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Abstract: MDM2 and MDM4 are cancer drug targets validated in multiple models for p53-based
cancer therapies. The RING domains of MDM2 and non-p53-binder MDM2 splice isoforms form
RING domain heterodimer polyubiquitin E3 ligases with MDM4, which regulate p53 stability in vivo
and promote tumorigenesis independent of p53. Despite the importance of the MDM2 RING domain
in p53 regulation and cancer development, small molecule inhibitors targeting the E3 ligase activity
of MDM2-MDM4 are poorly explored. Here, we describe the synthesis and characterization of
quinolinol derivatives for the identification of analogs that are capable of targeting the MDM2-MDM4
heterodimer E3 ligase and inducing apoptosis in cells. The structure-activity-relationship (SAR) study
identified structural moieties critical for the inhibitory effects toward MDM2-MDM4 E3 ligase, the
targeted degradation of MDM4 and FTH1 in cells, and anti-proliferation activity. Lead optimization
led to the development of compound MMRi71 with improved activity. In addition to accumulating
p53 proteins in wt-p53 bearing cancer cells as expected of any MDM2 inhibitors, MMRi71 effectively
kills p53-null leukemia cells, an activity that conventional MDM2-p53 disrupting inhibitors lack.
This study provides a prototype structure for developing MDM4/FTH1 dual-targeting inhibitors as
potential cancer therapeutics.
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1. Introduction

The tumor suppressor p53 (TP53) is a well-established drug target whose activation
has been shown to induce tumor regression in several models [1–3]. In normal and cancer
cells, p53 activity is inhibited mainly by MDM2 (murine double minute 2) and MDM4,
RING domain-containing proteins [4,5]. MDM4 (also known as MDMX) is the only MDM2
homolog that is expressed at levels higher than MDM2 due to its increased expression
and protein stability in most cancer types. The N-terminus of both MDM2 and MDM4
binds to the p53 transactivation domain and inhibits the p53-dependent transcriptional
transactivation of the downstream genes, while the C-terminal RING domain of MDM2 can
bind to E2 ubiquitin-conjugating enzymes for p53 ubiquitination and to the RING domain
of MDM4 to form heterodimers [5,6]. The development of small molecule inhibitors of the
MDM2-p53 interaction has been a research focus for decades since the discovery of the
first-in-class small molecule Nutlin3a [7], and several Nultlin3-like MDM2 inhibitors are in
clinical trials [8]. These inhibitors are intended to bind to the p53-binding pocket of MDM2,
which prevents MDM2 from binding to p53, thus releasing p53 from MDM2-mediated
inhibition and eliciting tumor suppression in a p53-dependent manner. Accordingly, p53
mutation confers intrinsic and acquired resistance to MDM2-p53 disruptor inhibitors [9].
Further, this type of MDM2 inhibitor is challenged with resistance conferred by MDM4
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overexpression in cancer cells since MDM4 can bind to and inhibit the p53 transactivation
domain in the absence of MDM2 [10–12].

The significance of the RING-RING interaction of MDM2-MDM4 in regulating the
p53 degradation and p53 function in vivo has been established by in vitro biochemical
studies [13–15] and mouse genetic modeling [4,16–18]. Crystallographic studies on the
RING heterodimers of MDM2-MDM4 found that the RING heterodimer forms a new E2—
interacting interface in the MDM2 RING domain [19]. We have shown how MDM2 alone
only mediates the multi-monoubiquitination of p53, and MDM2-MDM4 heterodimers
mediate p53 polyubiquitination for degradation. Both the mono and polyubiquitination
activity of MDM2 depend on the same E2—binding interface, and all three components
of the MDM2/MDM4/p53 tertiary complex are substrates for polyubiquitination by the
RING heterodimer E3 ligase [15]. Further, in a mouse model expressing an intact RING
domain but an E3-dead MDM2L466A mutant, we have shown that the E3 ligase activity of
MDM2-MDM4 RING heterodimers is not only essential for p53 regulation in vivo but is
also required for cell cycle progression independent of p53 [20]. We explored the RING-
RING interaction of MDM2-MDM4 as a new targeting interface for drug development
and identified several primary hits with a potent inhibitory effect on the MDM2-MDM4-
mediated ubiquitination of p53 while lacking inhibitory activity toward the NEDD4-1 E3
ligase and the control enzyme. The hits were designated as MMRi for the MDM2-MDM4
RING inhibitors [21]. In a secondary screen, we identified MMRi62 to be a modifier
of the MDM2-MDM4 E3 ligase activity, inducing MDM4 degradation in cells and p53-
independent apoptosis in leukemic cells [22], as well as ferroptosis in pancreatic cancers
associated with the degradation of FTH1 (Ferritin Heavy Chain 1) [23]. Here, we reported
structural activity relationship studies (SAR) leading to the identification of MMRi71 as
an inhibitor of the E3 ligase activity of MDM2-MDM4, an inducer of MDM4 and FTH1
dual protein degradation and p53-independent apoptosis in leukemia cells. Interestingly,
the anti-cancer potency of MMRi67, the first lead in the development of the structurally
optimized prodrug MMRi71, was not readily apparent until benzoic acid was introduced
as an ethyl benzoate ester. Conversely, the inhibition of E3 ligase activity is only observed
when MMRi67 is in its benzoic acid form.

2. Results and Discussion
2.1. Structural Requirement for the Anti-Proliferative Activity of MMRi62 and
MMRi67 Derivatives

Primary hits of MMRi6 are quinolinols identified in an enzyme-based HTS for inhi-
bition toward the MDM2-MDM4 RING-domain mediated E3 ligase reaction [21]. With
available MMRi6 analogs from the Hit2Lead library, we performed secondary screens and
identified two analogs with unique properties: MMRi62 binds to preformed MDM2-MDM4
RING heterodimers for preferential MDM4 ubiquitination and acts as an MDM4-degrader
in cells with potent apoptosis-inducing activity; while MMRi67 was the most potent
MDM2-MDM4 E3 ligase inhibitor, it lacked MDM4 degradation and pro-apoptotic activity
in cells [22]. To our knowledge, MMRi67 is the only small molecule with demonstrated
inhibitory activity against the MDM2-MDM4 E3 ligase. The capability of p53-independent
apoptosis induction by MMRi62 promises the potential application of the quinolinol
derivatives as novel cancer therapies for killing p53-mutant drug-resistant cancer cells.
This potential motivated us to perform SAR studies on MMRi62 and MMRi67 for lead
optimization (Figure 1) with the hope of identifying a compound that possessed both
MDM2-MDM4 E3 ligase inhibition and cancer cell growth inhibition activities.
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Figure 1. Structures of MMRi62 and MMRi67 compound series.

Anti-proliferation assays were performed for the compounds shown in Figure 1 us-
ing the wtp53-bearing NALM6 (p53-dependent) and shP53NALM6 (p53-independent)
leukemia cell lines. The chemical structures of MMRi62 and MMRi67 differed in a few
positions. MMRi62 had two chlorines on the phenyl ring and none on the quinolinol ring,
while MMRi67 had chlorine on the quinolinol ring and a carboxylic acid on the phenyl
ring (Figure 1). To test the impact of a quinolinol chloro-substituent on the MMRi62 series,
we synthesized 62-1, which was added to this substituent. This analog showed a somewhat
weaker cell growth inhibitory effect in the NALM6 and shP53NALM6 cells than MMRi62
(Table 1). Analog 62-1 lost a comparatively greater extent of activity in the p53-independent
cell line. To test the importance of the quinolinol chlorine on the MMRi67 series, we syn-
thesized 67-1, which lacked this substituent. This compound was found to have a similar
(weak) leukemic cell growth inhibition to MMRi67. We concluded from these data that the
quinolinol chlorine substituent modestly reduced compound cytotoxicity.

We next probed the modification of the carboxylic acid on the phenyl ring of MMRi67.
Analog 67-2, which replaced the carboxylic acid in MMRi67 with a similar electron-
withdrawing nitro group, and its corresponding 3-nitro analog, 67-3, both showed over
20 times better IC50 against NALM6 and shP53NALM6 cell growth than MMRi67. We
hypothesized that if the carboxylic acid in MMRi67 existed substantially in its charged
carboxylate form, its cell permeability would be low, thereby reducing its ability to inhibit
cancer cell growth. Indeed, the ethyl ester analog 67-4 proved to be a much more potent
cell growth inhibitor, with over a 50-fold lower IC50 than the MMRi67 of 0.22 µM and
0.21 µM in the NALM6 and shP53NALM6 cells, respectively. Analog 67-5, an ethyl ester
derivative that lacks the chloro functionality on the quinolinol, showed a modestly better
antiproliferative activity than 67-4 (Table 1).
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Table 1. MMRi62 and MMRi67 compound series IC50.

Entry NALM6 IC50 (µM) shP53NALM6 IC50 (µM)

MMRi62 0.12 ± 0.001 0.14 ± 0.001
62-1 0.29 ± 0.01 0.46 ± 0.04
62-2 32.4 ± 2.25 35.5 ± 2.62
62-3 8.58 ± 0.83 24.2 ± 4.38
62-4 4.84 ± 0.48 4.68 ± 0.52
62-5 2.62 ± 0.36 1.51 ± 0.12
62-6 1.89 ± 0.53 1.08 ± 0.08
62-7 0.35 ± 0.01 0.26 ± 0.02
62-8 28.6 ± 2.87 28.5 ± 3.82
62-9 0.30 ± 0.02 0.36 ± 0.03

62-10
62-11

MMRi67
67-1
67-2
67-3
67-4
67-5
67-6
67-7
67-8
67-9

MMRi71

12.0 ± 1.79
2.10 ± 0.22

12.80 ± 1.57
8.93 ± 0.41
0.40 ± 0.01
0.38 ± 0.03
0.53 ± 0.03
0.38 ± 0.03

>100
18.2 ± 6.54
2.13 ± 0.18
0.27 ± 0.02
0.23 ± 0.01

27.1 ± 5.58
2.66 ± 0.17

10.89 ± 1.56
10.1 ± 0.51
0.47 ± 0.01
0.48 ± 0.02
0.57 ± 0.04
0.45 ± 0.01

>100
31.7 ± 3.52
2.36 ± 0.15

0.37 ± 0.003
0.29 ± 0.02

The treatment was tri replicated and repeated two times. IC50 ± SD were performed using non-linear regression
analysis.

The critical role of the quinolinol’s hydroxyl moiety in both MMRi62 and MMRi67
was determined. Analogs lacking the hydroxyl, 62-2, 67-6, and 67-7, all showed poor
activity in the cell proliferation assays compared to their lead compounds. Analog 67-
6 completely lost its antiproliferative activity in the leukemia cells with IC50 > 100 µM.
Analog 67-7, with the ethyl ester group substitution but lacking the hydroxyl, showed an
80-150-fold weaker cell proliferation inhibitory activity compared to 67-5.

The importance of the respective protons on the phenol and amine was additionally
tested in the 62 series. Methylated phenol 62-3 was 70-fold and 172-fold less active than
MMRi62 in the NALM6 and shP53NALM6 cells, respectively. Methylated amine 62-4,
cyclic aminal 62-5, and an esterase-labile ester analog 62-6 also showed a weaker anti-
leukemic cell growth activity compared to the parent MMRi62. Interestingly, the amide
analog 62-7, lacking the amine proton, showed a modestly better antiproliferative activity.
The amide bond was not expected to be very metabolically labile; instead, the intact 62-7
was expected to be responsible for the antiproliferative activity. These data may support
some covalent reactivity with biochemical targets (the N-acetyl-2-aminopyridine could be
better solvolysis leaving group than 2-aminopyridine,). An MMRi62 analog containing
the phenol but lacking quinoline heterocycle 62-8 also showed increased IC50s against cell
growth.

The water solubility of these MMRi compounds, estimated by a calculated logP, in-
dicated that they were slightly lipophilic (MMRi62 LogP = 5.1, analog 67-4, LogP = 4.8).
We hypothesized that their water solubility, which would aid in formulation, could be
enhanced by the addition of heteroatoms to the 2-aminopyridine ring. Therefore, a pyrim-
idine domain was substituted in MMRi62 to generate 62-9 and in MMRi67 to generate
analogs 67-8 and 67-9. The predicted LogP of the pyrimidine analog 62-9 was 4.4 and for
the pyrimidino analog 67-9 was 4.0. The analysis of these more water-soluble analogs in
the antiproliferation of leukemic cells indicated that their activities were only modestly
diminished, suggesting that the pyrimidine modification was tolerated. Analog 62-10,
with additional nitrogen in the 2,3-dichlobenzene ring, was 100 times less active than
MMRi62, indicating that not all changes were tolerated on this aryl ring. In addition, it
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should be noted that 62-11 lacked substitution on the benzene ring and was ten times
less potent than MMRi62. Analogs 62-10 and 62-11 were likely less active than MMRi62
for different reasons since their impact on the electron density of their respective arene is
opposite: 62-10’s pyridine should be more electron-poor than MMRi62’s dichlorobenzene,
while 62-11’s unsubstituted phenyl ring should be more electron-rich than MMRi62’s
dichlorobenzene. Such electron-density changes can impact the solvolysis potential of their
respective benzylic amines.

Although the phenol is critical to the antiproliferative activity of the MMRi compounds,
it can be seen as a potential source of molecular aggregation, either via a hydrogen bonding
network or transient metal chelation [24]. Thus, to mitigate these potential unwanted reac-
tivities [25], an esterase-labile propionate moiety was introduced to the lead pyrimidinyl
analog 67-9 to generate the prodrug MMRi71 (Scheme 1). We noted that MMRi71 could
also be converted to 67-8 if both of its esters are hydrolyzed by cellular esterases. MMRi71,
an IC50 of 0.23 µM in the NALM6 cells and 0.29 µM in the shP53NALM6 cells, showed
improved p53-independent antiproliferative activity in leukemia cells and was selected as
a potential candidate for further investigation.
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Scheme 1. Synthesis of MMRi71. A representative synthesis is shown for MMRi71, the lead
compound our study concludes with. For synthesis details of MMRi71, MMRi62, and MMRi67
series see the M and M and Supporting Information.

2.2. MMRi67 Is a Bona Fide Inhibitor of MDM2-MDM4 E3 Ligase

False positive hits in biochemical or cell-based screens with so-called PAINS (pan assay
interference compounds) are of concern and hinder lead optimization [26,27]. We reasoned
that MMRi62 and MMRi67 are unlikely PAINS since we used NEDD4-1 as a non-specific
control E3 ligase in validation assays [21], which was further validated in this study by the
selectivity of MMRi67 for Mdm2B versus NEDD4-1 (Figure 2A). Moreover, MMRi62 and
MMRi67 have a distinct effect on MDM2-MDM4 E3 ligase activity, MDM4 degradation,
and apoptosis induction despite their subtle structural difference [22]. The identification of
PAINS from a real hit requires more than simply running a filter screen [28,29]. However,
some chemical behaviors of PAINS can be tested, including protein reactivity, colloidal
aggregation, and metal chelation [26,27]. To rule out colloidal aggregator activity, we
performed an E3 ligase assay in the presence or absence of 0.01% of the non-ionic detergent,
Trixton-X-100. Our results indicated that the MMRi67-mediated inhibition of MDM2-
MDM4 E3 ligase was not affected in the presence of the detergent (Figure 2B).
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Figure 2. MMRi67 is a small molecule inhibitor of MDM2-MDM4 E3 ligase activity. (A) MMRi67
inhibits the ubiquitination of MDM2B (left) and MDM4 (middle) by MDM2B-MDM4 E3 complex but
not NEDD4-1 (right) in the in vitro E3 ligase assays. WB analysis of MDM4, MDM2B, and NEDD4-1
using specific antibodies after in vitro ubiquitination reaction in the presence of solvents or indicated
concentrations of MMRi67. The smearing bands of ubiquitinated MDM4 (Ub-MDM4), ubiquitinated
MDM2B (Ub-MDM2B), and ubiquitinated NEDD4-1 (Ub-NEDD4-1) are indicated. (B) The E3 ligase
inhibitory activity of MMRi67 is not abolished by the presence of 0.01% Triton X-100. Same procedure
as in (A) except the ubiquitination reaction was performed in the presence of 0.01% Triton X-100.
Only MDM2B data are shown. (C) The E3 ligase inhibitory activity of MMRi67 is not abolished
by the presence of increasing concentrations of Zn to neutralize the potential chelating capability
of MMRi67. The same procedure as in (A) except for the presence of indicated concentrations of
Zn. Only MDM2B data are shown. (D) Preincubation of MDM2B proteins with MMRi67 does not
abolish MDM2B E3 ligase activity. Same procedure as in (A) except MDM2B was preincubated with
either 10 µM MMRi62 or MMRi67 for the indicated min before 10-times dilution and was used for
ubiquitination reaction; the preincubation did not affect the ubiquitination of MDM2B or MDM4 by
the MDM2B-MDM4 E3 complex.

The structure of MMRi67 predicts the metal chelation potential [24]. Since Zn is
required for maintaining the RING domain structure, it is possible that MMRi67 chelates
away Zn and collapses the RING structure, leading to the dissociation of the RING-RING
interaction between MDM2-MDM4 and the loss of the E3 ligase activity. We hypothesized
that an excessive amount of Zn would neutralize the chelating activity of MMRi67 and
cancel its inhibition of MDM2-MDM4 E3 ligase activity. We performed an E3 ligase assay
in the presence of Zn, and our results indicated that the presence of Zn did not affect the
ability of MMRi67 to inhibit MDM2-MDM4 E3 ligase activity.

The preincubation of MDM4 proteins with either MMRi62 or MMRi67 for a period
from 20 to 320 min at 10 µM did not affect the E3 ligase activity of the MDM2-MDM4 E3
complex (data not shown). However, the preincubation of MDM2B proteins with MMRi62
but not MMRi67 inhibited MDM2-MDM4 E3 ligase activity (Figure 2D), suggesting that
covalent binding contributes to some extent to MMRi62-mediated effects on the MDM2B-
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MDM4 E3 ligase reaction (e.g., via the alkylation of a quinone methide formed from
2-aminopyridine loss via the solvolysis of MMRi62. See Supporting Information for further
discussion). This covalent binding potential of MMRi62 is similar to that of a macrophage
migration inhibitory factor (MIF) inhibitor [30], which shares structural similarities with
MMRi62. However, the covalent binding is not involved in the inhibitory mechanism of
MMRi67 toward the MDM2-MDM4 E3 ligase in vitro. Taken together, our results suggest
that MMRi67 bears a specific inhibitory activity toward the MDM2-MDM4 E3 ligase.

2.3. Structural Requirement of MMRi67 Derivatives for Inhibitory Activity toward
MDM2-MDM4 E3 Ligase

To identify the pharmacophore of MMRi67, it involved the inhibition of the MDM2-
MDM4 E3 ligase, and some of its analogs (Figure 1) were evaluated in MDM2-MDM4
E3 ligase assays. Analogs 67-1, lacking the quinolinol chlorine substituent, and 67-6,
lacking the phenol, both lost the strong E3 ligase inhibitory activity of MMRi67. However,
67-1 showed a modest inhibition at 10 µM (Figure 3A). It is possible that the phenol of
MMRi67 is involved in a critical molecular interaction that can be impacted by the phenolic
pKa (which would be lowered by the quinolinol chlorine substituent). To check whether
the benzoic acid in MMRi67 plays a critical role in its E3 ligase activity for MDM2 and
MDM4, 62-1 with a dichlorophenyl substitution and 67-4 (Figure 1) containing the ethyl
benzoate were evaluated with E3 ligase assays. The results showed weak inhibition of
MDM2 and MDM4 ubiquitination at concentrations of 10 µM for both the 62-1 and 67-4
derivatives, indicating that the E3 ligase inhibitory action of MMRi67 strongly depends
on the carboxylic acid substituent (Figure 3B). It is possible that the carboxylic acid is also
involved in a critical molecular interaction with its biochemical target.
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Figure 3. Assessment of the inhibitory effect of MMRi67 derivatives toward MDM2B-MDM4 E3
ligase in the in vitro E3 ligase assays. (A) Comparison of MMRi67 with hydroxyl to hydrogen
substituted (67-6) and chloro to hydrogen substituted (67-1) analogs in inhibition of the MDM4 and
MDM2B ubiquitination in vitro. WB analysis of MDM4 or MDM2B using specific antibodies after
in vitro ubiquitination reaction in the presence of a solvent or indicated compound at the indicated
concentrations. The smearing bands of ubiquitinated MDM4 (Ub-MDM4) and MDM2B (Ub-MDM2B)
are indicated. (B) Same analysis as in (A) except for the comparison of MMRi67 with carboxylic acid
substituted analogs 62-1 and 67-4 in the inhibition of MDM4 and MDM2B ubiquitination in vitro. (C)
Same analysis as in (A) except for the comparison of MMRi67 with pyridine substituted analogs 67-8
and pyridine, hydroxyl, and carboxylic acid substituted analogs 67-9 and MMRi71 in the inhibition
of MDM4 and MDM2B ubiquitination in vitro.
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A pyridine-to-pyrimidine change in MMRi67 to generate analog 67-8 resulted in the
loss of the MDM4 E3 ligase inhibitory effect; however, partial inhibition of the MDM2B
E3 ligase at high concentrations was observed. Analog 67-9, containing a pyrimidine and
ethyl benzoate, lost both MDM4 and MDM2B E3 ligase effects. MMRi71, containing a
pyrimidine and ethyl benzoate as well as a phenolic propionate ester, lost activity to inhibit
MDM4 ubiquitination but retained an inhibitory effect on MDM2B ubiquitination in a
dose-dependent manner (Figure 3C). Overall, the hydroxyl, chloro, carboxylic acid, and
pyridine functionalities of MMRi67 all impacted its MDM4-MDM2B E3 ligase inhibition.

2.4. Induced MDM4 and FTH1 Degradation Is Associated with the Pro-Apoptotic Activity of
MMRi67 Derivatives

The p53-independent pro-apoptotic activity of the quinolinol compound MMRi62
was associated with an induced MDM4 and FTH1 degradation in cells [22,23]. To de-
termine whether the increased antiproliferative activity of the potent MMRi67 analogs
was also associated with p53-independent apoptosis and MDM2/MDM4 and FTH1 pro-
tein degradation, we conducted a Western blot analysis for the activated Caspase 3 and
caspase-mediated PARP cleavage. Consistent with its improved anti-proliferation activity,
analog 67-5, lacking the quinolinol chloro of MMRi67, and bearing the ethyl benzoate,
induced the downregulation of MDM4/MDM2, caspase 3 activation, and PARP cleavage
in a concentration-dependent manner (Figure 4A,B). Moreover, the pro-apoptotic effect of
67-5 was independent of p53 since the apoptotic response to 67-5 between the NALM6 and
shp53NALM6 cells showed no difference. Similar results were obtained with 67-4 (data not
shown). These results demonstrate that the improved cell-killing ability of 67 derivatives
uses a similar mechanism of action as MMRi62, i.e., MDM4 degradation is a necessary
molecular event associated with apoptosis induction [22]. Although the 67-5 effectively
induced downregulation of FTH1, as far as the apoptosis of leukemia cells is concerned,
it appeared that MDM2/MDM4 degradation, but not FTH1 degradation, was associated
with apoptosis induction, since MMRi67 also induced FTH1 degradation at concentrations
≥2.5 µM yet did not elicit any apoptotic response (Figure 4B). Nevertheless, we could not
exclude the role of FTH1 degradation in predisposing cells to apoptosis since FTH1 is a
ferroptosis target whose depletion increases reactive oxygen species (ROS) and induces
ferroptosis in other cell types [23,31].

Analog MMRi71 showed strong anti-leukemic activity in the cell proliferation in-
hibitory assay along with the dose-dependent inhibition of MDM2B E3 ligase activity.
We hypothesized that the structural modifications in MMRi71 (compared to MMRi67)
would increase water solubility (pyridine changed to pyrimidine) and decrease molecular
self-aggregation (via hydrogen bonding or through metals involving the phenol, changed
to the propionate ester) while maintaining the cell permeability potential of the candidate
(by applying the ethyl benzoate in place of the benzoic acid) and its optimal effect on
cellular targets (given that esters can be hydrolyzed in cells). To test this, anti-proliferation
assays showed that MMRi71 had the same potency in inhibiting the growth of NALM6
and shP53NALM6 cells with an IC50s of 0.2 µM (Figure 5A), indicating p53-independent
cytotoxicity. Interestingly, the phenol ester MMRi71 was substantially more cytotoxic than
phenol ester 62-6 even though their parent phenols 67-9 and MMRi62 have similar cell
growth IC50′s. The greater aqueous solubility of the pyrimidine lends to MMRi71 may
contribute to a more rapid ester hydrolysis and to its active form, phenol 67-9.



Molecules 2022, 27, 7665 9 of 16

Molecules 2022, 27, x FOR PEER REVIEW 8 of 15 
 

 

2.4. Induced MDM4 and FTH1 Degradation Is Associated with the Pro-Apoptotic Activity of 

MMRi67 Derivatives 

The p53-independent pro-apoptotic activity of the quinolinol compound MMRi62 

was associated with an induced MDM4 and FTH1 degradation in cells [22,23]. To deter-

mine whether the increased antiproliferative activity of the potent MMRi67 analogs was 

also associated with p53-independent apoptosis and MDM2/MDM4 and FTH1 protein 

degradation, we conducted a Western blot analysis for the activated Caspase 3 and 

caspase-mediated PARP cleavage. Consistent with its improved anti-proliferation activ-

ity, analog 67-5, lacking the quinolinol chloro of MMRi67, and bearing the ethyl benzoate, 

induced the downregulation of MDM4/MDM2, caspase 3 activation, and PARP cleavage 

in a concentration-dependent manner (Figure 4A,B). Moreover, the pro-apoptotic effect of 

67-5 was independent of p53 since the apoptotic response to 67-5 between the NALM6 

and shp53NALM6 cells showed no difference. Similar results were obtained with 67-4 

(data not shown). These results demonstrate that the improved cell-killing ability of 67 

derivatives uses a similar mechanism of action as MMRi62, i.e., MDM4 degradation is a 

necessary molecular event associated with apoptosis induction [22]. Although the 67-5 

effectively induced downregulation of FTH1, as far as the apoptosis of leukemia cells is 

concerned, it appeared that MDM2/MDM4 degradation, but not FTH1 degradation, was 

associated with apoptosis induction, since MMRi67 also induced FTH1 degradation at 

concentrations ≥2.5 μM yet did not elicit any apoptotic response (Figure 4B). Nevertheless, 

we could not exclude the role of FTH1 degradation in predisposing cells to apoptosis since 

FTH1 is a ferroptosis target whose depletion increases reactive oxygen species (ROS) and 

induces ferroptosis in other cell types [23,31]. 

(A) 

-1 0 1 2

0

50

100

NALM6

log [M]

C
e
ll

 V
ia

b
il

it
y

 P
e
r
c
e
n

ta
g

e MMRi67

67-4

67-5

 

-1 0 1 2

0

50

100

shP53NALM6

log [M]

C
e
ll

 V
ia

b
il

it
y

 P
e
r
c
e
n

ta
g

e MMRi67

67-4

67-5

 
(B) 

  

Figure 4. Anti-proliferation activity of 67-5 is associated with the downregulation of MDM2, MDM4, 

and FTH1 protein expression and caspase 3 activations. (A) Improved anti-proliferation activity of 

67-4 and 67-5 compared with MMRi67. Antiproliferation assays in NALM6 and shp53NALM6 cells. 

The IC50 in NAML6 cells was 12.8 μM for MMRi67 and 0.38 μM for 67-5. The IC50 in shP53NAML6 

cells was 10.9 μM for MMRi67 and 0.45 μM for 67-5. (B) Improved antiproliferation activity of 67-5 

Figure 4. Anti-proliferation activity of 67-5 is associated with the downregulation of MDM2, MDM4,
and FTH1 protein expression and caspase 3 activations. (A) Improved anti-proliferation activity of
67-4 and 67-5 compared with MMRi67. Antiproliferation assays in NALM6 and shp53NALM6 cells.
The IC50 in NAML6 cells was 12.8 µM for MMRi67 and 0.38 µM for 67-5. The IC50 in shP53NAML6
cells was 10.9 µM for MMRi67 and 0.45 µM for 67-5. (B) Improved antiproliferation activity of 67-5 is
associated with the downregulation of MDM2, MDM4, and FTH1, as well as caspase activation and
PARP cleavage. WB analysis of indicated proteins and apoptotic effect induced by 67-5 compared to
MMRi67 in both NALM6 and shP53NALM6 cells.

MMRi71-treated NALM6 and shP53NALM6 cells were used in the Western blot
analysis for changes in the MDM4 and FTH1 proteins. The MMRi71 treatment induced
effective downregulation of MDM4 and FTH1 in both NALM6 and shP53NALM6 cells,
and the induced apoptosis shown by the PARP cleavage indicated a p53-independent
mechanism (Figure 5B). To test whether MMRi71-induced apoptosis was not a result of
colloidal aggregation, we performed cellular experiments in the presence of Triton X-10.
Since the presence of 0.01%, Trixton-X-100 appeared to induce apoptotic cell death in the
NALM6 cells, and the tolerable concentrations of Triton X-100 were between 0.001 and
0.0025% (data not shown). We performed cellular experiments in the presence of 0.0025%
Triton X-100, and the results showed that MMRi71 induced a similar extent of apoptotic
responses indicated by the cleaved PARP in the presence of the detergent (Figure 5C),
suggesting that MMRi71-induced apoptosis was not a result of colloidal aggregation.
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Figure 5. Characterization of MMRi71 in cells. (A) The anti-proliferation activity of MMRi71 is
p53-independent with IC50 of 0.23 µM in NALM6 and 0.29 µM in shp53NALM6 cells. (B) WB analysis
shows how MMRi71 induces MDM4/MDM2 and FTH1 protein degradation and apoptotic effect
in NALM6 and shP53NALM6 cells. (C) The pro-apoptotic effect of MMRi71 is not affected by the
presence of 0.0025% Triton X-100 in NALM-6 cells, as shown by the WB analysis of apoptotic PARP
cleavage. (D) MMRi71-induced MDM4 degradation is MDM2 dependent. WB analysis showing
Mdm2 knockdown in Manca-mlp-Mdm2 cells and abolished MMRi71-induced MDM4 degradation.
(E) MMRi71-induced FTH1 degradation is lysosome dependent. WB showed the rescue of MMRi71-
induced FTH1 degradation by 50 nM lysosome inhibitor Bafilomycin A1 (Bfl) in NALM6 cells. (F)
(G) DNA damage induction by MMRi71 and 67-7. Mouse p53/Mdm2 double knockout MEFs (2KO)
(F) or human 293T cells (G) were treated with indicated concentrations of MMRi71 and 67-7 for 24 h
at the indicated concentrations, followed by WB analysis for gammaH2AX and Tubulin with specific
antibodies. Tubulin served as a protein loading control.

We have shown that MMRi62-induced MDM4 degradation was MDM2-dependent [22]
and that MMRi62-induced FTH1 degradation was dependent on a lysosomal pathway [23].
To determine if the MMRi71-induced MDM4 degradation occurred via the same mecha-
nism as MMRi62, we performed a WB analysis of MDM4 degradation by MMRi71 using
a pair of MDM2-high MANCA lymphoma cells in which MDM2 was either stably knocked
down by lentivirus-mediated microRNA (miRNA) or left untouched with a control miRNA.
Our results indicated that MDM4 expression levels were elevated in MDM2-knockdown
MANCA-mlp-MDM2 cells and that treatment with MMRi71 did not induce MDM4 degra-
dation. The elevated MDM4 expression in the MDM2-knockdown cells was consistent
with the report that MDM2 promoted the ubiquitination and degradation of MDM4 [32].
The abolishment of MDM4 degradation by MMRi71 in the absence of MDM2 in MANCA-
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mlp-MDM2 cells suggests that MMRi71-induced MDM4 degradation is MDM2-dependent
(Figure 5D). To determine whether the MMRi71-induced FTH1 degradation was lysosome
dependent, we performed a rescue experiment with the lysosome inhibitor Bafilomycin A1
(BAF1). Our results showed that BAF1 fully rescued FTH1 in the NALM6 cells (Figure 5E).
These results suggested that MMRi71 induced MDM2-dependent proteasomal degrada-
tion of MDM4 and the lysosome-dependent degradation of FTH1, the same mechanisms
of action used by MMRi62 [22], in addition to its potential inhibitory activity toward
MDM2-MDM4 E3 ligase activity.

The substantially improved activity of MMRi71 over MMRi67 may be due to its in-
creased covalent binding capability or its improved cellular permeability, or both. MMRi62,
which has structural similarities to MMRi71, did show some covalent binding effects to
MDM2 (Figure 2D). Based on the studies with a quinolinol analog MIF inhibitor, covalent
binders in this molecular class can be specific inhibitors [30]. Whether MMRi71 is a covalent
inhibitor targeting cellular MDM2-MDM4 for degradation needs further characterization
in future studies.

Quinolinol compounds were reported to cause DNA damage via chelating metal
ions and the generation of ROS [33]. To test whether MMRi71 caused DNA damage,
we used MMRi71 and the inactive compound 67-7, which lacked the metal chelating
capability to treat the p53/Mdm2-double knockout (2KO) MEFs and human 293T cell lines,
followed by detecting γ-H2AX which is an indicator of DNA damage [34]. The use of
2KO MEFs and 293T cells will exclude the apoptosis-associated γ-H2AX signal due to
apoptotic DNA fragmentation since these two cell types are resistant to apoptosis. Our
results showed that MMRi71 but not the inactive 67-7 increased γ-H2AX slightly at 5 µM
and significantly at 10 µM in both the cell lines (Figure 5F,G). These results suggest that
MMRi71 at concentrations of ≥5 µM has the potential to induce DNA damage, possibly
by MMRi71-induced ROS. These results are consistent with our observation that MMRi62
induces ROS generation in pancreatic cells [23]. ROS induced by MMRi62-like compounds
likely involves both metal chelation and FTH1 degradation, which releases ferrous iron,
although metal chelation is not involved in its action on the E3 ligase activity (Figure 2C).
Since MMRi71 induced apoptosis at≥5 µM at 24 h in the NALM6 cells (Figure 5C) and 67-7
did not generate ROS is an inactive compound, these results conclude that ROS generation
is required for the antitumor activity of MMRi71. However, we speculate that ROS-induced
DNA damage itself is not the major mechanism contributing to cell killing by MMRi62-like
compounds since they have a high cancer-selective toxicity. We have shown that MMRi62
inhibits leukemic NALM6 (B-cell precursor leukemia) cell growth at a 125-fold potency
compared to its inhibition of normal peripheral blood mononuclear cells (PBMCs) [22].
This 125-fold difference in MMRi62 sensitivity is not likely the result of DNA damage since
DNA damage by radiation kills normal human lymphocytes, and B cell lymphoma cells
have a comparable capability with the D0 of 1.95Gy for lymphocytes and of 1.38Gy for
Burkitt’s lymphoma cell [35], where D0 is the radiation dose required to reduce the fraction
of the surviving cells to 37% of its previous value. Accordingly, similar to MMRi62, the
mechanisms of action for MMRi71 should involve multiple drug targets that predispose
cancer cells to its selective toxicity, which warrants identification in future studies.

3. Materials and Methods
3.1. Representative Chemistry Methods
3.1.1. Ethyl 4-((5-Chloro-8-hydroxyquinolin-7-yl)(pyrimidin ylamino)methyl)benzoate
(67-9) Synthesis

To a 250 mL dry round-bottomed flask equipped with a reflux condenser, 2-aminopyrimidine
(4.3 g, 45.3 mmol, 1.2 equiv), ethyl 4-formylbenzoate (6.8 g, 38.2 mmol, 1.0 equiv), and 5-
chloro-8-hydroxyquinoline (8.2 g, 45.8 mmol, 1.2 equiv) were dissolved in CH3CN (100 mL).
Following the addition of formic acid (1.4 mL, 37.1 mmol 1.0 equiv), the solution was
stirred at reflux for 16 h. The solution was allowed to cool to rt, was concentrated, and
resuspended in acetone. The heterogenous mixture was filtered, and the precipitate was
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washed with cold acetone and hexanes to give 67-9 as a white solid (5.2 g, 31% yield).
mp = 150–151 ◦C; 1H NMR (300 MHz, CDCl3) δ 8.80 (d, J = 4.2 Hz, 1H), 8.49 (d, J = 8.6 Hz,
1H), 8.30 (d, J = 4.8 Hz, 2H), 7.99 (d, J = 7.9 Hz, 2H), 7.55 (dd, J = 19.6, 10.2 Hz, 4H), 6.79 (d,
J = 8.2 Hz, 1H), 6.58 (t, J = 4.9 Hz, 1H), 6.39 (d, J = 8.3 Hz, 1H), 4.34 (q, J = 7.2 Hz, 2H), 1.36
(t, J = 7.2 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 166.3, 161.5, 158.2, 148.7, 148.5, 146.6, 138.7,
133.3, 129.8, 129.4, 127.0, 126.8, 125.6, 123.6, 122.5, 120.7, 111.5, 60.9, 54.8, 14.3; IR neat film:
3293, 2978, 1716, 1583, 1496 cm−1; HRMS (ESI) calculated for [C23H20ClN4O3] 390.1004,
found 390.1011.

3.1.2. Ethyl 4-((8-(Propionyloxy)quinolin-7-yl)(pyrimidin-2-ylamino)methyl)benzoate
(MMRi71) Synthesis

In a 5 mL dry round-bottomed flask, analog 67-9 (5.0 g, 11.5 mmol, 1.0 equiv) was
dissolved in dry CH2Cl2 (100 mL) under an argon atmosphere. Potassium carbonate (3.18 g,
23.0 mmol, 2.0 equiv) was added, and the solution was cooled to 0 ◦C. Propionoyl chloride
(1.0 mL, 11.5 mmol, 1.0 equiv) was then added to the solution. The mixture was allowed to
warm to rt and stirred for 1 h. The reaction mixture was then filtered through Celite and
washed with CH2Cl2. The supernatant was then treated with 1 g of DMT-functionalized
silica gel and stirred for 15 min. The mixture was filtered and concentrated. The resulting
crude solid was resuspended in Et2O and washed with deionized water. The organic layer
was dried over Na2SO4 and then concentrated. The crude mixture was purified by flash
column chromatography (silica gel, 50% ether:hexanes) to yield MMRi71 as a greenish-
white solid (2.53 g, 48% yield). mp = 178–179 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.91 (d,
J = 2.8 Hz, 1H), 8.50 (d, J = 6.8 Hz, 1H), 8.23 (d, J = 4.8 Hz, 2H), 8.00 (d, J = 8.4 Hz, 2H), 7.54
(s, 1H), 7.50 (dd, J = 8.5, 4.2 Hz, 1H), 7.43 (d, J = 8.1 Hz, 2H), 6.83 (d, J = 7.8 Hz, 1H), 6.57 (t,
J = 4.8 Hz, 1H), 6.10 (d, J = 7.8 Hz, 1H), 4.36 (q, J = 7.1 Hz, 2H), 2.68 (q, J = 7.6 Hz, 2H), 1.37
(t, J = 7.1 Hz, 3H), 1.20 (t, J = 7.5 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 172.2, 166.2, 161.3,
158.1, 151.2, 145.5, 144.6, 142.0, 134.3, 133.0, 130.0, 129.8, 129.0, 127.1, 126.7, 125.7, 122.4,
111.8, 61.0, 53.8, 27.3, 14.3, 9.0. IR neat film: 3270, 2982, 1773, 1716, 1578, 1491 cm−1; HRMS
(ESI) calculated for [C26H23ClN4NaO4] 513.1300, found 513.1307.

3.2. Biological Assays and Methods
3.2.1. Cell Culture and Small-Molecule Compounds

NALM6 and shP53NALM6 leukemic cell lines were cultured in an RPMI-1640 medium
supplemented with 10% fetal bovine serum, 50 U/mL penicillin, and 50 µg/mL strepto-
mycin. The shP53NALM6 cell line was established using pLKO.1-p53 (purchased from
Sigma) (Plasmid #19119) [36] followed by puromycin selection at 1 µg/mL for 2 days,
then a clonal expansion in the puromycin-free medium. MANCA, MANCA-mlp-puro,
and MANCA-mlp-MDM2 were generous gifts from Prof. Jill Bargonetti (Hunter College,
CUNY, NY, USA) and were generated as described previously [37] and maintained in a
10% FBS-Pen/Strep- RPMI-1640 medium. Small molecule compounds were synthesized,
purified, and characterized in-house and were dissolved in DMSO as 10 mM stocks for cell
proliferation assays.

3.2.2. Western Blotting, In Vitro Ubiquitination, and Apoptosis Analysis

The Western blotting procedure and antibodies for the target proteins were described
previously [22]. In vitro assays for ubiquitination by MDM2B-MDM4 were performed as
described previously with minor modifications [15]. Briefly, the reactions were carried out
at 30 ◦C for 1 h in a volume of 20 µL reaction in the presence of different concentrations
of compounds or vehicle solvent DMSO, followed by a WB of p53 with DO-1, MDM2
with rabbit anti-MDM2 (MDM2 (D1V2Z) (#86934, Cell Signaling Technology, Danvers,
MA 01923, USA), or MDM4 with a rabbit anti-MDM4 antibody (Proteintech, Rosemont, IL
60018, USA, Cat no: 17914-1-AP). The apoptotic response to compounds was measured by
Western blotting using specific antibodies from Cell Signaling Technology, Danvers, MA
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01923, USA) for activated caspase 3 (Cleaved Caspase-3 (Asp175) (5A1E) (#9664) and PARP
(PARP Antibody #9542).

3.2.3. IC50 Measurement and Analysis

The procedure was described previously [22]. Briefly, cells at 10,000/well were plated
in 96-well plates at 100 µL/well, and compounds of different concentrations were added to
each well at 100 µL/well. After 70 h treatment, 40 µL of 6x resazurin stock solution was
added to each well, followed by a 2 h development of fluorescent metabolites by viable cells
before reading OD600 in the BioTek Synergy 2 Microplate Reader. The IC50 values were
obtained by the Chou-Median-Effect Equation using CompuSyn software [38], and dose-
effect curves were obtained by GraphPad using the affected fractions of compound-treated
wells normalized against no-drug control wells with a non-liner regression model.

4. Conclusions

In summary, the antiproliferative activity of these potent MMRi67 derivatives was
associated with their effects on the dual degradation of MDM4 and FTH1 compared to
MMRi67. The SAR results from MMRi67 derivatives identified the hydroxyl and the chloro
in the quinoline ring and the benzoic acid to be the critical structural elements that con-
tribute to MDM2-MDM4 E3 ligase inhibitory effects of MMRi67 in vitro. Whereas MMRi67
is not highly cytotoxic, its ethyl benzoate analogs, including MMRi71, were, and they
exhibited a strong MDM2/MDM4 and FTH1 degradation in cells. MMRi71 represents a
new class of dual inhibitors targeting the degradation of MDM2/MDM4 and FTH1 for p53-
independent apoptosis in leukemia cells. Up to this point, our small molecule structural
optimization efforts have focused on discerning and optimizing structural attributes that
impact biochemical target interactions, the antiproliferation of cancer cells, and physical
features related to compound formulation (optimizing LogP and discouraging metal chela-
tion). Going forward, we will increase our analysis of factors related to in vivo efficacy
and toxicity. Currently, we note that the lead compound MMRi71 has a molecular weight
of 490.94 g/mol, contains one hydrogen bond donor, seven potential hydrogen-bond ac-
ceptor nitrogens and oxygens, and a LogP of 4.6. The calculated total polar surface area
of MMRi71 is 101.71 Å2, and it has nine rotatable bonds. All of these properties conform
to those recommended for orally available drugs [39,40]. Further lead optimization to
improve the potency, pharmacokinetics, and pharmacodynamics profiles is warranted for
developing clinically useful derivatives in this chemical domain.

5. Patents

Provisional patent: Antiproliferative Betti Bases and Prodrugs Thereof, pending.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27227665/s1, Experimental procedures and data for
characterization of all new compounds, including NMR spectra, are provided in the chemistry
supporting information [30,41–49].
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Modifications in the Linker Structure and Their Effect on the Cytotoxicity of the Obtained Compounds. Molecules 2019, 24, 4181.
[CrossRef] [PubMed]

25. Oliveri, V.; Giuffrida, M.L.; Vecchio, G.; Aiello, C.; Viale, M. Gluconjugates of 8-hydroxyquinolines as potential anti-cancer
prodrugs. Dalton Trans. 2012, 41, 4530–4535. [CrossRef] [PubMed]

26. Baell, J.B.; Holloway, G.A. New Substructure Filters for Removal of Pan Assay Interference Compounds (PAINS) from Screening
Libraries and for Their Exclusion in Bioassays. J. Med. Chem. 2010, 53, 2719–2740. [CrossRef]

27. Aldrich, C.; Bertozzi, C.; Georg, G.I.; Kiessling, L.; Lindsley, C.; Liotta, D.; Merz, J.K.M.; Schepartz, A.; Wang, S. The Ecstasy and
Agony of Assay Interference Compounds. ACS Med. Chem. Lett. 2017, 8, 379–382. [CrossRef]

28. Kenny, P.W. Comment on The Ecstasy and Agony of Assay Interference Compounds. J. Chem. Inf. Model. 2017, 57, 2640–2645.
[CrossRef]

29. Baell, J.B.; Nissink, J.W.M. Seven Year Itch: Pan-Assay Interference Compounds (PAINS) in 2017—Utility and Limitations. ACS
Chem. Biol. 2017, 13, 36–44. [CrossRef]

30. McLean, L.R.; Zhang, Y.; Li, H.; Li, Z.; Lukasczyk, U.; Choi, Y.-M.; Han, Z.; Prisco, J.; Fordham, J.; Tsay, J.T.; et al. Discovery of
covalent inhibitors for MIF tautomerase via cocrystal structures with phantom hits from virtual screening. Bioorganic Med. Chem.
Lett. 2009, 19, 6717–6720. [CrossRef]

31. Mumbauer, S.; Pascual, J.; Kolotuev, I.; Hamaratoglu, F. Ferritin heavy chain protects the developing wing from reactive oxygen
species and ferroptosis. PLoS Genet. 2019, 15, e1008396. [CrossRef] [PubMed]

32. Pan, Y.; Chen, J. MDM2 Promotes Ubiquitination and Degradation of MDMX. Mol. Cell Biol. 2003, 23, 5113–5121. [CrossRef]
[PubMed]

33. Prachayasittikul, V.; Prachayasittikul, V.; Prachayasittikul, S.; Ruchirawat, S. 8-Hydroxyquinolines: A review of their metal
chelating properties and medicinal applications. Drug Des. Dev. Ther. 2013, 7, 1157–1178. [CrossRef] [PubMed]

34. Mah, L.J.; El-Osta, A.; Karagiannis, T.C. gammaH2AX: A sensitive molecular marker of DNA damage and repair. Leukemia 2010,
24, 679–686. [CrossRef]

35. Heylmann, D.; Rödel, F.; Kindler, T.; Kaina, B. Radiation sensitivity of human and murine peripheral blood lymphocytes, stem
and progenitor cells. Biochim. Et Biophys. Acta 2014, 1846, 121–129. [CrossRef]

36. Godar, S.; Ince, T.A.; Bell, G.W.; Feldser, D.; Donaher, J.L.; Bergh, J.; Liu, A.; Miu, K.; Watnick, R.S.; Reinhardt, F.; et al. Growth-
Inhibitory and Tumor- Suppressive Functions of p53 Depend on Its Repression of CD44 Expression. Cell 2008, 134, 62–73.
[CrossRef]

37. Rosso, M.; Polotskaia, A.; Bargonetti, J. Homozygous mdm2 SNP309 cancer cells with compromised transcriptional elongation at
p53 target genes are sensitive to induction of p53-independent cell death. Oncotarget 2015, 6, 34573–34591. [CrossRef]

38. Chou, T.-C. Theoretical Basis, Experimental Design, and Computerized Simulation of Synergism and Antagonism in Drug
Combination Studies. Pharmacol. Rev. 2006, 58, 621–681. [CrossRef]

39. Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and
permeability in drug discovery and development setting. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [CrossRef]

40. Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular Properties That Influence the Oral
Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615–2623. [CrossRef]

41. Shergalis, A.; Xue, D.; Gharbia, F.Z.; Driks, H.; Shrestha, B.; Tanweer, A.; Cromer, K.; Ljungman, M.; Neamati, N. Characterization
of Aminobenzylphenols as Protein Disulfide Isomerase Inhibitors in Glioblastoma Cell Lines. J. Med. Chem. 2020, 63, 10263–10286.
[CrossRef] [PubMed]

42. Weinert, E.E.; Dondi, R.; Colloredo-Melz, S.; Frankenfield, K.N.; Mitchell, C.H.; Freccero, M.; Rokita, S.E. Substituents on Quinone
Methides Strongly Modulate Formation and Stability of Their Nucleophilic Adducts. J. Am. Chem. Soc. 2006, 128, 11940–11947.
[CrossRef] [PubMed]

43. Kanizsai, I.; Madácsi, R.; Hackler, L., Jr.; Gyuris, M.; Szebeni, G.J.; Huzián, O.; Puskás, L.G. Synthesis and Cytoprotective
Characterization of 8-Hydroxyquinoline Betti Products. Molecules 2018, 23, 1934. [CrossRef]

44. Pobbati, A.V.; Mejuch, T.; Chakraborty, S.; Karatas, H.; Bharath, S.R.; Guéret, S.M.; Goy, P.-A.; Hahne, G.; Pahl, A.; Sievers, S.; et al.
Identification of Quinolinols as Activators of TEAD-Dependent Transcription. ACS Chem. Biol. 2019, 14, 2909–2921. [CrossRef]
[PubMed]

45. Olyaei, A.; Sadeghpour, M. Recent advances in the synthesis and synthetic applications of Betti base (aminoalkylnaphthol) and
bis-Betti base derivatives. RSC Adv. 2019, 9, 18467–18497. [CrossRef] [PubMed]

46. Lim, C.; Popov, A.A.; Tselikov, G.; Heo, J.; Pliss, A.; Kim, S.; Kabashin, A.V.; Prasad, P.N. Organic Solvent and Surfactant Free
Fluorescent Organic Nanoparticles by Laser Ablation of Aggregation-Induced Enhanced Emission Dyes. Adv. Opt. Mater. 2018, 6,
1800164. [CrossRef]

http://doi.org/10.3389/fonc.2022.933446
http://www.ncbi.nlm.nih.gov/pubmed/35992795
http://doi.org/10.1158/1535-7163.MCT-21-0728
http://www.ncbi.nlm.nih.gov/pubmed/35131878
http://doi.org/10.3390/molecules24224181
http://www.ncbi.nlm.nih.gov/pubmed/31752188
http://doi.org/10.1039/c2dt12371a
http://www.ncbi.nlm.nih.gov/pubmed/22354329
http://doi.org/10.1021/jm901137j
http://doi.org/10.1021/acsmedchemlett.7b00056
http://doi.org/10.1021/acs.jcim.7b00313
http://doi.org/10.1021/acschembio.7b00903
http://doi.org/10.1016/j.bmcl.2009.09.106
http://doi.org/10.1371/journal.pgen.1008396
http://www.ncbi.nlm.nih.gov/pubmed/31568497
http://doi.org/10.1128/MCB.23.15.5113-5121.2003
http://www.ncbi.nlm.nih.gov/pubmed/12860999
http://doi.org/10.2147/DDDT.S49763
http://www.ncbi.nlm.nih.gov/pubmed/24115839
http://doi.org/10.1038/leu.2010.6
http://doi.org/10.1016/j.bbcan.2014.04.009
http://doi.org/10.1016/j.cell.2008.06.006
http://doi.org/10.18632/oncotarget.5312
http://doi.org/10.1124/pr.58.3.10
http://doi.org/10.1016/S0169-409X(00)00129-0
http://doi.org/10.1021/jm020017n
http://doi.org/10.1021/acs.jmedchem.0c00728
http://www.ncbi.nlm.nih.gov/pubmed/32830969
http://doi.org/10.1021/ja062948k
http://www.ncbi.nlm.nih.gov/pubmed/16953635
http://doi.org/10.3390/molecules23081934
http://doi.org/10.1021/acschembio.9b00786
http://www.ncbi.nlm.nih.gov/pubmed/31742995
http://doi.org/10.1039/C9RA02813G
http://www.ncbi.nlm.nih.gov/pubmed/35515249
http://doi.org/10.1002/adom.201800164


Molecules 2022, 27, 7665 16 of 16

47. Pauli, G.F.; Chen, S.-N.; Simmler, C.; Lankin, D.C.; Gödecke, T.; Jaki, B.U.; Friesen, J.B.; McAlpine, J.B.; Napolitano, J.G. Importance
of Purity Evaluation and the Potential of Quantitative 1H NMR as a Purity Assay. J. Med. Chem. 2014, 57, 9220–9231. [CrossRef]
[PubMed]

48. Chen, Q.-Y.; He, Y.-B.; Yang, Z.-Y. A new method for reduction of phenyl fluoroalkanesulphonates to arenes catalysed by
palladium. J. Chem. Soc. Chem. Commun. 1986, 1452–1453. [CrossRef]

49. Andreu, R.; Ronda, J.C. Synthesis of 3,4-Dihydro-2H-1,3-benzoxazines by Condensation of 2-Hydroxyaldehydes and Primary
Amines: Application to the Synthesis of Hydroxy-Substituted and Deuterium-Labeled Compounds. Synth. Commun. 2008, 38,
2316–2329. [CrossRef]

http://doi.org/10.1021/jm500734a
http://www.ncbi.nlm.nih.gov/pubmed/25295852
http://doi.org/10.1039/c39860001452
http://doi.org/10.1080/00397910802138629

	Introduction 
	Results and Discussion 
	Structural Requirement for the Anti-Proliferative Activity of MMRi62 and MMRi67 Derivatives 
	MMRi67 Is a Bona Fide Inhibitor of MDM2-MDM4 E3 Ligase 
	Structural Requirement of MMRi67 Derivatives for Inhibitory Activity toward MDM2-MDM4 E3 Ligase 
	Induced MDM4 and FTH1 Degradation Is Associated with the Pro-Apoptotic Activity of MMRi67 Derivatives 

	Materials and Methods 
	Representative Chemistry Methods 
	Ethyl 4-((5-Chloro-8-hydroxyquinolin-7-yl)(pyrimidin ylamino)methyl)benzoate (67-9) Synthesis 
	Ethyl 4-((8-(Propionyloxy)quinolin-7-yl)(pyrimidin-2-ylamino)methyl)benzoate (MMRi71) Synthesis 

	Biological Assays and Methods 
	Cell Culture and Small-Molecule Compounds 
	Western Blotting, In Vitro Ubiquitination, and Apoptosis Analysis 
	IC50 Measurement and Analysis 


	Conclusions 
	Patents 
	References

