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Abstract—A fully photolithographic dual threshold voltage
(Vr) organic thin-film transistor (OTFT) process suitable for
flexible large-area integrated circuits is presented. The near-
room-temperature (< 95 °C) process produces integrated dual
Vr pentacene-based p-channel transistors. The two V’s are en-
abled by using two gate metals of low (aluminum) and high (plat-
inum) work function. The Al and Pt gate OTFTs exhibit nominally
identical current-voltage transfer curves shifted by an amount
AVr. The availability of a high-V device enables area-efficient
zero-Vgs high-output-resistance current sources, enabling high-
-gain inverters. We present positive noise margin inverters and
rail-to-rail ring oscillators powered by a 3-V supply—one of the
lowest supply voltages reported for OTFT circuits. These results
show that integrating n- and p-channel organic devices is not
mandatory to achieve functional area-efficient low-power organic
integrated circuits.

Index Terms—Digital integrated circuits, inverters, organic
compounds, thin-film transistors (TFTs).

1. INTRODUCTION

HIN-FILM transistors (TFTs) based on organic semicon-

ductors offer the potential of large-area mechanically flex-
ible integrated circuits due to their low temperature processing.
For this reason, organic TFTs (OTFTs) have received much
attention in the past ten years, during which there have been sig-
nificant advances in OTFT performance. Pentacene is currently
the organic semiconductor of choice for OTFTs due to its high
hole mobility and environmental stability. Mobilities have been
reported in excess of 1 cm?/Vs, equaling the performance of
amorphous silicon [1], [2].

Although pentacene OTFTs have been demonstrated with
impressive electronic performance, there have been very few
reports of functional digital OTFT circuits. OTFT technologies
make circuit design challenging for three reasons: 1) the ab-
sence of a complementary device; 2) the value of the V; and
3) the lack of resistors. To improve OTFT technology, a number
of technological enhancements have been proposed.
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The most obvious solution to this problem is to integrate an
n-channel device to create a complementary process. Although
organic semiconductors are typically hole transporters, small
molecule materials such as hexadecafluorocopperphthalo-
cyanine (F16CuPc) have been demonstrated to be suitable
electron transporters [3]. State-of-the-art organic digital circuits
were created by Klauk ef al. by shadow-mask patterning pen-
tacene and F4CuPc. Unfortunately, the use of shadow masking
prohibits patterning large areas with small features due to
bowing of the metal shadow mask. Yan et al. also report printed
hole and electron transporting semiconductors but employed
shadow masking in the device fabrication [4]. In addition, the
integration of an n-channel device is only clearly advantageous
if the electron mobility is comparable with the hole mobility of
pentacene. For example, the electron mobility in [3] is 30x less
than the hole mobility.

Another approach is to fabricate OTFTs with top and bot-
tom gates, one of which is used to control the threshold
voltage. Conventional enhancement-mode devices with back
gates have been demonstrated in inverters with improved noise
margins [5], [6]. This process requires the control of both
pentacene—dielectric interfaces to achieve reproducible gate
control. The added complexity and second power supply make
this method unattractive.

In this paper, we present a dual-gate metal process to achieve
integrated pentacene OTFTs with two threshold voltages. The
current—voltage transfer characteristics of the aluminum and
platinum devices are nominally identical but shifted by AVr.
To the best of the author’s knowledge, this is the first report
of OTFT Vr control by changing gate materials. The high-
work-function platinum gate device exhibits a high Vr (i.e.,
more depletion like) and, by shorting its gate to source, can
be used as an area-efficient current source with high output
resistance. The integrated process is used to fabricate inverters
and ring oscillators and can support the design of analog
circuits such as amplifiers and comparators. These dual Vp
circuits use 30x less area than a single V7 implementation,
assuming a trip voltage of Vpp /2. Powered by a 3-V supply,
the nonoptimized inverter was measured to have a noise margin
low (NMp,) of 1.3 V, a noise margin high (NMy) of 0.3 V,
and a current of 8 pA at the switching point. An 11-stage
ring oscillator swings near rail-to-rail (0.05-2.85 V), with an
inverter delay of 27 ms. Due to the low voltage operation and
the small feature size enabled by photolithography, this paper
has significantly better power-delay products than other works
[3]. The inverters shown here use one of the lowest Vpps of any
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OTFT technology, photolithographically processed or not [4],
[7]1-[10].

II. DUAL V7 PROCESS FLOW

A near-room-temperature (< 95 °C) photolithographic
process is used to fabricate integrated bottom-gate bottom-
contact dual Vi OTFTs. The process is implemented using
glass substrates, but its low temperature allows the use of
flexible substrates. The process flow is depicted in Fig. 1, along
with a photograph of a finished wafer.

All fabrication steps are done in a class 100 clean room.
Float glass wafers (100 mm) are first cleaned in a 3:1 HyO5 :
H3SO, (piranha) solution for 10 min. The high-Vr (more
depletion-like) gate pattern is transferred by image reversal
photolithography, followed by a descum for 10 min in a bar-
rel asher. Ti (25 nm) followed by Pt (45 nm) is electron-
beam evaporated. The wafers are immersed in acetone and
left overnight. A sonication in fresh acetone completes the
liftoff process. Image reversal photolithography is next done
for the low-V gate (more enhancement-like) in the same man-
ner. After descum, 70 nm of Al is electron-beam evaporated.
Liftoff is done in the same way as the Pt gate. After removal
from acetone, the wafers are rinsed in deionized (DI) water,

Source/drain layer

Semiconductor and
blanket deposited

(pentacene and parylene)

Pattern semiconductor
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Process flow for integrated dual V- OTFTs and photograph of a finished 100-mm wafer.

blown dry with nitrogen, and immediately loaded for dielectric
deposition.

Parylene-C, an organic polymer, is used as the gate dielec-
tric. Parylene (130 nm) (Galaxyl) is deposited by hot filament
chemical vapor deposition while the substrate remains at room
temperature. The run-to-run variation of the gate dielectric
thickness is about 5%. We have not concentrated on optimizing
this yet.

Via holes are patterned by photolithography and a reactive
ion etch in oxygen plasma. Photoresist is stripped by immersion
in a solvent photoresist stripper (Microstrip 2001), followed by
a DI wafer rinse and nitrogen blow dry.

Au (40 nm) is deposited by electron-beam evaporation and
patterned by standard photolithography. Since the process is
not self-aligned, a gate—source and gate—drain overlap of 5 ym
is included. The gold layer is wet etched in a solution of
5:1 H20O:Transene TFA gold etchant (KI/I5). The photoresist
is removed with Microstrip, and the wafers are rinsed in DI
water and blown dry. Pentacene (10 nm) is thermally evaporated
at 0.5 nm/min. Since the dielectric and the semiconductor of the
two Vr devices are processed at the same time, we expect nom-
inally identical dielectric—semiconductor interfaces for both
devices. The pentacene deposition is immediately followed by a
200-nm blanket deposition of parylene-C. The parylene serves
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Fig. 2. (a) Measured linear transfer curves for adjacent W/ L = 200 um/15 pm sized Al and Pt OTFTs at Vpg = —1 V. (b) Measured semilogarithmic transfer
curves for the same 200 pm/15 pm OTFTs at Vpg = —1 V. The V7 is extracted by drawing a straight line fit in the subthreshold region and taking the voltage
at which it pulls away. In this case, V7 o1 = —0.5 V, V py = 0.1 V. The Pt device conducts 100x more current at Vg = 0 than the Al device.

as an encapsulant and prevents pentacene from exposure to
subsequent solvent processing [11]. The pentacene—parylene
stack is patterned photolithographically and etched in oxygen
plasma, thereby defining the active region for each OTFT.

III. DUAL Vp DEVICE PERFORMANCE

The fabricated devices are electrically characterized using
an Agilent 4156C semiconductor parameter analyzer. Current—
voltage and capacitance—voltage measurements are taken to ex-
tract device parameters such as Cyy, subthreshold slope, contact
resistance, and mobility. The Cy is 22.3 nF/cm?, and at a Vsa
of 3 V, we measure a typical mobility of ~0.01 cm?/Vs [12].
We observe no difference in these parameters compared with
the standard single V7 photolithographic process previously
reported [13]. In addition, no difference in these parameters
is observed between the Al and Pt gate devices. We observe
a variation between the as-drawn and measured device width
of 2 pum. Therefore, we choose 20 pm as the minimum device
width in circuit designs. The channel length is patterned via a
different wet chemical etch, and optical microscopy indicates
that the fabricated channel length differs from the as-drawn by
100 nm or less.

Fig. 2(a) plots the linear and semi-log transfer characteristics
for typical dual Vi devices. The threshold voltage is extracted
by applying a linear fit to the subthreshold regime in the semi-
log curve and noting the Vzg at which the I-V pulls away from
the line. This process is shown in Fig. 2(b). The current—voltage
curves are nominally identical, except shifted by an amount we
call AVp. A consistent AVp of 0.6 V is observed over multiple
wafers and lots. In each die, we extract the Vi of the Al and
Pt gate devices and the shift in V7 between them AV, Table I
shows the mean and standard deviation of the threshold voltages

and AVrp.
The flatband condition for the TFT is written as
Q
VT = ((bGate - (I)Pentacene) - C ! (1)
Gate

where @) ¢ is the fixed charge (in coulombs per square centime-
ter) at the pentacene—parylene interface [6]. Since these devices
operate in accumulation, we have referred to this voltage as Vp

TABLE 1
STATISTICS OF Vir AND AV ACROSS THREE WAFERS. Vi EXTRACTED
AS SHOWN IN FIG. 2. FOUR TO FIVE DIES MEASURED PER WAFER

Parameter Wafer 1 Wafer 2 Wafer 3
Mean Vp Al- -0.43V -0.46 V -0.72V
Gate
Std. Dev. Vp 0.10 0.09 0.15
Al- Gate
Mean V1 Pt- +0.23V +0.08 V 016V
Gate
Std. Dev. V1 0.10 0.08 0.15
Pt- Gate
Intra-die +0.65V +0.54 V +0.56 V
Mean AV
Intra-die Std. 0.06 0.05 0.09
Dev. AVyp

to be consistent with OTFT literature. The work function values
are referenced to the vacuum level.

By writing (1) for both metal gate devices, inserting the work
functions of platinum and aluminum, and taking the difference,
one can calculate the expected V- difference between the two
devices. Assuming uniform pentacene potential and parylene
thickness across the wafer and no variation in fixed charge, the
difference in flatband voltages should be proportional to the
difference in metal work functions. Using work functions of
5.65 and 4.28 eV for platinum and aluminum, respectively, one
would expect a difference in V- between devices to be around
1.3V [14].

We suggest two reasons for the difference in expected and
observed threshold voltages. It is known that the presence of
water on a metal surface will change the surface potential [15],
[16]. Contamination of the metal surfaces through processing
or residual water layers on the gates may lead to the effective
work function difference of 0.6 V.

IV. INVERTER DESIGN AND CHARACTERISTICS

Conventional OTFT technologies are resistorless and con-
tain a single Vp p-channel device. The lack of a high-
output-resistance load makes designing inverters and amplifiers



3030

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 57, NO. 11, NOVEMBER 2010

30—

25}
V. | W/L 20/30 20t

=
V., 5 1.5
2
D W/L 50/5 1.0}
05}
— 0.0k
0.0

Fig. 3.
0.3 V, noise margin low (NM) =13V, Vpp =3 V.

difficult. In a p-channel-only process, there are two approaches
one could take: use 1) a diode-connected OTFT load or 2) a
zero-Vggs load [17].

Diode-load inverters have asymmetric transfer characteristics
and low gain, making it difficult to achieve positive noise mar-
gins [7]. The zero-Vg load provides a higher output resistance
and thus higher gain, while allowing the inverter to be designed
to trip near Vpp /2. Given the gate-voltage-dependent mobility
in OTFTs, the zero-Vg load must be significantly wider than
the driver to achieve positive noise margins [12], [18]. Not only
does this make the area of the inverter large, it also increases
the Cop of the load transistor, decreasing the inverter speed.
A dual threshold voltage technology alleviates this problem by
enabling area-efficient high-output-resistance zero-Vgg current
sources. Since the Pt gate device sinks 100 x more current than
the Al device at Vgg = 0, using the high V7 device as the load
reduces its area by two orders of magnitude.

An area-minimized inverter schematic is shown in Fig. 3.
Hand calculations were used to size the devices. The inverter
was designed to maximize noise margins and trip at Vpp /2
while also minimizing the area. The measured transfer curve is
asymmetric, as are the noise margins, since the fabricated load
device’s Vr was 200 mV more negative than was used in the
hand designs.

The dual V7 inverter uses 30 x less area and reduces the load
capacitance by 17x compared with a single Vr implementa-
tion, assuming the single V- topology is sized such that V;; =
Vbp/2. The measured inverter characteristics are pictured in
Fig. 3. The inverter was found to have a noise margin high of
0.3 V and a noise margin low of 1.3 V when powered by a 3-V
supply [19]. The Pt gate device’s V was slightly more negative
than was used in hand calculations, causing the inverter to
trip at 1.8 V instead of at 1.5 V. The load would need to be
twice as wide (W = 100 pum, L = 5 pm) to trip at 1.5 V. The
current at the trip point Vin = Vour was 8 pA. The off currents
(Vin =0V, Vin = Vpp) were 9 pA and 480 fA, respectively.

If the inverter was instead optimized for speed and not area,
then we estimate that an inverter delay of 7.7 ms would be
expected with a driver W/L = 20 pm/5 pm and load W/L =
300 pm/5 pm while sinking 48 pA at its trip point.

These results compare favorably to state-of-the-art shadow-
masked organic complementary metal-oxide—semiconductor

1.0 2.0 3.0
Vin V1

(a) Dual Vi inverter with low V7 driver and high Vi zero-Vgg load. (b) Measured transfer characteristics Vpp = 3 V. Noise margin high (NMpg) =

digital circuits. The dual V7 inverter presented here uses 40x
less area, 10000x less switching current, and 10-20x less
static current (Vin = 0 V, Vin = Vpp, respectively) compared
with the complementary inverters reported in [4]. The dual
Vr inverter’s power-delay product is over 50x lower at 5.6 x
10713 J compared with an estimated 3 x 10~ ! J. The improved
power-delay product is due to the small feature sizes enabled by
using a photolithographic process.

It should be noted that integrating an n-channel device
does not necessarily improve performance compared with the
p-channel-only dual Vi process. In the dual V- design, the load
is sized with a W/ L of 15x larger than the driver in order for
the inverter to trip at Vpp/2. If we were to replace the zero-
Vs load with an NMOS device, then assuming a symmetric
Vr with the p-channel TFT, the NMOS would need to be sized
Z times wider than that p-channel driver. Z is equal to the ratio
of the PMOS hole mobility to the NMOS mobility Z = pup, / fie.-
Therefore, an n-channel device would only be clearly superior
to the zero-Vgg load if Z < 15.

V. RING OSCILLATOR

An 11-stage ring oscillator with output buffer is fabricated
and tested using the dual V7 process. The inverter topology is
the same design as shown in Fig. 3. The circuit schematic for
the ring oscillator is shown in Fig. 4.

The ring oscillator is powered by a 3-V supply. Fig. 5
plots the measured 1.7-Hz waveform, which corresponds to
an inverter propagation delay of 27 ms [20]. In comparison,
the inverter propagation delay reported in [3] is 2.3 ms, and
700 ps in [10]. Despite our small feature size, the gate de-
lay is larger in the dual V7 implementation due to the low
mobility. This is a result of the unoptimized pentacene depo-
sition and poorer charge transport compared with other films
reported [1]-[3]. This is in part due to our bottom-contact
device architecture, which is necessary to ensure compatibility
with standard photolithography. In addition, it has been widely
reported that the vertical electric field increases mobility, and
these devices operate at lower vertical fields than other reports
[3], [10].

The ring oscillator output swings from 0.05 to 2.85 V.
Although other OTFT ring oscillators have been published,
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delay of 27 ms. Vpp =3 V.

many do not swing near rail-to-rail and thus are not an accurate
measure of the inverter propagation delay.

VI. CONCLUSION

A near-room-temperature process with two gate metals for
integrated dual V7 OTFTs has been introduced. Devices are
electrically characterized and are found to be nominally identi-
cal but shifted by AV = 0.6 V.

An area-minimized integrated dual Vr inverter is fabricated
and characterized, offering 30x area savings over a single V7
topology. The inverter has NMy = 0.3 V and NM; =13V
and uses ~24 pW of power with a 3-V supply.

An 11-stage ring oscillator using the inverter design is fab-
ricated and tested, demonstrating rail-to-rail operation and an
inverter delay of 27 ms.
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