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Cellular compartmentalization into organelles serves to separate biological processes
within the environment of a single cell. While some metabolic reactions are specific
to a single organelle, others occur in more than one cellular compartment. Specific
targeting of proteins to compartments inside of eukaryotic cells is mediated by defined
sequence motifs. To achieve multiple targeting to different compartments cells use
a variety of strategies. Here, we focus on mechanisms leading to dual targeting of
peroxisomal proteins. In many instances, isoforms of peroxisomal proteins with distinct
intracellular localization are encoded by separate genes. But also single genes can give
rise to differentially localized proteins. Different isoforms can be generated by use of
alternative transcriptional start sites, by differential splicing or ribosomal read-through of
stop codons. In all these cases different peptide variants are produced, of which only
one carries a peroxisomal targeting signal. Alternatively, peroxisomal proteins contain
additional signals that compete for intracellular targeting. Dual localization of proteins
residing in both the cytoplasm and in peroxisomes may also result from use of inefficient
targeting signals. The recent observation that some bona fide cytoplasmic enzymes were
also found in peroxisomes indicates that dual targeting of proteins to both the cytoplasm
and the peroxisome might be more widespread. Although current knowledge of proteins
exhibiting only partial peroxisomal targeting is far from being complete, we speculate that
the metabolic capacity of peroxisomes might be larger than previously assumed.
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INTRODUCTION
Peroxisomes are near-ubiquitous eukaryotic organelles that have
been first described as microbodies in murine kidney-cells
(Rhodin, 1954). Later, these organelles were shown to contain
enzymes involved in the turnover of hydrogen peroxide (H2O2),
which gave rise to the term peroxisomes (deDuve and Bauduin,
1966). One of the major sources of H2O2 is β-oxidation of
fatty acids that occurs in peroxisomes throughout the eukaryotic
kingdoms (Poirier et al., 2006). Beside these common tasks of
fatty acid degradation and peroxide detoxification, peroxisomes
exhibit a wide variety of other metabolic functions (Nyathi and
Baker, 2006; van der Klei et al., 2006; Wanders and Waterham,
2006). A high degree of functional and metabolic specialization
in different organisms even led to specific naming of peroxiso-
mal subtypes. In plants and fungi, glyoxysomes harbor enzymes
of the glyoxylate cycle, which is required for the anabolic use
of acetyl-CoA as carbon source (Breidenbach and Beevers, 1967;
Zimmermann and Neupert, 1980; Kionka and Kunau, 1985). In
trypanosomes, the majority of glycolytic enzymes reside in spe-
cialized peroxisomes called glycosomes (Opperdoes and Borst,
1977). Filamentous ascomycetes contain “Woronin bodies” that
play a mechanical role and seal septal pores (Jedd and Chua,
2000). In spite of their obvious functional and metabolic diversity
all types of peroxisomes share a highly conserved import system
for their matrix proteins (Gabaldon, 2010). Import is mediated
by peroxisomal targeting sequences (PTS), that reside either at

the C-terminus (PTS1) or at the N-terminus (PTS2) of pro-
teins (Rucktäschel et al., 2011). C-terminal PTS1 motifs consist
of about 12 amino acids that contain at the very end a character-
istic tripeptide derived from the prototype sequence SKL (Gould
et al., 1987, 1989; Brocard and Hartig, 2006). The commonly used
consensus motif for C-terminal tripeptides is (S/A/C)-(K/R/H)-
(L/M), while some studies suggest a more degenerated consensus
(Lametschwandtner et al., 1998; Reumann et al., 2007). A few
proteins contain internal motifs acting as PTS (Peterson et al.,
1997; Klein et al., 2002; Gunkel et al., 2004; Oshima et al., 2008;
Galland et al., 2010). PTS1 containing proteins are recognized
by the cytoplasmic receptor Pex5 and are imported into peroxi-
somes in their fully folded, oligomeric and even cofactor bound
form (Brocard et al., 1994; Glover et al., 1994; McNew and
Goodman, 1994). A minority of proteins contains an N-terminal
PTS2-motif, which is recognized by the soluble receptor Pex7
(Swinkels et al., 1991; Marzioch et al., 1994; Rucktäschel et al.,
2011). PTS2-motifs exhibit the consensus sequence (R/K)(L/V/I)-
X5-(H/Q)(L/A) (Petriv et al., 2004). Interestingly, some species
completely lack the PTS2 import pathway (Motley et al., 2000;
Gonzalez et al., 2011). Some proteins have been described that
lack any detectable PTS-motifs but are nevertheless found in per-
oxisomes. A quite unusual way to achieve peroxisomal import
of proteins without PTS is “piggy-backing”, since proteins can
also be imported as oligomers (Glover et al., 1994; McNew and
Goodman, 1994; Yang et al., 2001). It has been demonstrated
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that peroxisomal import of the copper containing superoxide dis-
mutase (SOD) is mediated via interaction with a chaperone that
harbors a PTS1 (Islinger et al., 2009).

For several peroxisomal proteins dually targeted isoforms have
been described. These isoforms execute the same or a similar
function in at least one other place (for an overview see Table 1).
In general, cells can use various mechanisms to achieve dual or
multiple targeting of proteins. One of the best systems studied are
mitochondrial proteins some of which occur also in other cellu-
lar compartments (for review Yogev and Pines, 2011). Here, we
address the diversity of mechanisms to mediate dual targeting
of peroxisomal proteins and distinguish five different strategies

(see Figure 1): (1) gene duplication, (2) generation of alternative
transcripts from single genes, (3) leaky scanning of start and stop
codons, (4) competition between multiple targeting signals (5)
partial peroxisomal localization of proteins, since the targeting
signal is either modified or inefficient.

DUAL TARGETING OF PEROXISOMAL PROTEINS BY GENE
DUPLICATION.
Enzymes that are part of shuttle systems to maintain homeostasis
between organelles and the surrounding cytoplasm usually dis-
play dual targeting. E.g. redox homeostasis is reached by exchange
of reduced small intermediates with their oxidized counterparts.

Table 1 | Overview on peroxisomal proteins with dual localization.

Enzyme Organism Mechanism for dual

localizationa

Localization References

Malate dehydrogenase S. cerevisiae Gene duplication Cyt, Mito, Pex McAlister-Henn and Thompson,
1987; Minard and
McAlister-Henn, 1991; Steffan
and McAlister-Henn, 1992

NADPH-dependent isocitrate
dehydrogenase

S. cerevisiae Gene duplication Cyt, Mito, Pex Haselbeck and McAlister-Henn,
1991; Henke et al., 1998;
Loftus et al., 1994; van
Roermund et al., 1998

Citrate synthase S. cerevisiae Gene duplication Mito, Pex Kim et al., 1986; Lewin et al.,
1990; Rosenkrantz et al., 1986

NADPH-dependent isocitrate
dehydrogenase

A. nidulans Alternative transcription
initiation sites

Cyt, Mito, Pex Szewczyk et al., 2001

Malate dehydrogenase Y. lipolytica Differential splicing Cyt, Pex Kabran et al., 2012

6-phosphogluconate
dehydrogenase

C. albicans Differential splicing Cyt, Pex Strijbis et al., 2012

Hydroxypyruvate reductase Cucurbita sp. (cv. Kurokawa
Amakuri Nankin)

Differential splicing Cyt, Pex Hayashi et al., 1996

Glyceraldehyde-3-phosphate
dehydrogenase (GAPDH)

U. maydis Differential splicing Cyt, Pex Freitag et al., 2012

Phosphoglycerate kinase (PGK) A. nidulans Differential splicing Cyt, Pex Freitag et al., 2012

Phosphoglycerate kinase (PGK) U. maydis Ribosomal read-through Cyt, Pex Freitag et al., 2012

Triose phosphate isomerase
(TPI)

U. maydis Ribosomal read-through Cyt, Pex Freitag et al., 2012

Iron-containing superoxide
dismutase

L. polyedrum Alternative start codons Plas/Mito, Pex Bodyl and Mackiewicz, 2007

70-kDa heat shock protein Citrullus vulgaris Alternative start codons Pex, Plas Wimmer et al., 1997

3-Hydroxy-3-methylglutaryl
coenzyme A lyase

H. sapiens (liver cells) Multiple targeting signals Mito, Pex Ashmarina et al., 1999

Type II NAD(P)H dehydrogenase A. thaliana Multiple targeting signals Mito, Pex Carrie et al., 2008; Xu et al.,
2013

Catalase A S. cerevisiae Multiple targeting signals Mito, Pex Petrova et al., 2004

NAD+-dependent glycerol
3-phosphat dehydrogenase

S. cerevisiae Protein modification
(Phosphorylation)

Pex, Cyt/Nuc Jung et al., 2010

Glucose-6-phosphat
dehydrogenase

A. thaliana Redox dependent
heterodimerization

Pex, Plas Meyer et al., 2011

Alanine-glyoxylate
aminotransferase

H. sapiens Protein folding Cyt, Pex Fodor et al., 2012

Epoxide hydrolase H. sapiens (liver cells, kidney
cells)

Level of expression,
quarternary structure

Cyt, Pex Arand et al., 1991; Enayetallah
et al., 2006; Luo et al., 2008

aAbbreviations: Cyt, cytosol; Mito, mitochondrion; Nuc, nucleus; Pex, peroxisome; Plas, plastid.
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FIGURE 1 | Schematic overview on the diversity of mechanism leading

to dual targeting of peroxisomal proteins. Peroxisomal targeting signals
are indicated in pink, while mitochondrial signal sequences are indicated in
yellow. For further explanations see text.

In mitochondria, recycling of NAD+/NADH is achieved via a
malate/aspartate shuttle system (Bakker et al., 2001). In peroxi-
somes, regeneration of NAD+ during β-oxidation also depends
on a related malate shuttle since the peroxisomal membrane is
permeable for small molecules but impermeable for NADH (van
Roermund et al., 1995; Antonenkov et al., 2004).

In Saccharomyces cerevisiae three genes encoding malate dehy-
drogenases have been identified. These code for distinct isoforms,
which localize in the cytoplasm, mitochondria and peroxisomes,
respectively (McAlister-Henn and Thompson, 1987; Minard and
McAlister-Henn, 1991; Steffan and McAlister-Henn, 1992). The
different isoenzymes not only carry different targeting signals,
but also fulfill distinct functions and show specific regulation. All
three malate dehydrogenases are involved in maintaining redox
homeostasis. In addition, mitochondrial Mdh1 participates in the
tricarboxylic acid cycle, cytosolic Mdh2 is required for gluconeo-
genesis and peroxisomal Mdh3 is an essential component of the
glyoxylate cycle (McAlister-Henn and Thompson, 1987; Minard
and McAlister-Henn, 1991; Steffan and McAlister-Henn, 1992)

NADP+/NADPH homeostasis in peroxisomes and mitochon-
dria is reached via an alternative shuttle that involves the exchange
of isocitrate with alpha-ketoglutarate. This reaction is catalyzed
by NADPH dependent isocitrate dehydrogenase (Idp). Similar
to malate dehydrogenase, discrete genes (idp1, idp2 and idp3)
encode the mitochondrial, cytosolic and peroxisomal isoforms of
Idp in S. cerevisiae (Haselbeck and McAlister-Henn, 1991; Loftus
et al., 1994; Henke et al., 1998; van Roermund et al., 1998). Also,
the mitochondrial (Cit1) and peroxisomal isoforms (Cit2) of cit-
rate synthase are encoded by different genes in S. cerevisiae (Kim
et al., 1986; Rosenkrantz et al., 1986; Lewin et al., 1990).

In yeast this type of multiple localization might be preferred
since this species has undergone a large scale genome duplication
during its evolution (Kellis et al., 2004). This allowed to attribute
different cellular functions and localizations to these paralogous

genes. In addition encoding isozymes by separate genes facilitates
differential control and regulation not only on the transcriptional
level, but also at the level of enzyme kinetics and allosteric con-
trol. It has been shown that in S. cerevisiae, which only contains
a very limited number of introns, protein composition is nearly
exclusively regulated by differential transcription (Goffeau et al.,
1996).

In contrast, other eukaryotes make extensive use of post-
transcriptional processes such as alternative splicing to adapt the
proteome to environmental changes (Nilsen and Graveley, 2010).

DUAL LOCALIZATION RESULTING FROM DIFFERENT TRANSCRIPTS
DERIVED FROM A SINGLE GENE
In contrast to budding yeast, where gene duplication is com-
monly used for dual targeting of isozymes, other species often
use single genes to produce dually targeted proteins. In Aspergillus
nidulans synthesis of cytoplasmic, mitochondrial and peroxiso-
mal isoforms of NADP-dependent Idp results from alternative use
of transcription initiation sites of the idpA gene (Szewczyk et al.,
2001). The longer transcript encodes a protein which contains
both an N-terminal mitochondrial targeting sequence (MTS) and
a C-terminal PTS1. Downstream transcription initiation leads to
a shorter idpA transcript coding for a protein without the MTS
(Szewczyk et al., 2001). While the longer form is preferentially
located in mitochondria, the shorter form lacking the MTS is
targeted both to peroxisomes and the cytosol. The functional
dominance of the N-terminal mitochondrial over the C-terminal
peroxisomal targeting signal is most likely due to commitment
to mitochondrial import occurring co-translationally before the
C-terminus is synthesized (Danpure, 1997).

Differential splicing is another mechanism to generate
compartment-specific isoforms from single genes (Yogev and
Pines, 2011). In the yeast Yarrowia lipolytica the cytoplasmic
and peroxisomal isoforms of malate dehydrogenase are generated
from alternatively spliced transcripts that differ in their intron size
by only four nucleotides. The resulting proteins are highly similar
but only one of the Mdh isoenzymes carries a functional PTS1
(Kabran et al., 2012). A related mechanism has been reported
for dual targeting of 6-phosphogluconate dehydrogenase (Gnd1)
in Candida albicans. In this human pathogenic fungus, alterna-
tive splicing of gnd1 transcripts leads to expression of a PTS2
containing isoform (Strijbis et al., 2012). Gnd1 is an essential
enzyme of the oxidative branch of the pentose phosphate path-
way. This pathway is used to generate NADPH and predominantly
resides in the cytosol but has also been found in peroxisomes
(Antonenkov, 1989; Corpas et al., 1998; Frederiks and Vreeling-
Sindelarova, 2001; Boren et al., 2006; Reumann et al., 2007). Two
other enzymes of this pathway, the glucose-6-phosphate dehy-
drogenase Zwf1 and the 6-phosphogluconolactonase Sol3, have
been observed in peroxisomes in C. albicans (Strijbis et al., 2012).
Differential splicing allows for regulation of dual targeting. In
pumpkin leaves the ratio of peroxisomal and cytosolic isoforms
of hydroxypyruvate reductase is achieved by light dependent dif-
ferentially splicing (Hayashi et al., 1996; Mano et al., 1999, 2000).

An unexpected case of dual targeting by alternative splicing
was recently described for fungal enzymes involved in glycol-
ysis. This metabolic pathway is considered to be cytoplasmic
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and glycolytic proteins such as glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH) and phosphoglycerate kinase (PGK) often
serve as cytoplasmic marker proteins in cell biology. A notable
exception are trypanosomes, which have transferred the cyto-
plasmic glycolytic pathway into peroxisome-derived glycosomes
(Opperdoes and Borst, 1977). This is considered as an adapta-
tion to the unique lifestyle of these parasites in the bloodstream
of vertebrates (Michels et al., 2006). In the basidiomycetous fun-
gus Ustilago maydis a C-terminal extended peroxisomal isoform
of GAPDH is expressed from an alternatively spliced transcript
(Freitag et al., 2012). Inspection of other fungal species revealed
that dual targeting of glycolytic enzymes is widespread. In the
ascomycetous fungus Aspergillus nidulans the peroxisomal iso-
form of PGK but not of GAPDH is generated by differential
splicing (Freitag et al., 2012).

DUAL LOCALIZATION VIA “LEAKY” START AND STOP CODONS
Further bioinformatic analysis of fungal genes coding for gly-
colytic enzymes revealed a novel molecular mechanism for dual
targeting. Peroxisomal targeting of GAPDH, PGK and triose
phosphate isomerase (TPI) is reached by ribosomal read-through
of stop codons resulting in a fraction of C-terminally extended
proteins ending with a PTS1 (Freitag et al., 2012). Stop codon
read-through has been described for retroviral systems where it
is used to enlarge protein diversity, but was also observed for
cellular transcripts (Bertram et al., 2001; Jungreis et al., 2011).
The efficiency of ribosomes to recognize stop codons is affected
by sequence context and RNA secondary structure and might
be subject of control (Bertram et al., 2001). Isoforms generated
by ribosomal read-through correspond to a single transcript and
escape detection by transcriptomics. Therefore, this novel mode
of dual targeting is difficult to observe.

A related way to produce different isoforms from a single tran-
script is the use of alternative start codons. The iron-containing
SOD of the dinoflagellate Lingulodinium polyedrum catalyzes dis-
mutation of superoxide radicals to hydrogen peroxide and oxygen
as the first line of defense against reactive oxygen species (ROS)
(Bodyl and Mackiewicz, 2007; McCord and Fridovich, 1969).
Translation initiation at the first start codon results in an SOD,
which contains both an N-terminal targeting signal for plas-
tids and mitochondria and a C-terminal PTS1. This form was
suggested to reside in plastids and in mitochondria. Efficient per-
oxisomal targeting of SOD appears to depend on leaky ribosomal
scanning and initiation at a downstream in-frame start codon
resulting in an isoform lacking the N-terminal signal sequence
(Bodyl and Mackiewicz, 2007). In watermelon cotyledons the
mRNA molecules of a 70-kDa heat shock protein contain two in
frame start codons. Translational initiation at the first start codon
leads to a longer isoform, which carries a N-terminal presequence
mediating plastid import, while the shorter isoform localizes to
peroxisomes due to a PTS2 (Wimmer et al., 1997).

DUAL TARGETING OF PROTEINS WITH MULTIPLE TARGETING SIGNALS
Although it is commonly assumed that N-terminal signal
sequences are dominant over PTS1 (Danpure, 1997), sev-
eral examples are known where substantial peroxisomal tar-
geting occurs even in the presence of an N-terminal MTS.

3-Hydroxy-3-methylglutaryl coenzyme A lyase (HL) catalyzes the
conversion of β-hydroxy-β–methylglutaryl-CoA to acetoacetate,
which is important during sterol biosynthesis in mitochondria.
In human liver cells HL shows dual localization in mitochondria
and peroxisomes. Peroxisomal HL still contains the N-terminal
mitochondrial signal sequence, suggesting that dual localization
of HL results from an intricate balance between mitochondrial
and peroxisomal uptake (Ashmarina et al., 1999).

Another protein with competing signals is type II NAD(P)H
dehydrogenase. This enzyme is typically located at the inner
mitochondrial membrane but is also found in chloroplasts or
peroxisomes (Xu et al., 2013). Three of the seven Arabidopsis
thaliana genes encoding type II NAD(P)H dehydrogenases (ND)
give rise to proteins which are dually targeted both to mito-
chondria and peroxisomes. These proteins carry an additional
C-terminal signal for peroxisomal targeting. Intracellular distri-
bution of the ND proteins with competing signals was shown to
depend on the affinity of their signal sequences for their respective
receptors/chaperones (Carrie et al., 2008).

If proteins contain competing targeting signals, localization
studies with fluorescent proteins may result in ambiguous results.
A number of A. thaliana acyl-activating enzymes localize either
to peroxisomes or to other compartments depending on whether
the fluorescent reporter protein was fused at the N- or the C-
terminus (Hooks et al., 2012). Therefore it is still unclear whether
these proteins occur outside of peroxisomes also in the natural
situation.

Competition between the two targeting signals may also be
affected by environmental factors. Catalase A (Cta1) of S. cere-
visiae contains in addition to a non-canonical mitochondrial
targeting signal, two peroxisomal targeting signals, an internal
signal and a C-terminal PTS1 (Petrova et al., 2004). Both PTSs
were shown to be sufficient to target Cta1 to peroxisomes (Kragler
et al., 1993). The distribution of Cta1 between peroxisomes and
mitochondria is influenced by growth conditions. In the presence
of nutrients enhancing H2O2 formation, like oleic acid, catalase A
is predominantly targeted to peroxisomes. In contrast, cultivation
of yeast in raffinose leads to increased mitochondrial localization
of Cta1. However, the molecular base for this differential targeting
is still obscure (Petrova et al., 2004).

PROTEINS CARRYING REGULATED OR INEFFICIENT PTS
In all examples discussed above, multiple targeting signals are
involved in dual localization residing either concomitantly in a
single polypeptide or in different isoforms. In the case of proteins
that occur both in peroxisomes and the cytoplasm alternative
mechanisms may operate. Dual localization can also result from
modified or weak PTS1 signals leading to inefficient import into
peroxisomes. Partial peroxisomal localization is difficult to visu-
alize with fluorescent marker proteins, since cytoplasmic fluores-
cence usually prevents detection of the peroxisomal localization.
Therefore this type of dual targeting is likely to be missed in
microscopic studies. For the similar case of partial mitochondrial
targeting a lacZ-complementation assay has been successfully
applied to verify dual targeting (Ben-Menachem et al., 2011).
Photobleaching of the cytosolic fraction can also be used to
visualize partial peroxisomal localization (Buch et al., 2009).
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In the NAD+-dependent glycerol 3-phosphate dehydrogenase
(Gpd1) of S. cerevisiae, protein modification via phosphorylation
is used to interfere with peroxisomal targeting (Jung et al., 2010).
Gpd1 catalyzes the conversion of dihydroxyacetone phosphate
(DHAP) to glycerol 3-phosphate (G3P) to cope with osmotic
stress (Merkel et al., 1982; Chen et al., 1987). Gpd1 harbors an
N-terminal PTS2, however, the subcellular distribution of Gpd1
depends on environmental factors. Upon osmotic cell stress,
Gpd1 is relocated to both the cytosol and the nucleus. This
altered localization is triggered by phosphorylation of two serine
residues close to the PTS2, thus impairing peroxisomal import
(Jung et al., 2010). In A. thaliana, peroxisomal import of glucose-
6-phosphate dehydrogenase (G6PD1) is triggered by redox signal-
ing and results in relocalization of G6PD1 from chloroplasts to
peroxisomes. In this case, formation of a disulfide bridge allows
recognition of an internal PTS (Meyer et al., 2011).

A weak/non-canonical PTS1 motif has recently been shown
to be critical for proper folding of a PTS1 bearing protein due
to prolonged duration of cytosolic localization prior to transfer
into peroxisomes (Williams et al., 2012). Especially the import
of proteins bearing non-canonical PTS1 motifs may depend
on correct protein folding. Even minor misfolding may result
in cytosolic localization as was demonstrated for the alanine-
glyoxylate aminotransferase (AGT) of humans (Fodor et al.,
2012). AGT is known to exhibit a variable distribution in
mitochondria and/or peroxisomes in a variety of mammalian
species (Danpure, 1997). Similarly, the non-canonical PTS1 motif
of human epoxide hydrolase triggers peroxisomal import as a
function of concentration and quaternary structure of the pro-
tein (Arand et al., 1991; Enayetallah et al., 2006; Luo et al.,
2008).

Recent comprehensive studies of the peroxisomal proteome
revealed additional proteins that have been previously annotated
as cytosolic. Especially in plant peroxisomes, a variety of proteins
with unconventional PTS1-motifs has been identified (Reumann
et al., 2007; Reumann, 2011). Some of these proteins turned out
to reside exclusively in peroxisomes, while others localize in the
cytoplasm as determined by microscopy (Reumann et al., 2009).
But this does not prove that these proteins are cytosolic since
a minor fraction may reside in peroxisomes. At least for one of
these proteins, a glutathione reductase, carrying a quite unusual
PTS1 (-TNL), partial targeting to peroxisomes was demonstrated
(Kataya and Reumann, 2010).

In fungi, proteome studies confirmed the partial peroxiso-
mal localization of glycolytic enzymes and revealed a further

candidate, fructose-bisphosphate aldolase (FBA) (Kiel et al., 2009;
Managadze et al., 2010). Partial peroxisomal targeting of FBA is
presumably mediated by a conserved C-terminal non-canonical
PTS1-like motif (Kiel et al., 2009; Freitag et al., 2012). In U. may-
dis, this motif is able to trigger complete peroxisomal import
if fused as a dodecamer to GFP, while a full-length GFP-FBA
fusion protein results in cytoplasmic fluorescence. This suggests
that partial peroxisomal import requires additional features of
the protein that interfere with recognition of the unconven-
tional PTS1. The combination of bioinformatic and experimental
strategies revealed a heterogeneity of functional PTS1 motifs
both in plants and fungi (Reumann, 2011; Freitag et al., 2012).
Taken together these data indicate that partial peroxisomal tar-
geting may occur more often than previously assumed. It has
even been suggested that all cytosolic proteins may be found in
any organelle at least in tiny amounts probably due to mistar-
geting. This hypothesis was proposed to explain the transfer of
whole metabolic pathways from one compartment to another
during evolution e.g. that of glycolysis in trypanosomes (Martin,
2010).

CONCLUDING REMARKS
The large variety of mechanisms leading to dual targeting of per-
oxisomal proteins (summarized in Figure 1) suggests that the
metabolic capacity of peroxisomes might have been underesti-
mated in the past. This idea is supported by the recent discovery of
several hitherto unrecognized peroxisomal metabolic pathways.
These include glycolysis in fungal peroxisomes, biotin synthesis in
plants and fungi, as well as biosynthesis of secondary metabolites
such as siderophores and antibiotics (Bartoszewska et al., 2011;
Magliano et al., 2011; Tanabe et al., 2011; Freitag et al., 2012;
Grundlinger et al., 2013). Especially for mammals, knowledge of
the role of peroxisomes appears to be far from being complete
(Schrader and Fahimi, 2008; Islinger et al., 2012). We envision
that also in mammals the metabolic capacity of peroxisomes may
be of greater variability with dual targeting playing a growing role.
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