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Abstract. We present a new methodology for proving security of en-
cryption systems using what we call Dual System Encryption. Our tech-
niques result in fully secure Identity-Based Encryption (IBE) and
Hierarchical Identity-Based Encryption (HIBE) systems under the simple
and established decisional Bilinear Diffie-Hellman and decisional Linear
assumptions. Our IBE system has ciphertexts, private keys, and pub-
lic parameters each consisting of a constant number of group elements.
These results are the first HIBE system and the first IBE system with
short parameters under simple assumptions.

In a Dual System Encryption system both ciphertexts and private keys
can take on one of two indistinguishable forms. A private key or cipher-
text will be normal if they are generated respectively from the system’s
key generation or encryption algorithm. These keys and ciphertexts will
behave as one expects in an IBE system. In addition, we define semi-
functional keys and ciphertexts. A semi-functional private key will be
able to decrypt all normally generated ciphertexts; however, decryption
will fail if one attempts to decrypt a semi-functional ciphertext with a
semi-functional private key. Analogously, semi-functional ciphertexts will
be decryptable only by normal private keys.

Dual System Encryption opens up a new way to prove security of IBE
and related encryption systems. We define a sequence of games where
we change first the challenge ciphertext and then the private keys one
by one to be semi-functional. We finally end up in a game where the
challenge ciphertext and all private keys are semi-functional at which
point proving security is straightforward.

1 Introduction

The concept of Identity-Based Encryption (IBE) was first proposed by Shamir in
1984. In an IBE system a user can encrypt to another party simply by knowing
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their identity as well as a set of global parameters — eliminating the need to
distribute a separate public key for each user in the system.

Although the concept received much interest, it wasn’t until several years
later that Boneh and Franklin [5] introduced the first Identity-Based Encryption
scheme using groups with efficiently computable bilinear maps. The original
Boneh and Franklin result used the random oracle heuristic to prove security
under the Bilinear Diffie-Hellman assumption and a significant open question
was whether the random oracle model could be removed.

Following the breakthrough result of Boneh and Franklin, there has been
significant progress in realizing IBE in the standard model. First, Canetti, Halevi,
and Katz [11] proved security without the random oracle heuristic, but under
a weaker “Selective-ID” model where the attacker must declare the identity I∗

that he will attack before even seeing the system’s public parameters. Boneh
and Boyen [2] then provided an efficient selectively secure scheme. Subsequently,
Boneh and Boyen [3] and Waters [26] gave fully secure solutions in the standard
model. The Waters scheme provided an efficient and provably fully secure system
in the standard model under the decisional Bilinear Diffie-Hellman assumption;
however, one drawback was that the public parameters consisted of O(λ) group
elements for security parameter λ.

Partitioning Reductions. One very important common thread in all of the above
systems is that they use what we call a partitioning strategy to prove security. In
these systems, one proves security to an underlying complexity assumption by
creating a reduction algorithm B that partitions the identity space into two parts
— 1) identities for which it can create private keys; and 2) identities that it can
use in the challenge ciphertext phase. This partitioning is embedded either in the
public parameters at setup time in the standard model systems [11, 2, 3, 26] or
programed into the random oracle [5]. In the selective model, systems the identity
space can be “tightly” partitioned so that all the keys except I∗ fall into the
key creating partition, while reductions in fully secure systems will partition the
space according to the number of private key queries q(λ) that an attacker makes
and the reduction “hopes” that the queries and challenge ciphertext identity fall
favorably in the partition.

While the partitioning techniques have proved useful, they have two funda-
mental limitations. First, the most efficient fully secure and standard model IBE
system due to Waters has large public parameters that might be impractical for
some applications. The second and more compelling concern is that partitioning
techniques appear to be inadequate for proving security of encryption systems
that offer more functionality such as Hierarchical IBE [20, 18] and Attribute-
Based Encryption [22] even if we apply the random oracle model. For instance,
all known Hierarchical Identity-Based Encryption (HIBE) systems (in this vein)
have an exponential degradation of security with the depth, n, of the hierarchy
— rendering the security reductions meaningless for large n. The fundamental
problem is that more advanced systems such as HIBE have more structure on
the identity space that make (any known) partitioning strategies unusable. For
example, in an HIBE system a partitioning reduction algorithm is constrained
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such that if it can create a private key for a particular identity vector then it
must be able to for all of its descendants.

Moving beyond the partitioning paradigm. To overcome these obstacles, Gen-
try [15] proposed an IBE system with short public parameters that has a secu-
rity reduction which moves beyond the partitioning paradigm. In his reduction
the simulator is able to create a key for all identities and also use any identity
as the challenge identity I∗. At first glance, there is an apparent paradox in this
strategy since it seems that the reduction algorithm could simply answer the
challenge ciphertext itself by creating a private key for I∗. To deal with this ob-
stacle, Gentry’s reduction algorithm can only generate one private key for each
identity. For an attacker that makes at most q queries, the algorithm embeds
a degree q polynomial F (·) and can create a private key with a tag component
F (I) for identity I. The challenge ciphertext for I∗ is structured such that it de-
crypts to the challenge message for the single key for I∗ that the reduction could
generate even though the message might be information theoretically hidden to
an attacker with no knowledge of F (I∗).

Although the Gentry IBE achieved security in the standard model, it did so
at the cost of using a significantly more complicated assumption called the deci-
sional q-ABHDE assumption. In this assumption a generator g raised to several
powers of an exponent a are given out (e.g., g, ga, ga2

, . . . , gaq

). In addition to the
added complexity, the actual assumption used in the proof is dependent on the
number of private key queries the adversary makes. This seems to be inherently
tied to the need to embed the degree q polynomial f into a constant number
group elements.

Interestingly, Gentry and Halevi [16] recently showed how to extend these
concepts to get a fully secure HIBE system, although this system actually used
an even more involved assumption. In addition, the “jump” from Gentry’s IBE
to the HIBE system added a significant amount of complexity to the system and
proof of security.

Our Contribution. We present a new methodology for proving security of en-
cryption systems using what we call Dual System Encryption. Our techniques
result in fully secure IBE and HIBE systems under the simple and established
decisional Bilinear Diffie-Hellman and decisional Linear assumptions. Our IBE
system has ciphertexts, private keys, and public parameters each consisting of a
constant number of group elements. Our results give the first HIBE system and
the first IBE system with short parameters under simple assumptions.

Our conceptual approach departs significantly from both the partitioning
paradigm and Gentry’s approach. In a Dual System Encryption system, both
ciphertexts and private keys can take on one of two indistinguishable forms.
A private key or ciphertext will be normal if they are generated respectively
from the system’s key generation or encryption algorithm. These keys and ci-
phertexts will behave as one expects in an IBE system. In addition, we define
semi-functional keys and ciphertexts. A semi-functional private key will be able
to decrypt all normally generated ciphertexts; however, decryption will fail if one
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attempts to decrypt a semi-functional ciphertext with a semi-functional private
key. Analogously, semi-functional ciphertexts will be decryptable only by normal
private keys.

Dual System Encryption opens up a new way to prove security of IBE and
related encryption systems. Intuitively, to prove security we define a sequence of
games arguing that an attacker cannot distinguish one game from the next. The
first game will be the real security game in which the challenge ciphertext and
all private keys are distributed normally. Next, we switch our normal challenge
ciphertext with a semi- functional one. We argue that no adversary can detect
this (under our complexity assumption) since all private keys given can decrypt
the challenge ciphertext regardless of whether it is normal or semi-functional. In
the next series of games, we change the private keys one game at a time from
normal to semi-functional, again arguing indistinguishability. In both the above
proof arguments, our reduction algorithm B will be able to provide private keys
for any identity and use any identity as a challenge identity — eliminating the
need to worry about an abort condition. Finally, we end up in a game where
the challenge ciphertext and all private keys are semi-functional. At this point
proving security is straightforward since the reduction algorithm does not need to
present any normal keys to the attacker and all semi-functional keys are useless
for decrypting a semi-functional ciphertext.

The reader may have noticed one issue in our indistinguishability argument
over private keys. If the reduction algorithm B wants to know whether a secret
key SKI for I was semi-functional, couldn’t it simply create a semi-functional
ciphertext for I and test this itself (without using the attacker)? To deal with this
issue our reduction algorithm embeds a degree one polynomial F (I) = A · I +B
(over Zp). In each hybrid game the attacker can only create a semi-functional
ciphertext for ciphertext identity Ic with a “tag” value of tagc = F (Ic) and
can only create a private key of unknown type for identity Ik with tag value of
tagk = F (Ik). Our system use the “two equation revocation” technique of Sahai
and Waters [23] to enforce that the decryption algorithm will only work if the
key tag and ciphertext tag are not equal. If the reduction algorithm attempted
to test the key in question, decryption would fail unconditionally; and thus
independently of whether it was a semi-functional key.1.

In reflection, one reason our dual system achieves security from a simple as-
sumption is that by changing the keys in small hybrid steps one by one we only
need to worry about the relationship between the challenge ciphertext and one
private key at a time. Our function F only needs to be able to embed a degree
one polynomial; in contrast the Gentry reduction “takes on” all private keys at
the same time and needs a complex assumption to embed a degree q polynomial.

HIBE and Other Encryption Systems. Building on our IBE system, we also
provide a fully secure HIBE system. One remarkable feature is that the added
complexity of the solution is rather small. Furthermore, our system combines

1 Our core system has a negligible correctness error; however, we outline how to build
a perfectly correct system in Section 4.
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the structure of the Boneh-Boyen [2] selective-ID HIBE. This hints that we can
leverage our methodology to adapt ideas from other selectively secure encryption
systems (or those with complex assumptions) into fully secure ones under simple
assumptions and also that prior selectively secure systems may have “lead us
down the right path”.

We believe that our Dual System methodology in the future will become a
catalyst for proving adaptive security under simple assumptions for several other
encryption systems including: Anonymous IBE and searchable encryption [4, 1,
10, 9, 24], Broadcast Encryption [14, 7], and Attribute-Based Encryption [22].
To add credence to this belief we give an adaptively secure broadcast system in
the full version of our paper. Our broadcast system has ciphertext overhead of
a constant number of group elements and is the first such system with a proof
under a simple assumption.

Other Related Work. We note that there are remarkable IBE systems of Cocks [13]
and Boneh, Gentry, and Hamburg [6] based on the quadratic residuosity assump-
tion and Gentry, Peikert, and Vaikuntanathan [17] based on lattice assumptions.
These systems are all proven secure under the random oracle heuristic.

Katz and Wang [21] gave an IBE system with a tight security reduction in the
random oracle model using a two-key approach. One might view this as falling
outside the partition approach, although their techniques do not appear to give
a path to full security for HIBE and related problems.

2 Background

We present a few facts related to groups with efficiently computable bilin-
ear maps and then define the decisional Billinear-Diffie-Hellman and decisional
Linear Assumptions. For space considerations, the definitions of security for
Identity-Based Encryption and Hierarchical Identity-Based Encryption are in-
cluded in our full version.

2.1 Bilinear Maps

Let G and GT be two multiplicative cyclic groups of prime order p. Let g be a
generator of G and e be a bilinear map, e : G × G → GT . The bilinear map e
has the following properties:

1. Bilinearity: for all u, v ∈ G and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, g) �= 1.

We say that G is a bilinear group if the group operation in G and the bilinear
map e : G × G → GT are both efficiently computable. Notice that the map e is
symmetric since e(ga, gb) = e(g, g)ab = e(gb, ga).
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2.2 Decisional Bilinear Diffie-Hellman Assumption

We define the decisional Bilinear Diffie-Hellman problem as follows. Choose a
group G of prime order p, where the size of p is a function of the security param-
eters. Next, choose a random generator g and random exponents c1, c2, c3 ∈ Zp.
If an adversary is given

y = g, gc1, gc2 , gc3 ,

it must remain hard to distinguish e(g, g)c1c2c3 ∈ GT from a random element
in GT .

An algorithm B that outputs z ∈ {0, 1} has advantage ε in solving decisional
BDH problem in G if

∣
∣
∣
∣
Pr

[B(

y, T = e(g, g)c1c2c3
)

= 0
] − Pr

[B(

y, T = R
)

= 0
]
∣
∣
∣
∣
≥ ε .

Definition 1. We say that the decisional BDH assumption holds if no polytime
algorithm has a non-negligible advantage in solving the decisional BDH problem.

2.3 Decisional Linear Assumption

We define the decisional Linear problem as follows. Choose a group G of prime
order p, where the size of p is a function of the security paramters. Next, choose
random generators g, f, ν and random exponents c1, c2 ∈ Zp. If an adversary is
given

y = g, f, ν, gc1, f c2,

it must remain hard to distinguish νc1+c2 ∈ G from a random element in G.
An algorithm B that outputs z ∈ {0, 1} has advantage ε in solving decisional

Linear problem in G if
∣
∣
∣
∣
Pr

[B(

y, T = νc1+c2
)

= 0
] − Pr

[B(

y, T = R
)

= 0
]
∣
∣
∣
∣
≥ ε .

Definition 2. We say that the decisional Linear assumption holds if no poly-
time algorithm has a non-negligible advantage in solving the decisional Linear
problem.

3 Identity-Based Encryption

We now present our core Identity-Based Encryption construction along with
our proof of its security under the the decisional Linear and decisional BDH
assumptions.

We first give the four algorithms of our IBE system. Next, we describe two
additional algorithms for the creation of semi-functional ciphertexts and private
keys respectively. The purpose of these algorithms is to define the structure of
semi-functional ciphertexts and keys for our proof of security. We emphasize that
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these algorithms are not used in the actual system; indeed it is crucial for our
security argument that no attacker could create ciphertexts or keys of this form.

Finally, we give the proof of our system against an attacker that makes at
most q private key queries2. We organize our proof as a sequence of games. In the
sequence, we will gradually change the actual security game; first by introducing
a semi-functional challenge ciphertext and then introduce semi-functional private
keys one by one. We show that under the decisional Linear Assumption no
adversary can distinguish between each successive game. Finally, we end up in a
game where the challenge ciphertext and the all the private keys given out are
semi-functional. At this point we can prove security under decisional-BDH.

3.1 Construction

Setup(λ). The authority first chooses a group G of prime order p. Next, it chooses
generators g, v, v1, v2, w, u, h ∈ G and exponents a1, a2, b, α ∈ Zp. Let τ1 =
vva1

1 , τ2 = vva2
2 . It publishes the public parameters PK as the group description

G along with:

gb, ga1 , ga2 , gb·a1 , gb·a2 , τ1, τ2, τ
b
1 , τb

2 , w, u, h, e(g, g)α·a1·b.

The master secret key MSK consists of g, gα, gα·a1, v, v1, v2 as well as the pub-
lic parameters. The identity space for the described scheme will be Zp, although
we note in practice one can apply a collision resistant function to identities of
arbitrary lengths.

Encrypt(PK, I, M). The encryption algorithm chooses random s1, s2, t, and
tagc ∈ Zp. Let s = s1 + s2. It then blinds M ∈ GT as C0 = M · (e(g, g)αa1·b)s2

and creates:

C1 = (gb)s1+s2 , C2 = (gb·a1)s1 , C3 = (ga1)s1 , C4 = (gb·a2)s2 , C5 = (ga2)s2 ,

C6 = τs1
1 τs2

2 , C7 = (τb
1 )s1(τb

2 )s2w−t, E1 = (uIwtagch)t, E2 = gt.

The ciphertext is CT = C0, . . . , C7, E1, E2, tagc.

KeyGen(MSK, I). The authority chooses random r1, r2, z1, z2, tagk ∈ Zp. Let
r = r1 + r2.

Then it creates:

D1 = gα·a1vr. D2 = g−αvr
1g

z1 . D3 = (gb)−z1 . D4 = vr
2g

z2 , D5 = (gb)−z2

D6 = gr2·b, D7 = gr1 , K = (uIwtagkh)r1 .

The secret key is SK = D1, . . . , D7, K, tagk.

2 The maximum number of queries an attacker makes is, of course, a polynomial
function q(·) of the security parameter; however, for notational simplicity we simply
will speak of it making q private key queries.
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Decrypt(CT, KI). The decryption algorithm will be able to decrypt a ciphertext
encrypted for I with private key SKI if the ciphertext tagc is not equal to the
private key tagk. Since both tags are chosen randomly, decryption will succeed
with all but a negligible 1/p probability.

We break the decryption algorithm into a set of calculations. First, it com-
putes:

A1 = e(C1, D1) · e(C2, D2) · e(C3, D3) · e(C4, D4) · e(C5, D5)
= e(g, g)α·a1·b·s2 · e(v, g)b(s1+s2)re(v1, g)a1bs1re(v2, g)a2bs2r.

Recall that r = r1 + r2. Next, it computes

A2 = e(C6, D6) · e(C7, D7)
= e(v, g)b(s1+s2)re(v1, g)a1bs1re(v2, g)a2bs2r · e(g, w)−r1t.

Taking, A3 = A1/A2 = e(g, g)α·a1·b·s2 ·e(g, w)r1·t leaves us with one more can-
cellation to get the message blinding factor. If tagc �= tagk then the decryption
algorithm can compute

A4 =
(

e(E1, D7)/e(E2, K)
)1/(tagc−tagk) = e(g, w)r1·t.

Finally, we can recover the message by computing

C0/(A3/A4) = M.

Altogether, decryption requires nine applications of the pairing algorithm.

3.2 Semi-Functional Algorithms

We now describe the semi-functional ciphertext and key generation algorithms.
We will define them as algorithms that are executed with knowledge of the
secret exponents; however, in a real system they will not be used. Their main
purpose is to define the structures that will be used in our proof. We define both
semi-functional ciphertexts and keys in terms of a transformation on a normal
ciphertext or key.

Semi-Functional Ciphertexts. The algorithm first runs the encryption algorithm
to generate a normal ciphertext CT for identity I and message M with C′

1, . . . , C
′
7

,E′
1, E

′
2. Then it chooses a random x ∈ Zp. It sets C1 = C′

1, C2 = C′
2, C3 =

C′
3, E1 = E′

1,E2 = E′
2, leaving these elements and the tagc unchanged. It then

sets

C4 = C′
4 · gba2x, C5 = C′

5 · ga2x, C6 = C′
6 · va2x

2 , C7 = C′
7 · va2bx

2 .

The semi-functional ciphertext is C1, . . . , C7, E1, E2, tagc.
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Semi-Functional Secret Keys. The algorithm first runs the encryption algorithm
to generate a normal private key SKI for identity I with D′

1, . . . , D
′
7, K. Then

it chooses a random γ ∈ Zp. It sets D3 = D′
3, D5 = D′

5, D6 = D′
6, D7 = D′

7, K =
K ′, leaving these elements and the tagk unchanged. It then sets

D1 = D′
1g

−a1a2γ , D2 = D′
2 · ga2γ , D4 = D′

4 · ga1γ

The semi-functional secret key is SK = D1, . . . , D7, K, tagk

Intuition. We make a few remarks about the nature of the semi-functional keys
and the structure of the system. First, we note that if one attempted to decrypt a
semi-functional ciphertext with a normal key, then the decryption would succeed.
This follows from the fact that

e(gba2x, D4)e(ga2x, D5)/
(

e(va2x
2 , D6)e(va2bx

2 , D7)
)

= 1

when D4, D5, D6, D7 come from a normally generated ciphertext. One can view
this as the extra “random” space occupied by the semi-functional part of the
ciphertext as being orthogonal to the space defined by a normal key. For similar
reasons, the semi-functional components of a private key will not impede de-
cryption when applied on a normal ciphertext. However, when a semi-functional
key is used to decrypt a semi-functional ciphertext decryption will fail (or end
up giving a random message) because an extra e(g, g)−a1a2xγb will be multiplied
by the intended message.

We note that in order to generate semi-functional ciphertexts and private keys
(according to the defined procedures) one respectively needs va2b

2 and ga1a2 —
neither of which is available from the public parameters.

3.3 Proof of Security

We organize our proof as a sequence of games. The first game defined will be
the real identity-based encryption game and the last one will be one in which
the adversary has no advantage unconditionally. We will show that each game
is indistinguishable from the next (under a complexity assumption). As stated
before, the crux of our strategy is to move to a security game where both the
challenge ciphertext and private keys are semi-functional. At this point any keys
the challenger gives out are not useful in decrypting the ciphertext. We first
define the games as:

GameReal: The actual IBE security game defined in our full version.
Gamei: The real security game with the following two exceptions: 1) The chal-

lenge ciphertext will be a semi-functional ciphertext on the challenge identity
I∗. 2) The first i private key queries will return semi-functional private keys.
The rest of the keys will be normal.
For an adversary that makes at most q queries we will be interested in
Game0, . . . ,Gameq. We note that in Game0 the challenge ciphertext is
semi-functional, but all keys are normal and in Gameq all private keys are
semi-functional.
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GameFinal: The real security game with the following exceptions: 1) The chal-
lenge ciphertext is a semi-functional encryption on a random group element
of GT . 2) All of the private key queries result in semi-functional keys.

We now prove a set of Lemmas that argue about the distinguishablity of these
games. For each proof we need to build a reduction simulator that both answers
private key queries and creates a challenge ciphertext. We let GameReal AdvA
denote an algorithm A’s advantage in the real game.

Lemma 1. Suppose that there exists an algorithm A where GameReal AdvA −
Game0 AdvA = ε. Then we can build an algorithm B that has advantage ε in
the decision Linear game.

Proof. Our algorithm B begins by taking in an instance (G, g, f, ν, gc1, f c2, T ) of
the decision Linear problem. We now describe how it executes the Setup, Key
Phase, and Challenge phases of the IBE game with A.

Setup. The algorithm chooses random exponents b, α, yv, yv1 , yv2 ∈ Zp and ran-
dom group elements u, w, h ∈ G. It then sets g = g, ga1 = f, ga2 = ν; intuitively
a1, a2 are the exponents that the reduction cannot know itself.

Finally, it sets the variables as:

gb, gb·a1 = f b gb·a2 = νb, v = gyv , v1 = gyv1 , v2 = gyv2 .

Using this it can calculate τ1, τ2, τ
b
1 , τb

2 and e(g, g)αa1b = e(g, f)α·b in order to
publish the public parameters PK. We also note that using α it can compute
the master secret key for itself.

Key Generation Phases 1,2. Since B has the actual master secret key MSK it
simply runs the key generation to generate the keys in both phases. Note that
the MSK it has only allows for the creation of normal keys.

Challenge ciphertext. B receives two messages M0, M1 and challenge identity I∗.
It then flips a coin β. We describe the creation of the challenge ciphertext in two
steps. First, it creates a normal ciphertext using the real algorithm by calling
Encrypt(PK, I∗, Mβ), which outputs a ciphertext CT = C′

0, . . . , C
′
7, E

′
1, E

′
2, tagc.

Let s′1, s
′
2, t

′ be the random exponents used in creating the ciphertext.
Then we modify components of our ciphertext as follows. It sets

C0 = C′
0 ·

(

e(gc1, f) · e(g, f c2)
)b·α

, C1 = C′
1 · (gc1)b, C2 = C′

2 · (f c2)−b,

C3 = C′
3 · (f c2), C4 = C′

4 · (T )b, C5 = C′
5 · T,

C6 = C′
6 · (gc1)yv · (f c2)−yv1 · T yv2 , C7 = C′

7 ·
(

(gc1)yv · (f c2)−yv1 · T yv2
)b

,

E1 = E′
1, E2 = E′

2.

The returned ciphertext is CT = C0, . . . , C7, E1, E2, tagc.
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If T is a tuple, then this assignment implicitly sets s1 = −c2 + s′1, s2 =
s′2 + c1 + c2, and s = s1 + s2 = c1 + s′1 + s′2. If T = νc1+c2 it will have the same
distribution as a standard ciphertext; otherwise, it will be distributed identically
to a semi-functional ciphertext. B receives a bit β′ and outputs 0 iff β = β′.

Lemma 2. Suppose that there exists an algorithm A that makes at most q
queries and Gamek−1 AdvA − Gamek AdvA = ε for some k where 1 ≤ k ≤ q.
Then we can build an algorithm B that has advantage ε in the decision Linear
game.

Proof. Our algorithm B begins by taking in an instance (G, g, f, ν, gc1, f c2, T ) of
the decision Linear problem. We now describe how it executes the Setup, Key
Phase, and Challenge phases of the IBE game with A.

Setup. Algorithm B first chooses random exponents α, a1, a2, yv1 , yv2 , yw, yu, yh.
It then defines

g = g, gb = f, gb·a1 = fa1 , gb·a2 = fa2 , v = ν−a1·a2 ,

v1 = νa2 · gyv1 , v2 = νa1 · gyv2 , e(g, g)α·a1b = e(f, g)α·a1 .

Now it can create

τ1 =vva1
1 =gyv1a1 τ2 =vva2

1 =gyv2a2 τb
1 = vva1

1 = fyv1a1 τb
2 = vva2

1 = fyv2a2 .

Finally, B chooses random A, B ∈ Zp. It then sets

w = fgyw , u = f−Agyu , h = f−Bgyh .

This will define all the public parameters of the system. Note that by virtue of
knowing α, the algorithm B will know the regular master secret key.

We highlight the importance of the function F (I) = A · I + B. One important
feature is that for tagc = F (I)wehave (uIwtagch) = f tagc−A·I−BgI·yu+yh+tagc·yw

= gI·yu+yh+tagc·yw . In this case B will know the discrete log base g of the function.
We also note that A, B are initially information theoretically hidden from the ad-
versary. Since it is a pairwise independent function, if the adversary is given F (I)
for some identity, the, all values in Zp are equally likely for F (I ′) for some I �= I ′.

Key Gen Phases 1,2. We break the Key Generation into three cases. Key Gen-
eration is done the same regardless of whether we are in phase 1 or 2.

Consider the i-th query made by A.

Case 1: i > k
When i is greater than k our algorithm B will generate a normal key for the
requested identity I. Since it has the master secret key MSK it can run that
algorithm.
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Case 2: i < k
When i is less than k our algorithm B will generate a semi-functional key for
the requested identity I. It first creates a normal key using MSK. Then it makes
it semi-functional using the procedure from above in Subsection 3.2. It can run
this procedure since it knows ga1a2 .

Case 3: i = k
The algorithm first runs the key generation algorithm to generate a normal
private key SKI for identity I with D′

1, . . . , D
′
7, K using tagk

∗ = F (I). Let
r′1, r

′
2, z

′
1, z

′
2 be the random exponents used.

It then sets

D1 =D′
1 ·T−a1·a2 , D2 =D′

2 ·T a2(gc1)yv1 , D3 =D′
3 ·(f c2)yv1 , D4 =D′

4 ·T a1(gc1)yv2 ,

D5 = D′
5 ·(f c2)yv2 , D6 = D′

6 ·f c2 , D7 = D′
7 ·(gc1), K = K ′ ·(gc1)I·yu+yh+tagk·yw .

The semi-functional secret key is SK = D1, . . . , D7, K, tagk. We emphasize
that the fact that tagk = F (I) allowed us to created the component K. In
addition, we note that we implicitly set z1 = z′1 − yv1c2 and z2 = z′2 − yv2c2 in
order to be able to create D2 and D4.

If T is a Linear tuple of the form T = νc1+c2 , then the k-th query results in
a normal key under randomness r1 = r′1 + c1 and r2 = r′2 + c2. Otherwise, if T
is a random group element, then we can write T = νc1+c2gγ for random γ ∈ Zp.
This forms a semi-functional key where γ is the added randomness to make it
semi-functional.

Challenge Ciphertext. Algorithm B is given a challenge identity I∗ and messages
M0, M1. Then it flips a coin β.

In this phase B needs to be able to generate a semi-functional challenge ci-
phertext. One problem is that B does not have the group element vb

2 so it cannot
directly create such a ciphertext. However, in the case where tagc

∗ = F (I∗) it
will have a different method of doing so.

B first runs the normal encryption algorithm to generate a normal ciphertext
CT for identity I∗ and message M∗; during this run it uses tagc

∗ = F (I∗).
It then gets a standard ciphertext C′

1, . . . , C
′
7, E

′
1, E

′
2 under random exponents

s′1, s′2, t′.
To make it semi-functional it chooses a random x ∈ Zp. It first sets C1 =

C′
1, C2 = C′

2, C3 = C′
3 leaving these elements and the tagc

∗ unchanged. It then
sets

C4 =C′
4·fa2·x, C5 =C′

5·ga2·x, C6 = C′
6·va2x

2 , C7 = C′
7·fyv2 ·x·a2ν−a1·x·yw·a2 ,

E1 = E′
1 · (νI·yu+yh+tagc·yw)a1a2x E2 = E′

2 · νa1a2·x.

The semi-functional ciphertext is C1, . . . , C7, E1, E2, tagc.
Intuitively, the algorithm implicitly sets gt = gt′ + νa1a2x. This allows for the

cancellation of the term va1a2bx
2 by w−t in constructing C7. Normally, this would
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be problematic for the generation of E1; however since tagc
∗ = F (I∗) B is able

to create this term.
If T is a tuple, then we are in Gamek−1, otherwise we are in Gamek. We

highlight that the adversary cannot detect any special relationship between tagc
∗

and tagk
∗ since F (I) = A · I + B is a pairwise independent function and A, B

are hidden from its view.
B receives a bit β′ and outputs 0 if β = β′.

Lemma 3. Suppose that there exists an algorithm A that makes at most q
queries and Gameq AdvA − GameFinal AdvA = ε. Then we can build an al-
gorithm B that has advantage ε in the decision BDH game.

Proof. We give the proof of security in the full version of our paper.

Theorem 1. If the decisional Linear and decisional BDH assumptions hold then
no poly-time algorithm can break our IBE system.

Proof. Any attacker’s advantage in GameFinal AdvA in the final game must be
0 since it completely hides the bit β. By the sequence of games we established
and Lemmas 1,2,3 an attacker’s advantage in the real game GameReal AdvA
must be negligibly close to 0.

4 Discussion

In this section we discuss a few potential future variations and implications of
our IBE system.

Achieving Perfect Correctness. Although having a negligible correctness error
seems acceptable in practice, we would like to point out that we can close this
gap by simply giving any user two private keys for an identity I each time they
make a key request. The authority will simply run the original key generation
algorithm twice with the restriction that the two key tags, tagkA, tagkB are not
equal. When attempting to decrypt a ciphertext at least one of the keys will
work. The proof of security will work over each key piece — that is, each key
request in the modified system will generate two distinct key requests (for the
same identity) in the proof. We could also use a complementary two ciphertext
approach and one private key approach.

Another potential solution is to run an efficient selectively secure IBE scheme
[2] “in parallel”. When a user encrypts a message M to I with tagc in our original
system, he will also encrypt M to the “identity” tagc in the second selective
system. A user with a key with tagk will get a private key for “identity” tagk

in the second system. On decryption with 1 − 1/p probability the decryption
algorithm will use the first ciphertext. However, if the tags align it can use the
second ciphertext.
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Signature Scheme. Naor3 observed that any (fully secure) IBE system gives rise
to a signature scheme secure under the same assumptions. The signature system
from our IBE scheme has the favorable properties that the public parameters
and signatures are a constant number of group elements, it is provable in the
standard model, and it is stateless. While some previous signature schemes de-
rived from IBE systems (e.g. BLS [8] or Waters [26] signatures) depended on
the computational variants of the assumptions, our proof technique seems to
require the decisional Linear Assumption. One interesting approach would be
to see if one could create shorter signatures than those generated in the generic
conversion by using the IBE systems private keys.

Chosen Ciphertext Security. We note that using the transformation of Canetti,
Halevi, and Katz [12] we can achieve chosen ciphertext security from the HIBE
scheme of Section 5.

Security under the XDH Assumption. One factor in the size and complexity
of our IBE system is that it relies upon the Decisional Linear Assumption to
hide the form of both keys and ciphertexts. One potential alternative is to use
asymmetric bilinear groups, where we have e : G1×G2 → GT . Using these group
we might assume DDH is hard both within G1 and within G2; this has also been
called the XDH assumption. Using this assumption we might hope to shave off
three group elements from both ciphertexts and private keys.

Alternative to Incompleteness. An critical part to arguing security is that an
attacker could not distinguish normal keys from semi-functional ones. Our ap-
proach was to use a hybrid argument where for the key in question its tagk =
F (I). If the simulator attempted to create the key in question for I∗ and test it
on the challenge ciphertext this would not work since tagk = tagc. Intuitively, the
simulator could not test whether the key was semi-functional since decryption
would fail regardless of whether the key was semi-functional or not. One might
consider taking the opposite approach where decryption would always succeed
if tagc = tagk even if both the key and ciphertext are semi-functional. We note
this approach would also require a slightly different proof strategy for proving
Lemma 3.

5 Hierarchical Identity-Based Encryption

In this section we present our Hierarchical Identity-Based Encryption system.
Our construction will build on top of our IBE scheme of Section 3. The reader
will notice that the added complexity of moving from our IBE to HIBE system
is remarkably simple. The same core concepts of our construction and proof
methodology apply. One might view the HIBE system as “combining” the struc-
ture of the Boneh-Boyen [2] HIBE system with our techniques to get full security.

3 The observation was documented by Boneh and Franklin [5].
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One challenging aspect in the proof of security is that a private key of depth
d will have associated tags: tagk1, . . . , tagkd. If we run our delegation algorithm
to create a new key of depth d+1, the new key will inherit the previous key’s tag
values and there is no method for “re-randomizing” them. Most prior security
definitions of HIBE [20, 18] define a game where all keys come from an authority
and don’t model any distinctions on how a key was created (i.e. trace paths of
delegation). The prior definitions are only valid if keys from the delegation algo-
rithm are distributed identically to a fresh call to the key generation algorithm 4;
however, due to the “tag lineage” described this is clearly not the case. To argue
security we use a “complete” model of HIBE security introduced by Shi and
Waters [25] that we define in our full version. Due to space considerations our
proof of security is also in the full version.

5.1 Construction

In our system we will consider a hierarchical identity as an identity vector I =
I1 : · · · : Id for some depth d, where d ≤ n for some maximum depth n. We
assume that the identities are encoded such that for two identities I, I ′ if Ii = I ′

i

then Ij = I ′
j for all j ≤ i. We can enforce this by encoding all previous levels. For

example, an identity of level one “com” and level two “yahoo” can be encoded
as “com”:“com.yahoo”, where ‘.’ is a special symbol. In practice, one will use a
collision resistant hash function to hash identities of arbitrary length to Zp.

Setup(λ, n). The setup algorithm takes as input a security parameter and the
maximum depth n. The authority first chooses a group G of prime order p. Next,
it chooses generators g, v, v1, v2, w, u1, . . . , un, h1, . . . , hn ∈ G and exponents
a1, a2, b, α ∈ Zp. Let τ1 = vva1

1 , τ2 = vva2
2 . It publishes the public parameters

PK as the group description G along with:

gb, ga1 , ga2 , gb·a1 , gb·a2 , τ1, τ2, τ
b
1 , τb

2 , v, v1, v2, w, u1, . . . , un,

h1, . . . , hn, e(g, g)α·a1·b.

The master secret key MSK consists of g, gα, gα·a1 as well as the public pa-
rameters. The identity space for the described scheme will be Zp.

Encrypt(PK, I = I1 : · · · : Id, M). The encryption algorithm will encrypt
to an identity vector of depth d ≤ n. It chooses random s1, s2, t ∈ Zp and
tagc1, . . . , tagcd ∈ Zp. Let s = s1 + s2. It then blinds M ∈ GT as C0 =
M · (e(g, g)αa1·b)s2 and creates:

C1 = (gb)s1+s2 , C2 = (gb·a1)s1 , C3 = (ga1)s1 , C4 = (gb·a2)s2 , C5 = (ga2)s2 ,

C6 = τs1
1 τs2

2 , C7 = (τb
1 )s1(τb

2 )s2w−t,

E1 = (uI1
1 wtagc1h1)t, . . . , Ed = (uId

d wtagcdhd)t, Ẽ = gt.

The ciphertext is CT = C0, . . . , C7, E1, , . . . , Ed, Ẽ, tagc1, . . . , tagkd.
4 This is actually the case for most prior systems, so the proofs of security do hold up.
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KeyGen(MSK, I = I1 : · · · : Id). The authority chooses random μ1, . . . , μd

, r2,z1,z2, tagk1, . . . , tagkd ∈ Zp. First let r1 =
∑

1≤i≤d μi and then let r = r1+r2.
Then it creates:

D1 =gα·a1vr, D2 =g−αvr
1g

z1 , D3 = (gb)−z1 , D4 = vr
2g

z2 , D5 = (gb)−z2 ,

D6 = gr2·b, D7 = gr1 ,

(K1,1 =(uI1
1 wtagk1h1)μ1 , K1,2 =gμ1 .), . . . , (Kd,1 = (uId

d wtagkdhd)μd , Kd,2 = gμd)

The secret key is SK=D1, . . . , D7, (K1,1, K1,2), . . . , (Kd,1, Kd,2)tagk1, . . . , tagkd.

Delegate(PK, SKI=I1:···:Id
, Id+1). The algorithm will take a secret key SK =

D′
1, . . . , D

′
7 , (K ′

1,1, K
′
1,2) , . . . , (K ′

d,1, K
′
d,2), tagk1, . . . , tagkd for I and extend it

to depth d + 1 by creating a key for I : Id+1.
The algorithm will “re-randomize” the existing key in the process of appending

on a new key component; however, the existing tagk values will remain. It chooses
random μ1, . . . , μd+1, r2, z1, z2,tagkd+1 ∈ Zp. First let r1 =

∑

1≤i≤d+1 μi and
then let r = r1 + r2. Then it creates:

D1 = D′
1 · vr, D2 = D′

2 · vr
1g

z1 , D3 = D′
3 · (gb)−z1 , D4 = D′

4 · vr
2g

z2 ,

D5 = D′
5 · (gb)−z2 , D6 = D′

6 · gr2·b, D7 = D′
7 · gr1 ,

K1,1 = K ′
1,1 · (uI1

1 wtagk1h1)μ1 , . . . , Kd,1 = K ′
d,1 · (uId

d wtagkdhd)μd ,

Kd+1,1 = (uId+1
d+1 wtagkd+1hd+1)μd+1 ,

K1,2 = K ′
1,2 · gμ1 , . . . , Kd,2 = K ′

d,2 · gμd , Kd+1,2 = gμd+1 .

The secret key is SK = D1, . . . , D7,(K1,1, K1,2),. . .,(Kd+1,1, Kd+1,2),tagk1, . . .
,tagkd+1.

Decrypt(CT, KI). The decryption algorithm will be able to decrypt a ciphertext
encrypted for I ′ of depth d′ with private key SKI of depth d if 1) ∀i ≤ d : I ′

i = Ii

for all i ≤ d and 2) ∀i ≤ d : tagci �= tagki. We break the decryption algorithm
into a set of calculations: First, it computes:

A1 = e(C1, D1) · e(C2, D2) · e(C3, D3) · e(C4, D4) · e(C5, D5)

A2 = e(C6, D6) · e(C7, D7) A3 = A1/A2 = e(g, g)α·a1·b·s2 · e(g, w)r1·t.

If ∀i ≤ d we have tagci �= tagki then the decryption algorithm can compute

A4 =
(

e(E1, K1,2)/e(Ẽ, K1,1)
)1/(tagc1−tagk1) · · ·

(

e(Ed, Kd,2)/e(Ẽ, Kd,1)
)1/(tagcd−tagkd) = e(g, w)t

∑

1≤d μi .

Finally, we can recover the message by computing C0/(A3/A4) = M .
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