/J e M \ ft < a]

for any a, with the zero element arising as the empty supremum. However the fact
that the class D2 has subgroups of order 2 leads to yet another distinction between J?x

and J?x- Recall that the coarsest idempotent-separating congruence \x on ^x is the
equality relation. By way of contrast we have

PROPOSITION 3.7. The coarsest idempotent-separating congruence /x on J ^ is the

relation {(a, P)\a = ^ or else a Jiff! with a, 0 € D2).

PROOF. Recall that for any inverse semigroup S, /x is given by /x = {(a, b) e

SxS\a~lfa = b~lfb for all / e E(S)} and that \i c J^.
Suppose that S has a zero, that e > 0 is a primitive idempotent, and that a e He.

Then for any idempotent / one has both a'1 fa = a~xaa~x fa = a~xefa and
e~lfe = ef. But ef is either e or 0, as e is primitive, and since a e He, one
has in either case that a"1 fa = e'1 fe = ef and so (a, e) e \x. It follows that—
letting v temporarily denote the relation described in the proposition—at least v c fi.
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For the reverse inclusion, suppose that aJffi. Then a and ft share both the same left
equivalence, with blocks say {A, | i e /} , and the same right equivalence, with blocks
{£,• | / € / } , where the common index set / has cardinality equal to the common rank
r of a and fi. If r = 1, then a = V = /}, and if r = 2, then (a, fi) e v by definition. If
r > 3 but a 7̂  fi, then it is the case that some block A, corresponds under a to B,, but
under fi to B, , where B, ^ B, . Let r\ be the idempotent determined by the partition,
{A,, X \ A,}. Then the idempotent a~lrja is determined by the partition (B,, X \ B,}
while /S~'??yS is determined by {B,, X \ B;}, and hence is distinct. Hence (a, /?) ^ /i.
Thus for rank r > 3, (a, /S) e /x implies a = ^, so that /̂  = v follows. •

As is easily checked, the Munn representation of J ^ is surjective, and so (ana-
logously to yx) <?xln is isomorphic with its own TE, namely the monoid of all
isomorphisms between principal ideals of the lattice of equivalence relations on X.

A monoid congruence 9 on an inverse algebra S is a [complete] algebra congruence

if the homomorphism it induces is a homomorphism of [complete] inverse algebras,
that is, preserves meets [respectively, arbitrary infima]. Recall from [7, Section 2]
that 9 is an algebra congruence if and only if it is the minimum congruence in its
trace class, that is, 9 is the monoid congruence generated from its restriction 9\EiS) to
the semilattice of idempotents E(S). Thus if 9\, 92 are algebra congruences such that
#ilf(S) = #2lf(5)> then 9\ = 92. This observation is used in the next theorem, which
determines all complete inverse algebra congruences on J?x and J^ . Here we denote
idempotents in Jx by iA (the identity on A c X), and idempotents in J ^ by e (an
equivalence on X).

THEOREM 3.8. The complete algebra congruences on J?x, and those on J^, are

precisely the Rees ideal congruences.

PROOF. It is easy to verify directly that the Rees ideal congruences on a complete
inverse algebra are indeed complete algebra congruences. For the converse statements,
first let 9 be a complete algebra congruence on J2"*. and suppose (iA, iB) e 9 with
A ^ B. Without loss of generality we may suppose that B ^ A, since (iA, IAHB) e 0.

Let E be the set of permutations of A, so that £ c ^x. Then for all a e £,
(o~hAa, o~hBa) = (iA, iBa) e 9, whence (iA,(\ez lBa) e 9 since 9 is complete.
But f \€ i ; <fl<x = 0, so(tA,0) G 9. Thus 9\E is the restriction to E = E(Jx) of a Rees
ideal congruence, which latter is then identified with 9.

Secondly, let 9 be a complete algebra congruence on J^ , and suppose (£, s') e 9

withe ^ e'. Again without loss of generality we may suppose that e' < e. Let E'be the
set of permutations of X/s. For a' e E', set o = {(x, v) e X x X : (xs, ys) e a'}.

Let E = {CT : a' e E'}, so E c J*. Then for all a e E, (a~lea, a^e'o) =

(e,a~]s'a) e 9, and so (s, inf<T€i;(a"1£'a)) e 9 since 9 is complete. But
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infCT€E(a"1e'(7) = X x X = V and so (s, V) e 6. As above, 0 is a Rees ideal
congruence on J^ . •

COROLLARY 3.9. If X is finite, the algebra congruences on J^x, and those on J^ ,
are precisely the Rees ideal congruences.

There are algebra congruences on J>x and J^x (with X infinite) which are not
complete (and so not Rees ideal congruences). To show this, it is enough to produce
a normal congruence on E = E{JX) [respectively E* — £ ( J^ ) ] which is not
complete; for the congruence which it generates on J?x [respectively J^ ] is an
algebra congruence which is not complete. The congruence on E which relates iA

and LB if A and B differ by a finite set is such a congruence, as is, analogously, the
congruence on E* which relates two equivalences if their partitions differ (as subsets
of 2X) by a finite set.

4. Representations

Let 5 be an inverse semigroup and T a semigroup. By a representation of 5 in T

is meant a (semigroup) homomorphism of 5 into T. A representation is faithful (or,
as previously, an embedding) if it is one-to-one. In the case that S and T are inverse
algebras, a representation cp : S ->• T will be called algebraic if it preserves natural
meets (equivalently, preserves fixed point idempotents) and preserves the identity

Our interest here is in the case where T is one of the following monoids: Sx,

the monoid of all transformations on a given set X; £? &x, the monoid of all partial
transformations on a set X; J?x, the inverse monoid of all one-to-one partial transform-
ations on X; 38x, the monoid of all binary relations on X; and J^ , here understood
as the inverse monoid of all biequivalences on X. The monoids £?x, &£?x and J?x

are all submonoids of 38x. While J ^ is only a subset of 38x, observe that for every
full relation a on X, there is a unique smallest biequivalence r\ e J?x such that a c. rj,

called the closure of a in J2^. It is denoted by a+ and may be described equivalently
as a+ = p|{y e ./£ | a c y] or as a+ = (J{a o (a"1 o a)" | n e N}; by previous
remarks, aft = (or o yS)+ for all biequivalences a and p.

THEOREM 4.1. Let <p be a representation of S in 3~x. Define mappings x and if

from S to 38x as follows:

X :s h-> s<pn(s~l<p)~l,

if : 5 i-> (s<p U (s~l<p)
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where (s"1^)'1 means the relation inverse to the function (s~lcp). Then x is a

representation of S in J?x> iff is a representation of S in J^> and Sx = Sip = Sx/f. In

particular, all these representations are faithful if any one is.

PROOF. The statement and proof concerning x were first given by Wagner [15]. We

turn to \jr. Clearly (st)(p = s<pot<p c sx/rotrfr and ((sf)"'<?)"' = 0 ~ V ) ~ l o ( ? - V ) ~ ' ^

si/s o tf, whence (st)f = (((st)ip) U ((sO~V)~')+ Q 0 ^ ° tf)+ = (s\/r)(tf). To
establish the reverse inclusion we first prove the following lemma.

LEMMA 4.2. Let p = [(x, y) e X x X | x(sip) = y(s~'.s)<p}; then p = si//.

PROOF. For each x e X, both (x, xstp), (xs~lip, x) e p so that s<p, (s~l<p)~i c p

and moreover p is full. If {x, v), (z, y), (z, 10) e p, so that xs<p = y(s~[s)<p = zs<p =

^ ( i " 1 ^ ) ^ , then (x, w) e p and it follows that p o p~x o p c p and hence that p e J^.

If, however, a e J^* is such that both sip, (s'l(p)'1 c a, then

(x, y) e p => xs(p = y(s~ls)<p

=> (x, xs<p), (y(s~l<p), xs<p), (y(s~l<p), y) e a

=$• (x, y) € a o a"1 o a = o,

so that p c a•. Hence p = (59? U (s~l<p)~l)+, and the lemma is proved. D

PROOF. Returning to the proof of the theorem, suppose(;c, y) e sijf and(y, z) € f̂ -

By the lemma, xsip = y(5~'j)^ and ytcp = z(t~lt)(p, so that

x{sq>t<p) = y(s~[s)<pt(p = yis^stt^t)^ = y(r/"' s~lst)<p

= y(t<p)(t~{s~lst)<p = z(t~lt)<p(t~ls~lst)(p = z(t~ls~lst)<p,

that is, x(st)<p = ztCsf)"1^]^ a n ^ so (again by the lemma) (x, z) € (st)i/s. Therefore

sxjr o txfr c (st)\js, and (sifr)(tx/f) c (sr)^r follows. So t/f is a homomorphism.

To complete the proof, observe that the association s<p \-> sijr yields a well-defined

map of S(p upon Si/^; it is a homomorphism as both cp and ^ are thus. To show that it

is one-to-one, let sifr = tx/r and take x e X. Let y e X be such that (x, y) e s<p and

so (x, y) G s\}r = t\fr, whence xt<p = y(t~lt)<p = xs<p(t~]t)<p. Thus t<p = s<p(t~lt)<p

and so t<p < s<p in the natural order in Sep. By symmetry scp < tip and hence sip = tip.

•

A number of known representations arise as one or another of x o r V'- As a

first instance, consider the standard monoid embedding ipa : <^<5^ —> ̂ u(O). where

0 ^ X, defined by declaring (x)a<po = xa if x a is defined, and (x)a^o = 0 otherwise.
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Since <p0 is a monoid embedding, so is the restriction <p = <po\sx '• ^x ~~* ^u(O)- The

induced embedding \}r : <PX —>• ̂ £u{0) is just the map 9X encountered at the end of

Section 2. We remark that 0x preserves suprema and the identity.

As another instance of Theorem 4.1, we take <p to be the right regular representation

of S in 2?s (so that s<p : x \-+ xs). Then x is the classic Wagner-Preston faithful

representation s H> sx = {(x, xs) \ x e Ss'1} whose image is a subsemigroup of the

inverse semigroup of bijections between principal left ideals of 5. The corresponding

\j/ is a faithful representation

s i->- s\Jr = [(x, y) e S x S \ xs = ys~]s]

of 5 in J'l, which deserves to be called the dual Wagner-Preston representation,

and whose image is contained in the inverse semigroup of block bijections between

left quotient sets, that is, quotients under left stable equivalences. Henceforth we

reserve the symbols x a n d & f° r the Wagner-Preston and the dual Wagner-Preston

embeddings of S into ys and >?l respectively.

It is immediate that if 5 has either an identity 1 or a zero 0, then Ox = {(0, 0)},

\X = A = lt/f, and 0\// = v • It was shown in [7, Theorem 1.20] that the Wagner-

Preston representation x is algebraic; analogous remarks apply when 5 is a complete

inverse algebra. However f does not always preserve meets, as may easily be seen

in the case of the algebra S formed by adjoining a zero to a group of order two. A

characterization of those inverse algebras for which x/r is an embedding of algebras

requires the following concept.

An element 5 of an inverse algebra 5 is aperiodic if there is a positive integer n such

that s" = sn+l, in which case f[s] = s". All semigroup homomorphisms preserve

this property and thus also preserve fixed point idempotents of aperiodic elements.

An inverse algebra 5 is aperiodic if all its elements are aperiodic, or equivalently

if 5 is periodic and combinatorial. This property, applied to inverse monoids, was

called E-nil in [7]; such an inverse monoid is necessarily an inverse algebra, and every

monoid homomorphism from 5 to any inverse algebra is algebraic.

THEOREM 4.3. If S is an inverse algebra and s e S, then f[sx//] = f[s]\jr if, and

only if s is aperiodic.

PROOF. Let a relation sco be defined on 5 as follows: (x, y) € su> if and only if

there exist elements u, v € (s), the inverse submonoid generated from s, such that

xu = yv. Consider first the claim that sco is the equivalence relation on 5 generated

from s-ifr. It is indeed immediate that st/r = {(x, y) | xs = ys^s} c sco and that

sco is reflexive and symmetric, so suppose that (x, y), (y, z) e sco, that is, xu = yv

and yw = zt for some u, v,w,t e (5). Then xuv~lww~l — ztw~lvv~l, so that

(x, z) 6 sco and sco is transitive. Thus the relation sco is an equivalence containing
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s\jr. On the other hand, let p be any equivalence containing s\jr. Since (x, xs) e s\ff

and (x, xs'1) e s~l\fr = (st/O"1. we have (x, xu) e p for each u e {s) and x e S.

Similarly, (vu, v) e p for each v e (s) and y e S. Thus (x, v) e iw implies
(x,y) e po p = p. Hence sco is indeed the smallest equivalence on S containing s\j/;

stated otherwise, sco = f[sijr] in Ĵ 5*.
Now suppose that f[s\jr] = f[s]\fr, and put e = f[s]. Then (s, e) e e\jr = so;, so

that SM = eu = e for some pair u, v e (s). Thus e e {s}, and in fact e is the zero of
{s} and the sole element of its ^-class in (s). Since every ^-class of a monogenic
inverse monoid, except possibly {1}, contains a positive power of the generator, it
follows that s is aperiodic. Since the converse is immediate, the proof is complete. •

COROLLARY 4.4. ([7], Theorem 3.22.) An inverse algebra S is aperiodic if, and

only if, every monoid embedding ofS into an arbitrary inverse algebra is algebraic.

Let us now turn to the preservation of joins and suprema, which requires the
following definitions. An inverse semigroup or monoid S has conditional joins

[or has conditional suprema] if each pair s, t [each nonempty subset M] which is
bounded above in the natural partial ordering has a supremum, denoted by s v t [by
supM]. S is join-distributive [sup-distributive] if, in addition, u(s v t) = us v ut

[ a(supAf) = sup(«M) ] holds for all u e S whenever s v t [supM] exists in 5.
Join-distributivity [sup-distributivity] for monoids is equivalent to asserting that £(S)
is distributive [sup-distributive in itself] under the natural partial ordering (proof of
this equivalence may be found in references cited in [7, sections 1.29 and 1.30]). We
say that a homomorphism <p : S -*• T of inverse semigroups or monoids preserves

joins [preserves suprema] if (s V t)(j> = s(j> v t<j> [(sup M)<j> = sup(M</>)] whenever

s v ; [sup M] exists in 5.
Now if 5 has a faithful representation in J^x which preserves joins [suprema], then

5 must be join-distributive [sup-distributive] since Jx is (thanks to D. A. Bredikhin
for this observation). More is true of the (primal) Wagner-Preston representation:
X preserves any existing natural joins x v y (for x, y € S) and suprema supX (for
X c S ) only in the trivial case in which the join or supremum is actually a maximum
element. That is, (sup X)x = sup(Xx) holds if and only if X possesses a maximum
element a, in which case both expressions reduce to ax- Thus by remarks above, if
the semigroup 5 has conditional joins [suprema], then x preserves joins [suprema] if
and only if every pair [nonempty subset] of elements bounded above has a maximum
element, equivalently if and only if E(S) is a tree [in which every subchain is dually
well-ordered]. If S is additionally a monoid, then x preserves joins [suprema] if and
only if £(5) is a [dually well-ordered] chain. In the converse direction, if £(5) is a
tree [in which every subchain is dually well-ordered] then every representation of 5
preserves existing joins [suprema].
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The situation is somewhat different for xjr. In J^, conditional suprema of biequi-

valences are intersections: for si c j ^ J , sup si = {~\si when the latter is in J ^ .

Thus, to assert that \\r preserves joins is to assert that (s V t)xjr = sty n t\jr holds

whenever j v r exists; likewise, xjr preserves suprema if (sup M)xjr = f\e*/ sxlf holds

whenever sup M exists in S. Inverse monoids for which xjr preserves joins or suprema

may then be characterized as follows:

PROPOSITION 4.5. Let S be an inverse monoid having conditional joins. Then

the dual Wagner-Preston representation x/r preserves joins if and only if S is join-

distributive. Likewise, ifS has conditional suprema, then \jr preserves suprema if and

only if S is sup-distributive.

PROOF. First let 5 be sup-distributive, with supM existing in 5, and let (x,y) e
f l s e M ^ . Then

jc(supM) = supx5 = supys"1.? = ysup^- ' s = ysups~' sups

so that (x,y) € (supM)V'. Hence f)s(iMsty c (sup M)\j/. Since xj/ preserves

the natural order, the reverse inclusion always holds, and (~]seMsxjf = (sup M)xjr

whenever supM exists. Conversely, assume that f]seMsx/r = (supAf)^ whenever

supAf exists. In particular, this holds for all M c £ (5 ) . So take r e £(S) ; upon

setting e = sup ieM rs and f = r sup M, one obtains es < fs = r (sup M )s = rs < es

so that es = fs. That is, (<?, / ) € sxjr for all s e M, and so by hypothesis of sup-

distributivity, e(supM) = / ( supM) , which reduces to sup j e Mrs = r supM. Thus

E(S) is sup-distributive, and so is S. The statement regarding join-distributivity and

xjr is verified in a similar manner. •

The above concepts can be generalized. A directed supremum is the supremum

supM of an upward directed subset M of 5. An inverse monoid S has directed

suprema if every upward directed subset has a supremum, in which case 5 is upper

continuous if multiplication distributes over directed suprema. A homomorphism

0 : S —>• T of inverse monoids preserves directed suprema if (sup M)(j> = sup(M0)

for all occurrences of directed suprema in 5. Arguments similar to those above

yield: If an inverse monoid S has directed suprema, then the dual Wagner-Preston

representation xjf preserves directed suprema if and only if S is upper continuous.

(Regarding directed suprema, see [7, Section 6].) In another direction, Bredikhin

[1] has shown that each inverse monoid possesses a monoid embedding in some «/£

which preserves joins.
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5. Functorial representations

Let A = (A, £2) be a universal algebra with a set £2 of operations defined on the
carrier set A, and consider the category K of (homomorphisms between) universal
algebras of the same type as A. Elements of Ĵ A = «/(K, A) are termed partial

automorphisms; elements of J ^ = </*(K, A) are termed dual partial automorphisms

or block multiautomorphisms. Since all monies in any variety of algebras are injective
as functions, Ĵ A is a subset of ./(Set, A). Epis, however, need not be surmorphisms
(surjective morphisms), although they are so in the cases of inverse semigroups, groups
and /?-modules. Thus, in what follows, J ^ is redefined as the classifying inverse

algebra of the episetting of all surmorphisms of A to its quotient algebras. Thus J ^
is also a subset of ./*(Set, A). Members of J ^ are characterised as biequivalences
which are also subalgebras of A x A and are thus termed bicongruences. By Theorem
1.4 and its dual, both ./A and J^ are complete inverse algebras. We begin by
comparing the ways in which JK and J ^ are included in ./(Set, A) and J^*(Set, A)
respectively.

THEOREM 5.1. The inclusion J*\ <-*• ./(Set, A) is an embedding of complete

inverse algebras which need not preserve joins. The inclusion J ^ «->• ./"(Set, A) is

an embedding of inverse monoids which preserves suprema and infima of idempotents,

but need not preserve arbitrary natural meets.

PROOF. Let Y be the variety of algebras generated from A. Let U : Y -*• Set

be the forgetful functor taking algebras and homomorphisms to their underlying sets
and functions. Then U creates (and preserves) arbitrary intersections and equalizers,
but not joins. Thus all calculations of multiplication and infima in </A are particular
calculations for ./(Set, A), so that the inclusion ./A '-*• ./(Set, A) is an embedding
of complete inverse algebras.

On the other hand, while U creates co-intersections of surmorphisms (as the congru-
ence lattice of any algebra is a complete sublattice of the lattice of all equivalences on its
carrier set), U need not create co-equalizers. Hence the inclusion J ^ <̂-> ./"(Set, A)
is, in general, just an embedding of inverse monoids which preserves infima and
suprema of idempotents. •

EXAMPLE 5.2. Consider the group of integers Z and the automorphism / i : n w
—n. The smallest equivalence fi on Z generated from the graph a = {(n, —n) | n 6 Z}
has equivalence classes of the form {n, — n}. The congruence y on 2 generated from
a has the cosets 2 / and 22 + 1 as its congruence classes. Hence / [a ] = ft in
J^*(Set, Z), while / [ a ] = y in </*(Ab, Z).
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In the terms of the proof above, the co-equalizer in Set of /x and the identity map

ij is the induced map Z —»• Z/yS; the co-equalizer of /x and ij_ in the variety of groups

is the induced epimorphism Z -*• Z/y.

We turn to representations of inverse monoids and algebras by partial automorph-

isms and bicongruences, starting with a variant of Theorem 4.1. (See also [11].)

THEOREM 5.3. Given a universal algebra A = (A, £2) and a representation <p :

5 —> End(A) of an inverse monoid S by endomorphisms of A, the derived represent-

ations x and ^ of S have as their respective codomains the inverse algebras ^\ and

<-̂ A of partial automorphisms and bicongruences of the algebra A.

PROOF. Since s<p is an endomorphism for each s e S, (the graphs of) sip and

(s"V)" ' are subalgebras of A x A and so too is sx; it follows it is a partial auto-

morphism. Using the description of si/s given in Lemma 4.2, one may see that s\}r is

a subalgebra of A x A, and thus is a bicongruence of A. •

A classic instance of Theorem 5.3 is the Munn representation. Let <p be the

representation of 5 by endomorphisms of E(S) given by conjugation: e(scp) = s~les

for all e e E(S). In this case we obtain the Munn representation XE of S in <#E(Sh and

the dual Munn representation \jrE of 5 in J^ ( 5 ) . Since SXE = SrJ/E, $E also induces

on S its maximum idempotent-separating congruence.

Given a representation <p : S —> 3fx and a nontrivial variety Y of algebras, a

representation <p* of S into the endomorphism monoid of the free algebra F(X) on

X is induced by freely extending the S-action on X to all of F(X) (thus applying

Theorem 1.5 to the functor F creating the free algebra). By Theorem 5.3, <py induces

in turn representations xY '• S - • -^F(X) and fr : S -»• J^ ( X ) . If <p is faithful, so

are xr and yjry. In particular, let <p be the standard representation S ->• 2TS. Then

the embeddings xr '• S —> <?F(S) and fy : S ^ J^ ( 5 ) yield the ^-versions of the

Wagner-Preston Theorem and its dual.

COROLLARY 5.4. Given a nontrivial variety ~f of algebras, every inverse monoid

has a faithful representation by [dual] partial automorphisms of an algebra in V,

which may be chosen as the free algebra on the carrier set of the monoid.

Recall that the category fl-Mod of all left /^-modules (for R a fixed nontrivial ring)

may be regarded as a variety of algebras each of which consists of an abelian group

enriched by a family of unary operations p r , one for each element r € R, written

as scalar multiplication: pra = ra. The module identities, stated for all possible

choices of /?-scalars (for instance, rxa + r2a = (r, + r2)a for all choices of r{ and

r2) become the defining identities for the variety. In this case, F(S) is the free R-

module on 5, R(S) = © x e 5 Rx, and the action q>® induced from the right regular
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representation scp : x i-> xs takes the form (^rxx)s<pm = Y^rx(xs). By Theorem

5.3, <p@ induces in turn representations x® : 5 —>• ̂ R(S) and yrffi : S —• ^^(sr Since

<p is faithful, so are (p®, x® and ^®- We thus obtain module versions of the Wagner-

Preston Theorem and its dual: For each nontrivial ring R, every inverse monoid S has

a faithful representation by [dual] partial automorphisms of the free (left) R-module

on the carrier set ofS.

When R = Z (so that /?-Mod is essentially the category Ab of abelian groups) we

recover Fichtner-Schultz's theorem [2], [3] that every inverse monoid may be faithfully

represented by partial automorphisms of some abelian group. If R = 7L2, then the

above description of x® is essentially Schein's short proof of this theorem given in

[13]. With i/r® we also obtain Schein's dualization of this theorem, which is the major

content of [13].

Suppose that S is an inverse algebra. When are x® : S —>• J?R(S) and ^® : S ->

^R(S) algebraic, that is, yield embeddings of inverse algebras? A mild modification of

the argument in Theorem 4.3 shows that i/r® is algebraic precisely when 5 is aperiodic.

In general, and in contrast to the Wagner-Preston embedding, x® need not preserve

natural meets and fixed point idempotents.

To describe when x® is algebraic, first recall that an inverse monoid is torsion-

free if it has no nontrivial finite subgroups. It was shown in [7, Corollary 1.16] that

torsion free inverse algebras form a subvariety of inverse algebras characterized by

the identities {f[xn] = f[x] \ n > 1}.

THEOREM 5.5. If S is an inverse algebra, then x® : S —>• J^ms) is algebraic if and

only ifS is torsion free.

PROOF. In this proof, let us abbreviate sx® by Xs- First note that, for s € S,

Xs is the isomorphism of 0 { / ? J C | x e Ss~]] to Q){Rx \ x e Ss] defined by

dL,rxx)Xs = J^rx(xs). Thus X/w is the identity map on M = Q){Rx | x e Sf[s]},

while / [ x J is the restriction of XJ to its set N of fixed points. It is always the case

that M c. N, so the theorem asserts that N \ M is non-empty (for some s € S) if, and

only if, S has a nontrivial finite subgroup.

Suppose then that s e S is a subgroup element of finite order n > 1, and take r ^ 0

in/?. Thenrs + rs2-\ \-rs" e N\M. Conversely, let a = J^rxx e N\M, so that
a has a nonzero summand rxx such that x £ Sf[s]. Since &Xs = cr,postmultiplication

by s induces a permutation of the terms of a, and since these are finite in number,

the orbit of x under this permutation is finite. Thus there exists an integer n such

that xsn = x, or equivalently x~lx < f[s"]. Now if f[s"] = f[s"]s, there would

follow f[s"] = f[s] and hence x~lx < f[s], that is, x e Sf[s], contradicting our

assumption on x. Hence f[s"]s # f[s"]. But then [7, Proposition l.ll(h)] implies

that f[s"]s generates a nontrivial finite subgroup. •
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When R = Z , so /?-Mod = Ab, we also have the following results.

THEOREM 5.6. A given inverse algebra S has an algebraic embedding into the

partial automorphism algebra <?A of some abelian group A if and only if it has an

algebraic embedding into the dual partial automorphism algebra ^% of some abelian

group B.

PROOF. It is standard knowledge (see, for example, [5] and [9]) that the contrav-

ariant hom-functor / = hom(_, A) of Ab to Ab is always left exact, and is also right

exact precisely when A is injective. Let A be so chosen, for example as Q / 2 . Then

the same map J, regarded as a covariant functor of Ab to Abo/\ preserves finite limits,

and preserves and reflects monies and epis, by exactness. In particular, it reflects

isomorphisms. In short, J satisfies the conditions of Theorem 1.5, and so induces an

inverse algebra embedding of J ^ into ^J(Ay

Likewise, J : Abo/>—> Ab induces an inverse algebra embedding of J ^ into J?j(A),

indeed, this embedding is as a complete subalgebra, since the contravariant J converts

arbitrary colimits to limits. •

COROLLARY 5.7. Every torsion free inverse algebra has an algebraic embedding

into the dual partial automorphism algebra of some abelian group.

Are there inverse algebras which cannot be so embedded? To answer this question,

we begin with an analogue of Proposition 3.5 holding for the [dual] symmetric inverse

algebras of abelian groups.

LEMMA 5.8. Let /x and v be [dual] partial automorphisms of an abelian group A

such that /x3 = /x and /x > v > /[ / / . ] . Then also v3 = v.

PROOF. Suppose first that /x: A -> A is an automorphism of order 2. Let AM

be the fixed point subset of \i and let B be any subgroup containing A^. Then

b + b\x € AM c B for each b e B, whence b/x e B. Thus v = JX \B is an

automorphism of B. Since /x3 = /x, we have v3 = v also. In general, if /x3 = /x in

yA, then fi2 is idempotent, and \x restricts to an automorphism of order 2 of C = A/A2.

Then v = v3 in <?c-, which is embedded as a local submonoid in J ^ . Finally, that the

conclusion also holds for [i e <?l follows from Theorem 5.6. •

COROLLARY 5.9. Let X be a set with \X\ > 2. Then (i) there is no algebraic

embedding of ^x into the [dual] partial automorphism algebra of any abelian group;

however, (ii) every dual symmetric inverse algebra^ can be algebraically embedded

in the [dual] partial automorphism algebra of some abelian group.
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PROOF. The transposition argument of Corollary 3.6 shows that ^x cannot be
embedded into either J ^ or J* for any abelian group A. The assertion about ^
follows from the fact that, given a nontrivial abelian group A, the contravariant functor
hom(_, A) : Set —> Ab is faithful, exact, reflects isomorphisms and sends colimits to
limits, and so induces, by Theorem 1.5, an embedding J ^ c-> Ĵ omtx,/*) of complete
inverse algebras. •

That the converse to Corollary 5.9(ii) is false is shown by the following example of
a group whose [dual] partial automorphism algebra has no algebraic embedding into
the dual algebra «/£ of any set X.

EXAMPLE 5.10. Let Z5 denote as usual the additive cyclic group on {0,1, 2,3,4}.
Its automorphism group is cyclic, being generated by the 4-cycle a — (1243) fixing
0. Thus every nonidentity automorphism of Z5 has {0} as its fixed point subgroup,
and since the only subgroups of Z5 are itself and {0}, it follows that J ^ ~ Z$ . In
particular, f[a] = /[er2]; so if 0 : J^, -*• J ^ is an embedding of monoids for some
set X, Proposition 3.2(iii) implies that 6 does not preserve the fixed point idempotent
of a.

The results of the last two sections distinguish three classes of inverse algebras
on the basis of algebraic embedding properties: the class of algebras which may be
embedded into J'x for some set X, that is, the class of all inverse algebras; the smaller
class of those algebras which may be embedded into the dual symmetric inverse
algebra «/£ of some set X; and finally, a properly intermediate class consisting of
those algebras which may be embedded into the partial automorphism algebra J^ of
some abelian group A.
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