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Abstract

Children of Hispanic/Latino ancestry have increased incidence of high-risk B-cell acute lymphoblastic leukemia (HR B-ALL)

with poor prognosis. This leukemia is characterized by a single-copy deletion of the IKZF1 (IKAROS) tumor suppressor and

increased activation of the PI3K/AKT/mTOR pathway. This identifies mTOR as an attractive therapeutic target in HR B-ALL.

Here, we report that IKAROS represses MTOR transcription and IKAROS’ ability to repress MTOR in leukemia is impaired by

oncogenic CK2 kinase. Treatment with the CK2 inhibitor, CX-4945, enhances IKAROS activity as a repressor of MTOR,

resulting in reduced expression of MTOR in HR B-ALL. Thus, we designed a novel therapeutic approach that implements dual

targeting of mTOR: direct inhibition of the mTOR protein (with rapamycin), in combination with IKAROS-mediated

transcriptional repression of the MTOR gene (using the CK2 inhibitor, CX-4945). Combination treatment with rapamycin and

CX-4945 shows synergistic therapeutic effects in vitro and in patient-derived xenografts from Hispanic/Latino children with HR

B-ALL. These data suggest that such therapy has the potential to reduce the health disparity in HR B-ALL among Hispanic/

Latino children. The dual targeting of oncogene transcription, combined with inhibition of the corresponding oncoprotein

provides a paradigm for a novel precision medicine approach for treating hematological malignancies.

Introduction

Children with Hispanic/Latino ancestry have a higher inci-

dence of acute lymphoblastic leukemia (ALL) and increased

mortality from this disease [1]. The incidence of a specific

subtype of high-risk B-ALL, characterized by an IGH/CRLF2

translocation, is highly increased in these children [2]. The

translocation of the cytokine receptor-like factor 2 (CRLF2)

gene results in increased expression of CRLF2 [3] and

increased activation of its downstream signaling pathways [4].

CRLF2 is an upstream regulator of the PI3K/AKT/mTOR

pathway and increased CRLF2 expression leads to upregu-

lation of this pathway [4]. Aberrant activation of the PI3K/

AKT/mTOR pathway is frequently detected in high-risk B-

ALL and is associated with chemoresistance and poor prog-

nosis [5, 6]. mTOR (mammalian Target of Rapamycin) is a

serine/threonine kinase that directly regulates cellular pro-

liferation and metabolism [7, 8]. Increased expression and

activation of mTOR are associated with poor outcomes in

ALL [9, 10].
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The IKZF1 gene encodes IKAROS, which acts as a

tumor suppressor in B-ALL [11–13]. IKAROS regulates

gene expression via chromatin remodeling [14–18].

Reduced IKAROS activity due to deletion and/or inacti-

vating mutations often results in high-risk B-ALL, which is

associated with resistance to chemotherapy [19–31]. We

have shown that the deletion of one IKZF1 allele is highly

increased in B-ALL of Hispanic/Latino children. Further,

we found that the combination of IKZF1 deletion and

CRLF2 translocation is 15 times more common in this

group than in the non-Hispanic/Latino pediatric patient

populationCOMPANION PAPER. Subtypes of B-ALL with

CRLF2 translocation and IKZF1 deletion frequently give

rise to Ph-like ALL [32]. Treatment of Ph-like ALL is

challenging, thus B-ALL with CRLF2 overexpression and/

or IKZF1 deletion are often resistant to conventional treat-

ment, and have an increased incidence of relapse and poor

prognosis [31–33]. Novel targeted treatment is essential to

reduce health disparities in Hispanic/Latino children with

B-ALL.

Here, we report that IKAROS represses transcription of the

MTOR gene via chromatin remodeling. In high-risk B-ALL,

IKAROS’s ability to regulate MTOR expression is abolished

due to deletion of one IKZF1 allele and phosphorylation of

the IKAROS protein by oncogenic Casein Kinase II (CK2).

Inhibition of CK2 restores IKAROS-mediated transcriptional

repression of MTOR in B-ALL. Combination treatment with

CX-4945 and the direct mTOR inhibitor, rapamycin, shows

synergistic therapeutic effects in vitro and in preclinical

models of high-risk B-ALL from Hispanic/Latino children.

These data lay the groundwork for clinical testing of combi-

nation therapy that targets both MTOR gene expression (via

restoration of IKAROS activity by CK2 inhibition), as well as

direct inhibition of the mTOR protein (with rapamycin) in

high-risk B-ALL. Such therapy has the potential to reduce the

health disparity experienced by Hispanic/Latino children with

high-risk B-ALL.

Materials, subjects and methods

Cell culture and reagents

The Nalm6, 697 (EU-3), and HEK-293T (293T) cell lines

have been described previously [34, 35]. Primary human B-

ALL cells were cultured as described previously [36, 37].

High-risk B-ALL patient-derived xenograft models

2 × 106 cells per mouse were transplanted intravenously into

4-week-old female NOD.Cg-Rag1tm1Mom Il2rgtm1Wjl/SzJ

(NRG) mice. Following engraftment, mice received

vehicle only, CX-4945 (daily via gavage at 100 mg/kg/day),

rapamycin (4 mg/kg intraperitoneal injection [IP] 5 days/

week) or combination treatment with CX-4945 (100 mg/kg/

day) and rapamycin (4 mg/kg IP 5 days/week) until death

of the first animal in experiment (3–5 weeks). Following

the treatment period, total living cells in the bone marrow

(BM) and spleen of mice were determined by hemocyt-

ometer count, and were used in combination with flow

cytometry to calculate leukemia burden as reported pre-

viously [37].

ChIP-Seq data are accessible on NCI Gene Expression

Omnibus (GEO) under accession numbers GSE58825,

GSE44218, and GSE141572

Additional details regarding reagents, animal studies,

patient samples, experimental methods, and data accession

are found in the online Supplemental Materials.

Results

IKAROS represses transcription of MTOR

Analysis of global DNA binding showed that IKAROS

binds to the MTOR promoter region in B-ALL cell lines and

primary cells from patients (Figs. 1a-b, and S1a-b).

IKAROS binding at theMTOR promoter was determined by

a quantitative chromatin immunoprecipitation (qChIP)

assay of primary B-ALL cells (Fig. 1c), and B-ALL cell

lines (Fig. S2). IKAROS binding at the MTOR promoter

was not detected in primary B-ALL with a deletion of one

IKZF1 allele, Fig. 1c, (Patient 1) or in 293T cells, which do

not express IKAROS (Fig. S2).

The direct effect of IKAROS binding at the MTOR

promoter was studied using a transient co-transfection assay

with the MTOR promoter, that spans −1 kb to +500 bp

relative to the MTOR transcription start site (TSS). Co-

transfection of IKZF1 resulted in decreased luciferase

activity, suggesting that IKAROS binding to the MTOR

promoter represses transcription (Fig. 1d).

IKAROS represses transcription of MTOR in B-ALL via
chromatin remodeling

We tested the effect of increased IKAROS expression on

MTOR transcription in Nalm6 and 697 B-ALL cells.

Increased IKAROS expression following retroviral transduc-

tion resulted in increased IKAROS occupancy at the MTOR

promoter (Fig. S3a-b), and reduced expression of MTOR as

measured by qRT-PCR and Western blot (Fig. 2a).

Targeting IKAROS with shRNA in Nalm6 and 697 cell

lines resulted in a loss of IKAROS binding at the MTOR

promoter (Fig. S3c-d), and increased expression of

MTOR, as measured by qRT-PCR and Western blot,

(Fig. 2b).
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Overexpression of IKAROS resulted in increased

H3K27me3 and a loss of H3K9ac (Fig. 2c) at the MTOR

promoter. Targeting IKZF1 with shRNA resulted in

increased H3K9ac and H3K4me3 at the MTOR promoter

(Fig. 2d).

Taken together, these data provide evidence that

IKAROS acts as a transcriptional repressor of MTOR in B-

ALL via formation of repressive chromatin at the MTOR

promoter.

Fig. 1 IKAROS binds to the promoter of the MTOR gene and

suppresses mTOR expression. a IKAROS binding sites were iden-

tified by ChIP-Seq at theMTOR promoter in the (a) Nalm6 B-ALL cell

lines and in a (b) B-ALL patient sample. c qChIP data confirming

IKAROS binding at the MTOR promoter in primary B-ALL cells with

wildtype IKZF1 (Patients 2–4) but not in IKZF1 haploinsufficiency

(Patient 1). d Activity of the MTOR promoter (−1 kb to +500 bp) was

assessed by luciferase reporter assay following transfection with

IKZF1 plasmids or control vector in 293T cells.

Fig. 2 IKAROS represses transcription of MTOR in B-ALL via

chromatin remodeling. a Nalm6 and 697 B-ALL cell lines were

transduced to express IKZF1 (MIG-IKZF1) or with empty vector

(MIG-CTL). Relative expression of MTOR was assessed by qRT-PCR

(top panel) and by Western blot (bottom panel). b Nalm6 and 697 B-

ALL cell lines were treated with IKZF1 shRNA (shIKZF1) or control

shRNA (shCTL). The relative expression of MTOR was assessed by

qRT-PCR (top panel) and by Western blot (bottom panel). c qChIP

data showing the presence of H3K27me3 and H3K9ac marks at

the MTOR promoter in Nalm6 and 697 B-ALL cells with

IKAROS overexpression. d qChIP data showing H3K9ac and

H3K4me3 marks at the MTOR promoter in Nalm6 and 697 B-ALL

cells with IKZF1 shRNA knockdown. Cells were treated for 3 days for

the experiments in (a–d); graphed data are the mean ± SD of

combined values from three independent experiments. ***p < 0.001,

****p < 0.0001.

Dual targeting of MTOR as a novel therapeutic approach for high-risk B-cell acute lymphoblastic leukemia 1269



CK2 inhibits IKAROS-mediated repression of MTOR

In leukemia, direct phosphorylation by CK2 reduces

IKAROS DNA-binding affinity and its activity as a tran-

scriptional regulator [38, 39]. We tested whether CK2

regulates IKAROS’ ability to control MTOR transcription in

B-ALL. Molecular inhibition of CK2 with shRNA targeting

the catalytic subunit of the CK2 holoenzyme, CK2α,

(Fig. S4a), resulted in repression of the MTOR gene

(Fig. 3a), along with increased binding of IKAROS at the

MTOR promoter (Fig. S4b). A similar effect was achieved

with pharmacological inhibition of CK2 with specific

inhibitors, CX-4945 (Fig. 3b–c, Fig. S5-S6a) and TBB

(Fig. S7a-b) in B-ALL cells. Treatment with CX-4945

resulted in increased H3K27me3 and a loss of H3K9ac at

the MTOR promoter (Fig. S8). Since the PI3K/AKT/mTOR

pathway is often upregulated in B-ALL in Hispanic/Latino

children [33, 40], we tested the effect of CK2 inhibition on

IKAROS’s ability to regulate MTOR transcription in pri-

mary B-ALL cells from pediatric patients that were His-

panic/Latino (patients 2 and 3), as well as non-Hispanic/

Latino (patient 4). CK2 inhibition with CX-4945 increased

IKAROS binding at the MTOR promoter (Fig. S6b) and

severely repressed MTOR transcription (Fig. 3d).

Fig. 3 CK2 inhibits IKAROS-

mediated repression of MTOR.

a–b Effect of CK2α knockdown

on mRNA levels of (a) MTOR.

Effect of pharmacological

inhibition of CK2 (with CX-

4945) on MTOR expression in

(b–c) cell lines and in (d)

patients 2–4. e Effect of CK2α

overexpression (MIG-

CSNK2A1) and vector only

control (MIG-CTL) on MTOR

expression. f Effect of IKAROS

knockdown (shIKZF1) or

scramble shRNA control

(shCTL) on changes in MTOR

gene expression induced by

CK2 inhibition with CX-4945.

Cells were treated with 5 μM

CX-4945 for 2 days in (b–d) and

(f). Patients 2 and 3 are

Hispanic/Latino, patient 4 is

non-Hispanic/Latino. Graphed

data are the mean ± SD of

combined values from three

independent experiments.

***p < 0.001, ****p < 0.0001.
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Overexpression of CK2α in B-ALL cells results in

increased transcription of theMTOR gene (Fig. 3e), and a loss

of IKAROS binding at the MTOR promoter (Fig. S9). We

tested whether IKAROS is the critical protein through which

CK2 regulates MTOR expression. Treatment of B-ALL cells

with the CK2 inhibitor, CX-4945, along with scrambled

shRNA, resulted in reduced transcription of the MTOR gene;

however, IKZF1 knockdown with shRNA was able to rescue

CX-4945-mediated repression of MTOR in both cell lines

(Fig. 3f). These data show that IKAROS activity is essential

for the repression of the MTOR gene following CK2 inhibi-

tion and suggest that CK2 inhibitors repress MTOR expres-

sion by enhancing the function of IKAROS.

Together, these data demonstrate that in B-ALL the

expression of MTOR is regulated by the CK2-IKAROS

signaling axis, and that alteration in activity of CK2 and/or

IKAROS results in changes in MTOR expression.

CK2 inhibition restores IKAROS’ ability to regulate
MTOR expression in high-risk leukemia cells from
Hispanic/Latino children

Hispanic/Latino children have increased incidence of B-

ALL with deletion of one IKZF1 allele, along with an

upregulation of the PI3K/AKT/mTOR pathway and a Ph-

like gene expression profile [24, 41]. We tested whether

IKZF1 haploinsufficiency affects IKAROS’s ability to

regulate MTOR expression and whether CK2 inhibition

can regulate the expression of MTOR in primary B-ALL

cells with deletion of one IKZF1 allele, including three

samples from Hispanic/Latino patients (Table S1). CK2

inhibition with CX-4945 resulted in transcriptional

repression of the MTOR gene in B-ALL cells from all five

B-ALL patients (Fig. 4a). In the B-ALL patient samples

that lack one IKZF1 allele, the IKAROS protein does not

bind the MTOR promoter (Fig. 4b, light gray bars vs.

white bars). CK2 inhibition with CX-4945, restores

IKAROS binding in these cells (Fig. 4b, black vs. dark

gray bars), and results in the formation of repressive

chromatin, characterized by H3K27me3 enrichment

(Fig. 4c), and loss of H3K9ac (Fig. 4d) at the MTOR

promoter.

Together, these data demonstrate that CK2 inhibition in

high-risk B-ALL cells with the deletion of one IKZF1 allele,

including those from Hispanic/Latino children, restores

Fig. 4 CK2 inhibition restores IKAROS’ ability to regulate MTOR

expression in primary high-risk B-ALL with deletion of one

IKZF1 allele. a MTOR mRNA level was measured by qRT-PCR in

primary high-risk B-ALL samples following treatment with 10 μM

CK2 inhibitor (CX-4945) for 2 days as compared to untreated (CTL)

cells. b–d qChIP analysis of (b) IKAROS (c) H3K27me3, and (d)

H3K9ac at the MTOR promoter. Untreated cells are (white and light

gray bars) compared to and CX-4945-treated primary high-risk B-ALL

(dark gray and black bars). Patients 1, 5, and 6 are Hispanic/Latino.

Graphed data are the mean ± SD of combined values from three

independent experiments. *p < 0.05, ***p < 0.001, ****p < 0.0001.

Dual targeting of MTOR as a novel therapeutic approach for high-risk B-cell acute lymphoblastic leukemia 1271



IKAROS’ ability to bind DNA, induces formation of

repressive chromatin at the MTOR promoter, and represses

transcription of MTOR.

IKAROS and CK2 regulate sensitivity of B-ALL to
rapamycin

Increased mTOR expression and/or activation are associated

with poor outcomes in ALL [9, 10]. Therapeutic effects of the

mTOR inhibitor, rapamycin, have been tested in clinical trials

[8, 42–45]. Since our data demonstrated that IKAROS

represses expression of the MTOR gene, we tested the effect

of IKAROS expression on sensitivity to rapamycin treatment

in B-ALL. IKZF1 overexpression resulted in increased sen-

sitivity to rapamycin (Fig. 5a). Knockdown of IKZF1 with

shRNA resulted in reduced sensitivity to rapamycin (Fig. 5b).

These results show that IKAROS expression directly corre-

lates with sensitivity to treatment with rapamycin.

Because CK2 inhibition reduces MTOR transcription via

IKAROS, we tested the effect of CK2 on the sensitivity of

B-ALL cells to rapamycin treatment. Overexpression of

CK2α via retroviral transduction resulted in reduced sensi-

tivity to rapamycin-induced cytotoxicity in B-ALL cells

(Fig. 5c). Correspondingly, knockdown of CK2α with

shRNA resulted in an increased cytotoxic effect of rapa-

mycin treatment in B-ALL (Fig. 5d).

Overall, the presented data demonstrate that the cytotoxic

effects of rapamycin are regulated by CK2 and IKAROS

expression. The data also suggest that reduced CK2 activity

and/or increased IKAROS function increases the ther-

apeutic effect of rapamycin on B-ALL cells.

The CK2 inhibitor, CX-4945, synergizes with
rapamycin in the treatment of B-ALL cells

Because the data presented in Fig. 5 demonstrate that

inhibition of CK2 increases the cytotoxic effects of rapa-

mycin on B-ALL, we tested whether the combination of

CK2 inhibitor and rapamycin exert synergistic therapeutic

effects on B-ALL cells. We used the CK2 inhibitor, CX-

4945 [46], that is currently being tested in a Phase I trial

[47], and compared the therapeutic effect of CX-4945 and

rapamycin combination therapy vs. single-drug treatment,

in vitro, on two different human B-ALL cell lines, Nalm6

and 697. Drug response and synergy analyses show that the

combination of CX-4945 and rapamycin, given at doses that

are achievable in patient serum, produced synergistic

cytotoxic effects in both Nalm6 (Fig. 6a) and 697 (Fig. 6b)

cell lines.

Combination treatment with CX-4945 and

rapamycin, induced increased apoptosis of Nalm6 B-ALL

Fig. 5 IKAROS and CK2 regulate sensitivity to rapamycin in B-

ALL cells. a B-ALL cells, retrovirally transduced with IKZF1 (MIG-

IKZF1) or a control vector (MIG-CTL), were FACS-sorted and

treated for 3 days with indicated doses of rapamycin and assayed using

the WST-1 cell proliferation assay. b B-ALL cells, transduced

with lentiviral IKZF1 shRNA (shIKZF1) or scramble shRNA

control (shCTL), were FACS-sorted and treated for 3 days

with indicated doses of rapamycin. c–d B-ALL cells with retroviral:

(c) CK2α overexpression (MIG-CSNK2A1) or vector only

control (MIG-CTL); or (d) lentiviral CK2α shRNA (shCSNK2A1) or

scramble shRNA control (shCTL), were FACS-sorted and treated with

indicated doses of rapamycin for 3 days then evaluated by WST-1

proliferation assay. Graphed data are the mean ± SD of combined

values from three independent experiments. *p < 0.05, **p < 0.01,

***p < 0.001.
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cells as compared to treatment with either drug alone

(Fig. 6c).

Overall, these data demonstrate that combination treat-

ment with CX-4945 and rapamycin exerts synergistic

cytotoxic activity in B-ALL, and that one mechanism

responsible for this synergistic effect involves augmenting

the pro-apoptotic effect of rapamycin via CK2 inhibition.

CK2 inhibition augments cytotoxicity of rapamycin
in B-ALL patient-derived xenografts from Hispanic/
Latino children with high-risk B-ALL

A frequent feature of high-risk B-ALL in Hispanic/Latino

children is increased activity of the PI3K/AKT/mTOR

pathway, which is associated with resistance to

Fig. 6 Synergistic effects of

CX-4945 with rapamycin on

cellular proliferation and

apoptosis in B-ALL cells.

a–b Effects (left panels) and

synergistic analysis (right

panels) of rapamycin (black

line) and the combination of

rapamycin and CX-4945 (red

line) on proliferation of (a)

Nalm6 cells and (b) 697 cells.

Cells were treated with the

indicated drugs for 2 days.

Cellular proliferation was

measured by WST-1 assay.

Synergistic analysis was

performed using Calcusyn, Y

axis is the combination index

(CI) value. CI value is:

0.85–1.15, additive effect,

0.7–0.85, moderately

synergistic; <0.7, very

synergistic effect (c) Effect of

CX-4945 (4 μM), rapamycin

(10–20 μM), and the

combination of CX-4945 (4 μM)

plus rapamycin (10–20 μM) on

apoptosis in Nalm6 B-ALL

cells. Cells were treated for

2 days and stained with 7-AAD

and annexin V for flow

cytometry to assess apoptosis.

The percentage of cells in the

lower right quadrant and upper

right quadrant of each flow chart

represents the percentage of

early apoptotic or late apoptotic

cells, respectively, in samples

treated with the indicated drugs.

*p < 0.05, **p < 0.01, ***p <

0.001, ****p < 0.0001.
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chemotherapy and poor prognosis [33, 40]. We hypothe-

sized that targeting the PI3K/AKT/mTOR pathway in this

type of B-ALL would exert a strong therapeutic effect

in vivo. The in vitro synergistic cytotoxic effects of com-

bination treatment with the CK2 inhibitor, CX-4945, and

rapamycin, in B-ALL, suggest that CX-4945 could augment

the therapeutic activity of rapamycin against B-ALL

in vivo. We tested the therapeutic effect of combination

treatment with CX-4945 and rapamycin vs. single-drug

therapy in preclinical models of high-risk B-ALL in His-

panic/Latino children. B-ALL was determined to be high-

risk based on negative prognostic markers (e.g., deletion of

one IKZF1 allele, CRLF2 overexpression etc.) and/or clin-

ical features (Table S1). Following engraftment, mice from

each PDX were divided into the following four treatment

groups: Group 1: vehicle control, Group 2: CX-4945,

Group 3: rapamycin, and Group 4: CX-4945 plus rapamy-

cin combination treatment. Following the completion of

treatment, the total live leukemia cells in BM and spleen of

mice was determined by flow cytometry.

Results showed that combination treatment with CX-4945

and rapamycin produced a significantly stronger therapeutic

effect in all three PDX models, compared to single-drug

therapy and/or control (Fig. 7a–c and Fig. S10–12). The total

number of viable leukemia cells was severely reduced (3–4-

fold) in the BM and spleen of the PDX mice treated with

combination therapy, compared to mice treated with CX-

4945 or rapamycin alone. These results demonstrate that the

combination of CK2 kinase inhibitor (CX-4945) with rapa-

mycin has a synergistic therapeutic and cytotoxic effect on

high-risk B-ALL cells from Hispanic/Latino children, when

given as a combination treatment, in vivo.

Laboratory analysis showed that complete blood count,

and kidney function tests were not affected by treatment

with CX-4945 or rapamycin alone, or in combination (data

not shown).

The effect of CX-4945 treatment on MTOR transcription

during in vivo treatment was analyzed before cytotoxicity

occurred (at days 3 and 7 following the initiation of in vivo

treatment with single drugs or combination therapy with

CX-4945 and rapamycin, as described above). Data showed

that in vivo treatment of primary xenografts with the CK2

inhibitor, CX-4945, in combination with rapamycin, results

in the inhibition of mTOR pathway and reduced transcrip-

tion of the MTOR gene in leukemia cells in both BM and

spleen (Fig. S13).

Mice were followed for survival using the Kaplan–Meier

method. Results showed that combination treatment with

CX-4945 and rapamycin significantly prolongs survival of

mice, compared to single-drug treatment (Fig. 7d).

Together, these results demonstrate that combination

treatment with the CK2 inhibitor, CX-4945, and rapamycin

has a superior therapeutic effect in preclinical models of

high-risk B-ALL of Hispanic/Latino children, compared to

single-drug treatment. These results suggest that one of the

mechanisms through which CK2 inhibition augments the

therapeutic effect of rapamycin in vivo includes transcrip-

tional repression of MTOR.

Discussion

The presented data show that IKAROS functions as a

transcriptional repressor of MTOR. Phosphorylation by the

oncogenic kinase, CK2, abolishes IKAROS’ function as a

transcriptional regulator [37, 48–56]. In high-risk B-ALL,

the function of IKAROS as an MTOR repressor is impaired

by the deletion of one IKZF1 allele, or by IKAROS inac-

tivation due to phosphorylation by CK2, which is over-

expressed in B-ALL [5, 37]. Inhibition of CK2 restores

IKAROS binding to theMTOR promoter and transcriptional

repression of MTOR. Previously published data showed that

IKAROS represses the transcription of genes that are

essential for the PI3K pathway and that CK2 directly

inactivates PTEN through phosphorylation [5, 37, 57].

Results presented in this report reveal a novel mechanism

through which CK2 and IKAROS regulate PI3K/AKT/

mTOR signaling in B-ALL—via regulation of MTOR

transcription.

mTOR is a kinase that promotes cellular proliferation

and survival [58]. Upregulation of the PI3K/AKT/mTOR

pathway results in the development of high-risk leukemia

that is resistant to chemotherapy [6, 10, 59]. Children of

Hispanic/Latino ancestry have an increased frequency of

high-risk B-ALL and worse overall survival when com-

pared to other racial/ethnic groups [1]. Molecular epide-

miological studies demonstrated increased incidence of

translocations resulting in the overexpression of the

CRLF2 gene in Hispanic/Latino pediatric patients [2, 33].

Our group reported that the deletion of an IKZF1

allele, alone, or in combination with the CRLF2 transloca-

tion, is significantly increased in B-ALL of Hispanic/Latino

childrenCOMPANION PAPER. CRLF2 acts as an upstream acti-

vator of the PI3K/AKT/mTOR pathway [4]. Thus, the

presence of CRLF2 translocation and/or IKZF1 deletion

makes the increased activity of the PI3K/AKT/mTOR

pathway a prominent feature of B-ALL in Hispanic/Latino

children, and mTOR an attractive target for treatment of this

disease. Our data show that CK2 inhibition with CX-4945

restores IKAROS binding to the MTOR promoter, as

well as transcriptional repression of MTOR by IKAROS in

high-risk B-ALL cases where there is a deletion of

one IKZF1 allele. These data provide a rationale for a novel,

rationally-designed, mechanism-based, dual approach to

target mTOR in high-risk B-ALL in Hispanic/Latino

children. This includes the inhibition of mTOR

1274 Z. Ge et al.



Fig. 7 CK2 inhibition augments cytotoxicity of rapamycin in

patient-derived xenografts (PDX) from Hispanic/Latino children

with high-risk B-ALL. NRG mice were transplanted via tail vein with

primary B-ALL cells from three Hispanic/Latino patients. Once

engraftment was established mice were treated with CX-4945 only,

rapamycin (Rap) only, CX-4945+ Rap or with vehicle-only control.

a–c Following euthanasia, BM and spleen cells were counted, and

stained for flow cytometry to detect human B cell markers (CD10 and

CD19), mouse CD45, and 7-AAD as a dead cell marker. The

percentage of the living B-ALL leukemia cells (i, iii) and total leu-

kemia cells (ii, iv) in BM and spleen were calculated and graphed. The

effect of drug treatment was assessed by student’s t test. d Patient-

derived xenografts established with B-ALL from Patients 1–3 were

treated for 24 days with CX-4945, rapamycin (Rap) only, CX-4945

plus rapamycin (CX+ rap) or vehicle control and followed for sur-

vival. Survival curves were generated using the Kaplan–Meier method

and differences in survival were analyzed by Chi-square test. ***p <

0.001, ****p < 0.0001.
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protein function with rapamycin, in combination with the

CK2 inhibitor, CX-4945, which represses MTOR tran-

scription by enhancing IKAROS repressor activity. The

dual targeting of mTOR showed a synergistic effect in vitro,

and in vivo using three different preclinical models of high-

risk B-ALL generated from Hispanic/Latino children

(Figs. 6 and 7).

These studies establish a new paradigm for dual-

targeting of an oncogenic signaling pathway—targeting

both the oncoprotein activity with a direct inhibitor, and the

transcription of the gene encoding the oncoprotein (Fig. 8).

This dual-targeting approach should overcome chemore-

sistance due to oncogene overexpression and/or mutation,

which often occurs following targeted inhibition. Since the

transcriptional regulatory networks of many oncogenes are

well-established, this approach opens new possibilities for

targeted combination therapies.

In conclusion, our presented data establish the ther-

apeutic efficacy of a novel combination treatment that tar-

gets the PI3K/AKT/mTOR signaling pathway in high-risk

B-ALL in Hispanic/Latino children. The approach proposed

in the study—targeting the transcriptional regulatory net-

work of an oncogene, combined with specific inhibition of

the corresponding oncoprotein—can provide a paradigm for

similar targeted combination treatments for other hemato-

logical malignancies.
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