
Dual System Encryption Framework in Prime-Order Groups

Nuttapong Attrapadung
AIST, Japan

n.attrapadung@aist.go.jp

Abstract

We propose a new generic framework for achieving fully secure attribute based encryption
(ABE) in prime-order bilinear groups. It is generic in the sense that it can be applied to
ABE for arbitrary predicate. All previously available frameworks that are generic in this
sense are given only in composite-order bilinear groups, of which operations are known to be
much less efficient than in prime-order ones for the same security level. These consist of the
frameworks by Wee (TCC’14) and Attrapadung (Eurocrypt’14). Both provide abstractions
of dual-system encryption techniques introduced by Waters (Crypto’09). Our framework can
be considered as a prime-order version of Attrapadung’s framework and works in a similar
manner: it relies on a main component called pair encodings, and it generically compiles any
secure pair encoding scheme for a predicate in consideration to a fully secure ABE scheme
for that predicate. One feature of our new compiler is that although the resulting ABE
schemes will be newly defined in prime-order groups, we require essentially the same security
notions of pair encodings as before. Beside the security of pair encodings, our framework
assumes only the Matrix Diffie-Hellman assumption (Escala et al., Crypto’13), which is a
weak assumption that includes the Decisional Linear assumption as a special case.

As for its applications, we can plug in available pair encoding schemes and automatically
obtain the first fully secure ABE realizations in prime-order groups for predicates of which
only fully secure schemes in composite-order groups were known. These include ABE for
regular languages, ABE for monotone span programs (and hence Boolean formulae) with
short ciphertexts or keys, and completely unbounded ABE for monotone span programs.

As a side result, we establish the first generic implication from ABE for monotone span
programs to ABE for branching programs. This implies fully-secure ABE for branching
programs in some new variants, namely, unbounded, short-ciphertext, and short-key. Previous
schemes are bounded and require linear-size ciphertexts and keys.

Keywords. attribute-based encryption, full security, generic framework, dual-system, prime-
order, unbounded, constant-size, monotone span programs, regular languages, branching program.



1 Introduction
Attribute based encryption (ABE), initiated by Sahai and Waters [52], is an emerging paradigm
that extends beyond normal public-key encryption. In an ABE scheme for predicate R : X×Y→
{0, 1}, a ciphertext is associated with a ciphertext attribute, say, Y ∈ Y, while a key is associated
with a key attribute, say, X ∈ X, and the decryption is possible if and only if R(X,Y ) = 1.1 In
Key-Policy (KP) type, X is a set of Boolean functions (often called policies), while Y is a set
of inputs to functions, and we define R(f, x) = f(x). Ciphertext-Policy (CP) type is the dual
of KP where the roles of X and Y are swapped (that is, policies are associated to ciphertexts).
Besides a direct application of fine-grained access control over encrypted data [30], ABE has
many applications including verifiable computation outsourcing [50].

The standard security requirement for ABE is full security, where an adversary is allowed to
adaptively query keys for any attribute X as long as R(X,Y ) = 0, where Y is an adversarially
chosen attribute for a challenge ciphertext. Dual system encryption techniques introduced by
Waters [56] have been successful approaches for constructing fully secure ABE systems that are
based on bilinear groups. Despite being versatile as they can be applied to ABE systems for
many predicates, until only recently, however, there were no known generic frameworks that can
use the techniques in a black-box and modular manner. Wee [58] and Attrapadung [1] recently
proposed such generic frameworks that abstract the dual system techniques by decoupling what
seem to be essential underlying primitives and characterizing their sufficient conditions so as
to obtain fully-secure ABE automatically via generic constructions. However, their frameworks
are inherently constructed over bilinear groups of composite-order. Although composite-order
bilinear groups are more intuitive to work with, especially in the case of dual system techniques,
prime-order bilinear groups are more preferable as they provide more efficient and compact
instantiations. This has been motivated already in a line of research [20, 46, 44, 53, 37, 31, 38].
More concretely, group elements in composite-order groups are more than 12 times larger than
those in prime-order groups for the same security level (3072 bits or 3248 bits for composite-
order vs 256 bits for prime-order in case of 128-bit security, according to NIST or ECRYPT
II recommendations [31]). Regarding time performances, Guillevic [31] reported that bilinear
pairings are 254 times slower in composite-order than in prime-order groups for the same 128-bit
security. Moreover, exponentiations are also about 300 to 1000 times slower [31, table 6]. In
this work, our goal is to propose a generic framework for dual-system encryption in prime-order
groups.

The generic frameworks of [58] and [1] work similarly but with the difference that the latter [1]
captures also dual system techniques with computational approaches, which are generalized from
techniques implicitly used in the ABE of Lewko and Waters [42]. (The former [58] only captures
the traditional dual systems, which implicitly use information-theoretic approaches). Using
computational approaches, the framework of [1] is able to obtain the first fully secure schemes
for many ABE primitives for which only selectively secure constructions were known before,
including KP-ABE for regular languages [57], KP-ABE for Boolean formulae2 with constant-size
ciphertexts [5], and (completely) unbounded KP-ABE for Boolean formulae [41, 51]. Moreover,
Attrapadung and Yamada [6] recently show that, within the framework of [1], we can generically
1Traditionally, ABE usually refers to only ABE for Boolean formulae predicate [30]. In this paper, however, we use
the term ABE for arbitrary predicate R. More precisely, it corresponds to the “public-index predicate encryption"
class of functional encryption as categorized in [13].

2Or more precisely, ABE for monotone span programs, which implies ABE for Boolean formulae [30]. We will use
both terms interchangeably.

1



convert ABE to its dual scheme; that is, key-policy type to ciphertext-policy type, and vice versa.
They also show a conversion to its dual-policy [3] type, which is the conjunctive of both KP
and CP. Many instantiations were then achieved in [6], including the first CP-ABE for Boolean
formulae with constant-size keys. Due to its generality, we choose to build upon [1].

1.1 Our Contributions

New Framework. We present a new generic framework for achieving fully secure ABE in
prime-order groups. It is generic in the sense that it can be applied to ABE for arbitrary predicate.
Our framework extends the framework of [1], which was constructed in composite-order groups,
and works in a similar manner as follows. First, the main component is a primitive called pair
encoding scheme defined for a predicate. Second, we provide a generic construction that compiles
any secure pair encoding scheme for a predicate R to a fully secure ABE scheme for the same
predicate R. The security requirement for the underlying encoding scheme is exactly the same
as that in the framework of [1]. On the other hand, we restrict the syntax of encodings into
a class we call regular encodings, via some simple requirements. This confinement, however,
seems natural and does not affect any concrete pair encoding schemes proposed so far [58, 1, 6].
Beside the security of pair encodings, our framework assumes only the Matrix Diffie-Hellman
assumption, given by Escala et al. [19]. This assumption can be considered as a framework of
assumptions, and our scheme can rely on any instance of them, including the most standard one,
namely, the Decisional Linear assumption.

New Instantiations. By using exactly the same encoding instantiations in [1, 6], we thus
automatically obtain fully secure ABE schemes, for the first time in prime-order groups, for
various predicates. These include the first fully-secure schemes for

− KP-ABE and CP-ABE for regular languages,
− KP-ABE for monotone span programs with constant-size ciphertexts,
− CP-ABE for monotone span programs with constant-size keys,
− Completely unbounded KP-ABE and CP-ABE for monotone span programs,

all in prime-order groups, which should admit better efficiency and compactness. The assumptions
for respective encodings are the same as those in [1] (albeit with a minor syntactic change to
prime-order groups). Moreover, via the dual-policy conversion of [6], we also obtain their
respective dual-policy variants.

We position our instantiations in Table 2, which show prime-order schemes by their properties.
In Table 2, our instantiations that are the first such schemes for given predicates and properties
are specified by New. Our new instantiations that are not the first of a kind are specified by
New′. Table 1 provides composite-order schemes for comparison.

New Predicates: Unbounded ABE for Branching Programs, and More. Besides the
above new instantiations for existing predicates, we also consider new predicates. More precisely,
we propose some new variants of ABE for Branching Program (ABE-BP), namely, unbounded,
short-ciphertext, and short-key variants. Unbounded ABE-BP refers to a system that allows an
encryptor to associate a ciphertext with an input string of any length (in the case of key-policy).
We obtain the first (fully-secure, prime-order) schemes for

− Unbounded KP-ABE and CP-ABE for branching programs,
− KP-ABE for branching programs with constant-size ciphertexts,
− CP-ABE for branching programs with constant-size keys.

2



Table 1: Composite-order ABE schemes, positioned by properties (for comparing to Table 2)

Predicate Properties Unbounded KP CP DP
Security Universe Input Multi-use

ABE-PDS full - - - A14 [1] AY15 [6] AY15 [6]

Unbounded ABE-MSP

selective large yes yes LW11 [41], sub sub
full small yes yes sub LW12 [42] sub
full large yes no sub sub sub
full large yes yes A14 [1] AY15 [6] AY15 [6]

Short-Cipher ABE-MSP selective large no yes sub open open
full large no yes A14 [1] open open

Short-Key ABE-MSP selective large no yes sub sub open
full large no yes open AY15 [6] open

(Bounded) ABE-MSP

selective large no yes sub sub sub
full small no no LOS+10 [43], LOS+10 [43], AY15 [6]

A14 [1], A14 [1],
W14 [58] W14 [58]

full large no no A14 [1], A14 [1] AY15 [6]

ABE-RL selective small - - sub sub sub
full large - - A14 [1] A14 [1] AY15 [6]

Acronym: “ABE-PDS” = ABE for policy over doubly-spatial relations, “ABE-MSP” = ABE for monotone
span programs, “ABE-RL” = ABE for regular languages, “ABE-BP” = ABE for branching programs. “KP”
means key-policy. “CP” means ciphertext-policy. “DP” means dual-policy. “sub” means subsumed (no previous
work but is subsumed by another system with stronger properties such as full security or prime-order). “open”
means open problem. “-” means not defined. “Unbounded input” refers to unbounded size of attribute set
size per ciphertext in KP-ABE-MSP, attribute set size per key in CP-ABE-MSP, and input string in ABE-BP.
“Unbounded Multi-use” refers to unbounded multi-use of attributes in one policy in ABE-MSP, and in one
branching program in ABE-BP.

We note that these ABE-BP schemes are the first such schemes for respective variants even
among composite-order or selectively secure schemes. In particular, the only previous schemes,
KP-ABE-BP of [29, 34], are of bounded type and require linear-size ciphertexts and keys.3

New Implication. We obtain the above new ABE-BP variants by establishing the first
implication from ABE for monotone span programs to ABE-BP. This implication is generic as it
is not confined in the encoding framework, and hence can be of an independent interest.

1.2 Difficulties and Our Approaches

Background on the Framework of [1]. In the framework of [1], a ciphertext CT encrypting
M , and a key SK take the forms of

CT = (C, C0) = (gc(s,h)
1 , Me(g1, g2)αs0), SK = g

k(α,r,h)
2

3Note that we consider only Boolean branching programs here as in [29], in contrast with [34], where arithmetic
branching programs are also considered.

3



Table 2: Prime-order ABE schemes, positioned by properties

Predicate Properties Unbounded KP CP DP
Security Universe Input Multi-use

ABE-PDS full - - - New1 New2 New3

Unbounded ABE-MSP

selective large yes yes RW13 [51] RW13 [51] sub
full small yes yes sub LW12 [42] sub
full large yes no OT12 [48] OT12 [48] sub
full large yes yes New4 New5 New6

Short-Cipher ABE-MSP selective large no yes ALP11 [5] open open
full large no yes New7 open open

Short-Key ABE-MSP selective large no yes remark sub open
full large no yes open New8 open

(Bounded) ABE-MSP

selective large no yes GPSW06 [30] W11 [55] AI09 [3]
full small no no CGW15 [14], CGW15 [14], New11

New′
9 New′

10

full large no no OT10 [46], OT10 [46], New14

New′
12 New′

13

ABE-RL selective small - - W12 [57] sub sub
full large - - New15 New16 New17

Unbounded ABE-BP full - yes yes New18 New19 New20

Short-Cipher ABE-BP full - no yes New21 open open
Short-Key ABE-BP full - no yes open New22 open

(Bounded) ABE-BP
selective - no yes GVW13 [29] sub sub
full - no no CGW15 [14], CGW15 [14], New25

New′
23 New′

24

Acronym: “Newi” = new instantiations from our framework that are the first such schemes for given predicates
and properties. The subscript i is the scheme numbering. “New′i” = new instantiations but not the first of a
kind. “remark” refers to a solution based on lattices (namely, [10]). Also refer to the acronym of Table 1.

where c and k are encodings of attributes Y and X associated to a ciphertext and a key,
respectively. Here, g1, g2 are generators of subgroups of order p1 of G1,G2, which are asymmetric
bilinear groups of composite order N = p1p2p3 with bilinear map e : G1 × G2 → GT .4 The
bold fonts denote vectors. Intuitively, α plays the role of a master key, h represents common
variables (or called parameters). These define a public key PK = (gh1 , e(g1, g2)α). s, r represents
randomness in the ciphertext and the key, respectively, with s0 being the first element in s. The
pair (c,k) form a pair encoding scheme for predicate R. It is exactly this primitive on which
the framework of [1] studies and give sufficient conditions so that, roughly speaking, the ABE
scheme defined with CT,SK as above would be fully secure (see the full description in §C). The
framework defines semi-functional ciphertexts and keys (of type 1,2,3) directly from the encoding
4Although the framework of [1] was originally formalized using symmetric groups, generalizing to asymmetric
groups is straightforward. For self-containment, we describe the scheme of [1] in asymmetric groups in §C.

4



albeit over another subgroup (of order p2), as follows. (Here we also write the normal elements
as type 0.)

SKtype0 = g
k(α,r,h)
2

SKtype1 = g
k(α,r,h)
2 ĝ

k(0,r̂,ĥ)
2

SKtype2 = g
k(α,r,h)
2 ĝ

k(α̂,r̂,ĥ)
2

SKtype3 = g
k(α,r,h)
2 ĝ

k(α̂,0,0)
2

Ctype0 = g
c(s,h)
1

Ctype1 = g
c(s,h)
1 ĝ

c(ŝ,ĥ)
1

Subgroup Decision

Security of Encoding

Subgroup Decision

Subgroup Decision

where ĝ1, ĝ2 are generators of subgroup of order p2 of G1,G2, respectively. A security proof in
the dual system approaches is structured by using a sequence of hybrid games where each game
switches normal to semi-functional elements, so that in the final game, all the elements will be
semi-functional and the security can be proved trivially. The framework of [1] makes it clear
which game transitions would use which underlying assumptions: we write them along with the
definition above. More importantly, it decouples the dual system techniques in such a way that
the security of encoding will be used in exactly one type of transition (type 1 to 2 as shown in
the diagram), while other transitions will be generically based on subgroup decision assumptions
provided by the composite-order bilinear groups. Indeed, the security of encoding is defined to be
just what we need for that transition. That is, the security of encoding states that given ĝc(ŝ,ĥ)

1

and ĝk(α̂,r̂,ĥ)
2 where c,k encodes (adversarially chosen) Y,X such that R(X,Y ) = 0, together

with generators of every subgroup, the adversary cannot guess if α̂ = 0 or α̂ is random.

Our Goal. Towards translating to a new prime-order based framework, we would like to use
the definition and the security of encoding “as is”, since this will allow us to instantly instantiate
the encoding schemes already proposed and proved security in [1]. If we can leave encoding “as
is”, we will only have to replace subgroup decision assumptions provided by composite-order
groups with some mechanisms from prime-order groups that mimic them.

A First Attempt: Dual-Pairing Vector Space Approaches. One candidate approach for
mimicking subgroup decision assumptions in prime-order groups is to use dual-pairing vector
space techniques initiated by Okamoto and Takashima [45, 46] and extended by Lewko [37].
However, we expect that this would force us to work with one of the encoding (in the pair
encoding) in an “orthogonal form” in order to enable inner-product spaces, which seems to
be essential in this approach. This is best described by using an example. Consider a pair
encoding scheme that underlies IBE of Boneh and Boyen [8], and Lewko and Waters [39] (and
hence for the equality predicate). Their encoding is defined as: c(s,h) = (s, s(h1 + h2Y )) and
k(α, r,h) = (α + r(h1 + h2X), r), where h = (h1, h2). From what we understood, essentially,
Lewko [37] converts the IBE scheme to the prime-order setting by (implicitly) considering a
vector c′ = (s, sY,−s) for c and k′ = (α, r, rX) for k and using the fact that the inner product
of both vectors becomes αs if X = Y to implement the scheme. In essence, while k′ is directly
picked from the coefficients in k; contrastingly, c′ is defined by (Y,−1), which is exactly an
orthogonal vector of (1, Y ). Orthogonal transformation is certainly doable for simple predicates
and encodings, but it could be paramount for enormous encoding schemes (such as in [57, 1]).
More importantly, the transformation would change the form of encoding, and we could not use
the definition and security of encoding “as is”.

Next Attempt: Dual-system Groups. Due to the above difficulty, we then turn to use a
variant of the dual-pairing vector space approach recently devised by Chen and Wee [15], called

5



dual-system groups. Their notion is generic in a complementary way to the frameworks of [58, 1]
in the sense that it unifies composite-order and prime-order bilinear group properties for dual
system encryption techniques but are applied to only ABE with specific predicates, namely, HIBE
and spatial encryption, while the frameworks of [58, 1] unify dual system encryption techniques
for any predicate but only over composite-order groups.

We briefly describe the basic idea of Prime-order Dual System Groups (PDSG) in our notation
as follows. Subgroup decision assumptions in composite-order groups will be emulated using the
d-Decisional Linear assumption (d-DLIN) in prime-order groups, for any d ≥ 2. The group G1

will be emulated by the full column space of a random invertible matrix B ∈ Z(d+1)×(d+1)
p (in the

exponent). The subgroup of order p1 and p2 of G1 will then be emulated by using the column
spaces of d leftmost columns of B and of the one rightmost column of B, respectively. The group
G2 will be emulated similarly but by the matrix B−>. More concretely, we consider bilinear
groups (Ḡ1, Ḡ2, ḠT ) of prime order p with generator ḡ1, ḡ2. The roles of generators g1, ĝ1, g2, ĝ2
(of subgroups of order p1, p2 in G1 and p1, p2 in G2, resp.) in composite-order groups will be
played by the following elements in prime-order groups:

g1 7→ ḡ
B

(
Id
0

)
1 , ĝ1 7→ ḡ

B( 0
1 )

1 , g2 7→ ḡ
B−>

(
Id
0

)
2 , ĝ2 7→ ḡ

B−>( 0
1 )

2 .

We note that
(
Id
0

)
denotes the (d+ 1)× d matrix where the first d rows comprise the identity

matrix while the last row is zero. It functions as a left-projection map.5 Similarly, ( 0
1 ) is the

(d+ 1)× 1 matrix where the last row is 1; it functions as a right-projection map.
Why the Prime-order Dual-system Groups are Suitable. Although the dual system
groups were proposed for applying to HIBE in mind, their idea can be generalized to work with
elements in the pair encoding notion as follows. The role of parameter h ∈ ZN in composite-order
setting will then be played by a matrix H ∈ Z(d+1)×(d+1)

p , while the role of randomness s, r (in
the normal components) in a ciphertext and a key will be played by vectors, say vs,vr ∈ Zd×1

p ,
respectively. It is this nature of translating element in a precise way that allows us to work
with encoding “as is” by just substituting variables with the translated ones, e.g., our ciphertext
encoding function c((s0, . . . , s`), (h1, . . . , hn)) will become c((vs0 , . . . ,vs`), (H1, . . . ,Hn)).

In order to be fully compatible with the framework of [1], however, the prime-order dual
system groups should not only translate the elements but also fully mimic composite-order groups
in both aspects of properties and procedures that are required by both dual system techniques in
general and the framework of [1] in particular. As an example of mimicking properties, we have
orthogonality between generators from different subspaces, mimicking e(g1, ĝ2) = 1:

e(ḡ
B

(
Id
0

)
1 , ḡ

B−>( 0
1 )

2 ) = e(ḡ1, ḡ2)
( 0 1 )B−1B

(
Id
0

)
= 1,

where for matrices X,Y with an equal number of rows, we define e(gX1 , gY2 ) = e(g1, g2)Y >X .
As an example of mimicking procedures, the “exponentiation” can be done as follows:

gs1 7→ ḡ
B

(
Id
0

)
vs

1 = ḡ
B( vs0 )
1 , gr2 7→ ḡ

B−>
(
Id
0

)
vr

2 = ḡ
B−>( vr0 )
2 .

In particular, one of the most important properties that the prime-order dual system groups
mimic from composite-order groups are parameter-hiding and associativity. We elaborate the
5That is, X

(
Id
0

)
∈ Z(d+1)×d

p is the matrix consisting of all left d columns of X for any X ∈ Z(d+1)×(d+1)
p .

6



translation of these properties to the prime-order groups in §4.1. It turns out that, however,
the “out-of-the-box” prime-order dual-system groups are still not sufficient for applying to the
framework of [1]. We elaborate them as follows.
Dealing with Exponentiation Procedure. We describe an issue on procedures first. In the
framework of [1], the encoding c(s,h) is defined to be an ordered set of polynomials, each of which
contains only monomials of the form sj , hksj , where we write h = (h1, . . . , hn), s = (s0, . . . , s`).
Moreover, in the resulting ABE, we define public key to contain gh1 and ciphertext to contain
g
c(s,h)
1 ; therefore, we would require exponentiations in the translated prime-order groups that
mimic ghk1 , g

sj
1 , (g

hk
1 )sj . We have already seen the case of gsj1 above. However, it turns out that the

procedure to do exponentiation as (g1, hk) 7→ ghk1 is not implied by the out-of-the-box formulation
of PDSG. This corresponds to the fact that we cannot directly compute (written in our notation):

(ḡ
B

(
Id
0

)
1 ,Hk) 67→ ḡ

BHk

(
Id
0

)
1 ,

since matrix multiplication is not commutative and hence we cannot insert a matrix in the
middle of a multiplicative term. Here, the three terms implicitly mimic the roles of g1, hk, g

hk
1 ,

respectively, in PDSG. We resolve this issue by newly defining exponentiation as

(ḡ
B

(
Id
0

)
1 ,Hk) 7→ ḡ

HkB

(
Id
0

)
1 , (1)

where we can now compute by the left multiplication in the exponent. It turns out that this not
only resolves the issue of mimicking the exponentiation procedure, but also helps resolving a
perhaps more important issue of mimicking subgroup decisions assumptions, as we elaborate
next.
Dealing with Subgroup Decision Assumptions. The next issue regarding properties is
more important. It turns out that the subgroup decision assumptions-like properties as provided
by PDSG [15] are not sufficient for translating the framework of [1] to prime-order settings. This
is since, to the best of our knowledge, such properties in [15] would guarantee indistinguishability
for elements that have only one element of randomness in the encoding. More precisely, the
out-of-the-box formalization in [15] only guarantees the indistinguishability:{

ḡ
B( vs0 )
1 , ḡ

BH1( vs0 )
1 , . . . , ḡ

BHn( vs0 )
1

}
and

{
ḡ
B
( vs
ŝ

)
1 , ḡ

BH1
( vs
ŝ

)
1 , . . . , ḡ

BHn

( vs
ŝ

)
1

}
(2)

where ŝ $← Zp. This is called left-subgroup indistinguishability in [15]. We note that s reflects the
one randomness element in the encoding of c(s,h). In other words, we can use this out-of-the-box
property from [15] to deal only with encoding c that has a vector s having only one variable
s. In order to deal with s that contains any number of elements, as required for general pair
encodings defined by [1], we introduce a new technique that uses random self-reducibility of the
underlying assumption.6 More precisely, we use the Matrix Diffie-Hellman Assumption [19]. We
informally recap it as follows. It is defined by a distribution Dd that outputs matrices of certain
forms in Z(d+1)×(d+1)

p . The assumption states that the adversary cannot distinguish

{
ḡT1 , ḡ

T (y0 )
1

}
and

{
ḡT1 , ḡ

T

(
y
ŷ

)
1

}
6Random self-reducibility was already used in [1] but for different reasons and schemes, it was for their (almost)
tightly secure IBE scheme in the same paper.

7



where T $← Dd,y
$← Zd×1

p , ŷ $← Zp. A useful property of this assumption is that it has random
self-reducibility: we can extend the column of

(
y
ŷ

)
from the original one column to any number

of columns, with tight reduction. That is, in the extended problem, it becomes to distinguish

{
ḡT1 , ḡ

T

(
y1, ..., y`
0, ..., 0

)
1

}
and

{
ḡT1 , ḡ

T

(
y1, ..., y`
ŷ1, ..., ŷ`

)
1

}
(3)

for any ` of polynomial size. Hence, we can use the j-th column for simulating the j-th randomness,
i.e.,

( yj
0
)
or
(
yj
ŷj

)
for

(
vsj
0

)
or
( vsj
ŝj

)
, and hence obtain the following indistinguishability:

{
ḡ
HkB

(
vsj
0

)
1

}
k,j

and
{
ḡ
HkB

( vsj
ŝj

)
1

}
k,j

which is analogously to (2) as above, but now we can deal with as many randomness variables as
appear in s = (s0, . . . , s`), as required.7

We also note a crucial fact that our solution of using this random self-reducibility becomes
possible only due to our newly defined exponentiation procedure (1) above. Intuitively, this
is since if we were to use the out-of-the-box PDSG, it is not clear how to reduce the (many-
randomness-variable version of) indistinguishability in (2) to the expanded problem in (3), since
we cannot directly exponentiate with Hk (and hence cannot lift (3) to (2)).

Now that we modify and extend dual system groups to be compatible with the framework
of [1], some issues still remain in such a way that dual system groups formalization inherently
cannot avoid so. To this end, we also restrict the syntax definition of pair encoding so as to
resolve them. This will be done in a minimal manner that all the encoding schemes proposed so
far [58, 1, 6] satisfy the additional restrictions. We thus call it regular encoding.

Restricting the Syntax Definition of Encodings. The encoding definition allows the
multiplication of monomials hksj from a ciphertext encoding with hk′rj′ from a key encoding
(when pairing). Since we translate the parameters hk, hk′ to matrices Hk,Hk′ and the matrix
multiplication does not commute, such a multiplication procedure from composite-order settings
would not be mimicked correctly (see Eq.(8)). To this end, we restrict the encoding scheme so
that there will be no multiplication in the above manner. We additionally need three simple
requirements which will be used in the security proof of the framework. We describe the intuition
for them in §3.1.

1.3 Concurrent and Independent Work

Concurrently and independently, Chen, Gay, and Wee [14] recently propose a generic framework
that abstracts dual system ABE for arbitrary predicates in prime-order bilinear groups. The main
difference between their framework and ours is that ours can deal with computationally secure
encodings, while their framework can deal only with information-theoretic ones. As motivated
in [1], computational approaches have an advantage in that they are applicable to ABE for
predicates where information-theoretic theoretic argument seems insufficient. These include
ABE with some unbounded properties, or constant-size ciphertexts (or keys). We compare some
instantiations of [14] (available in their full version) that are relevant to ours in Table 2.
7Note that here we implicitly set B = T , and in the proof, Hk will be known values to the reduction algorithm.
We only give a very informal argument here just to grasp the intuition. The details are in, e.g., Lemma 4.

8



Another difference is that the syntax of encoding in [14] seems more restricted in the sense that
it can deal with only one element of randomness, while our syntax can deal with arbitrary many
elements. On one hand, one unit of randomness is shown to suffice for all known information-
theoretic encodings in [14]. On the other hand, multi-unit randomness seems essential in more
esoteric predicates such as ABE for regular languages (of which information-theoretic encodings
are not known).

In the conceptual view, their framework unifies both composite-order and prime-order groups
into one generic construction via the dual system group syntax. Contrastingly, we focus only on
the prime-order generic construction. Nevertheless, since we use the same notion of pair encoding
as in the composite-order framework of [1], it can be said that our framework together with [1]
provide a unified framework albeit with two generic constructions.

It is also worth noting that [14] extends their ABE framework to achieve weakly attribute-
hiding predicate encryption.8

1.4 Related Work

Researches on ABE and its generalization, functional encryption (FE), stem from a large number
of works [52, 30, 7, 49, 12, 55, 56, 3, 4, 39, 43, 46, 5, 40, 41, 13, 47, 48, 51], and many more,
that progressively strengthen ABE in many aspects such as allowable predicate classes, security,
underlying assumptions, added functionalities, efficiency, and so on.

Composite-to-Prime Translations. Composite-order bilinear groups were first suggested
by [11]. Freeman [20] identified two useful features of composite-order groups, namely projecting
and canceling pairing, and proposed guidelines for translating schemes in composite-order groups
to prime-order ones while preserving either feature. Subsequent works [44, 53, 33, 38] further
studied translations that preserve both features simultaneously. In [37], Lewko points out why the
features identified by Freeman might not be sufficient for enabling dual-system proof approaches.
In particular, an implicit but important feature for dual system proofs, namely parameter-hiding,
was not captured by Freeman’s framework. Based on dual-pairing vector spaces [46], Lewko [37]
then proposed techniques that can be seen as guidelines for simulating some parameter-hiding
feature, which are then applied to the IBE of [39] and the HIBE of [41]. While the guideline
of [37] is versatile, it is not generic: a scheme designer must still design a scheme and prove the
security anew each time. On the other hand, our framework is generic: it provides a unified
generic construction and a unified security proof, and can be applied to ABE for arbitrary
predicates (for which secure pair encoding exists).

ABE for More General Predicates. In this work, we allow only efficient tools, namely,
bilinear groups. When basing on bilinear groups, the largest allowable predicate classes for
ABE turn out to be Boolean formulae [30, 43] and deterministic finite Automata [57, 1], which
are subclasses of log-depth circuits (NC1, or log-space computations). When basing on some
seemingly stronger (and hence less efficient) tools, such as lattice-based cryptography and the
LWE assumption, multi-linear maps [21, 17, 18], or cryptographic obfuscations [23], we can
obtain ABE and FE for much larger classes such as poly-size circuits [22, 29, 25, 10], or Turing
machines [27, 28]. We remark that, until recently, all known ABE systems for these general
classes are only selectively secure (or fully secure but with exponential reductions). Fully secure
ABE systems for circuits are recently proposed in [24, 2] using composite-order multi-linear
8Note that, however, only (H)IBE and zero inner-product are currently the only predicates applicable in this
extended framework [14].

9



maps [18] via dual system techniques. Constructing such ABEs in prime-order settings is still an
interesting open problem. Our framework might be a suitable starting point for solving it.

2 Preliminaries

2.1 Definitions of Attribute Based Encryption

Predicate Family. We consider a predicate family R = {Rκ}κ∈Nc , for some constant c ∈ N,
where a relation Rκ : Xκ × Yκ → {0, 1} is a predicate function that maps a pair of key attribute
in a space Xκ and ciphertext attribute in a space Yκ to {0, 1}. The family index κ = (n1, n2, . . .)
specifies the description of a predicate from the family. We will often neglect κ for simplicity of
exposition.

Attribute Based Encryption Syntax. An attribute based encryption (ABE) scheme for
predicate family R consists of the following algorithms.

• Setup(1λ, κ) → (PK,MSK): takes as input a security parameter 1λ and a family index κ of
predicate family R, and outputs a master public key PK and a master secret key MSK.

• Encrypt(Y,M,PK) → CT: takes as input a ciphertext attribute Y ∈ Yκ, a message M ∈ M,
and public key PK. It outputs a ciphertext CT.

• KeyGen(X,MSK,PK)→ SK: takes as input a key attribute X ∈ Xκ and the master key MSK.
It outputs a secret key SK.

• Decrypt(CT,SK)→M : given a ciphertext CT with its attribute Y and the decryption key SK
with its attribute X, it outputs a message M or ⊥.

Correctness. Consider all indexes κ, all M ∈M, X ∈ Xκ, Y ∈ Yκ such that Rκ(X,Y ) = 1. If
Encrypt(Y,M,PK) → CT and KeyGen(X,MSK,PK) → SK where (PK,MSK) is generated from
Setup(1λ, κ), then Decrypt(CT, SK)→M .

We defer the security definition for ABE to §A.

2.2 Bilinear Groups and Assumptions

In our framework, for maximum generality and clarity, we consider asymmetric bilinear groups
(G1,G2,GT ) of prime order p, with an efficiently computable bilinear map e : G1 × G2 → GT .
The symmetric version of our framework can be obtained by just setting G1 = G2.9 We
define a bilinear group generator G(λ) that takes as input a security parameter λ and outputs
(G1,G2,GT , e, p). We recall that e has the bilinear property: e(ga1 , gb2) = e(g1, g2)ab for any
g1 ∈ G1, g2 ∈ G2, a, b ∈ Z and the non-degeneration property: e(g1, g2) 6= 1 ∈ GT whenever
g1 6= 1 ∈ G1, g2 6= 1 ∈ G2.

Notation for Matrix in the Exponents. Vectors will be treated as either row or column
matrices. When unspecified, we shall let it be a row vector. Let G be a group. Let a = (a1, . . . , an)
and b = (b1, . . . , bn) ∈ Gn. We denote a · b = (a1 · b1, . . . , an · bn), where ‘·’ is the group operation
of G. For g ∈ G and c = (c1, . . . , cn) ∈ Zn, we denote gc = (gc1 , . . . , gcn). We denote by GLp,n
the group of invertible matrices (the general linear group) in Zn×np . Consider M ∈ Zd×np (the
set of all d × n matrices in Zp). We denote the transpose of M as M>. We denote by gM

9This can be done since we will not assume, e.g., the External DH assumption [9].

10



the matrix in Gd×n of which its (i, j) entry is gMi,j , where Mi,j is the (i, j) entry of M . For
Q ∈ Z`×dp , we denote (gQ)M = gQM . Note that from M and gQ ∈ G`×d, we can compute gQM

without knowing Q, since its (i, j) entry is
∏d
k=1(gQi,k)Mk,j . The same can be said about gM

and Q. For X ∈ Zr×c1p and Y ∈ Zr×c2p , we denote its pairing as:

e(gX1 , gY2 ) = e(g1, g2)Y >X ∈ Gc2×c1
T .

Matrix-DH Assumptions [19]. We call Dd a matrix distribution if it outputs (in poly time,
with overwhelming probability) matrices in Z(d+1)×(d+1)

p of the form:

T =
( d 1

d M 0
1 c 1

)
$← Dd. (4)

such that M is an invertible matrix in Zd×dp (i.e., M ∈ GLp,d). We say that the Dd-Matrix
Diffie-Hellman Assumption holds relative to G if for all ppt adversaries A, the advantage

AdvDd-MatDH
A (λ) :=

∣∣∣∣∣∣Pr
[
A(G, gT1 , g

T (y0 )
1 ) = 1

]
− Pr

[
A(G, gT1 , g

T

(
y
ŷ

)
1 ) = 1

]∣∣∣∣∣∣
is negligible in λ, where the probability is taken over (G1,G2,GT , e, p) $← G(λ), g1

$← G1, g2
$← G2,

T $← Dd, y $← Zd×1
p , y $← Zp, and the randomness of A. Denote G = (G1,G2,GT , e, p, g1, g2).

Remark 1. We remark that the assumption is progressively weaker as d increases. In particular,
in any k-multi-linear groups, the Dd-Matrix DH Assumption is false if d < k ([19]). Hence, we
can use the assumption with d ≥ 2, since we work on bilinear groups. The most well-known
special case of the Dd-Matrix-DH Assumption is the Decision d-Linear Assumption, for which
M are restricted to random diagonal matrices and c is fixed as the vector with all 1’s.

Our scheme will use arbitrary Dd for maximal generality. One can directly tradeoff the
weakness of assumption and the sizes of ciphertexts and keys by d.

Random Self Reducibility of Matrix-DH Assumptions. The Dd-Matrix-DH Assumption
is random self reducible, as shown in [19]: the problem instance defined by (T ,

(
y
ŷ

)
) can be

randomized to another instance defined by (T ,
(
y′

ŷ′

)
). This is done by choosing δ $← Zd×1

p , δ̂ $← Zp
and setting

g
T

(
y′

ŷ′

)
1 = g

T

(
y
ŷ

)
δ̂

1 g
T
(
δ
0
)

1 ,

and observe that y = 0 iff y′ = 0. We can gather each new instance
(
y′

ŷ′

)
into columns of a

matrix and consider the m-fold Dd-Matrix-DH Assumption for which the advantage is defined as

Advm,Dd-MatDH
A (λ) :=

∣∣∣∣∣∣Pr
[
A(G, gT1 , g

T
(
Y
0
)

1 ) = 1
]
− Pr

[
A(G, gT1 , g

T

(
Y
ŷ

)
1 ) = 1

]∣∣∣∣∣∣ ,
where the probability is taken over (G1,G2,GT , e, p) $← G(λ), g1

$← G1, g2
$← G2, T $← Dd,

Y $← Zd×mp , ŷ $← Z1×m
p , and the randomness of A. Again, we denote G = (G1,G2,GT , e, p, g1, g2).

Due to the random self-reducibility, the reduction to the m-fold variant is tight.
Proposition 1. ([19]) For any integer m, for all ppt adversary A, there exists a ppt algorithm
A′ such that Advm,Dd-MatDH

A′ (λ) = AdvDd-MatDH
A (λ).

11



3 Definition of Pair Encoding
We recall the definition of pair encoding schemes as given in [1]. A pair encoding scheme for
predicate family R consists of four deterministic algorithms given by P = (Param,Enc1,Enc2,
Pair) as follows:

• Param(κ) → n. It takes as input an index κ and outputs an integer n, which specifies the
number of common variables in Enc1, Enc2. For the default notation, let h = (h1, . . . , hn)
denote the the list of common variables.

• Enc1(X) → (k =
(
k1, . . . , km1); m2

)
. It takes as inputs X ∈ Xκ, and outputs a sequence

of polynomials {ki}i∈[1,m1] with coefficients in Zp, and m2 ∈ N. We require that each poly-
nomial ki is a linear combination of monomials α, rj , hkrj , where α, r1, . . . , rm2 , h1, . . . , hn
are variables. More precisely, it outputs a set of coefficients {bi}i∈[1,m1], {bi,j}i∈[1,m1],j∈[1,m2],
{bi,j,k}i∈[1,m1],j∈[1,m2],k∈[1,n] that defines the sequence of polynomials:

k(α, (r1, . . . , rm2), (h1, . . . , hn)) =

biα+

 ∑
j∈[1,m2]

bi,jrj

+

 ∑
j∈[1,m2]
k∈[1,n]

bi,j,khkrj



i∈[1,m1]

(5)

• Enc2(Y ) →
(
c = (c1, . . . , cw1); w2

)
. It takes as inputs Y ∈ Yκ, and outputs a sequence of

polynomials {ci}i∈[1,w1] with coefficients in Zp, and w2 ∈ N. We require that each polynomial
ci is a linear combination of monomials sj , hksj , where s0, s1, . . . , sw2 , h1, . . . , hn are variables.
More precisely, it outputs {ai,j}i∈[1,w1],j∈[0,w2], {ai,j,k}i∈[1,w1],j∈[0,w2],k∈[1,n] which is a set of
coefficients that defines the sequence of polynomials:

c((s0, s1, . . . , sw2), (h1, . . . , hn)) =


 ∑
j∈[0,w2]

ai,jsj

+

 ∑
j∈[0,w2]
k∈[1,n]

ai,j,khksj



i∈[1,w1]

(6)

• Pair(X,Y )→ E. It takes as inputs X,Y , and output E ∈ Zm1×w1
p .

Correctness. The correctness requirement is defined as follows. Let (k;m2) ← Enc1(X),
(c;w2) ← Enc2(Y ), and E ← Pair(X,Y ). We have that if R(X,Y ) = 1, then kEc> = αs0,
where the equality holds symbolically.

Note that since kEc> =
∑
i∈[1,m1],j∈[1,w1]Ei,jkicj , the correctness amounts to check if there

is a linear combination of kicj terms summed up to αs0. In what follows, we denote h =
(h1, . . . , hn), r = (r1, . . . , rm2), s = (s0, s1, . . . , sw2).

3.1 Regular Pair Encoding

Towards proving the security of our framework in prime-order groups, we require new properties
for pair encoding. We formalize them as regularity. This would generally confine the class of
encoding schemes that the new framework can deal with from the previous framework by [1].
Nonetheless, the confinement seems natural since all the pair encoding schemes proposed so

12



far [1, 58, 6] turn out to be regular, and hence are not affected. The definition can be best
described by using an example, we will thus illustrate an the regularity of an existing encoding
from [1] in §F.

Definition 1 (Regular Pair Encoding). We call a pair encoding regular if the following hold:

1. For i ∈ [1,m1], i′ ∈ [1, w1] such that there is j ∈ [1,m2], k ∈ [1, n], j′ ∈ [1, w2], k′ ∈ [1, n] where
bi,j,k 6= 0 and ai′,j′,k′ 6= 0, we require that Ei,i′ = 0.

2. For j ∈ [1,m2] such that there is no i′ ∈ [1,m1] where ki′ = rj , we require that for any
i ∈ [1,m1], k ∈ [1, n], we have bi,j,k = 0.

3. For j ∈ [0, w2] such that there is no i′ ∈ [1, w1] where ci′ = sj , we require that for any
i ∈ [1,m1], k ∈ [1, n], we have ai,j,k = 0.

4. There is i′ ∈ [1, w1] where ci′ = s0. Wlog, we always let such i′ be 1, i.e., the first polynomial
in c is c1 = s0.

Explaining the Definition. The first restriction basically states that the multiplication of
(hkrj) and (hk′sj′) will not be allowed when pairing. The reason to do so is that the parameter
hk, hk′ will be translated to matrices, and the matrix multiplication does not commute; hence, the
multiplication procedure would not be mimicked correctly (from the composite-order setting) if
it were to be allowed (see Eq. (8)). This restriction is quite natural since the product rjhk, hk′sj′
can be implemented by grouping hk′′ = hkhk′ , and just using associativity (rjhk′′)sj′ = rj(hk′′sj′)
instead; therefore, the multiplication of (hkrj) and (hk′sj′) will not be needed in the first place.

The second restriction basically states that a term hkrj is allowed in the key encoding only
if rj is given out explicitly in the key encoding. The third is similar but for the ciphertext
encoding. These restrictions are also natural since intuitively to cancel out hkrj (so that the
bilinear combination would give only the term αs0 and no others), one would need rj to multiply
with, say hksj′ (since we cannot do the multiplication concerning two parameters, as depicted
above). The meaning of the fourth is clear: s0 must be given out in the encoding. These latter
three restrictions will be used for the security proofs of game transitions that are based on the
security of encodings (Lemma 7,10).

3.2 Security Definitions for Pair Encodings

We will use (almost) the same definitions for security notions of pair encoding schemes as
given in [1], with a refinement regarding the number of queries in [6]. We therefore defer it
to §B. The definitions comprise an information-theoretic flavor called perfectly master-key hiding
(PMH) and a computational flavor called doubly selectively master-key hiding, which consists of
two sub-notions called selectively master-key hiding (SMH) and co-selectively master-key hiding
(CMH). We use a new refinement proposed in [6] that parameterizes the notions with the number
of queries for ciphertext and key. The notions in [1] can then be rephrased as (1, poly)-SMH
and (1, 1)-CMH. An advantage of this refinement is that we can have a “dual” conversion that
converts between (1, 1)-CMH and (1, 1)-SMH for dual predicate [6]. We remark a slight difference
from those in [1, 6]: here we define it in asymmetric and prime-order groups, while it was defined
in symmetric and prime-order subgroup of composite-order groups in [1, 6]. We argue that these
are merely syntactical and the security of all concrete pair encoding schemes proposed in [1, 6]
will preserve. We refer to §B.

13



4 Our Framework in Prime-Order Groups

4.1 Intuition for Translation to Prime-Order Groups

Before describing our prime-order framework, we describe how we translate elements, procedures,
and properties from the composite-order group setting to the prime-order group setting. For
self-containment, we also describe the composite-order framework of [1] in §C.

• Generators. In composite-order groups (C1,C2,CT ) of order N = p1p2p3, we consider
generators c1 ∈ C1,p1 , ĉ1 ∈ C1,p2 , c2 ∈ C2,p1 , ĉ2 ∈ C2,p2 , where Ci,pj is the subgroup of Ci of
order pj . In prime-order groups (G1,G2,GT ) with generators g1 ∈ G1, g2 ∈ G2, we use the
following elements to mimic generators c1, ĉ1, c2, ĉ2, respectively:

g
B

(
Id
0

)
1 ∈ G(d+1)×d

1 , g
B( 0

1 )
1 ∈ G(d+1)×1

1 ,

g
Z

(
Id
0

)
2 ∈ G(d+1)×d

1 , g
Z( 0

1 )
2 ∈ G(d+1)×1

1 .

where B $← GLp,d+1, Z := B−>D where D :=
(
D̃ 0
0 1

)
∈ GLp,d+1 with D̃ $← GLp,d.

• Variables. The role of parameter hk (in h) in the composite-order setting will be played
by a matrix Hk ∈ Z(d+1)×(d+1)

p . The role of randomness sj , rj (in s, r) to be exponentiated
over c1, c2 in the composite-order setting for a ciphertext and a key will be played by vectors
sj , rj ∈ Zd×1

p , respectively, in the prime-order setting. The role of randomness ŝj , r̂j (in ŝ, r̂)
to be exponentiated over ĉ1, ĉ2 will be used as it is (a scalar in Zp) in the prime-order setting.

• Exponentiation by parameter. To mimic exponentiation chk1 , ĉĥk1 , chk2 , ĉĥk2 in the composite-
order setting, we do the following in the prime-order setting:

g
HkB

(
Id
0

)
1 ∈ G(d+1)×d

1 , g
B( 0

1 )ĥk
1 ∈ G(d+1)×1

1 ,

g
H>k Z

(
Id
0

)
2 ∈ G(d+1)×d

1 , g
Z( 0

1 )ĥk
2 ∈ G(d+1)×1

1 .

• Exponentiation by randomness. To mimic exponentiation c
sj
1 , ĉŝj1 , crj2 , ĉr̂j2 , in the

composite-order setting, we do the following in the prime-order setting:

g
B

(
Id
0

)
sj

1 = g
B
( sj

0
)

1 ∈ G(d+1)×1
1 , g

B( 0
1 )ŝj

1 = g
B

(
0
ŝj

)
1 ∈ G(d+1)×1

1 ,

g
Z

(
Id
0

)
rj

2 = g
Z
( rj

0
)

2 ∈ G(d+1)×1
1 , g

Z( 0
1 )r̂j

2 = g
Z

(
0
r̂j

)
2 ∈ G(d+1)×1

1 .

• Exponentiation by randomness over parameter. To mimic (chk1 )sj , (ĉĥk1 )ŝj , (chk2 )rj ,
(ĉĥk2 )r̂j , in the composite-order setting, we do the following in the prime-order setting:

g
HkB

(
Id
0

)
sj

1 = g
HkB

( sj
0
)

1 ∈ G(d+1)×1
1 , g

B( 0
1 )ĥk ŝj

1 = g
B

( 0
ĥk ŝj

)
1 ∈ G(d+1)×1

1 ,

g
H>k Z

(
Id
0

)
rj

2 = g
H>k Z

( rj
0
)

2 ∈ G(d+1)×1
1 , g

Z( 0
1 )ĥk r̂j

2 = g
Z

( 0
ĥk r̂j

)
2 ∈ G(d+1)×1

1 .

14



• Pair Encoding. From the ciphertext attribute encoding c(s,h) defined in Eq.(6), we define
an augmented encoding with variables xj replacing sj , Hk replacing hk as

cB((x0,x1, . . . ,xw2), (H1, . . . ,Hn)) :=
 ∑
j∈[0,w2]

ai,jBxj

+

 ∑
j∈[0,w2]
k∈[1,n]

ai,j,kHkBxj



i∈[1,w1]

.

Similarly, from the key attribute encoding k(α, s,h) defined in Eq.(5), we define an augmented
encoding with variables yj replacing sj , Hk replacing hk, and α ∈ Z(d+1)×1

p replacing α as

kZ(α, (y1, . . . ,ym2), (H1, . . . ,Hn)) :=biα+

 ∑
j∈[1,m2]

bi,jZyj

+

 ∑
j∈[1,m2]
k∈[1,n]

bi,j,kH
>
k Zyj



i∈[1,m1]

.

Note that we will use xj as either
( sj

0
)
or
(
sj
ŝj

)
and yj as either

( rj
0
)
or
(
rj
r̂j

)
.

• Associativity. In the composite-order setting, we have e(thksj1 , tri2 ) = e(tsj1 , t
hkri
2 ), for any

t1 ∈ C1, t2 ∈ C2. In the prime-order setting, we have

e(g
HkB

(
sj
ŝj

)
1 , g

Z
( ri
r̂i

)
2 ) = e(g

B

(
sj
ŝj

)
1 , g

H>k Z
( ri
r̂i

)
2 ). (7)

as
(
( r>i r̂i )Z>

)(
HkB

(
sj
ŝj

))
=
(
( r>i r̂i )Z>Hk

)(
B

(
sj
ŝj

))
.

• Parameter-Hiding. In composite-order groups, we have that: given chk1 , chk2 , c1, ĉ1, c2, ĉ2, p1, p2;
hk mod p2 is infor-mation-theoretically hidden (due to the Chinese Remainder Theorem). In
prime-order settings, we have Lemma 2.

Lemma 2. Given g
HkB

(
Id
0

)
1 ∈ G(d+1)×d

1 and g
H>k Z

(
Id
0

)
2 ∈ G(d+1)×d

2 , along with g1, g2,B,Z,
the quantity of the entry at (d+ 1, d+ 1) of the matrix B−1HkB is information-theoretically
hidden.

Proof. Write B−1HkB =
(
M1 M2
M3 δ

)
, where M1 ∈ Zd×dp , M2 ∈ Zd×1

p ,M3 ∈ Z1×d
p , δ ∈ Zp. We have

HkB
(
Id
0

)
= B

(
M1 M2
M3 δ

) (
Id
0

)
= B

(
M1
M3

)
,

H>k Z
(
Id
0

)
= H>k B

−>
(
D̃ 0
0 1

) (
Id
0

)
= B−>

(
M>1 M>3
M>2 δ

)(
D̃
0

)
= B−>

(
M>1 D̃

M>2 D̃

)
,

where in the second line, we use the fact that B>H>B−> =
(
M>1 M>3
M>2 δ

)
. We can see that both

HkB
(
Id
0

)
,H>k Z

(
Id
0

)
do not contain information on δ.

15



We also give an intuition why commutativity does not preserve to prime-order settings as
follows.

• Unavailable Commutativity. In the composite-order setting, we allow for any t1 ∈ C1, t2 ∈
C2, e(t

hksj
1 , t

hk′ri
2 ) = e(thk′sj1 , thkri2 ). However, when translating to our prime-order setting using

our rules so far, an analogous mechanism would not hold as we can see that:

e(g
HkB

(
sj
ŝj

)
1 , g

H>
k′Z
( ri
r̂i

)
2 ) 6= e(g

Hk′B

(
sj
ŝj

)
1 , g

H>k Z
( ri
r̂i

)
2 ), (8)

as
(
( r>i r̂i )Z>Hk′

)(
HkB

(
sj
ŝj

))
6=
(
( r>i r̂i )Z>Hk

)(
Hk′B

(
sj
ŝj

))
, due to the fact that the matrix mul-

tiplication is not commutative. This is exactly why we will not use this commu-tativity-based
computation in our prime-order framework by disallowing exactly this kind of multiplication to
occur. We enable this with the first rule of regular encoding, which exactly prevents multiplying
hksj with hk′rj′ .

4.2 Our Generic Construction for Fully Secure ABE

We are now ready to describe our generic construction in prime-order groups. It is obtained
by translating the composite-order scheme of [1], recapped in §C, to the prime-order setting
using the above rules. As a caveat, we actually use a variant of [1], see Remark 2. From a pair
encoding scheme P for a predicate R, we construct an ABE scheme for the predicate R, denoted
ABE(P), as follows.

• Setup(1λ, κ): Run (G1,G2,GT , e, p) $← G(λ). Pick generators g1
$← G1 and g2

$← G2. Run
n ← Param(κ). Pick H1, . . . ,Hn

$← Z(d+1)×(d+1)
p and B $← GLp,d+1 ⊂ Z(d+1)×(d+1)

p . Choose
D̃ $← GLp,d, define D :=

(
D̃ 0
0 1

)
∈ GLp,d+1 and Z := B−>D. Choose α $← Z(d+1)×1

p . Output

PK =

e(g1, g2)
α>B

(
Id
0

)
, g
B

(
Id
0

)
1 , g

H1B

(
Id
0

)
1 , . . . , g

HnB

(
Id
0

)
1

 ,
MSK =

 gα2 , g
Z

(
Id
0

)
2 , g

H>1 Z

(
Id
0

)
2 , . . . , g

H>n Z

(
Id
0

)
2

 .
(9)

• Encrypt(Y,M,PK): Upon input Y ∈ Y, run (c;w2) ← Enc2(Y ). Pick s0, s1, . . . , sw2
$← Zd×1

p .
Let S :=

(
( s0

0 ) , ( s1
0 ) , . . . ,

( sw2
0
))
∈ (Z(d+1)×1

p )w2+1. Denote H := (H1, . . . ,Hn). Output the
ciphertext as CT = (C, C0):

C = g
cB(S,H)
1 ∈ (G(d+1)×1

1 )w1 , C0 = e(g1, g2)α
>B( s0

0 ) ·M ∈ GT . (10)

Note that C can be computed from PK since

cB(S,H) =


 ∑
j∈[0,w2]

ai,jB
( sj

0
)+

 ∑
j∈[0,w2]
k∈[1,n]

ai,j,kHkB
( sj

0
)


i∈[1,w1]

(11)

and thanks to the identity relation
(
X
(
Id
0

))
y = X ( y0 ) for any X ∈ Z(d+1)×(d+1)

p , y ∈ Zd×1
p .

16



• KeyGen(X,MSK): Upon input X ∈ X, run (k;m2)← Enc1(X). Randomly pick r1, . . . , rm2
$←

Zd×1
p . Let R :=

(
( r1

0 ) , . . . ,
( rm2

0
))
∈ (Z(d+1)×1

p )m2 . Recall the notation H = (H1, . . . ,Hn).
Output

SK = g
kZ(α,R,H)
2 ∈ (G(d+1)×1

2 )m1 . (12)

Note that SK can be computed from MSK since

kZ(α,R,H) =

biα+

 ∑
j∈[1,m2]

bi,jZ
( rj

0
)+

 ∑
j∈[1,m2]
k∈[1,n]

bi,j,kH
>
k Z

( rj
0
)


i∈[1,m1]

(13)

and thanks again to the identity relation above.

• Decrypt(CT,SK): Obtain Y,X from CT, SK. Suppose R(X,Y ) = 1. Run E ← Pair(X,Y ).
Denote by C[i′] the i′-th element in C, and SK[i] the i-th element in SK. Compute

e(g1, g2)α
>B( s0

0 ) ∈ GT ←
∏

i∈[1,m1],i′∈[1,w1]
e(C[i′],SK[i])Ei,i′ ,

and obtain M ← C0/e(g1, g2)α
>B( s0

0 ).

Correctness. We would like to prove that if R(X,Y ) = 1 then

α>B ( s0
0 ) =

∑
i∈[1,m1],i′∈[1,w1]

Ei,i′ · (kZ(α,R,H)[i])> · cB(S,H)[i′].

This is implied from the correctness of the pair encoding which states that: if R(X,Y ) = 1,
then αs0 =

∑
i∈[1,m1],i′∈[1,w1]Ei,i′ · k(α, r,h)[i] · c(s,h)[i′]. Intuitively, since we translate to the

prime-order setting by substituting variables and procedures while preserving their properties
as in §4.1, this relation should also translate to the above equation. In particular, we use
associativity but not use commutativity, as clarified in §4.1. We verify the correctness more
formally in §D.

5 Security Theorems and Proofs
We obtain three security theorems for the generic construction. The first one is the main theorem
and is for the case when the pair encoding is (1, poly)-SMH and (1, 1)-CMH, where we achieve
tighter reduction cost, O(q1). The other two are for the case of PMH and the pair of (1, 1)-SMH,
(1, 1)-CMH, where we obtain normal reduction cost, O(qall). We postpone the latter two to §E.

Theorem 3. Suppose that a pair encoding scheme P for predicate R is (1, poly)-selectively and
(1, 1)-co-selectively master-key hiding in G, and the Matrix-DH Assumption holds in G. Then
the construction ABE(P) in G is fully secure. More precisely, for any PPT adversary A, let q1
denote the number of queries in phase 1, there exist PPT algorithms B1,B2,B3, whose running
times are the same as A plus some polynomial times, such that for any λ,

AdvABE
A (λ) ≤ (2q1 + 3)AdvDd-MatDH

B1
(λ) + q1Adv(1,1)-CMH

B2
(λ) + Adv(1,poly)-SMH

B3
(λ).

17



Semi-functional Algorithms. We define semi-functional algorithms which will be used in the
security proof. These are also translated from semi-functional algorithms from the framework
of [1], recapped in §C.

• SFSetup(1λ, κ) → (PK,MSK, P̂K, M̂SKbase, M̂SKaux) : This is exactly the same as the Setup
algorithm albeit it additionally outputs also P̂K, M̂SKbase, M̂SKaux defined as

P̂K =
(
e(g1, g2)α

>B( 0
1 ), g

B( 0
1 )

1 , g
H1B( 0

1 )
1 , . . . , g

HnB( 0
1 )

1

)
, (14)

M̂SKbase = g
Z( 0

1 )
2 , M̂SKaux =

(
g
H>1 Z( 0

1 )
2 , . . . , g

H>n Z( 0
1 )

2

)
. (15)

• SFEncrypt(Y,M,PK, P̂K)→ CT: Upon inputs Y,M,PK and P̂K, first run (c;w2)← Enc2(Y ).
Pick s0, s1, . . . , sw2

$← Zd×1
p , ŝ0, ŝ1, . . . , ŝw2

$← Zp. Let

S :=
(
( s0

0 ) , ( s1
0 ) , . . . ,

( sw2
0
))
, Ŝ :=

((
0
ŝ0

)
,
(

0
ŝ1

)
, . . . ,

(
0
ŝw2

))
∈ (Z(d+1)×1

p )w2+1

Output the ciphertext as CT = (C, C0):

C = g
cB(S,H)+cB(Ŝ,H)
1 ∈ (G(d+1)×1

1 )w1 , C0 = e(g1, g2)α
>B
( s0
ŝ0

)
·M ∈ GT . (16)

Note that C can be computed from PK and P̂K since

cB(S,H) + cB(Ŝ,H) =


 ∑
j∈[0,w2]

ai,jB
(
sj
ŝj

)+

 ∑
j∈[0,w2]
k∈[1,n]

ai,j,kHkB
(
sj
ŝj

)

i∈[1,w1]

and thanks to the identity relation
(
X
(
Id
0

))
y + (X ( 0

1 )) ŷ = X
(
y
ŷ

)
.

• SFKeyGen(X,MSK, M̂SKbase, M̂SKaux, type ∈ {0, 1, 2, 3}, β ∈ Zp
)
→ SK: Upon inputs X,MSK,

M̂SKbase, M̂SKaux, type ∈ {0, 1, 2, 3}, β ∈ Zp, first run (k;m2)← Enc1(X). Pick r1, . . . , rm2
$←

Zd×1
p and r̂1, . . . , r̂m2

$← Zp. Let

R :=
(
( r1

0 ) , . . . ,
( rm2

0
))
, R̂ :=

((
0
r̂1

)
, . . . ,

(
0
r̂m2

))
∈ (Z(d+1)×1

p )m2

Output the secret key SK:

SK =



g
kZ(α,R,H)
2 if type = 0 (17)

g
kZ(α,R,H)+kZ( 0 ,R̂,H)
2 if type = 1 (18)

g
kZ(α,R,H)+kZ(Z

(
0
β

)
,R̂,H)

2 if type = 2 (19)

g
kZ(α,R,H)+kZ(Z

(
0
β

)
,0 ,H)

2 if type = 3 (20)

18



Note that SK of each type can be computed from MSK, M̂SKbase, M̂SKaux since kZ(α,R,H) +
kZ(Z

(
0
β

)
, R̂,H) =biα+ biZ

(
0
β

)
+

 ∑
j∈[1,m2]

bi,jZ
(
rj
r̂j

)+

 ∑
j∈[1,m2]
k∈[1,n]

bi,j,kH
>
k Z

(
rj
r̂j

)

i∈[1,m1]

and thanks again to the identity relation above. Furthermore, we note that:

− In computing type 0, 3, M̂SKaux is not required as input (and no R̂ needed).
− In computing type 0, 1, β is not required as input.

Proof of Theorem 3. We use a sequence of games in the following order:

Greal G0 G1,1
· · ·

Gi−1,3 Gi,1 Gi,2 Gi,3
· · ·

Gq1,3 Gq1+1 Gq1+2 Gq1+3 Gfinal

MatDH
4

MatDH
5

CMH
7

MatDH
8

MatDH
9

SMH
10

MatDH
11

=
12

where each game is defined as follows. Greal is the actual security game, as defined in §A. Each
of the following game is defined exactly as its previous game in the sequence except the specified
modification as follows. For notational purpose, let G0,3 := G0.

− G0: We modify the challenge ciphertext to be semi-functional type.

− Gi,t where i ∈ [1, q1], t ∈ {1, 2, 3}: We modify the i-th queried key to be semi-functional of
type-t. We use fresh β for each key (for type t = 2, 3).

− Gq1+t where t ∈ {1, 2, 3}: We modify all keys in phase 2 to be semi-functional of type-t at
once. We use the same β for all these keys (for type t = 2, 3).

− Gfinal: We modify the challenge to encrypt a random message.

More formal definitions of games are depicted in Fig. 1, where each box shows each game
modification and the box number shows the place of modification in the security game in §A.

In the final game, the advantage of A is trivially 0. We prove the indistinguishability between
all these adjacent games (under the underlying assumptions as written in the diagram). These
comprise Lemma 4,5,7,8,9,10,11,12 (also depicted in the diagram). The proofs of these are shown
below. From these, we obtain Theorem 3.

The following remark describes how our framework deviates from the framework of [1].

Remark 2. In translating to the prime-order setting, we actually start from a variant of [1],
where we also incorporate a technique from [58] related to the information-theoretic argument
for the final transition. This has an advantage over [1] in that we can eliminate a computational
assumption for this transition. To enable this, we have used α ∈ Z(d+1)×1

p , instead of an element
from the left subspace, say Z

(
α′
0
)
, for some α′ ∈ Zd×1

p (as would be used if [1] were used), to
define kZ(α,R,H) in keys as in Eq. (13) and C0 in ciphertexts as in Eq. (10), (16). Also, we
have defined the message mask element of semi-functional ciphertext in Eq. (16) to contain

( s0
ŝ0

)
,

instead of ( s0
0 ).

19



Figure 1: The sequence of games in the security proof.

G0 :Modify (0) SFsetup(1λ, κ)→ (PK,MSK, P̂K, M̂SKbase, M̂SKaux) .

Modify (2) C? ← SFEncrypt(Y ?,Mb,PK, P̂K) .

Gi,1 :Modify (1) βj
$← Zp, SKj ←


SFKeyGen(Xj ,MSK, M̂SKbase, − , 3, βj) if j < i

SFKeyGen(Xj ,MSK, M̂SKbase, M̂SKaux, 1,−) if j = i

KeyGen(Xj ,MSK) if j > i

Gi,2 :Modify (1) βj
$← Zp, SKj ←


SFKeyGen(Xj ,MSK, M̂SKbase, − , 3, βj) if j < i

SFKeyGen(Xj ,MSK, M̂SKbase, M̂SKaux, 2, βj) if j = i

KeyGen(Xj ,MSK) if j > i

Gi,3 :Modify (1) βj
$← Zp, SKj ←

SFKeyGen(Xj ,MSK, M̂SKbase, − , 3, βj) if j ≤ i

KeyGen(Xj ,MSK) if j > i

Gq1+1:Modify (3) SKj ← SFKeyGen(Xj ,MSK, M̂SKbase, M̂SKaux, 1,−)

Gq1+2:Insert β
$← Zp at the begin of Phase 2.

Modify (3) SKj ← SFKeyGen(Xj ,MSK, M̂SKbase, M̂SKaux, 2, β)

Gq1+3:Modify (3) SKj ← SFKeyGen(Xj ,MSK, M̂SKbase, − , 3, β)

Gfinal :Modify (2) M
$←M, C? ← SFEncrypt(Y ?,M,PK, P̂K) .

In the following subsections, we prove the distinguishability between the consecutive games.
We define GjAdvABE

A (λ) to be the advantage of A in the game Gj .

5.1 Normal to Semi-functional Ciphertext

Lemma 4 (Greal to G0). For any adversary A against ABE, there exists an algorithm B that
breaks the Dd-Matrix-DH Assumption with |GrealAdvABE

A (λ)− G0AdvABE
A (λ)| ≤ AdvDd-MatDH

B (λ).

Proof. The algorithm B obtains an input (G, gT1 , g
T

(
y
ŷ

)
1 ) from the Dd-Matrix DH Assumption

where either ŷ = 0 or ŷ $← Zp, and T $← Dd, y $← Zd×1
p .

Setup. The algorithm B does exactly the same as SFSetup(1λ, κ) except that it uses G from its
input, and that it will set B and D in an implicit way. PK,MSK, P̂K will be determined from
this implicit programming. Note that M̂SKbase, M̂SKaux are also determined from this but not
computable; nevertheless, they are not used in Greal or G0. B begins by choosing B̃ $← GLp,d+1,
J $← GLp,d and implicitly setting 10

B = B̃T , Z = B̃−>Z̃ := (B̃−>)
( d 1

d J −M−>c>

1 0 1

)
,

10Here, we write dimensions of sub-matrices for ease of viewing.

20



where we recall that T =
(
M 0
c 1

)
from Eq.(4). From this, we have

D = B>Z = (T>B̃>)(B̃−>Z̃) = T>Z̃

=
( d 1

d M> c>

1 0 1

) ( d 1
J −M−>c>

0 1

)
=

( d 1
d M>J 0
1 0 1

)
,

where we can verify that the upper right block is 0 by seeing that (M>)(−M−>c>)+(c>)(1) = 0.
B is properly distributed due to the randomness of B̃ and that B̃,T ∈ GLp,d+1. D is properly
distributed due to the randomness of J and that M>,J ∈ GLp,d. B can then compute

gB1 = gB̃T1 , g
Z

(
Id
0

)
2 = g

B̃−>
(
J
0
)

2 ,

where the first term is computable from gT1 , while in the second term, the unknown last column
of Z vanishes through the left projection map,

(
Id
0

)
. From these two terms, B can compute

PK,MSK, P̂K; in particular, B chooses α $← Z(d+1)×1
p ,H1, . . . ,Hn

$← Z(d+1)×(d+1)
p , and computes

Eq.(9),(14). (We note that P̂K is not used in the simulation though).

Phase 1. When A makes the j-th key query for Xj , B generates a key SK← KeyGen(Xj ,MSK).

Challenge. The adversary A outputs messages M0,M1 ∈ GT along with a target Y ?. B chooses
b $← {0, 1}. B extends the Matrix-DH Assumption to (w2 + 1)-fold by random self reducibility

and obtains (gT1 , g1
T

(
Y
ŷ

)
) where either ŷ = 0 or ŷ $← Z1×(w2+1)

p with T $← Dd, Y $← Zd×(w2+1)
p .

B implicitly sets S + Ŝ =
(
Y
ŷ

)
; that is,

S + Ŝ =
( 1 1 1

d s0 s1 · · · sw2

1 ŝ0 ŝ1 · · · ŝw2

)
=

Y
ŷ

 =
( 1 1 1

d y0 y1 · · · yw2

1 ŷ0 ŷ1 · · · ŷw2

)
,

where we denote
(
yj
ŷj

)
as the j-th column of

(
Y
ŷ

)
. Thus,

(
sj
ŝj

)
=
(
yj
ŷj

)
. B then can compute for

each j ∈ [0, w2],

g
B

(
sj
ŝj

)
1 = g

B̃T

(
sj
ŝj

)
1 = g

B̃T

(
yj
ŷj

)
1 .

since B possesses g1
T

(
Y
ŷ

)
. From these terms, B can compute the ciphertext in Eq.(16) since B

possesses α,H1, . . . ,Hn. In particular, for C0, B computes C0 = e(g
α>B

( s0
ŝ0

)
1 , g2) ·Mb.

Phase 2. B does the same as in Phase 1.

Guess. The algorithm B has properly simulated Greal if ŷ = 0 and G0 if ŷ $← Zp. Hence, B can
use the output of A to break the Matrix DH Assumption.

21



5.2 Normal to Type-1 Semi-functional Key in Phase 1

Lemma 5 (Gi−1,3 to Gi,1). For any adversary A against ABE, there exists an algorithm B that
breaks the Dd-Matrix-DH Assumption with |Gi−1,3AdvABE

A (λ)−Gi,1AdvABE
A (λ)| ≤ AdvDd-MatDH

B (λ).

Proof. The algorithm B obtains an input (G, gT2 , g
T

(
y
ŷ

)
2 ) from the Dd-Matrix DH Assumption

where either ŷ = 0 or ŷ $← Zp, and T $← Dd, y $← Zd×1
p . Note that it is wlog that we let the

problem instance term be defined over g2 (instead of g1).

Setup. The algorithm B does exactly the same as SFSetup(1λ, κ) except that it uses G from its
input, and that it will set B and D in an implicit way. PK,MSK, P̂K, M̂SKbase, M̂SKaux will be
determined from this implicit programming, but only P̂K will not be computable. B begins by
choosing B̃ $← GLp,d+1, J $← GLp,d and implicitly setting

B = B̃

( d 1
d I M−>c>

1 0 −1

)
, D =

( d 1
d MJ 0
1 0 1

)
,

where we recall that T =
(
M 0
c 1

)
from Eq.(4). B is properly distributed due to the uniform

randomness of B̃ in GLp,d+1. D is properly distributed due to the randomness of J and that
M ,J ∈ GLp,d. From this we have

B−1 =
( d 1

d I M−>c>

1 0 −1

)
B̃−1,

Z = B−>D = B̃−>
( d 1

d I 0
1 cM−1 −1

) ( d 1
MJ 0

0 1

)

= B̃−>
( d 1

d MJ 0
1 cJ −1

)
= B̃−>T

( d 1
d J 0
1 0 −1

)
.

We denote Z̃ :=
(
J 0
0 −1

)
, hence Z = B̃−>T Z̃. We also have Z̃−1 =

(
J−1 0

0 −1

)
. B then can

compute

g
B

(
Id
0

)
1 = g

B̃

(
Id
0

)
1 , gZ2 = gB̃

−>T Z̃
2 ,

where in the first term, the unknown last column of B vanishes through the left projection map(
Id
0

)
, while the second term is computable from gT2 . From these two terms, B can compute

PK,MSK, M̂SKbase, M̂SKaux; in particular, B chooses α $← Z(d+1)×1
p , H1, . . . ,Hn

$← Z(d+1)×(d+1)
p

and computes Eq.(9),(15).

Phase 1. When A makes the j-th key query for Xj , B generates a key as follows

− Case j > i. B generates a normal key SK← KeyGen(Xj ,MSK).

− Case j < i. B chooses βj $← Zp and generates a type-3 semi-functional key as SK ←
SFKeyGen(Xj ,MSK, M̂SKbase,−, 3, βj).

22



− Case j = i. Let (k;m2)← Enc1(Xj). B extends the Matrix-DH Assumption to m2-fold by

random self reducibility and obtains (gT2 , g2
T

(
Y
ŷ

)
) where either ŷ = 0 or ŷ $← Z1×m2

p with
T $← Dd, Y $← Zd×m2

p . B implicitly sets R+ R̂ = Z̃−1
(
Y
ŷ

)
; that is,

R+ R̂ =
( 1 1

d r1 · · · rm2

1 r̂1 · · · r̂m2

)
= Z̃−1

( m2

d Y
1 ŷ

)
= Z̃−1

( 1 1
d y1 · · · ym2

1 ŷ1 · · · ŷm2

)
,

where we denote
(
yj
ŷj

)
as the j-th column of

(
Y
ŷ

)
. Thus,

(
rj
r̂j

)
= Z̃−1

(
yj
ŷj

)
. B then can

compute for each j ∈ [1,m2],

g
Z

(
rj
r̂j

)
2 = g

(
B̃−>T Z̃

)(
Z̃−1

(
yj
ŷj

))
2 = g

B̃−>T

(
yj
ŷj

)
2 ,

since B possesses g2
T

(
Y
ŷ

)
. From these terms, B can compute all the elements of the key since

B possesses α,H1, . . . ,Hn. We can see that if ŷ = 0 then the key is a normal key, and if
ŷ $← Z1×m2

p then the key is type-1 semi-functional.

Challenge. The adversary A outputs messages M0,M1 ∈ GT along with a target Y ?. B chooses
b $← {0, 1}. Let (c;w2)← Enc2(Y ). For j ∈ [0, w2], B chooses

(
s′j
ŝ′j

)
$← Z(d+1)×1

p and implicitly
sets sj

ŝj

 = B−1

s′j
ŝ′j

 .
B then can compute

g
B

(
sj
ŝj

)
1 = g

B

(
B−1

(
s′j
ŝ′j

))
1 = g

(
s′j
ŝ′j

)
1 .

From these terms, B can compute all the elements of the semi-functional ciphertext for Mb (since,
again, B possesses α,H1, . . . ,Hn). In particular, for C0, B computes

C0 = e(g
α>B

( s0
ŝ0

)
1 , g2) ·Mb = e(g

α>

(
s′j
ŝ′j

)
1 , g2) ·Mb.

Phase 2. When A makes the j-th key query for Xj , since j > i in this phase, B generates a
normal key SK← KeyGen(Xj ,MSK).

Guess. The algorithm B has properly simulated Gi−1,3 if ŷ = 0 and Gi,1 if ŷ $← Zp. Hence, B
can use the output of A to break the Matrix DH Assumption.

23



5.3 Applying the Parameter-Hiding Lemma

Equivalent Semi-Functional Algorithms. Before describing the proof for the next transition
(switching type-1 to type-2 semi-functional keys), we prepare another setup algorithm, SFSetup′,
and its consequences to the other algorithms. The difference from SFSetup is shown in red color.
We will then prove that SFSetup′ is indeed equivalent to SFSetup.

• SFSetup′(1λ, κ)→ (PK,MSK, P̂K
′
, M̂SKbase, M̂SK

′
aux) : This is modifed from SFSetup, where it

outputs PK,MSK, M̂SKbase in exactly the same way. It additionally chooses ĥ1, . . . , ĥn
$← Zp

and outputs P̂K
′
, M̂SK

′
aux defined as

P̂K
′
=

e(g1, g2)α
>B( 0

1 ), g
B( 0

1 )
1 , g

H1B( 0
1 )+B

(
0
ĥ1

)
1 , . . . , g

HnB( 0
1 )+B

(
0
ĥn

)
1

 , (21)

M̂SK
′
aux =

gH>1 Z( 0
1 )+Z

(
0
ĥ1

)
2 , . . . , g

H>n Z( 0
1 )+Z

(
0
ĥn

)
2

 . (22)

• SFEncrypt(Y,M,PK, P̂K
′
) → CT′: We write the output from the already defined SFEncrypt

algorithm, but now with the input P̂K
′
instead of P̂K. Concretely, it picks s0, s1, . . . , sw2

$←
Zd×1
p and ŝ0, ŝ1, . . . , ŝw2

$← Zp. Let

S :=
(
( s0

0 ) , ( s1
0 ) , . . . ,

( sw2
0
))
∈ (Z(d+1)×1

p )w2+1,

Ŝ :=
((

0
ŝ0

)
,
(

0
ŝ1

)
, . . . ,

(
0
ŝw2

))
∈ (Z(d+1)×1

p )w2+1

Denote ĥ = (ĥ1, . . . , ĥn). We claim that the outputted ciphertext is CT = (C, C0) where

C = g
cB(S,H)+c′B(Ŝ,H,ĥ)
1 ∈ (G(d+1)×1

1 )w1 , C0 = e(g1, g2)α
>B
( s0
ŝ0

)
·M ∈ GT . (23)

where c′B(Ŝ,H, ĥ) is newly defined via

cB(S,H) + c′B(Ŝ,H, ĥ) =
 ∑
j∈[0,w2]

ai,jB
(
sj
ŝj

)+

 ∑
j∈[0,w2]
k∈[1,n]

ai,j,k
(
HkB

(
sj
ŝj

)
+B

( 0
ĥk ŝj

))

i∈[1,w1]

. (24)

The claim can be verified thanks to the relation
(
X
(
Id
0

) )
y+

(
X ( 0

1 ) +B
( 0
h

) )
ŷ = X

(
y
ŷ

)
+

B
(

0
hŷ

)
for any X,B ∈ Z(d+1)×(d+1)

p , y ∈ Zd×1
p , and h, ŷ ∈ Zp.

• SFKeyGen(X,MSK, M̂SKbase, M̂SK
′
aux, type ∈ {1, 2}, β ∈ Zp

)
→ SK: We write the output from

the already defined SFKeyGen algorithm, but now with the input M̂SK
′
aux instead of M̂SKaux

and we consider only type = 1, 2. Concretely, it picks r1, . . . , rm2
$← Zd×1

p and r̂1, . . . , r̂m2
$← Zp.

Let

R :=
(
( r1

0 ) , . . . ,
( rm2

0
))
∈ (Z(d+1)×1

p )m2 ,

R̂ :=
((

0
r̂1

)
, . . . ,

(
0
r̂m2

))
∈ (Z(d+1)×1

p )m2

24



We claim that the outputted secret key SK is

SK =

 g
kZ(α,R,H)+k′Z(0,R̂,H,ĥ)
2 if type = 1 (25)

g
kZ(α,R,H)+k′Z(β,R̂,H,ĥ)
2 if type = 2 (26)

where k′Z(β, R̂,H, ĥ) is newly defined via

kZ(α,R,H) + k′Z(β, R̂,H, ĥ) =biα+ biZ
(

0
β

)
+

 ∑
j∈[1,m2]

bi,jZ
(
rj
r̂j

)+

 ∑
j∈[1,m2]
k∈[1,n]

bi,j,k
(
H>k Z

(
rj
r̂j

)
+Z

( 0
ĥk r̂j

))

i∈[1,m1]

(27)

The claim can be verified thanks to the relation
(
X
(
Id
0

) )
y+

(
X ( 0

1 ) +Z
( 0
h

) )
ŷ = X

(
y
ŷ

)
+

Z
(

0
hŷ

)
for any X,Z ∈ Z(d+1)×(d+1)

p , y ∈ Zd×1
p , and h, ŷ ∈ Zp.

For further use, we write explicit forms of c′B(Ŝ,H, ĥ) and k′Z(β, R̂,H, ĥ) as follows:

g
c′B(Ŝ,H,ĥ)
1 =

g
B

( 0
cι(ŝ,ĥ)

)
1

∏
j∈[0,w2]
k∈[1,n]

g
aι,j,kHkB

(
0
ŝj

)
1


ι∈[1,w1]

.

g
k′Z(β,R̂,H,ĥ)
2 =

g
Z

( 0
kι(β,r̂,ĥ)

)
2

∏
j∈[1,m2]
k∈[1,n]

g
bι,j,kH

>
k Z

(
0
r̂j

)
2


ι∈[1,m1]

.

The first equation holds from (24) by eliminating (11) and using the definition of c in (6) to
inspect. The second equation can be done similarly.

Lemma 6. The outputs from SFSetup′ and SFSetup are identically distributed.

Proof. From the parameter-hiding lemma (Lemma 2), we have that for Hi
$← Z(d+1)×(d+1)

p ,
B $← GLp,d+1, and ĥi $← Zp, the distribution of

FHi,ĥi
:= Hi +B

( d 1
d 0 0
1 0 ĥi

)
B−1 (28)

is exactly the same as Hi. Therefore, replacing Hi with FHi,ĥi
for every i ∈ [1, n], does not affect

the output distribution of SFKeyGen. We claim that this modification results in the unmodified

25



elements PK,MSK, M̂SKbase as shown in Eq. (9), Eq. (15), and the modified elements P̂K
′
, M̂SK

′
aux

as shown in Eq. (21), Eq. (22). To prove the claim, it is sufficient to prove that:

FHi,ĥi
B

Id
0

 = HiB

Id
0

 ,
F>
Hi,ĥi

Z

Id
0

 = H>i Z

Id
0

 ,
FHi,ĥi

B

0
1

 = HiB

0
1

+B

0
ĥi

 ,
F>
Hi,ĥi

Z

0
1

 = H>i Z

0
1

+B−>
0
ĥi

 .
This can be verified as follows, where we recall D =

(
D̃ 0
0 1

)
,

FHi,ĥi
B
(
Id
0

)
=
(
Hi +B

(
0 0
0 ĥi

)
B−1

)
B
(
Id
0

)
= HiB

(
Id
0

)
+B

(
0 0
0 ĥi

) (
Id
0

)
= HiB

(
Id
0

)
F>
Hi,ĥi

Z
(
Id
0

)
=
(
H>i +B−>

(
0 0
0 ĥi

)
B>

)
(B−>D)

(
Id
0

)
= H>i Z

(
Id
0

)
+B−>

(
0 0
0 ĥi

)
D
(
Id
0

)
= H>i Z

(
Id
0

)
+B−>

(
0 0
0 ĥi

) (
D̃ 0
0 1

) (
Id
0

)
= H>i Z

(
Id
0

)
,

FHi,ĥi
B ( 0

1 ) =
(
Hi +B

(
0 0
0 ĥi

)
B−1

)
B ( 0

1 ) = HiB ( 0
1 ) +B

(
0 0
0 ĥi

)
( 0

1 )

= HiB ( 0
1 ) +B

(
0
ĥi

)
,

F>
Hi,ĥi

Z ( 0
1 ) =

(
H>i +B−>

(
0 0
0 ĥi

)
B>

)
(B−>D) ( 0

1 )

= H>i Z ( 0
1 ) +B−>

(
0 0
0 ĥi

)
D ( 0

1 )

= H>i Z ( 0
1 ) +B−>

(
0 0
0 ĥi

) (
D̃ 0
0 1

)
( 0

1 ) = H>i Z ( 0
1 ) +B−>

(
0
ĥi

)
.

This concludes the proof.

5.4 Type-1 to Type-2 Semi-functional Key in Phase 1

Lemma 7 (Gi,1 to Gi,2). For any adversary A against ABE, there exists an algorithm B that breaks
the co-selective master-key hiding security of encoding with |Gi,1AdvABE

A (λ)− Gi,2AdvABE
A (λ)| ≤

AdvCMH
B (λ).

Proof. Suppose we have an adversary A that can distinguish between Gi,1 and Gi,2 with non-
negligible probability. We construct a simulator B that would win the co-selective game for
master-key hiding for P by simulating Gi,1 or Gi,2 for A. In the co-selective game for B, B is
given the group description G1,G2,GT , g1 ∈ G1, g2 ∈ G2 from its challenger.
Setup. Algorithm B generates PK as in the real construction but using the given g1, g2.
More precisely, B picks H1, . . . ,Hn

$← Z(d+1)×(d+1)
p , B $← GLp,d+1 ⊂ Z(d+1)×(d+1)

p . It chooses

26



D̃ $← GLp,d and defines D :=
(
D̃ 0
0 1

)
∈ GLp,d+1 and Z := B−>D. It chooses α $← Z(d+1)×1

p . It
computes PK, MSK as in Eq.(9) and M̂SKbase as in Eq.(15). It sends PK to the adversary A. We
note that these elements distributed as if they are from SFSetup′.

Phase 1. When A makes the j-th private key query for Xj ∈ X, B does as follows.
[Case j < i] In this case, the algorithm B picks βj $← Zp and creates a type-3 semi-functional
key by computing SK← SFKeyGen(X,MSK, M̂SKbase,−, 3, βj

)
.

[Case j = i] The algorithm B makes a key query Xi to its challenger and receives V = g
k(β,r̂,ĥ)
2

where (k;m2) = Enc1(Xi). This is the challenge for B to guess if β = 0 or β is randomly
chosen in Zp. The crucial point here is that up to this point the semi-functional parameter
ĥ = (ĥ1, . . . , ĥn), which will be used to define P̂K, M̂SKaux for SFSetup′, has not been defined
since it is not required for all the previous keys. (This feature is known as delayed parameter).
B will thus implicitly define the semi-functional parameter to ĥ that is defined in V . (Note that
ĥ is unknown to B). This is done by answering back to A the key for Xi by using V . More
precisely, B does as follows.

1. B computes the normal part of the key as usual. More precisely, this is done by picking
α $← Z(d+1)×1

p , r1, . . . , rm2
$← Zd×1

p and setting R :=
(
( r1

0 ) , . . . ,
( rm2

0
))
∈ (Z(d+1)×1

p )m2 ,
and obtaining gkZ(α,R,H)

2 by Eq.(13).

2. B computes the semi-functional part of the key by using V as follows. B implicitly sets
R̂ =

((
0
r̂1

)
, . . . ,

(
0
r̂m2

))
∈ (Z(d+1)×1

p )m2 by using r̂ = (r̂1, . . . , r̂m2) that is defined in V .
It also implicitly sets βi as β that is defined in V . These are done by computing

g
k′Z(βi,R̂,H,ĥ)
2 =

g
Z

( 0
kι(β,r̂,ĥ)

)
2

∏
j∈[1,m2]
k∈[1,n]

g
bι,j,kH

>
k Z

(
0
r̂j

)
2


ι∈[1,m1]

.

We argue that this is computable as follows. The first term g
Z

( 0
kι(β,r̂,ĥ)

)
2 can be computed

from Vι = g
kι(β,r̂,ĥ)
2 and the known Z, where we write V = (V1, . . . , Vm1). The second term

(the product term) can be computed since for each j ∈ [1,m2] we either have the following.

− For j such that there is ι′ where kι′(β, r̂, ĥ) = r̂j , we have gr̂j2 available as Vι′ =
g
kι′ (β,r̂,ĥ)
2 = g

r̂j
2 in V .

− For j such that there is no ι′ as above, we have that by regularity of encoding (the
second rule, in Definition 1), bι′′,j,k = 0 for all ι′′, k.

From these two facts and the known Z and Hk, we can compute the product term.

3. B outputs SK = g
kZ(α,R,H)
2 g

k′Z(βi,R̂,H,ĥ)
2 .

This is a properly distributed semi-functional key of type-1 if β = 0 or type-2 if β is random.
[Case j > i] The algorithm B generates a normal key as in the construction by computing
SK← KeyGen(Xj,MSK).

27



Challenge. In the challenge phase, the adversary A outputs messages M0,M1 ∈ GT along with
her target Y ? such that R(Xj , Y

?) = 0 for all j ∈ [1, q1]. B then makes a ciphertext query for
Y ? to its challenger and receives back U = g

c(ŝ,ĥ)
1 where (c;w2)← Enc2(Y ?). This query can be

made since R(Xi, Y
?) = 0. Then, B flips a coin b $← {0, 1}, and does as follows.

1. B computes the normal part of the ciphertext as usual. More precisely, we pick s0, s1, . . . , sw2
$←

Zd×1
p and let S :=

(
( s0

0 ) , ( s1
0 ) , . . . ,

( sw2
0
))
∈ (Z(d+1)×1

p )w2+1, and obtaining C̄0 = e(g1, g2)α
>B( s0

0 )·
Mb and g

cB(S,H)
1 by Eq.(11).

2. B computes the semi-functional part of the ciphertext by using U as follows. B implicitly
sets Ŝ =

((
0
ŝ0

)
,
(

0
ŝ1

)
, . . . ,

(
0
ŝw2

))
∈ (Z(d+1)×1

p )w2+1 by using ŝ = (ŝ1, . . . , ŝw2) that is
defined in U . This is done by computing

g
c′B(Ŝ,H,ĥ)
1 =

g
B

( 0
cι(ŝ,ĥ)

)
1

∏
j∈[0,w2]
k∈[1,n]

g
aι,j,kHkB

(
0
ŝj

)
1


ι∈[1,w1]

.

We argue that this is computable as follows. The first term g
B

( 0
cι(ŝ,ĥ)

)
1 can be computed

from Di = g
cι(ŝ,ĥ)
1 and the known B, where we write U = (U1, . . . , Uw1). The second term

(the product term) can be computed since for each j ∈ [1, w2] we either have the following.

− For j such that there is ι′ where cι′(ŝ, ĥ) = ŝj , we have g
ŝj
1 available as Uι′ = g

cι′ (ŝ,ĥ)
1 = g

ŝj
1

in U .
− For j such that there is no ι′ as above, we have that by regularity of encoding (the third

rule, in Definition 1), aι′′,j,k = 0 for all ι′′, k.

From these two facts and the known B and Hk, we can compute the product term.

3. B also computes Ĉ0 = e(g
α>B

(
0
ŝ0

)
1 , g2). This can be done since c1 = gŝ01 is available in U ,

also due to the regularity of encoding (the fourth rule, in Definition 1).

4. B computes C = g
cB(S,H)
1 g

c′B(Ŝ,H,ĥ)
1 and C0 = C̄0Ĉ0, and returns CT = (C, C0).

This is a properly distributed semi-functional ciphertext of Equation (16).

Phase 2. The algorithm B generates a normal key as in the construction by computing
SK← KeyGen(Xj ,MSK).

Guess. The algorithm B has properly simulated Gi,1 if β = 0, and Gi,2 if β is random. Hence,
B can use the output of A to guess β.

5.5 Type-2 to Type-3 Semi-functional Key in Phase 1

Lemma 8 (Gi,2 to Gi,3). For any adversary A against ABE, there exists an algorithm B that
breaks the Dd-Matrix-DH Assumption with |Gi,2AdvABE

A (λ)− Gi,3AdvABE
A (λ)| ≤ AdvDd-MatDH

B (λ).

28



Proof. The proof is exactly the same as that of Lemma 5, where we moved from normal to

type-1 semi-functional key, except that the i-th key has an additional vector g
kZ(Z

(
0
βi

)
,0 ,H)

2 =

{g
bιZ

(
0
βi

)
2 }ι∈[1,m1] multiplied with it (see Eq.(19),(20)). To compute this, B samples βi ∈ Zp,

and computes g
Z

(
0
βi

)
2 = g

Z( 0
1 )βi

2 . We recall that B possesses M̂SKbase = g
Z( 0

1 )
2 . Following the

proof of Lemma 5, we can see that if ŷ = 0 then the key is a type-3 semi-functional, and if
ŷ $← Z1×m2

p then the key is type-2 semi-functional. The rest of the proof follows exactly the same
as that of Lemma 5.

5.6 Normal to Type-1 Semi-functional Keys in Phase 2

Lemma 9 (Gq1,3 to Gq1+1). For any adversary A against ABE, there exists an algorithm B that
breaks the Dd-Matrix-DH Assumption with |Gq1,3AdvABE

A (λ)−Gq1+1AdvABE
A (λ)| ≤ AdvDd-MatDH

B (λ).

Proof. The proof is exactly the same as when we modify normal to type-1 semi-functional key in
phase 1 (the proof of Lemma 5), except that this time we modify the post-challenge keys all at
once, instead of one key at a time. In particular, the simulation of PK,MSK, M̂SKbase, M̂SKaux
and the challenge ciphertext is exactly the same. The simulation for type-3 semi-functional key
queries in phase 1 is done using M̂SKbase. The simulation of every key in phase 2 can be done by
extending the Matrix-DH Assumption to q2m2-fold by random self reducibility (instead of only

m2 as in the proof of Lemma 5). It obtains (gT2 , g2
T

(
Y
ŷ

)
) where either ŷ = 0 or ŷ $← Z1×(q2m2)

p

with T $← Dd, Y $← Zd×(q2m2)
p . Each key will use m2 columns of randomness in

(
Y
ŷ

)
, in an

analogous way to the i-th key in the proof of Lemma 5. For example, the first key query in phase
2 will use the randomness in column 1 to m2, the second key query in phase 2 will then use the
randomness in column m2 + 1 to 2m2, and so on. Following the proof of Lemma 5, we can see
that if ŷ = 0 then every key in phase 2 will be a normal key, and if ŷ $← Z1×(q2m2)

p then it is
type-1 semi-functional.

5.7 Type-1 to Type-2 Semi-functional Key in Phase 2

Lemma 10 (Gq1+1 to Gq1+2). For any adversary A against ABE, there exists an algorithm
B that breaks the selective master-key hiding security of encoding with |Gq1+1AdvABE

A (λ) −
Gq1+2AdvABE

A (λ)| ≤ AdvSMH
B (λ).

Proof. Suppose we have an adversary A that can distinguish between Gq1+1 and Gq1+2 with
non-negligible probability. We construct a simulator B that would win the selective game for
master-key hiding for P by simulating Gq1+1 or Gq1+2 for A. In the selective game for B, B is
given the group description G1,G2,GT , g1 ∈ G1, g2 ∈ G2 from its challenger.

Setup. Algorithm B generates PK as in the real construction but using the given g1, g2.
More precisely, B picks H1, . . . ,Hn

$← Z(d+1)×(d+1)
p , B $← GLp,d+1 ⊂ Z(d+1)×(d+1)

p . It chooses
D̃ $← GLp,d and defines D :=

(
D̃ 0
0 1

)
∈ GLp,d+1 and Z := B−>D. It chooses α $← Z(d+1)×1

p . It
computes PK, MSK as in Eq.(9) and M̂SKbase as in Eq.(15). It sends PK to the adversary A. We
note that these elements distributed as if they are from SFSetup′.

29



Phase 1. When A makes the j-th private key query for Xj ∈ X, B picks βj $← Zp and runs
SK← SFKeyGen(X,MSK, M̂SKbase,−, 3, βj

)
for a type-3 semi-functional key.

Challenge. In the challenge phase, the adversary A outputs messages M0,M1 ∈ GT along with
her target Y ? such that R(Xj , Y

?) = 0 for all j ∈ [1, q1]. B then makes a ciphertext query for
Y ? to its challenger and receives back U = g

c(ŝ,ĥ)
1 where (c;w2)← Enc2(Y ?). The crucial point

here is that up to this point the semi-functional parameter have not been defined since it is not
necessary for all the previous keys. B will thus implicitly define the semi-functional parameter to
ĥ that is defined in U . (Note that ĥ is unknown to B). This is done by answering back to A the
ciphertext for Y ? by using U . More precisely, B first flips a coin b $← {0, 1}, and does as follows.

1. B computes the normal part of the ciphertext as usual. More precisely, we randomly
pick s0, s1, . . . , sw2

$← Zd×1
p , let S :=

(
( s0

0 ) , ( s1
0 ) , . . . ,

( sw2
0
))
∈ (Z(d+1)×1

p )w2+1, and obtain
C̄0 = e(g1, g2)α

>B( s0
0 ) ·Mb and g

cB(S,H)
1 by Eq.(11).

2. B computes the semi-functional part of the ciphertext by using U as follows. B implicitly
sets Ŝ =

((
0
ŝ0

)
,
(

0
ŝ1

)
, . . . ,

(
0
ŝw2

))
∈ (Z(d+1)×1

p )w2+1 by using ŝ = (ŝ1, . . . , ŝw2) that is
defined in U . This is done by computing

g
c′B(Ŝ,H,ĥ)
1 =

g
B

( 0
cι(ŝ,ĥ)

)
1

∏
j∈[0,w2]
k∈[1,n]

g
aι,j,kHkB

(
0
ŝj

)
1


ι∈[1,w1]

.

We argue that this is computable as follows. The first term g
B

( 0
cι(ŝ,ĥ)

)
1 can be computed

from Di = g
cι(ŝ,ĥ)
1 and the known B, where we write U = (U1, . . . , Uw1). The second term

(the product term) can be computed since for each j ∈ [1, w2] we either have the following.

− For j such that there is ι′ where cι′(ŝ, ĥ) = ŝj , we have g
ŝj
1 available as Uι′ = g

cι′ (ŝ,ĥ)
1 = g

ŝj
1

in U .
− For j such that there is no ι′ as above, we have that by regularity of encoding (the third

rule, in Definition 1), aι′′,j,k = 0 for all ι′′, k.

From these two facts and the known B and Hk, we can compute the product term.

3. B also computes Ĉ0 = e(g
α>B

(
0
ŝ0

)
1 , g2). This can be done since c1 = gŝ01 is available in U ,

also due to the regularity of encoding (the fourth rule, in Definition 1).

4. B computes C = g
cB(S,H)
1 g

c′B(Ŝ,H,ĥ)
1 and C0 = C̄0Ĉ0, and returns CT = (C, C0).

This is a properly distributed semi-functional ciphertext of Equation (16).

Phase 2. When A makes the j-th private key query for Xj ∈ X, B does as follows. The algorithm
B makes a key query Xj to its challenger and receives V = g

k(β,r̂,ĥ)
2 where (k;m2) = Enc1(Xj).

This query can be made since R(Xj, Y
?) = 0. These are the challenges for B to guess if β = 0 or

β is randomly chosen in Zp, where we note that β is the same for all queries. This matches our
definition of all the post-challenge keys, which use the same β, as defined in Figure 1.

30



1. B computes the normal part of the key as usual. More precisely, this is done by picking
α $← Z(d+1)×1

p , r1, . . . , rm2
$← Zd×1

p and setting R :=
(
( r1

0 ) , . . . ,
( rm2

0
))
∈ (Z(d+1)×1

p )m2 ,
and obtaining gkZ(α,R,H)

2 by Eq.(13).

2. B computes the semi-functional part of the key by using V as follows. B implicitly sets
R̂ =

((
0
r̂1

)
, . . . ,

(
0
r̂m2

))
∈ (Z(d+1)×1

p )m2 by using r̂ = (r̂1, . . . , r̂m2) that is defined in V .
It also implicitly sets β as β that is defined in V . These are done by computing

g
k′Z(β,R̂,H,ĥ)
2 =

g
Z

( 0
kι(β,r̂,ĥ)

)
2

∏
j∈[1,m2]
k∈[1,n]

g
bι,j,kH

>
k Z

(
0
r̂j

)
2


ι∈[1,m1]

.

We argue that this is computable as follows. The first term g
Z

( 0
kι(β,r̂,ĥ)

)
2 can be computed

from Vι = g
kι(β,r̂,ĥ)
2 and the known Z, where we write V = (V1, . . . , Vm1). The second term

(the product term) can be computed since for each j ∈ [1,m2] we either have the following.

− For j such that there is ι′ where kι′(β, r̂, ĥ) = r̂j , we have gr̂j2 available as Vι′ =
g
kι′ (β,r̂,ĥ)
2 = g

r̂j
2 in V .

− For j such that there is no ι′ as above, we have that by regularity of encoding (the
second rule, in Definition 1), bι′′,j,k = 0 for all ι′′, k.

From these two facts and the known Z and Hk, we can compute the product term.

3. B outputs SK = g
kZ(α,R,H)
2 g

k′Z(β,R̂,H,ĥ)
2 .

This is a properly distributed semi-functional key of type-1 if β = 0 or type-2 if β is random.

Guess. The algorithm B has properly simulated Gq1+1 if β = 0, and Gq1+2 if β is random.
Hence, B can use the output of A to guess β.

5.8 Type-2 to Type-3 Semi-functional Key in Phase 2

Lemma 11 (Gq1+2 to Gq1+3). For any adversary A against ABE, there exists an algorithm B that
breaks the Dd-Matrix-DH Assumption with |Gq1+2AdvABE

A (λ)−Gq1+3AdvABE
A (λ)| ≤ AdvDd-MatDH

B (λ).

Proof. The proof is exactly the same as that of Lemma 9, where we switched every key in phase
2 from normal to type-1 semi-functional all at once, except that every key has an additional

vector g
kZ(Z

(
0
β

)
,0 ,H)

2 = {g
bιZ

(
0
β

)
2 }ι∈[1,m1] multiplied with it, where we note that β is the same

across all the keys in phase 2 (as defined in Figure 1). To compute this, B samples β ∈ Zp

at the beginning of phase 2, and computes = g
Z

(
0
β

)
2 = g

Z( 0
1 )β

2 . We recall that B possesses

M̂SKbase = g
Z( 0

1 )
2 . Following the proof of Lemma 9, we can see that if ŷ = 0 then the key is a

type-3 semi-functional, and if ŷ $← Z1×(q2m2)
p then the key is type-2 semi-functional. The rest of

the proof follows exactly the same as that of Lemma 9.

31



5.9 Final Game

Lemma 12 (Gq1+3 to Gfinal). We have Gq1+3AdvABE
A (λ) = GfinalAdvABE

A (λ).

Proof. Since Z ∈ GLp,d+1, we can define
(
δ
δ̂

)
= Z−1α, where δ ∈ Zd×1

p , δ̂ ∈ Zp. That is,

α = Z
(
δ
δ̂

)
. We first claim that in Gq1+3, δ̂ is uniformly random in Zp to the adversary A’view.

The claim holds since every appearance of δ̂ in all the semi-functional keys (of type-3) is added
by a uniformly random value: βj for each pre-challenge j-th key and β for all the post-challenge
keys (as defined in Eq.(20) and Figure 1). Hence, δ̂ in C0 in the challenge ciphertext is uniformly
random to A. Therefore, we can modify δ̂ to δ̂+ u for uniformly random u $← Zp. This results in
changing α to α+Z ( 0

u ) and hence modifying C0 = e(g1, g2)α
>B
( s0
ŝ0

)
·M to C ′0 where

C ′0 = e(g1, g2)α
>B
( s0
ŝ0

)
+( 0 u )Z>B

( s0
ŝ0

)
·M = e(g1, g2)α

>B
( s0
ŝ0

)
e(g1, g2)uŝ0 ·M

where we can verify that ( 0 u )Z>B
( s0
ŝ0

)
= ( 0 u )

(
D̃> 0

0 1

) ( s0
ŝ0

)
= ( 0 u )

( s0
ŝ0

)
= uŝ0, where we

recall that Z>B =
(
D̃> 0

0 1

)
by definition. Finally, we observe that C ′0 encrypts e(g1, g2)uŝ0 ·M ,

which is uniformly random in GT since u $← Zp. This is exactly the description of the final game,
and hence concludes the proof.

6 New Instantiations
In this section, we describe new instantiations from our framework. We consider Key-Policy
(KP), Ciphertext-Policy (CP), and Dual-Policy (DP) types. In KP type, a key is associated with
a policy, a ciphertext is associated with an input (to policy). In CP type, the roles of policy and
input are exchanged. DP type [3] is the conjunctive of both types.

These instantiations are positioned in Table 2 Below, the numbering i of each scheme
corresponds to the numbering of Newi in Table 2.

ABE for Policy over Doubly-Spatial Relation (ABE-PDS). This predicate was defined
in [1] as a generalization that captures doubly-spatial encryption [32] and ABE for monotone
span programs (and hence Boolean formulae) into one primitive. We refer the definition to [1].
By using exactly the same encodings in [1, 6], we automatically obtain the first fully-secure
prime-order schemes for the following primitives.

− (New1). KP-ABE-PDS (from the encoding of [1, Scheme 6]).

− (New2). CP-ABE-PDS (from the encoding of [6, Scheme 2]).

− A simpler alternative (but with a looser reduction) can also be obtained from the encoding
of [1, Scheme 6] + the dual conversion of [6, §4].

− (New3). DP-ABE-PDS (from the encoding of [1, Scheme 6] + the conjunctive conversion
of [6, §6]).

ABE for Monotone Span Programs (ABE-MSP). Let U be the universe of attributes. If
|U| is of super-polynomial size, it is called large universe [30, 51], otherwise, it is small universe.
In ABE-MSP [30], a policy is specified by a monotone span program (A, ρ) where A is an integer

32



matrix of dimension m× k for some m, k, and ρ is a map ρ : [1,m]→ U. For a set of attributes
S ⊆ U, let A|S be the sub-matrix of A that takes all the rows j such that ρ(j) ∈ S. We say that
(A, ρ) accepts S if (1, 0, . . . , 0) ∈ rowspan(A|S). ABE-MSP is the most popular predicate studied
in the literature since it is known to imply ABE for Boolean formulae [30].

Let t := |S|. Some schemes specifies bounds on maximum allowed sizes of t,m, k (we denote
these bounds as T,M,K). Some may restrict the maximum number, denoted by R, of attribute
multi-use in one policy (that is, the number of distinct i for the same ρ(i)). We call a large-universe
scheme without any bounds a completely unbounded ABE scheme.

By using encodings in [1, 6], we obtain the first fully-secure prime-order schemes for the
following primitives.

− (New4). Completely unbounded KP-ABE-MSP (from the encoding of [1, Scheme 4]).

− (New5). Completely unbounded CP-ABE-MSP (from the encoding of [6, Scheme 3]).

− A simpler alternative (but with a looser reduction) can also be obtained from the encoding
of [1, Scheme 4] + the dual conversion of [6, §4].

− (New6). Completely unbounded DP-ABE-MSP (from the encoding of [6, Scheme 4]).

− (New7). KP-ABE-MSP with constant-size ciphertexts (from the encoding in [1, Scheme 5]).

− (New8). CP-ABE-MSP with constant-size keys (from the encoding of [6, Scheme 5]).

− A simpler alternative (but with a looser reduction) can also be obtained from the encoding
of [1, Scheme 5] + the dual conversion of [6, §4].

For concreteness, we explicitly give the description for one of our instantiations, New4, in §G.
By using encodings in [1] for bounded schemes, we also obtain some bounded schemes as

follows. The underlying encodings of these schemes are perfectly master-key hiding, hence the
resulting schemes rely solely on the Matrix-DH assumption.

− (New′9). KP-ABE-MSP with small universe (from the encoding in [1, Scheme 9]).

− (New′10). CP-ABE-MSP with small universe (from the encoding in [1, Scheme 11]).

− (New11). DP-ABE-MSP with small universe (from the encoding in [1, Scheme 9] + the
conjunctive conversion of [6, §6]).

− (New′12). KP-ABE-MSP with large universe (from the encoding in [1, Scheme 12]).

− (New′13). CP-ABE-MSP with large universe (from the encoding in [1, Scheme 13]).

− (New14). DP-ABE-MSP with large universe (from the encoding in [1, Scheme 12] + the
conjunctive conversion of [6, §6]).

Performances of Our ABE-MSP Schemes. We compare performances of our KP-ABE-
MSP, CP-ABE-MSP to others in the literature in Table 3 and 4, respectively. We use the most
efficient instantiation, namely, d = 2. In such a case, schemes can rely on the Decision 2-Linear
assumption (DLIN). For clarity of comparison, we augment schemes in the literature which were
proposed for one-use, to multi-use (with bound R) by using the transformation in [43].

33



Table 3: Performance by each KP-ABE for monotone span programs

Scheme |PK| |SK| |CT| Decryption complexity Sec. Assumptions Reduction
Pairing ExpG ExpGT cost

LW11 [41] 5 4m 3t+ 1 4m 0 m sel. SD O(qall)
A14 8 3m+ 3 2t+ 4 3m+ 3 0 m full SD, O(q1)
[1, Scheme 4] (1, t)-EDHE3, 1

(1,m, k)-EDHE4 O(q1)
A14 T + 8 Tm+ 3m 6 6 Tm+ 3m 0 full SD, O(q1)
[1, Scheme 5] +3 (T + 1, 1)-EDHE3, 1

(T + 1,m, k)-EDHE4 O(q1)
CW14 [16] U + 1 Um+m 2 2m U m semi 3DHsub O(U)

SD O(1)
L+10 [43] UR+ 1 2m tR+ 1 2m 0 m full SD O(qall)
A14 UR+ 1 m+ 1 tR+ 1 2 2m 0 full SD O(qall)
[1, Scheme 9]
W14 [58] UR+ 1 m+ 1 tR+ 1 2 2m 0 full SD O(qall)
A14 16(M + TR)2 m+ 1 tR+ 1 2 2m 0 full SD O(qall)
[1, Scheme 12] × log(UR)
KL15 [36] 2 log(UR) + 1 3m 3tR 3m 0 m full DLIN, O(URqall)

Co
m

po
sit

e-
or

de
r

sc
he

m
es

SD O(qall)
RW13 [51] 4 3m 2t+ 1 3m 0 m sel. t-RW2 1
OT12 [48] 99 14m+ 5 14tR+ 5 14m+ 5 0 m full DLIN O(t2qall)
New4 42 9m+ 9 6t+ 12 9m+ 9 0 m full DLIN, O(q1)

(1, t)-EDHE3p, 1
(1,m, k)-EDHE4p O(q1)

ALP11 [5] T + 1 Tm+m 3 3 Tm+m 0 sel. T -DBDHE 1
T14 [54] 12T 2 + 15 6Tm+ 6T 17 17 6Tm+ 6T 0 semi DLIN O(T )
New7 6T + 42 3Tm+ 9m 18 18 3Tm+ 9m 0 full DLIN, O(q1)

+9 (T + 1, 1)-EDHE3p, 1
(T + 1,m, k)-EDHE4p O(q1)

GPSW06 [30] T + 3 2m t+ 1 2m 0 m sel. DBDH 1
CGW15 [14] 6UR+ 2 3m+ 3 3tR+ 3 6 6m 0 full DLIN O(qall)
New′9 6UR+ 6 3m+ 3 3tR+ 3 6 6m 0 full DLIN O(qall)
OT10 [46] 21TR+ 15 7m+ 5 7tR+ 5 7m+ 5 0 m full DLIN O(qall)
New′12 96(M + TR)2 3m+ 3 3tR+ 3 6 6m 0 full DLIN O(qall)

× log(UR)
KL15 [36] 24 log2(UR) 3m logUR 3tR logUR 3m logUR 0 m full DLIN O(URqall)

Pr
im

e-
or

de
r

sc
he

m
es

+48 log(UR) +6m +6tR +6m
1 Variables:
− t is the attribute set size; T is the maximum size for t (if bounded).
−m× k is the dimension of the matrix for the span program (the policy); M,K are the maximum sizes for m, k (if bounded).
−U is the size of the attribute universe (if bounded small-universe).
−R is the maximum number of attribute multi-use in one policy (if bounded).
− q1 is the number of key queries in phase 1 (before the challenge). qall is the number of all key queries.

2 |PK|, |SK|, |CT| depict the number of source group elements (G1 or G2) in public key, secrete key, and ciphertext, respectively. Composite-
order group elements are about 12 times larger than prime-order group elements [31]. We omit target group elements (GT ): in PK, all
the schemes above have at most 3 elements; in CT, all schemes contain 1 element.

3 In Decryption complexity, ‘Pairing’ = the number of pairings, ‘ExpG’ = the number of exponentiations in source groups (G1 or G2),
‘ExpGT ’ = the number of exponentiations in the target group (GT ).

4 Sec. is for security. ‘sel.’= selective; ‘full’= full security. ‘semi’= semi-adaptive security [16, 54] (an intermediate of selective/full).
5 We refer assumptions to corresponding papers. Particularly, SD refers to some subgroup decision assumptions in composite-order
groups [39, 43].

6 The reduction cost refers to the security factor loss to the corresponding assumption in the same line in the table. The security of each
scheme relies on all assumptions for it combined.

34



Table 4: Performance by each CP-ABE for monotone span programs

Scheme |PK| |SK| |CT| Decryption complexity Sec. Assumptions Reduction
Pairing ExpG ExpGT cost

LW12 [42] U + 3 t+ 3 2m+ 2 2m+ 2 0 m full SD, O(qall)
3DHsub, O(q1)

max{m, k}-SPBDHE O(q2)
AY15 10 2t+ 6 3m+ 5 3m+ 5 0 m full SD, O(q1)
[6, Scheme 3] (1, t)-EDHE3, O(q1)

(1,m, k)-EDHE4dual 1
AY15 T + 10 8 Tm+ 3m 8 Tm+ 3m 0 full SD, O(q1)
[6, Scheme 5] +5 (T + 1, 1)-EDHE3, O(q1)

(T + 1,m, k)-EDHE4dual 1
L+10 [43] UR+ 2 tR+ 2 2m+ 1 2m+ 1 0 m full SD O(qall)
A14 UR+ 2 tR+ 2 m+ 2 3 2m 0 full SD O(qall)
[1, Scheme 11]
W14 [58] UR+ 2 tR+ 2 m+ 2 3 2m 0 full SD O(qall)
A14 16(M + TR)2 tR+ 2 m+ 2 3 2m 0 full SD O(qall)

Co
m

po
sit

e-
or

de
r

sc
he

m
es

[1, Scheme 13] × log(UR)
RW13 [51] 5 2t+ 2 3m+ 1 3m+ 1 0 m sel. max{m, k}-RW1 1
LW12 [42] 24U + 12 6t+ 6 6m+ 6 6m+ 9 0 m full DLIN, O(qall)

3DH, O(q1)
max{m, k}-SPBDHEp O(q2)

OT12 [48] 99 14tR+ 5 14m+ 5 14m+ 5 0 m full DLIN O(t2qall)
New5 54 6t+ 18 9m+ 15 9m+ 15 0 m full DLIN, O(q1)

(1, t)-EDHE3p, O(q1)
(1,m, k)-EDHE4dualp 1

New8 6T + 54 24 3Tm+ 9m 24 3Tm+ 9m 0 full DLIN, O(q1)
+15 (T + 1, 1)-EDHE3p, O(q1)

(T + 1,m, k)-EDHE4dualp 1
W11 [55] U + 2 t+ 2 2m+ 1 2m+ 1 0 m sel. max{m, k}-PDBDH 1
CGW15 [14] 6UR+ 8 3tR+ 6 3m+ 3 6 6m 0 full DLIN O(qall)
New′10 6UR+ 12 3tR+ 6 3m+ 6 9 6m 0 full DLIN O(qall)
OT10 [46] 21TR+ 15 7tR+ 5 7m+ 5 7m+ 5 0 m full DLIN O(qall)
New′13 96(M + TR)2 3tR+ 6 3m+ 6 9 6m 0 full DLIN O(qall)

Pr
im

e-
or

de
r

sc
he

m
es

× log(UR)
1 q2 is the number of queries in phase 2 (after the challenge).
2 We refer for the remaining parameters to the note under Table 3.

35



The numbers of group elements in our schemes for SK,CT are 3 times as large as their
composite-order counterparts in A14, A15 [1, 6]. But since composite-order elements are 12
times larger than prime-order ones [31], we achieve improvements of 25% size reduction. More
importantly, time performance is significantly improved. We recall that pairing is 250 times
slower in composite-order groups than in prime-order ones [31]. In unbounded ABE (New4,
New5), the dominant operation is pairing, and the numbers of pairings in decryption are 3 times
as large as their composite-order counterparts in [1, 6]. As a result, our decryption is about
80 times faster. In constant-size ABE (New7, New8), the numbers of pairing are constant,
and exponentiation may dominate (depending on m,T ), but the improvement is similar, since
exponentiation (in G1,G2) is about 300 to 1000 times faster in prime-order groups [31, table 6].

Remark 3. The underlying pair encodings of our schemes New4,New7 are those proposed
in [1, §7.1-7.2], of which security rely on parameterized assumptions, namely, EDHE3, EDHE4,
also given in [1]. We indeed use prime-order group versions, hence denoted as EDHE3p, EDHE4p,
instead of prime-order subgroup in composite-order group as defined in [1]. These are defined
exactly the same as the original except only that the group generator G outputs a prime-order
group instead of a composite-order group (see [1, Def.6-7]). For self-containment, we recapture
them in §H. This modification is merely syntactic, see Remark 5.

ABE for Regular Languages (ABE-RL). In ABE-RL [57], a policy is a deterministic finite
automata (DFA) M , and an input to policy is a string w, and R(M,w) = 1 if the automata M
accepts the string w. We defer the detailed definition to §F. We obtain the first fully-secure
prime-order for

− (New15). KP-ABE-RL (from the encoding in [1, Scheme 3]).

− (New16). CP-ABE-RL (from the encoding in [1, Scheme 7]).

− (New17). DP-ABE-RL (from the encoding in [1, Scheme 3] + the conjunctive conversion
of [6, §6]).

For concreteness, the pair encoding for KP-ABE-RL of [1, Scheme 3] is recapped in §F, where
we also examine its regularity.

ABE for Branching Programs (ABE-BP). In ABE-BP [29], a policy is associated to a
branching program Γ, which is a directed acyclic graph in which every non-terminal node has
exactly two outgoing edges labeled (i, 0) and (i, 1) for some i ∈ N. For an edge j, denote its label
as `j . Moreover, there is a distinguished terminal node called accept node. We can also assume
wlog that there is exactly one start node. We can assume wlog that there is at most only one
edge connecting any two nodes in Γ (See [29]).

An input to policy is a binary string w. Every input binary string w induces a subgraph Γw
that contains exactly all the edges labeled (i, wi) for i ∈ [1, |w|], where we write w = (w1, . . . , w|w|)
as the binary representation of w. We say that Γ accepts w if there is a path from the start
node to the accept node in Γw. If the allow length of w is bounded, we say that it is a bounded
ABE-BP, otherwise, it is an unbounded scheme. In the latter, a label (i, b) has no bound on i.
As a side result in this paper, We obtain the following:

Theorem 13. Large-universe ABE-MSP implies ABE-BP.

36



We dedicate the proof to the next section (§7). The proof is constructive and the conversion
preserves efficiency and the unbounded property (if satisfied) of the original ABE-MSP. Therefore,
by using our instantiated ABE-MSP, we obtain the first schemes for the following variants of
ABE-BP:

− (New18). Unbounded KP-ABE-BP (from our unbounded KP-ABE-MSP New4).

− (New19). Unbounded CP-ABE-BP (from our unbounded CP-ABE-MSP New5).

− (New20). Unbounded DP-ABE-BP (from our unbounded DP-ABE-MSP New6).

− (New21). KP-ABE-BP with constant-size ciphertexts (from our KP-ABE-MSP with constant-
size ciphertexts New7).

− (New22). CP-ABE-BP with constant-size keys (from our CP-ABE-MSP with constant-size
keys New8).

These are the first such schemes for given properties, not to mention that they are fully-secure
and prime-order schemes.

We also obtain bounded ABE-BP from bounded ABE-MSP as follows.

− (New′23). Bounded KP-ABE-BP (from our KP-ABE-MSP with small universe New′9).

− (New′24). Bounded CP-ABE-BP (from our CP-ABE-MSP with small universe New′10).

− (New25). Bounded DP-ABE-BP (from our DP-ABE-MSP with small universe New11).

Besides the bounded input length, these bounded schemes also require bounded multi-use in one
branching program, The bound of multi-use refers to the maximum number of allowed repetition
of the same label assigned to different edges in a branching program. More precisely, it is defined
as maxi∈EΓ | { j ∈ EΓ | `j = `i } |, where EΓ is the set of all edges in Γ. This multi-use bound
reflects from the multi-use bound of ABE-MSP. We note that independently, Chen et al. [14] also
obtains bounded ABE for branching programs (as a special case of their schemes for arithmetic
branching programs).

7 New Implication: ABE-MSP Implies ABE-BP
In this section, we prove the implication of ABE-MSP for large universes to ABE-BP (Theorem 13).

Proof. To show the implication, we will define two maps: π1 maps a branching program to a
monotone span program, and π2 maps a string to a set of attributes, as follows. First, let EΓ, VΓ
be the sets of edges and nodes of Γ, respectively. We can assume wlog that EΓ = [1, |EΓ|],
VΓ = [1, |VΓ|], and the terminal accept node is denoted by the number 1, while the start node is
denoted by |VΓ|. An edge j is directed from its tail node, denoted tj , to its head, denoted hj .

We define π1 : Γ 7→ (M,ρ) for which an access matrix M of dimension |EΓ| × (|VΓ| − 1) and
a row label function ρ : EΓ → N× {0, 1} are set as follows. We define the entry (j, k) of M as
follows:

Mj,k :=


−1 if k is the tail node of edge j,

1 if k is the head node of edge j,

0 otherwise.

37



We define ρ to map the row number j ∈ [1, |EΓ|] to the label `j of the edge j in Γ. We define
π2 : {0, 1}∗ → 2N×{0,1} by mapping π2 : w 7→ { (i, wi) | i ∈ [1, |w|] }. We claim the following
lemma.

Lemma 14. The branching program Γ accepts the string w if and only if the monotone span
program π1(Γ) accepts the attribute set π2(w).

We can naturally use the maps π1 and π2 to construct an (unbounded) ABE-BP scheme from
an (unbounded) ABE for monotone span programs (ABE-MSP): a ciphertext for w in ABE-BP is
constructed by encrypting π2(w) in ABE-MSP, while a key for Γ in ABE-BP is obtained as a key
for π1(Γ) in ABE-MSP. The if and the only-if part of the lemma will guarantee that the security
and the correctness are preserved, respectively.11 This concludes the proof of the theorem.

It remains to prove the above lemma. Let (M,ρ) = π1(Γ), S = π2(w).

Proof of Lemma 14. We first proof for (⇒). Assume that Γ accepts w. Hence, there exists a
path from the start node (node |VΓ|) to the accept node (node 1) in Γw. Let (|VΓ|, v1, . . . , vt, 1)
be the nodes on the path. Also let (j1, . . . , jt+1) be the edges on this path. Hence, by definition,
M |S is the matrix that exactly takes the row j1, . . . , jt+1 from M . Now, consider the sum of all
row vectors in M |S . We have:

• The row jt+1 contributes 1 at column 1, and −1 at column vt.

• For i from t down to 2, the row ji contributes 1 at column vi, and −1 at column vi−1.

• The row j1 contributes 1 at column v1.

Therefore, all the values at column v1, . . . , vt are canceled out to 0. Hence, the sum is exactly
(1, 0, . . . , 0). Therefore, (1, 0, . . . , 0) ∈ rowspan(M |S) which means that (M,ρ) accepts S.

We now prove for (⇐). Assume that Γ does not accept w. Let Γ′w be the undirected
graph obtained from Γw by treating every edge as an undirected edge. We have the following
properties:12

1. Since Γ does not accept w, we have that the start node and the accept node lie in different
connected components of Γ′w.

2. Γ′w contains no cycle. This is since Γw is acyclic and every non-terminal node has exactly one
outgoing edge.

Assume for contradiction that (1, 0, . . . , 0) ∈ rowspan(M |S). Let J = { j | ρ(j) ∈ S }. (Hence, J
is the set of edges of Γw). We write this linear combination as (1, 0, . . . , 0) =

∑
j∈J cjMj , where

Mj is the row j of M and cj is some coefficient. For each node k ∈ [1, |VΓ|], let Jk be the set of
edges j in J that are adjacent to k and that cj 6= 0. From the linear combination, we must have
that:

∑
j∈Jk

cjMj,k =

1 if k = 1,

0 if k ∈ [2, |VΓ| − 1].
(29)

11This was formalized and called the embedding lemma in [12].
12These properties were also used, albeit differently, for proving selective security for the ABE-BP of [29].

38



Let Γ′′w be the subgraph of Γ′w that takes all edges j ∈ J such that cj 6= 0 (while treating as
undirected edges). We observe that for every node k ∈ [2, |VΓ| − 1] (i.e., not the accept nor the
start node), there are at least two edges adjacent to it in Γ′′w. This is since otherwise the sum∑
j∈Jk cjMj,k would not be canceled out to 0, where we observe that for j ∈ Jk we have Mj,k 6= 0.

We claim that Γ′′w will always contain a cycle. Hence, this will contradict the property 2, and
the proof will be concluded. It now remains to prove the claim. We consider an arbitrary node
k ∈ [2, |VΓ| − 1]. We have three cases:

• If k is not connected to neither the accept nor the start node in Γ′′w, then the largest connected
subgraph of Γ′′w that contains k has all nodes with at least two adjacent edges.

• If k is connected to the accept node, then it is not connected to the start node by the property
1. Hence, the largest connected subgraph of Γ′′w that contains k has at most one node (the
accept node) that may have one adjacent edge.

• If k is connected to the start node, then it is not connected to the accept node by the property
1. Hence, the largest connected subgraph of Γ′′w that contains k has at most one node (the
start node) that may have one adjacent edge.

In all cases, the considering connected subgraph has at most one node that may have one adjacent
edge. Hence, it always contain a cycle. This concludes the proof of the claim, and hence the
lemma.

Acknowledgement. I would like to thank Shota Yamada and anonymous reviewers of TCC
2015 and Crypto 2015 for their useful comments.

References
[1] N. Attrapadung. Dual System Encryption via Doubly Selective Security: Framework, Fully-secure

Functional Encryption for Regular Languages, and More. In Eurocrypt 2014, pp. 557âĂŞ-577, 2014.
https://eprint.iacr.org/2014/428.pdf

[2] N. Attrapadung. Fully Secure and Succinct Attribute Based Encryption for Circuits from Multi-linear
Maps. Cryptology ePrint Archive: Report 2014/772.

[3] N. Attrapadung, H. Imai. Dual-Policy Attribute Based Encryption. In ACNS’09, pp. 168–185, 2009.

[4] N. Attrapadung, B. Libert. Functional Encryption for Inner Product: Achieving Constant-Size
Ciphertexts with Adaptive Security or Support for Negation. In PKC 2010, pp. 384–402, 2010.

[5] N. Attrapadung, B. Libert, E. Panafieu. Expressive Key-Policy Attribute-Based Encryption with
Constant-Size Ciphertexts In PKC 2011, pp. 90–108, 2010.

[6] N. Attrapadung, S. Yamada. Duality in ABE: Converting Attribute Based Encryption for Dual
Predicate and Dual Policy via Computational Encodings. In CT-RSA 2015, pp. 87–105, 2015.
https://eprint.iacr.org/2015/157.pdf

[7] J. Bethencourt, A. Sahai, B. Waters. Ciphertext-Policy Attribute-Based Encryption. IEEE Symposium
on Security and Privacy (S&P), pp. 321–334, 2007.

[8] D. Boneh, X. Boyen. Efficient Selective-ID Secure Identity-Based Encryption Without Random
Oracles. In Eurocrypt 2004, LNCS 3027, pp. 223–238, 2004.

[9] D. Boneh, X. Boyen, H. Shacham. Short Group Signatures. In Crypto 2004, pp. 41-55, 2004.

39

https://eprint.iacr.org/2014/428.pdf
https://eprint.iacr.org/2015/157.pdf


[10] D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko, G. Segev, V. Vaikuntanathan, D.
Vinayagamurthy. Fully Key-Homomorphic Encryption, Arithmetic Circuit ABE and Compact Garbled
Circuits. In Eurocrypt 2014, pp. 533–556, 2014.

[11] D. Boneh, E. Goh, K. Nissim. Evaluating 2-DNF Formulas on Ciphertexts. In TCC 2005, pp. 325-341,
2005.

[12] D. Boneh, M. Hamburg. Generalized Identity Based and Broadcast Encryption Schemes. In Asiacrypt
2008, LNCS 5350, pp. 455–470, 2008.

[13] D. Boneh, A. Sahai, B. Waters. Functional Encryption: Definitions and Challenges. In TCC 2011,
LNCS 6597, pp. 253–273, 2011.

[14] J. Chen, R. Gay, H. Wee. Improved Dual System ABE in Prime-Order Groups via Predicate Encodings.
In Eurocrypt’15, 2015.

[15] J. Chen, H. Wee. Fully, (Almost) Tightly Secure IBE from Standard Assumptions. In Crypto’13, pp.
435-460, 2013.

[16] J. Chen, H. Wee. Semi-Adaptive Attribute-Based Encryption and Improved Delegation for Boolean
Formula. In SCN 2014, pp. 277–297, 2014.

[17] J. Coron, T. Lepoint, M. Tibouchi. Practical Multilinear Maps over the Integers. In Crypto’13, 2013.

[18] J. Coron, T. Lepoint, M. Tibouchi. New Multilinear Maps over the Integers. Cryptology ePrint
Archive, Report 2015/162, 2015.

[19] A. Escala, G. Herold, E. Kiltz, C. Rafols, J. L. Villar. An Algebraic Framework for Diffie-Hellman
Assumptions. In Crypto’13, pp. 129–147, 2013.

[20] D. M. Freeman. Converting Pairing-Based Cryptosystems from Composite-Order Groups to Prime-
Order Groups. In Eurocrypt’10, pp. 44–61, 2013.

[21] S. Garg, C. Gentry, S. Halevi. Candidate multilinear maps from ideal lattices In Eurocrypt’13, 2013.

[22] S. Garg, C. Gentry, S. Halevi, A. Sahai, B. Waters. Attribute-based encryption for circuits from
multilinear maps. In Crypto’13, pp. 479–499, 2013.

[23] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, B. Waters. Candidate Indistinguishability
Obfuscation and Functional Encryption for all circuits. In FOCS 2013, 2013.

[24] S. Garg, C. Gentry, S. Halevi, M. Zhandry. Fully Secure Attribute Based Encryption from Multilinear
Maps. Cryptology ePrint Archive: Report 2014/622.

[25] S. Garg, C. Gentry, A. Sahai, B. Waters. Witness encryption and its applications. In STOC 2013, pp.
467–476, 2013.

[26] C. Gentry, A. Lewko, B. Waters. Witness Encryption from Instance Independent Assumptions. In
Crypto 2014, pp. 426–443, 2014.

[27] S. Goldwasser, Y. Kalai, R.A. Popa, V. Vaikuntanathan, N. Zeldovich. Reusable garbled circuits and
succinct functional encryption. In STOC âĂŹ13, 2013.

[28] S. Goldwasser, Y. Kalai, R.A. Popa, V. Vaikuntanathan, N. Zeldovich. How to run Turing machines
on encrypted data. In Crypto’13, pp. 536–553, 2013.

[29] S. Gorbunov, V. Vaikuntanathan, H. Wee. Attribute-based encryption for circuits. In STOCâĂŹ13,
2013.

[30] V. Goyal, O. Pandey, A. Sahai, B. Waters. Attribute-based encryption for fine-grained access control
of encrypted data. In ACM CCS’06, pp. 89–98, 2006.

[31] A. Guillevic. Comparing the Pairing Efficiency over Composite-Order and Prime-Order Elliptic
Curves. In ACNS 2013, pp. 357–372, 2013.

40



[32] M. Hamburg. Spatial Encryption (Ph.D. Thesis). Cryptology ePrint Archive: Report 2011/389.

[33] G. Herold, J. Hesse, D. Hofheinz, C. Ràfols, A. Rupp. Polynomial Spaces: A New Framework for
Composite-to-Prime-Order Transformations. In Crypto 2014, pp. 261–279, 2014.

[34] Y. Ishai, H. Wee. Partial Garbling Schemes and Their Applications. In ICALP (1) 2014, pp. 650–662,
2014.

[35] J. Katz, A. Sahai, B. Waters. Predicate Encryption Supporting Disjunctions, Polynomial Equations,
and Inner Products. In Eurocrypt 2008, LNCS 4965, pp. 146–162.

[36] L. Kowalczyk, A. Lewko. Bilinear Entropy Expansion from the Decisional Linear Assumption.
Cryptology ePrint Archive: Report 2014/754, retrieved version: Feb 12, 2015.

[37] A. Lewko Tools for Simulating Features of Composite Order Bilinear Groups in the Prime Order
Setting. In Eurocrypt 2012. pp. 318–335, 2012.

[38] A. Lewko, S. Meiklejohn. A Profitable Sub-prime Loan: Obtaining the Advantages of Composite
Order in Prime-Order Bilinear Groups. In PKC 2015, pp. 377–398, 2015.

[39] A. Lewko, B. Waters. New Techniques for Dual System Encryption and Fully Secure HIBE with
Short Ciphertexts. In TCC 2010, LNCS 5978, pp. 455–479, Springer, 2010.

[40] A. Lewko, B. Waters. Decentralizing Attribute-Based Encryption In Eurocrypt 2011. pp. 568–588,
2011.

[41] A. Lewko, B. Waters. Unbounded HIBE and Attribute-Based Encryption In Eurocrypt 2011. pp.
547–567, 2011.

[42] A. Lewko, B. Waters. New Proof Methods for Attribute-Based Encryption: Achieving Full Security
through Selective Techniques. In Crypto 2012. pp. 180–198, 2012.

[43] A. Lewko, T. Okamoto, A. Sahai, K. Takashima, B. Waters. Fully Secure Functional Encryption:
Attribute-Based Encryption and (Hierarchical) Inner Product Encryption. In Eurocrypt 2010. pp.
62–91, 2010.

[44] S. Meiklejohn, H. Shacham, D. M. Freeman. Limitations on Transformations from Composite-Order to
Prime-Order Groups: The Case of Round-Optimal Blind Signatures. In Asiacrypt 2010, pp. 519–538,
2010.

[45] T. Okamoto, K. Takashima. Hierarchical Predicate Encryption for Inner-Products. In Asiacrypt
2009, LNCS 5912, pp. 214–231, 2009.

[46] T. Okamoto, K. Takashima, Fully secure functional encryption with general relations from the
decisional linear assumption.In Crypto 2010, LNCS 6223, pp. 191–208, 2010.

[47] T. Okamoto, K. Takashima, Adaptively Attribute-Hiding (Hierarchical) Inner Product Encryption.
In Eurocrypt 2012, LNCS 7237, pp. 591–608, 2012.

[48] T. Okamoto, K. Takashima, Fully Secure Unbounded Inner-Product and Attribute-Based Encryption.
In Asiacrypt 2012, pp. 349–366, 2012.

[49] R. Ostrovsky, A. Sahai, B. Waters. Attribute-based encryption with non-monotonic access structures.
In ACM CCS 2007, pp. 195–203, 2007.

[50] B. Parno, M. Raykova, V. Vaikuntanathan. How to Delegate and Verify in Public: Verifiable
Computation from Attribute-Based Encryption. In TCC 2012, pp. 422–439.

[51] Y. Rouselakis, B. Waters Practical constructions and new proof methods for large universe attribute-
based encryption. In ACM CCS 2013, pp. 463–474, 2013.

[52] A. Sahai, B. Waters. Fuzzy Identity-Based Encryption In Eurocrypt 2005, LNCS 3494, pp. 457–473,
2005.

41



[53] J. H. Seo, J. H. Cheon. Beyond the Limitation of Prime-Order Bilinear Groups, and Round Optimal
Blind Signatures. In TCC 2012. pp. 133–150, 2012.

[54] K. Takashima. Expressive Attribute-Based Encryption with Constant-Size Ciphertexts from the
Decisional Linear Assumption. In SCN 2014, pp. 298–317, 2014.

[55] B. Waters. Ciphertext-Policy Attribute-Based Encryption: An Expressive, Efficient, and Provably
Secure Realization. In PKC 2011. pp. 53-70, 2011.

[56] B. Waters. Dual System Encryption: Realizing Fully Secure IBE and HIBE under Simple Assumptions.
In Crypto 2009, pp. 619–636, 2009.

[57] B. Waters. Functional Encryption for Regular Languages. In Crypto 2012, pp. 218–235, 2012.

[58] H. Wee. Dual System Encryption via Predicate Encodings. In TCC 2014, pp. 616–637, 2014.

A Security Definition for ABE
Security Notion. An attribute-based encryption scheme for predicate family R is fully secure
if no probabilistic polynomial time (PPT) adversary A has non-negligible advantage in the
following game between A and the challenger C. For our purpose of modifying games in the
proof, we write some in the boxes. Let q1, q2 be the numbers of queries in Phase 1,2, respectively.

1. Setup: C runs (1) Setup(1λ, κ)→ (PK,MSK) and hands PK to A.

2. Phase 1: A makes a j-th private key query for Xj ∈ Xκ. C returns SKj by computing
(2) SKj ← KeyGen(Xj ,MSK,PK) .

3. Challenge: A submits equal-length messages M0,M1 and a target ciphertext attribute
Y ? ∈ Yκ with the restriction that Rκ(Xj , Y

?) = 0 for all j ∈ [1, q1]. C flips a bit b $← {0, 1}
and returns the challenge ciphertext (3) CT? ← Encrypt(Y ?,Mb,PK) .

4. Phase 2: A continues to make a j-th private key query for Xj ∈ Xκ under the restriction
Rκ(Xj , Y

?) = 0. C returns (4) SKj ← KeyGen(Xj ,MSK,PK) .

5. Guess: The adversary A outputs a guess b′ ∈ {0, 1} and wins if b′ = b. The advantage of A
against ABE is defined as AdvABE

A (λ) := |Pr[b = b′]− 1
2 |.

B Recap the Security Definitions for Pair Encodings
The security notions of pair encoding schemes are given in [1], with a refinement regarding
the number of queries in [6]. We describe almost the same definitions here and remark slight
differences from [1, 6] below.

(Perfect Security). The pair encoding scheme P is perfectly master-key hiding (PMH) if the
following holds. Suppose R(X,Y ) = 0. Let n ← Param(κ), (k;m2) ← Enc1(X), (c;w2) ←
Enc2(Y ), then the following two distributions are identical:

{c(s,h), k(0, r,h)} and {c(s,h), k(α, r,h)},

where the probability is taken over h $← Znp , α
$← Zp, r $← Zm2

p , s $← Z(w2+1)
p .

42



(Computational Security). We define two flavors for computational security notions: selec-
tively and co-selectively secure master-key hiding (SMH,CMH) in a bilinear group generator G.
We first define the following game template, denoted as ExpG,P,G,b,A,t1,t2(λ), for pair encoding P,
a flavor G ∈ {CMH,SMH}, b ∈ {0, 1}, and t1, t2 ∈ N. It takes as input the security parameter λ
and does the experiment with the adversary A = (A1,A2), and outputs b′. Denote by st a state
information by A. The game is defined as:

ExpG,G,b,A,t1,t2(λ) : (G1,G2,GT , e, p)← G(λ); g1
$← G1, g2

$← G2,

α $← Zp, n← Param(κ),h $← Znp ;

st← A
O1

G,b,α,h(·)
1 (g1, g2); b′ ← A

O2
G,b,α,h(·)

2 (st),

where each oracle O1,O2 can be queried at most t1, t2 times respectively, and is defined as follows.

• Selective Security.

• O1
SMH,b,α,h(Y ?): Run (c;w2)← Enc2(Y ?); s $← Z(w2+1)

p ; return U ← g
c(s,h)
1 .

• O2
SMH,b,α,h(X) : If R(X,Y ?) = 1, then return ⊥.

Else, run (k;m2)← Enc1(X); r $← Zm2
p ; return

V ←

g
k(0,r,h)
2 if b = 0

g
k(α,r,h)
2 if b = 1

.

• Co-selective Security.

• O1
CMH,b,α,h(X?): Run (k;m2)← Enc1(X?); r $← Zm2

p ; return

V ←

g
k(0,r,h)
2 if b = 0

g
k(α,r,h)
2 if b = 1

.

• O2
CMH,b,α,h(Y ) : If R(X?, Y ) = 1, then return ⊥.

Else, run (c;w2)← Enc2(Y ); s $← Z(w2+1)
p ; return U ← g

c(s,h)
1 .

We define the advantage of A against the pair encoding scheme P in the security game
G ∈ {SMH,CMH} for bilinear group generator G with the bounded number of queries (t1, t2) as

Adv(t1,t2)-G(P)
A (λ) := |Pr[ExpG,P,G,0,A,t1,t2(λ) = 1]− Pr[ExpG,P,G,1,A,t1,t2(λ) = 1]|

We say that P is (t1, t2)-selectively master-key hiding in G if Adv(t1,t2)-SMH(P)
A (λ) is negligible for

all polynomial time attackers A. Analogously, P is (t1, t2)-co-selectively master-key hiding in G if
Adv(t1,t2)-CMH(P)

A (λ) is negligible for all polynomial time attackers A.
Poly-many Queries. We also consider the case where ti is not a-priori bounded and hence the
corresponding oracle can be queried polynomially many times. In such a case, we denote ti as
poly.

43



Remark 4. The original notions considered in [1] are (1, poly)-SMH, (1, 1)-CMH for selective
and co-selective master-key hiding security, respectively. The refinement with (t1, t2) is done
recently in [6]. The purpose of refinement is that there exists a generic conversion that converts a
(1, 1)-SMH-secure pair encoding scheme for a predicate into another scheme for its dual predicate
which is (1, 1)-CMH-secure, and vice-versa [6]. We note that (1, poly)-SMH trivially implies
(1, 1)-SMH.

Remark 5. The definition of computational security for encoding here is slightly different from
that in [1, 6] in that here we define it in asymmetric and prime-order groups, while it was defined
in symmetric and prime-order subgroup of composite-order groups in [1, 6]. We use asymmetric
groups for the purpose of generality, one can obtain schemes in symmetric groups by just setting
G1 = G2. Hence, we can use all the proposed encodings in [1, 6] by working on the symmetric
group version of our framework. For the latter issue, the difference of definitions between
prime-order groups and prime-order subgroups are merely syntactic. This is since although the
original definition was defined in prime-order subgroups, the hardness of factorization was not
assumed (i.e., generators of each subgroup or even factors of composites N can be given out
to the adversary). Hence, the encoding schemes in [1, 6] are secure in our definition under the
security proofs in their present forms.

C Recap the Composite-order Construction of [1]
For self-containment, we recap the ABE construction in composite-order groups, albeit using
asymmetric groups (the original scheme was defined in symmetric groups). It will use a composite-
order asymmetric bilinear group generator Gcomposite which outputs (G1,G2,GT , e,N, p1, p2, p3) $←
Gcomposite(λ), where G1,G2,GT are of order N = p1p2p3. The bilinear map takes the form
e : G1 × G2 → GT . Let G1,pi ,G2,pi be the subgroup of order pi of G1,G2 respectively. Let
g1 ∈ G1,p1 , ĝ1 ∈ G1,p2 , g2 ∈ G2,p1 , ĝ2 ∈ G2,p2 be a generator in each subgroup. The scheme is as
follows.

• Setup(1λ, κ): Run (G1,G2,GT , e,N, p1, p2, p3) $← Gcomposite(λ). Pick generators g1
$← G1,p1 ,

g2 ∈ G2,p1 , Z3
$← G2,p3 . Obtain n← Param(κ). Pick h $← ZnN and α $← ZN . The public key is

PK =
(
g1, g2, e(g1, g2)α, gh1 , Z3

)
. The master secret key is MSK = α.

• Encrypt(Y,M,PK): Upon input Y ∈ YN , run (c;w2)← Enc2(Y ). Pick s = (s0, s1, . . . , sw2) $←
Zw2+1
N . Output the ciphertext as CT = (C, C0):

C = g
c(s,h)
1 ∈ Gw1 , C0 = (e(g1, g2)α)s0M ∈ GT .

Note that C can be computed from gh1 and s since c(s,h) contains only linear combinations
of monomials s, si, shj , sihj .

• KeyGen(X,MSK,PK): Upon input X ∈ XN , run (k;m2)← Enc1(X). Parse MSK = α. Recall
that m1 = |k|. Pick r $← Zm2

N ,R3
$← Gm1

2,p3 . Output the secret key SK:

SK = g
k(α,r,h)
2 ·R3 ∈ Gm1 .

44



• Decrypt(CT,SK): Obtain Y,X from CT, SK. Suppose R(X,Y ) = 1. Run E ← Pair(X,Y ).
Compute

e(g1, g2)αs0 ←
∏

i∈[1,m1],i′∈[1,w1]
e(C[i′], SK[i])Ei,i′ ,

and obtain M ← C0/e(g1, g2)αs0 .

Correctness. Since R(X,Y ) = 1, we have∏
i∈[1,m1],i′∈[1,w1]

e(C[i′],SK[i])Ei,i′ = e(g1, g2)kEc> = e(g1, g2)αs0 .

Semi-Functional Algorithms.

• SFSetup(1λ, κ): This is exactly the same as Setup(1λ, κ) except that it additionally outputs
generators ĝ1 ∈ G1,p2 , ĝ2 ∈ G2,p2 and semi-functional parameter ĥ $← ZnN .

• SFEncrypt(Y,M,PK, ĝ1, ĥ): Upon inputs Y,M,PK, ĝ1 and ĥ, first run (c;w2)← Enc2(Y ). Pick
s = (s0, s1, . . . , sw2), ŝ $← Zw2+1

N Output the ciphertext as CT = (C, C0):

C = g
c(s,h)
1 ĝ

c(ŝ,ĥ)
1 ∈ Gw1 , C0 = (e(g1, g2)α)s0M ∈ GT .

• SFKeyGen(X,MSK,PK, ĝ2, type, α̂, ĥ): Upon inputs X,MSK,PK, ĝ2 and type ∈ {1, 2, 3}, α̂ ∈
ZN , first run (k;m2)← Enc1(X). Pick r, r̂ $← Zm2

N ,R3
$← Gm1

2,p3 . Output the secret key SK:

SK =


g
k(α,r,h)
2 · ĝk(0,r̂,ĥ)

2 ·R3 if type = 1

g
k(α,r,h)
2 · ĝk(α̂,r̂,ĥ)

2 ·R3 if type = 2

g
k(α,r,h)
2 · ĝk(α̂,0,0)

2 ·R3 if type = 3

Note that in computing type-1 (resp., type-3) semi-functional keys, α̂ (resp., ĥ) is not needed.

D Proof for Correctness for Our Scheme
In this section, we prove the correctness of decryption of our generic construction in §4.2.

Claim 15. If R(X,Y ) = 1 then

α>B ( s0
0 ) =

∑
i∈[1,m1],i′∈[1,w1]

Ei,i′ · (kZ(α,R,H)[i])> · cB(S,H)[i′].

Proof. To prove this, we first see that due to the correctness of the pair encoding, R(X,Y ) = 1
implies

αs0 =
∑

i∈[1,m1],i′∈[1,w1]
Ei,i′ · k(α, r,h)[i] · c(s,h)[i′]. (30)

45



Each term in the sum can be written as
Ei,i′ · k(α, r,h)[i] · c(s,h)[i′] =
Ei,i′

∑
j′∈[0,w2]

biai′,j′αsj′ + Ei,i′
∑

j′∈[0,w2]
k′∈[1,n]

biai′,j′,k′αhk′sj′

+ Ei,i′
∑

j∈[1,m2]
j′∈[0,w2]

bi,jai′,j′rjsj′

+ Ei,i′
∑

j∈[1,m2]
j′∈[0,w2]
k′∈[1,n]

bi,jai′,j′,k′rjhk′sj′ + Ei,i′
∑

j∈[1,m2]
k∈[1,n]
j′∈[0,w2]

bi,j,kai′,j′rjhksj′

︸ ︷︷ ︸
Ei,i′

∑
j∈[1,m2]
k∈[1,n]
j′∈[0,w2]

(bi,jai′,j′,k + bi,j,kai′,j′)rjhksj′

+ Ei,i′
∑

j∈[1,m2]
k∈[1,n]
j′∈[0,w2]
k′∈[1,n]

bi,j,kai′,j′,k′rjhkhk′sj′ ,

︸ ︷︷ ︸
= 0

(31)

where we note that the last term, denoted L, is 0 intuitively due to the regularity of encoding (the
first rule, in Definition 1), which disallows the multiplication of (rjhk)(hk′sj′). More precisely,
we fix i, i′. Then, for j, k which bi,j,k = 0, L is trivially 0. Similarly, for j′, k′ which ai′,j′,k′ = 0,
L is also trivially 0. For the remaining case of j, k, j′, k′ where bi,j,k 6= 0 and ai′,j′,k′ 6= 0, we have
that Ei,i′ = 0 exactly due to the first rule of regularity.

This whole term of (31) can be viewed as a polynomial, denoted pi,i′(v), with variables in v
consisting of

{αsj′}j′∈[0,w2], {αhk′sj′}j′∈[0,w2]
k′∈[1,n]

, {rjsj′}j∈[1,m2]
j′∈[0,w2]

, {rjhksj′}j∈[1,m2]
k∈[1,n]
j′∈[0,w2]

. (32)

We then substituting variables v with W consisting of

{α>B
(
sj′
0

)
}j′∈[0,w2], {α>Hk′B

(
sj′
0

)
}j′∈[0,w2]
k′∈[1,n]

,

{( r>j 0 )Z>B
(
sj′
0

)
}j∈[1,m2]
j′∈[0,w2]

, {( r>j 0 )Z>HkB
(
sj′
0

)
}j∈[1,m2]
k∈[1,n]
j′∈[0,w2]

.
(33)

in the respective manner (i.e., elements in (33) are in the same order as those in (32)) and obtain
pi,i
′(W ). Since Eq.(30) holds symbolically, we thus have

α>B ( s0
0 ) =

∑
i∈[1,m1],i′∈[1,w1]

pi,i
′(W ).

Therefore, it remains to prove that

pi,i
′(W ) = Ei,i′ · (kZ(α,R,H)[i])> · cB(S,H)[i′]. (34)

46



To prove this, we write the term on the right-hand side of (34) using the definitions of kZ , cB
from (11) and (13) as

Ei,i′

biα> +

 ∑
j∈[1,m2]

bi,j ( r>j 0 )Z>
+

 ∑
j∈[1,m2]
k∈[1,n]

bi,j,k ( r>j 0 )Z>Hk


 ·


 ∑
j′∈[0,w2]

ai′,j′B
(
sj′
0

)+

 ∑
j′∈[0,w2]
k′∈[1,n]

ai′,j′,k′Hk′B
(
sj′
0

)
 .

We then multiply it out and check the coefficient of each variable in W whether it equals to
that in pi,i

′(W ), of which the coefficients are shown in (31). By inspection, we can see that
this holds. One particular non-trivial point is that, the coefficient of ( r>j 0 )Z>HkB

(
sj′
0

)
is

bi,jai′,j′,k + bi,j,kai′,j′ (and hence is the same as in pi,i′(W ) as shown in Eq.(31)), exactly due to
the associativity: (

( r>j 0 )Z>
)(
HkB

(
sj′
0

) )
=
(

( r>j 0 )Z>Hk

)(
B
(
sj′
0

) )
.

This concludes the proof.

E Variants of Security for Our Construction
In this section, we describe two more theorems for our framework.

Theorem 16. Suppose that a pair encoding scheme P for predicate R is (1, 1)-selectively and
(1, 1)-co-selectively master-key hiding in G, and the Matrix-DH Assumption holds in G. Then
the construction ABE(P) in G of ABE for predicate R is fully secure. More precisely, for any
PPT adversary A, there exist PPT algorithms B1,B2,B3, whose running times are the same as
A plus some polynomial times, such that for any λ,

AdvABE
A (λ) ≤ (2qall + 1)AdvDd-MatDH

B1
(λ) + q1Adv(1,1)-CMH

B2
(λ) + q2Adv(1,1)-SMH

B3
(λ),

where q1, q2 is the number of queries in phase 1,2, resp., and qall = q1 + q2.

Proof. This follows the proof of our main theorem (Theorem 3). The only difference is that
instead of switching all post-challenge keys all at once for the three games (normal to semi-
functional type 1, to type 2, and to type 3), we switch each post-challenge key one key per one
game, in just the same way as for each pre-challenge key (and as in the traditional dual system
encryption proofs). This results in the cost q2 for the reduction to the SMH security and the
additional cost 2q2 − 2 for the reduction to Dd-MatDH.

Corollary 17. Suppose that a pair encoding scheme P for predicate R is perfectly master-key
hiding, and the Matrix-DH Assumption holds in G. Then the construction ABE(P) in G of ABE
for predicate R is fully secure. More precisely, for any PPT adversary A, there exist PPT

47



algorithms B, whose running time is the same as A plus some polynomial time, such that for
any λ,

AdvABE
A (λ) ≤ (2qall + 1)AdvDd-MatDH

B (λ).

where qall = q1 + q2 denotes the number of all queries.

Proof. Since PMH trivially implies both (1, 1)-CMH and (1, 1)-SMH with zero advantage, we
obtain the above corollary.

F An Encoding Example: KP-ABE for Regular Languages
To illustrate how an encoding scheme will satisfy regularity (Definition 1), we show an instantiation
example. We pick the encoding scheme for ABE for regular languages proposed in [1]. We show
its regularity below. Thus, our generic construction gives a fully-secure ABE scheme for regular
languages in prime-order groups. The underlying assumptions besides the Matrix-DH assumption
are exactly those that are defined in [1] (the EDHE1 and EDHE2 assumptions) albeit defined
over prime-order groups. The original assumptions are defined over prime-order subgroups inside
composite-order groups; however, the hardness of factorization was not inherently used, so we
can neglect other subgroups. We remark that this is the first such scheme. For self-containment,
we first give the definition for the predicate, where we mostly copy texts from [1] here.

Predicate Definition of ABE for Regular Languages. In ABE for regular languages, we
have a key associated to the description of a deterministic finite automata (DFA) M , while a
ciphertext is associated to a string w, and R(M,w) = 1 if the automata M accepts the string
w. A DFA M is a 5-tuple (Q,Λ,T, q0, F ) in which Q is the set of states Q = {q0, q1, . . . , qn−1},
Λ is the alphabet set, T is the set of transitions, in which each transition is of the form
(qx, qy, σ) ∈ Q × Q × Λ, q0 ∈ Q is the start state, and F ⊆ Q is the set of accepted states.
We say that M accepts a string w = (w1, w2, . . . , w`) ∈ Λ∗ if there exists a sequence of states
ρ0, ρ1, . . . , ρ` ∈ Q such that ρ0 = q0, for i = 1 to ` we have (ρi−1, ρi, wi) ∈ T, and ρ` ∈ F . This
primitive is important since it has a unique unbounded feature that one key for machine M can
operate on input string w of arbitrary sizes. Such an ABE system was proposed by Waters [57]
in the selective security model. The fully secure scheme was achieved via the framework of [1] in
composite-order groups. We recap the encoding scheme in [1] as follows, where we simplify some
notations of variables.

48



Pair Encoding Scheme 1: KP-ABE for Regular Languages of [1]

Param → 8. Denote h = (h0, h1, h2, h3, h4, h5, h6, h7).
For any DFA M = (Q,Zp,T, q0, qn−1), where n = |Q|,
let m = |T|, and parse T = {(qxt , qyt , σt)|t ∈ [1,m]}.

Enc1(M)→ k(α, r,h) =
(
k1, k2, k3, k4, k5, {k6,t, k7,t, k8,t}t∈[1,m]

)
:

k1 = α+ rh5 + uh7, k2 = u, k3 = r,

k4 = r0, k5 = −u0 + r0h0, k6,t = rt,

k7,t = uxt + rt(h1 + h2σt), k8,t = −uyt + rt(h3 + h4σt)


where un−1 := h6r and r = (r, u, r0, r1, . . . , rm, {ux}qx∈Qr{qn−1}).
For w ∈ (Zp)∗, let ` = |w|, and parse w = (w1, . . . , w`).

Enc2(w) → c(s,h) =
(
c1, c2, c3, c4, {c5,i}i∈[0,`], {c6,i}i∈[1,`]

)
:{

c1 = s0, c2 = s0h7, c3 = −s0h5 + s`+1h6,

c4 = s1h0, c5,i = si+1, c6,i = si(h1 + h2wi) + si+1(h3 + h4wi)

}
where s = (s0, s1, . . . , s`+1).

Correctness. The correctness can be shown by providing linear combination of kιcj which
summed up to αs0. When R(M,w) = 1, we have that there is a sequence of states ρ0, ρ1, . . . , ρ` ∈
Q such that ρ0 = q0, for i = 1 to ` we have (ρi−1, ρi, wi) ∈ T, and ρ` ∈ F . Let (qxti , qyti , σti) =
(ρi−1, ρi, wi). Therefore, we have the following bilinear combination:

k1c1 − k2c2 + k3c3 − k4c4 + k5c5,0 +
∑
i∈[1,`]

(−k6,tic6,i + k7,tic5,i−1 + k8,tic5,i) = αs. (35)

Claim 18. The above encoding scheme is regular pair encoding.

Proof. We inspect each requirement from Definition 1 as follows.

1. In the linear combination of kιcj terms when pairing as shown in Eq.(35), the two terms in
each pair does not simultaneously contain elements from h. For example, in the product k1c1,
the polynomial k1 contains h5, h7, while c1 has no hi element. On the other hand, in the
product k3c3, the polynomial k3 has no hi element, while c3 contains h5, h6.

2. In the encoding k(α, r,h), all the monomials that have randomness in r multiplied with
elements from h are rh5, uh7, r0h0, rth1, rth2σt, rth3, rth4σt, rh6. We check that it is indeed
the case that all the corresponding randomness terms, r, u, r0, rt, are given out (as singleton
monomial k3, k2, k4, k6,t respectively). On the other hand, since the other randomness elements,
ux’s, are not multiplied with any hi, they are not needed to be given out.

3. In the encoding c(s,h), all the randomness s0, . . . , s`+1 are multiplied with some hi term, and
we can see that all monomial sj ’s exist in the encoding.

4. The monomial s0 appear in the encoding c(s,h) (as c1).

This concludes the proof.

49



G A Concrete Instantiation: Unbounded KP-ABE-MSP
For concreteness, we provide the description for one of our instantiations: unbounded KP-ABE
for monotone span programs (New4), obtained by using the encoding in [1, §7.1].

• Setup(1λ): Run (G1,G2,GT , e, p) $← G(λ). Pick generators g1
$← G1, g2

$← G2. Pick
H1, . . . ,H6

$← Z(d+1)×(d+1)
p (that is, n = 6), and B $← GLp,d+1 ⊂ Z(d+1)×(d+1)

p . Choose
D̃ $← GLp,d, define D :=

(
D̃ 0
0 1

)
∈ GLp,d+1 and Z := B−>D. Choose α $← Z(d+1)×1

p . Output

PK =

e(g1, g2)
α>B

(
Id
0

)
, g
B

(
Id
0

)
1 ,

gHiB

(
Id
0

)
1


i∈[1,6]

 ,
MSK =

gα2 , gZ
(
Id
0

)
2 ,

gH
>
i Z

(
Id
0

)
2


i∈[1,6]

 .
• Encrypt(S ⊂ Zp,M,PK): Pick s0,∀j∈Ssj ,w $← Zd×1

p . Output a ciphertext as CT = (C1,C2,C3,
C4, {C5,j ,C6,j}j∈S , C0) where

C1 = g
B( s0

0 )
1 , C2 = g

H6B( s0
0 )

1 ,

C3 = g
H3B( s0

0 )+H4B(w0 )
1 , C4 = g

B(w0 )
1 ,

C5,j = g
H5B(w0 )+H1B

( sj
0
)
+jH2B

( sj
0
)

1 , C6,j = g
B
( sj

0
)

1 ,

and C0 = e(g1, g2)α
>B( s0

0 ) ·M ∈ GT .

• KeyGen((A, π),MSK): Suppose A has dimension m × k, and π maps [1,m] → Zp. Pick
r,u, r1, . . . , rm,v2, . . . ,vk

$← Zd×1
p . Output SK = (K1,K2,K3, {K4,i,K5,i,K6,i}i∈[1,m] where

K1 = g
α+H>3 Z( r0 )+H>6 Z(u0 )
2 , K2 = g

Z(u0 )
2 ,

K3 = g
Z( r0 )
2 , K4,i = g

Ai,1H>4 Z( r0 )+
∑k

j=2 Ai,jZ
( vj

0
)
+H>5 Z( ri0 )

2 ,

K5,i = g
Z( ri0 )
2 , K6,i = g

H>1 Z( ri0 )+π(i)H>2 Z( ri0 )
2 .

• Decrypt(CT, SK): Suppose (A, π) accepts the set S. Let I = { i ∈ [1,m] | π(i) ∈ S }. Compute
row-span coefficients {µi}i∈I such that

∑
i∈I µiAi = (1, 0, . . . , 0). Compute e(g1, g2)α

>B( s0
0 ) =

L1 · L2 where

L1 := e(C1,K1)e(C2,K2)−1e(C3,K3)−1,

L2 :=
∏
i∈I

(
e(C4,K4,i)e(C5,π(i),K5,i)−1e(C6,π(i),K6,i)

)µi ,
and obtain M ← C0/e(g1, g2)α

>B( s0
0 ).

50



Correctness. From our definition of pairing: e(gX1 , gY2 ) = e(g1, g2)Y >X , we have

e(C1,K1) = e(g1, g2)(α
>+( r> 0 )Z>H3+(u> 0 )Z>H6)B( s0

0 ),

e(C2,K2) = e(g1, g2)(u> 0 )Z>H6B( s0
0 ),

e(C3,K3) = e(g1, g2)( r> 0 )Z>(H3B( s0
0 )+H4B(w0 )).

Hence, L1 = e(g1, g2)α
>B( s0

0 )−( r> 0 )Z>H4B(w0 ). We also have

e(C4,K4,i) = e(g1, g2)
(
Ai,1( r> 0 )Z>H4+

∑
j∈[2,k] Ai,j( v>j 0 )Z>+( r>i 0 )Z>H5

)
B(w0 )

,

e(C5,π(i),K5,i) = e(g1, g2)(
r>i 0 )Z>

(
H5B(w0 )+H1B

(
sπ(i)

0

)
+π(i)H2B

(
sπ(i)

0

))
,

e(C6,π(i),K6,i) = e(g1, g2)((
r>i 0 )Z>H1+( r>i 0 )π(i)Z>H2)B

(
sπ(i)

0

)
.

Write L2 =
∏
i∈I L

µi
2,i. We have

L2,i = e(g1, g2)

(
Ai,1( r> 0 )Z>H4+

∑k

j=2 Ai,j( v>j 0 )Z>
)
B(w0 )

.

Since
∑
i∈I µiAi,1 = 1,

∑
i∈I µiAi,j = 0 for j ∈ [2, k], we have L2 = e(g1, g2)( r> 0 )Z>H4B(w0 ).

Hence, we have L1 · L2 = e(g1, g2)α
>B( s0

0 ). This concludes the correctness proof.

Security. The following corollary follows from our main theorem (Theorem 3), and Corollary 13
and 14 of [1], which state that the underlying encoding is (1, poly)-SMH and (1, 1)-CMH under
the EDHE3 and EDHE4 Assumption, respectively. The definitions of assumptions are described
in H.

Corollary 19. The above KP-ABE in symmetric groups (that is, with G1 = G2 and g1 = g2) is
fully-secure under the Matrix-DH (in symmetric groups), (1, t)-EDHE3p, and (1,m, k)-EDHE4p
Assumptions, where t is the attribute set size for the challenge ciphertext query, and m, k are the
maximum numbers of rows and columns of access matrices among all key queries, respectively.
More precisely, for any ppt adversary A, let q1 denote the number of queries in phase 1, there
exist ppt algorithms B1,B2,B3, whose running times are the same as A plus some polynomial
times, such that for any λ,

AdvABE
A (λ) ≤ (2q1 + 3)AdvDd-MatDH

B1
(λ) + q1Adv(1,m,k)-EDHE4p

B2
(λ) + Adv(1,t)-EDHE3p

B3
(λ).

H Assumptions
For self-containment, we capture the assumptions that are used for the encodings of our ABE-
MSP. They are exactly the same as in [1, §7.3] with a slight syntactic change mentioned in
Remark 3 and 5. Let AdvX

A be the advantage of an adversary A against the assumption X (defined
naturally, and analogously to, e.g., the definition of the Matrix-DH Assumption in §2.2).

Definition 2 ((n, t)-EDHE3p Assumption [1]). The (n, t)-Expanded Diffie-Hellman Exponent
Assumption-3 in prime-order group is defined as follows. Let (G,G,GT , e, p) $← G(λ). (That is,

51



we use symmetric groups). Let g $← G. Let a, c, b1, . . . , bt, z $← Zp. Suppose that an adversary is
given a target element T ∈ Gp, and D consisting of

g, ga, gc, gc/z

∀j∈[1,t] gbj

∀i∈[1,n], j,j′∈[1,t],j 6=j′ g
aibj/b

2
j′ , ga

ncbj/bj′

∀i∈[1,2n], j∈[1,t] ga
icbj ,

∀i∈[1,2n],i 6=n+1, j∈[1,t], ga
ic/bj ,

∀i∈[1,2n], j,j′∈[1,t],j 6=j′ g
aicbj/b

2
j′ ,

∀i∈[1,n+1], j∈[1,t], ga
i/b2j ,

∀i∈[n+1,2n], j,j′∈[1,t], ga
ic2bj/bj′

The assumption states that it is hard for any polynomial-time adversary to distinguish whether
T = ga

n+1z or T $← Gp.

Definition 3 ((n,m, k)-EDHE4p Assumption [1]). The (n,m, k)-Expanded Diffie-Hellman Ex-
ponent Assumption-4 in prime-order group is defined as follows. Let (G,G,GT , e, p) $← G(λ).
(That is, we use symmetric groups). Let g $← G. Let a, x, c, b1, . . . , bm, $← Zp. Suppose that an
adversary is given a target element T ∈ Gp, and D consisting of

g, gc, ga
n+1xk/z

∀j∈[1,k] ga
n+1xj

∀i∈[1,n], j∈[1,k], ι∈[1,m] ga
ixj/b2ι , gcbι , gx

j
, ga

ixjbι

∀j∈[1,k], ι,ι′∈[1,m],ι6=ι′ ga
n+1xjcbι/bι′

∀i∈[1,n], j∈[1,k], ι,ι′∈[1,m],ι6=ι′ ga
ixjcbι/b2ι′

∀i∈[1,2n], j∈[1,2k], ι,ι′∈[1,m], (i,j,ι)6=(n+1,k+1,ι′) ga
ixjbι/b2ι′

The assumption states that it is hard for any polynomial-time adversary to distinguish whether
T = gxcz or T $← Gp.

52



Contents
1 Introduction 1

1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Difficulties and Our Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Concurrent and Independent Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Preliminaries 10
2.1 Definitions of Attribute Based Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Bilinear Groups and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Definition of Pair Encoding 12
3.1 Regular Pair Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Security Definitions for Pair Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Our Framework in Prime-Order Groups 14
4.1 Intuition for Translation to Prime-Order Groups . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Our Generic Construction for Fully Secure ABE . . . . . . . . . . . . . . . . . . . . . . . 16

5 Security Theorems and Proofs 17
5.1 Normal to Semi-functional Ciphertext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 Normal to Type-1 Semi-functional Key in Phase 1 . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Applying the Parameter-Hiding Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4 Type-1 to Type-2 Semi-functional Key in Phase 1 . . . . . . . . . . . . . . . . . . . . . . . 26
5.5 Type-2 to Type-3 Semi-functional Key in Phase 1 . . . . . . . . . . . . . . . . . . . . . . . 28
5.6 Normal to Type-1 Semi-functional Keys in Phase 2 . . . . . . . . . . . . . . . . . . . . . . 29
5.7 Type-1 to Type-2 Semi-functional Key in Phase 2 . . . . . . . . . . . . . . . . . . . . . . . 29
5.8 Type-2 to Type-3 Semi-functional Key in Phase 2 . . . . . . . . . . . . . . . . . . . . . . . 31
5.9 Final Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 New Instantiations 32

7 New Implication: ABE-MSP Implies ABE-BP 37

References 39

A Security Definition for ABE 42

B Recap the Security Definitions for Pair Encodings 42

C Recap the Composite-order Construction of [1] 44

D Proof for Correctness for Our Scheme 45

E Variants of Security for Our Construction 47

F An Encoding Example: KP-ABE for Regular Languages 48

G A Concrete Instantiation: Unbounded KP-ABE-MSP 50

H Assumptions 51

53


	Introduction
	Our Contributions
	Difficulties and Our Approaches
	Concurrent and Independent Work
	Related Work

	Preliminaries
	Definitions of Attribute Based Encryption
	Bilinear Groups and Assumptions

	Definition of Pair Encoding
	Regular Pair Encoding
	Security Definitions for Pair Encodings

	Our Framework in Prime-Order Groups
	Intuition for Translation to Prime-Order Groups
	Our Generic Construction for Fully Secure ABE

	Security Theorems and Proofs
	Normal to Semi-functional Ciphertext
	Normal to Type-1 Semi-functional Key in Phase 1
	Applying the Parameter-Hiding Lemma
	Type-1 to Type-2 Semi-functional Key in Phase 1
	Type-2 to Type-3 Semi-functional Key in Phase 1
	Normal to Type-1 Semi-functional Keys in Phase 2
	Type-1 to Type-2 Semi-functional Key in Phase 2
	Type-2 to Type-3 Semi-functional Key in Phase 2
	Final Game

	New Instantiations
	New Implication: ABE-MSP Implies ABE-BP
	References
	Security Definition for ABE
	Recap the Security Definitions for Pair Encodings
	Recap the Composite-order Construction of A14
	Proof for Correctness for Our Scheme
	Variants of Security for Our Construction
	An Encoding Example: KP-ABE for Regular Languages
	A Concrete Instantiation: Unbounded KP-ABE-MSP
	Assumptions

