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Abstract. In this study, the dual complex numbers defined as the dual
quaternions have been considered as a generalization of complex numbers.
In addition, the dual unitary matrices that are more general form than
unitary matrices were obtained. Finally, the group of the dual symplectic
matrices was attained by using symplectic structure upon dual quater-
nions. In particular, the group of symplectic matrices that are isomorphic
to dual unitary matrices was studied.
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1 Introduction

The algebra H = {q = a01 + a1i+ a2j + a3k : a0, a1, a2, a3 ∈ R} of quaternions is
defined as the 4-dimensional vector space over R having a basis {1, i, j, k} with the
following properties

i2 = j2 = k2 = −1 , ij = −ji = k.

It is clear that H is an associative and not commutative algebra and 1 is the identity
element of H. A quaternion q = a01 + a1i+ a2j + a3k is pieced into two parts with

scalar piece Sq = a0 and vectorial piece
−→
Vq = a1i+a2j+a3k.We also write q = Sq+

−→
Vq.

The conjugate of q = Sq+
−→
Vq is then defined as q = Sq−

−→
Vq. We call a quaternion pure

if its scalar part vanishes. The pure quaternions form the three-dimensional linear
subspace ImH = {a1i+ a2j + a3k : a1, a2, a3 ∈ R} = {q ∈ H : q = −q} ofH spanned

by {i, j, k} . Summation of two quaternions q = Sq +
−→
Vq and p = Sp +

−→
Vp is defined

as q + p = (Sq + Sp) +
(−→
Vq +

−→
Vp

)
.Multiplication of a quaternion q = Sq +

−→
Vq with a

scalar λ ∈ R is defined as λq = λSq + λ
−→
Vq. In addition,quaternionic multiplication of

two quaternions q = a01 + a1i+ a2j + a3k and p = b0 + b1i+ b2j + b3k is defined

qp = SqSp −
⟨−→
Vq,

−→
Vp

⟩
+ Sq

−→
Vp + Sp

−→
Vq +

−→
VqΛ

−→
Vp,

where
⟨−→
Vq,

−→
Vp

⟩
= a1b1 + a2b2 + a3b3 ,

−→
VqΛ

−→
Vp = (a2b3 − a3b2) i − (a1b3 − a3b1) j +

(a1b2 − a2b1) k. Thus, with this multiplication operation, H is called real quaternion
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algebra[5]. Quaternionic multiplication satisfies the following properties as in [6]: For
any two quaternions q and p we have qp = pq and the formula for the inner product
⟨q, p⟩ = qp+pq

2 . In particular, if q = p, we obtain |q|2 = ⟨q, q⟩ = qq, the usual Lengith-
Identity. With this, the quaternionic inverse of a nonzero quaternion q ∈ H can be
written as q−1 = q

|q|2 . The 3-sphere S3 ⊂ H in quaternionic calculus is like the unit

circle S1 ⊂ C in complex calculus. In fact,

S3= {q ∈ H: |q| = 1}

constitutes a group under quaternionic multiplication; this is an immediate conse-
quence of the fact that quaternionic multiplication is normed as |qp| = |q| |p| .

Definition 1. Each element of the set

D =
{
A = a+ εa∗ : a, a∗ ∈ R and ε ̸= 0, ε2 = 0

}
= {A = (a, a∗) : a, a∗ ∈ R}

is called a dual number. A dual number A = a + εa∗ can be expressed in the form
A = ReA + εDuA, where ReA = a and DuA = a∗.The conjugate of A = a + εa∗ is
defined as A = a−εa∗. Summation and multiplication of two dual numbers are defined
as similar to the complex numbers but it is must be forgotten that ε2 = 0.Thus, D is
a commutative ring with a unit element [3].

Definition 2. The ring

HD = {Q = A0 +A1i+A2j +A3k : A0, A1, A2, A3 ∈ D}

of is defined as the 4-dimensional vector space over D having a basis {1, i, j, k} with
the same multiplication property of basis elements in real quaternions. Each element
of HD is called a dual quaternion,dual numbers A0, A1, A2, A3 are called components
of dual quaternion Q. A quaternion Q = A0 + A1i + A2j + A3k is pieced into two

parts with scalar piece SQ = A0 and vectorial piece
−→
VQ = A1i+ A2j + A3k. We also

write Q = SQ +
−→
VQ. Moreover, any dual quaternion Q can be written in the form

Q = q + εq∗,where q, q∗ ∈ H. The conjugate of Q = SQ +
−→
VQ is then defined as

Q = SQ −
−→
VQ. We call a dual quaternion pure if its scalar part vanishes. The pure

dual quaternions form the three-dimensional linear subspace

ImHD = {A1i+A2j +A3k : A1, A2, A3 ∈ D} =
{
Q ∈ HD : Q = −Q

}
of HD spanned by {i, j, k} [4].

Summation of two dual quaternions Q = SQ +
−→
VQ and P = SP +

−→
VP is defined

as Q + P = (SQ + SP ) +
(−→
VQ +

−→
VP

)
. Multiplication with a scalar λ ∈ R of a dual

quaternion Q = SQ +
−→
VQ is defined as λQ = (λA0) + (λA1)i + (λA2)j + (λA3)k.In

addition,dual quaternionic multiplication of two dual quaternions Q = SQ +
−→
VQ and

P = SP +
−→
VP is defined

QP = SQSP −
⟨−→
VQ,

−→
VP

⟩
+ SQ

−→
VP + SP

−→
VQ +

−→
VQΛ

−→
VP .
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Thus, with this multiplication operator, HD is called dual quaternion algebra[4]. Dual
quaternionic multiplication satisfies the following properties: For any two quaternions

Q and P we have QP = PQ and the formula for the inner product ⟨Q,P ⟩ = QP+PQ
2 .

In particular, if Q = P , we obtain |Q|2 = ⟨Q,Q⟩ = QQ, the usual Lengith-Identity.
With this, the dual quaternionic inverse of a dual quaternion Q ∈ HD that its scalar

part is nonzero can be written as Q−1 = Q
|Q|2 . The 3-dual sphere

S3
D = {Q ∈ HD: |Q| = 1} ⊂ HD

constitutes a group under dual quaternionic multiplication; this is an immediate con-
sequence of the fact that dual quaternionic multiplication is normed as |QP | = |Q| |P |.

The dual quaternion operator. Multiplication of two unit dual quaternions−→
A0 and

−→
B0 is as follows;

−→
A0 ×

−→
B0 = −

⟨−→
A0,

−→
B0

⟩
+
−→
A0Λ

−→
B0 = − cosΘ +

−→
S sinΘ

where Θ = θ+θ∗ is the dual angle between the unit dual quaternions
−→
A0 and

−→
B0, and−→

S = s0 + εs∗0 =
−→
A0Λ

−→
B0∥∥∥−→A0Λ
−→
B0

∥∥∥ is a unit vector which is ortogonal to both
−→
A0 and

−→
B0. Also

each unit dual quaternion corresponds to a directed line. In adition, the conjugate

K(
−→
A0 ×

−→
B0) of

−→
A0Λ

−→
B0 is

K(
−→
A0 ×

−→
B0) =

−→
B0 ×

−→
A0 = −(cosΘ +

−→
S sinΘ) = −

−→
Q0

and the inverses
(−→
A0

)−1

and
(−→
B0

)−1

respectively of
−→
A0 and

−→
B0 are

(−→
A0

)−1

=
K−→

A0

N−→
A0

= −
−→
A0 ,

(−→
B0

)−1

=
K−→

B0

N−→
B0

= −
−→
B0.

Thus, we can write

−→
Q0 = −(

−→
B0 ×

−→
A0) =

(−→
B0

)−1

×
−→
A0 =

−→
B0 ×

(−→
A0

)−1

,

where
−→
Q0 = cosΘ +

−→
S sinΘ is unit dual quaternion.Thus, the following operator

Θ →
−→
Q0 = cosΘ +

−→
S sinΘ is called dual quaternion operator. Hence, we can say

that the expression
−→
Q0 =

−→
B0 × (

−→
A0)

−1 than
−→
B0 = Q0 × −→

A0 which is found by left

side multiplication of
−→
A0 by

−→
Q0 rotates

−→
A0 around the axes

−→
S with a dual angle Θ.

Since Θ = θ+ εθ∗, a rotation of angle θ, a slide of θ∗ occurs and θ∗

θ is the step. This
statement, we can show in the following figure.

2 Dual unitary matrices and unit dual quaternions

In this section, we will firstly define the dual complex numbers similar to the complex
numbers and express the dual quaternions as the dual complex numbers.
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Figure 1: Screw motion

Definition 3. We know that the complex numbers set

C =
{
z = a+ bi : a, b ∈ R and i2 = −1

}
= {z = (a, b) : a, b ∈ R}

has field structure. Now define the set CD as

CD =
{
Z = A+Bi : A,B ∈ D and i2 = −1

}
= {Z = (A,B) : A,B ∈ D} .

Each element of CD is called a dual complex number. A dual complex number
Z = A + Bi can be expressed in the form Z = DuZ + εImZ, where DuZ = A and
ImZ = B. The conjugate of Z = A+ Bi is defined as Z = A− Bi. Summation and
multiplication of any two dual complex numbers Z = A + Bi and W = C +Di are
defined in the following ways,

Z +W = (A+ C) + (B +D)i = (A+ C,B +D)

and

Z.W = (A+Bi)(C +Di) = (AC −BD) + (AD +BC)i = (AC −BD,AD +BC).

We can give matrix representation of multiplying the dual complex numbers Z and
W as [

A −B
B A

] [
C
D

]
.

Thus, CD is a commutative ring with a unit element. Since for any dual complex
number Z = A+Bi, where A,B ∈ D we can write A = a+εa∗ and B = b+εb∗, where
a, a∗, b, b∗ ∈ R. In particular it a∗ = b∗ = 0, then Z = A + Bi becomes Z = a + bi
since A = a and B = b, where a, b ∈ R and i2 = −1. Namely, Z is a complex number,
i.e. Z ∈ C. Hence we obtain C ⊂ CD.

We can give the polar form of dual complex numbers as complex numbers. Let
Z = A+Bi be a unit dual complex number. Then, we get A2+B2 = 1, since |Z| = 1.
Writing A = a+ εa∗ and B = b+ εb∗, we obtain a2 + b2 = 1, ab∗ + ba∗ = 0. Thus, the
unit dual complex number Z = A+ Bi can also be written as Z = cosΘ + i sinΘ =
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eiΘ.Let Z = A0+A1i and W = B0+B1i be unit dual complex numbers. Thus, we can
write W = eiθZ such that hence eiθ is called the dual complex number operator, Now,
we show this. The unit dual complex numbers Z = A0 +A1i and W = B0 +B1i can
also be writen as Z = cosΘZ + i sinΘZ = eiΘZ and W = cosΘW + i sinΘW = eiΘW

,where cosΘZ = A0 , sinΘZ = A1 and cosΘW = B0 , sinΘW = B1. Then

W

Z
=

cosΘW + i sinΘW

cosΘZ + i sinΘZ

= cos(ΘW −ΘZ) + i sin(ΘW −ΘZ) = ei(ΘW−ΘZ).

For Θ = ΘW −ΘZ , one can obtain

W

Z
= eiΘ ⇒ W = eiΘZ.

Thus, the operator Θ → eiΘ = cosΘ+ i sinΘ is called dual complex number operator.
Multiplication a dual complex number by eiΘ means a rotation by the dual angle

Θ around the origin of this dual complex number in dual complex plane. If the dual
pieces of unit dual complex numbers Z = A0+A1i and W = B0+B1i are taken zero,
we obtain z = a0 + a1i and w = b0 + b1i, where a0, a1, b0, b1 ∈ R. Hence, it can be
founded that

Z = cos θZ + i sin θZ = eiθZ and W = cos θW + i sin θW = eiθW .

For θ = θW − θZ it can be written

W

Z
= ei(θW−θZ) = eiθ ⇒ W = eiθZ.

This latter statement is usualy known to be the rotation by an real angle θ around
the origin on complex plane.

Matrix representation of the dual quaternions

We define the set

HD1 =
{
Q = A0 +A1i : A0, A1 ∈ D and i2 = −1

}
as a subset of dual quaternions HD. HD1 is a subalgebra with the same operations of
HD. Furthermore, there is a one-to-one correspondence between every dual quaternion
(A0 +A1i) ∈ D and complex number

(
A0 +A1

√
−1
)
∈ CD. Hence, HD1

and CD

are isomorphic, i.e. HD1
∼= CD. Thus, the algebra HD contains a field which is

isomorphic to CD. Therefore, with the operation

HD
(Q,

× CD
B+C

√
−1)

→ HD
Q(B+C

√
−1)

HD is a module over CD. However, we will consider this structure as a vector space.
Since any dual quaternion Q = A0 + A1i + A2j + A3k over dual complex numbers
can be written in the form Q = (A0 + A1i) + j(A2 − A3i). Hence, the vector space
HD onto CD is 2-dimensional. From here it is clear that HD = Sp {1, j} . If q∗ is
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taken to be 0, i.e q∗ = 0,since Q = q in any dual quaternion Q = q + εq∗;q, q∗ ∈ H
then H ⊂ HD. Thus, ıf HD and H correspond to CD and C, respectively, we obtain
H ∼= C since the real quaternion q = a01+a1i+a2j+a3k can be written in the form
q = (a0 + a1i) + j(a2 − a3i).

The following operator

T : HD → Hom(HD,HD)

is used to obtain matrix representation of dual quaternions.For every Q ∈ HD, we
describe the transformation as,

TQ : HD
P

→ HD
TQ(P )=QP

If dual quaternion product is considered, it can be easily seen that the operators
linear. Thus, the set

Hom(HD,HD) = {TQ : Q ∈ HD}

becomes a module over CD that will be considered as a vector space. If Q = A0 +
A1i + A2j + A3k for any Q ∈ HD, take A = A0 + A1i and B = A2 − A3i, since for
any Q ∈ HD we can write Q = 1A+ jB ∈ HD, then

TQ(1) = Q = 1A+ jB

TQ(j) = Qj = (1A+ jB)j = 1(−B) + jA

where TQ is the corresponding matrix over CD obtained by the transformation.
Hence,

TQ =

[
A −B
B A

]
Thus, the transformation Q ↔ TQ is the 2 × 2 matrix representation of the algebra
HD over the dual complex numbers module CD If the dual pieces of the dual numbers
A0, A1, A2, A3 in dual quaternion Q = A0 + A1i + A2j + A3k are taken zero, a real
quaternion in the form Q = q = a01 + a1i+ a2j + a3k is obtained. It can be written
as Q = q = 1(a0 + a1i) + j(a2 − a3i) or Q = q = 1a+ jb since H ∼= C,where a, b ∈ C
and a = a0+a1i, b = a2−a3i.The matrix corresponding to the real quaternion Q = q
can be found as

TQ = Tq =

[
a −b
b a

]
Thus, the 2× 2 matrix representation of algebra H over complex numbers field C is
obtained. Consider the set of matrices,

M2 (CD) =

{[
A −B
B A

]
: A,B ∈ CD

}
define an transformation as,

f : HD
Q

→ M2 (CD)
f(Q)=TQ

.
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Thus, let us show that f (QP ) = f(Q)f(P ) or TQP = TQTP . For Q = A0 + A1i +
A2j +A3k and P = B0 +B1i+B2j +B3k

QP = SQSP −
⟨−→
VQ,

−→
VP

⟩
+ SQ

−→
VP + SP

−→
VQ +

−→
VQΛ

−→
VP

= A0B0 − (A1B1 +A2B2 +A3B3) + (A0B1 +A1B0 +A2B3 −A3B2) i

+(A0B2 +A2B0 +A3B1 −A1B3) j + (A0B3 +A1B2 −A2B1) k

is obtained. Then, we can write

Q = (A0 +A1i) + j (A2 −A3i) , P = (B0 +B1i) + j (B2 −B3i)

QP = [(A0B0 − (A1B1 +A2B2 +A3B3)) + (A0B1 +A1B0 +A2B3 −A3B2) i]

+j [(A0B2 +A2B0 +A3B1 −A1B3)− (A0B3 +A3B0 +A1B2 −A2B1) i] .

Hence,

TQ =

[
A0 +A1i −A2 −A3i
A2 −A3i A0 −A1i

]
, TP =

[
B0 +B1i −B2 −B3i
B2 −B3i B0 −B1i

]

TQP = [
A0B0 − (A1B1 +A2B2 +A3B3) + (A0B1 +A1B0 +A2B3 −A3B2) i
(A0B2 +AA2B0 +A3B1 −A1B3)− (A0B3 +A3B0 +A1B2 −A2B1) i

− (A0B2 +A2B0 +A3B1 −A1B3)− (A0B3 +A3B0 +A1B2 −A2B1) i
A0B0 − (A1B1 +A2B2 +A3B3)− (A0B1 +A1B0 +A2B3 −A3B2) i

]

is found. Since

TQTP =

[
A0 +A1i −A2 −A3i
A2 −A3i A0 −A1i

] [
B0 +B1i −B2 −B3i
B2 −B3i B0 −B1i

]
= [

(A0 +A1i) (B0 +B1i) + (−A2 −A3i) (B2 −B3i)
(A2 −A3i) (B0 +B1i) + (A0 −A1i) (B2 −B3i)

(A0 +A1i) (−B2 −B3i) + (−A2 −A3i) (B0 −B1i)
(A2 −A3i) (−B2 −B3i) + (A0 −A1i) (B0 −B1i)

]

= [
A0B0 − (A1B1 +A2B2 +A3B3) + (A0B1 +A1B0 +A2B3 −A3B2) i
(A0B2 +A2B0 +A3B1 −A1B3)− (A0B3 +A3B0 +A1B2 −A2B1) i

− (A0B2 +A2B0 +A3B1 −A1B3)− (A0B3 +A3B0 +A1B2 −A2B1) i
A0B0 − (A1B1 +A2B2 +A3B3)− (A0B1 +A1B0 +A2B3 −A3B2) i

]

, TQP = TQTP or f(QP ) = f(Q)f(P ). Thus, the isomorphism HD
∼= M2 (CD) is

found. If for MD the set of matrices M2(C) =

{[
a −b
b a

]
: a, b ∈ C

}
and for HD

the algebra of real quaternions H are substituted, since the dual pieces of Q and
P are equal to zero Q = q = a0 + a1i + a2j + a3k, P = p = b0 + b1i + b2j + b3k
will be obtained. Hence, the special condition Tqp = TqTp is obtained that gives the
isomorphism H ∼= M2(C).
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Matrix representation of the unit dual sphere

The set

S3
D = {Q = (A0 +A1i) + j (A2 −A3i) : Q ∈ HD}

=
{
Q = A0 +A1i+A2j +A3k : Q ∈ HD, A2

0 +A2
1 +A2

2 +A2
3 = 1

}
is named as unit dual sphere in HD. The set S3

D is a group with quaternion product.
Also taken the special dual uniter group

SU2 (D) =

{
K =

[
A −B
B A

]
: K ∈ MD, (KT )K = I2,detK = 1

}
instead of MD.

Theorem 4. The groups S3
D and SUD (2) are isomorphic.

Proof. We define the transformation

g : S3
D
Q

→ SUD (2)
g(Q)=TQ

Firstly; this transformation is well defined. Because, for Q = A0+A1i+A2j+A3k ∈
S3
D, A2

0 +A2
1 +A2

2 +A2
3 = 1. Hence,

TQ =

[
A0 +A1i −A2 −A3i
A2 −A3i A0 −A1i

]
⇒
(
TT
Q

)
=

[
A0 −A1i A2 +A3i
−A2 +A3i A0 +A1i

]
.

Thus, it is found that TQ ∈ SU2 (D) since(
TT
Q

)
TQ =

[
A0 −A1i A2 +A3i
−A2 +A3i A0 +A1i

] [
A0 +A1i −A2 −A3i
A2 −A3i A0 −A1i

]
= [

(A0 −A1i) (A0 +A1i) + (A2 +A3i) (A2 −A3i)
(−A2 +A3i) (A0 +A1i) + (A0 +A1i) (A2 −A3i)

(A0 −A1i) (−A2 −A3i) + (A2 +A3i) (A0 −A1i)
(−A2 +A3i) (−A2 −A3i) + (A0 +A1i) (A0 −A1i)

]

=

[
A2

0 +A2
1 +A2

2 +A2
3 0

0 A2
0 +A2

1 +A2
2 +A2

3

]
=

[
1 0
0 1

]
= I2

and

det (TQ) = det

[
A0 +A1i −A2 −A3i
A2 −A3i A0 −A1i

]
= (A0 +A1i) (A0 −A1i)− (−A2 −A3i) (A2 −A3i)

= A2
0 +A2

1 +A2
2 +A2

3 = 1.

Now, we show that g (QP ) = g (Q) g (P ) or TQP = TQTP for the function

g : S3
D
Q

→ SUD (2)
g(Q)=TQ

,
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where any Q,P ∈ S3
D. We know that for any Q,P ∈ S3

D;Q,P ∈ HD then f (QP ) =
f (Q) f (P ) or TQP = TQTP .From here g (QP ) = g (Q) g (P ) is obtained. Thus, the

isomorphism S3
D

∼= SUD (2) is found.

If the dual pieces of dual quaternion Q ∈ S3
D are taken zero, Q = q = a01 + a1i+

a2j + a3k becomes a real quaternion. Hence, Q = q ∈ S3. So, for the matrix

TQ = Tq =

[
a0 + a1i −a2 − a3i
a2 − a3i a0 − a1i

]
,

(TqT )Tq = I2 and det (Tq) = 1. This give us the isomorphism S3 ∼= SU (2) .
If the imaginary pieces of real quaternion

q = a01 + a1i+ a2j + a3k

= (a0 + a1i) + j (a2 − a3i)

are taken zero, the complex number q = a0 + ja2 ∈ C is obtained, where a0, a2 ∈ R
and a20 + a22 = 1. Then,

Tq =

[
a0 −a2
a2 a0

]
,which gives (TqT ) = TT

q ,
(
TqT

)
(Tq) = I2 and det (Tq) = 1. Thus, the isomorphism

S1 ∼= SO (2) is found.

Definition 5. Let HD be the algebra of dual quaternions; n being an integer greater
than zero, we denote by Hn

D the product of n sets identical to HD. Elements of the
set

Hn
D = HD ×HD × ...×HD

=
{−→
U = (u1, u2, ..., un) : ui ∈ HD, 1 ≤ i ≤ n

}
will be called a (dual quaternionic) vector; u1, u2, ..., un will be called the coordinates
of this vector[2].

The addition of vectors and the scalar product in HD is defined by

+ : Hn
D

(
−→
U ,

× Hn
D →
−→
V )

Hn
D−→

U+
−→
V =(u1,u2,...,un)+(v1,v2,...,vn)

and
· : Hn

D

(
−→
U ,

× HD →
Q)

HD−→
UQ=(u1q,u2q,...,unq)

.

Thus, Hn
D becomes a modul over HD. But with this structure we will call a vector

space for Hn
D. The transformation

⟨, ⟩ : Hn
D

(
−→
U ,

× Hn
D →
−→
V )

HD⟨−→
U ,

−→
V

⟩
=

n∑
i=1

Kuivi

is symplectic product onto Hn
D, where U = (u1, u2, ..., un) and V = (v1, v2, ..., vn)

are dual quaternionic vectors. Symplectic product over Hn
D has similar properties
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with Hermitian product. That is to say; The symplectic product have the following
properties ⟨−→

U +
−→
V ,

−→
W
⟩

=
⟨−→
U ,

−→
W
⟩
+
⟨−→
V ,

−→
W
⟩

⟨−→
U ,

−→
V +

−→
W
⟩

=
⟨−→
U ,

−→
V
⟩
+
⟨−→
U ,

−→
W
⟩

⟨−→
U ,

−→
V Q

⟩
=

⟨−→
U ,

−→
V
⟩
Q ,

⟨−→
UQ,

−→
V
⟩
= KQ

⟨−→
U ,

−→
V
⟩
,

where any vectors
−→
U ,

−→
V ,

−→
W ∈ Hn

D and any quaternion Q ∈ HD. Hence

⟨−→
U ,

−→
U
⟩
=

n∑
i=1

Kuiui =
∥∥∥−→U ∥∥∥ ,

where
∥∥∥−→U ∥∥∥ is a dual number and this number is called the norm of

−→
U .

Definition 6. The vector spaceHD on which a symplectic product is defined is called
a dual symplectic vector space.

A linear endomorphism
σ : HD → HD

of the vector space HD is a mapping that have the following properties

σ
(−→
U +

−→
V
)
= σ

(−→
U
)
+ σ

(−→
V
)
, σ
(−→
UQ

)
= σ

(−→
U
)
Q,

where any vectors
−→
U ,

−→
V ∈ Hn

D and any quaternion Q ∈ HD. Hence, the linear endo-
morphism of Hn

D are in a one-to-one correspondence with the matrices (Qij) which
components are in HD. We shall denote by the same symbol σ the endomorphism
itself and the corresponding matrix. If σ = (Qij) and τ = (Pij) are two of these
matrices, we denote (as usual) by στ the matrix (sij) with

(sij) =

(
n∑

k=1

QijPkj

)

and then we have στ = σ ◦ τ , i.e. (στ)
(−→
U
)
= σ

(
τ
−→
U
)
for every vector

−→
U ∈ HD. the

set of all matrices of degree n with coefficients in HD will be denoted by Mn (HD)[2].

Definition 7. Let Hn
D be a dual symplectic vector space. If the linear endomorphism

σ : Hn
D → Hn

D has the following property⟨
σ
(−→
U
)
, σ
(−→
V
)⟩

=
⟨−→
U ,

−→
V
⟩

for every vectors
−→
U ,

−→
V ∈ Hn

D, σ is called a symplectic mapping over HD[1].

Proposition 8. If σ is a symplectic mapping, σ has the invers σ−1 and σ−1 is also
a symplectic mapping[1].
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Theorem 9. Let σ be a symplectic mapping over Hn
D. If Q = (qij) is the corre-

sponding matrix of σ,Q satisfies the following equality(
Kt

Q

)
Q = In,

where In is the unit matrix with n type.

Proof. Let the vector space Hn
D be spanned by the n linearly independent vectors

−→e1 ,−→e2 , ...,−→en; where −→ei is the vector whose j th coordinate is δij . We may write
⟨σ−→e1 , σ−→ej ⟩ = ⟨−→ei ,−→ej ⟩ to be the linear endomorphism σ : Hn

D → Hn
D for σ−→ei =∑n

j=1
−→ej qji and σ−→ek =

∑n
s=1

−→esqsk. Hence ,we obtain⟨
n∑

j=1

−→ej qji,
n∑

s=1

−→esqsk

⟩
= (δik)

n∑
j,s=1

Kqji ⟨−→ej ,−→es⟩ qsk =
n∑

j=1

Kqjiqjk = (δik)

n∑
j=1

(
Kqji

)t
qjk = (KQ)

t
Q = I.

Definition 10. The group of symplectic mappings onto Hn
D which are isomorphic

to the group of matrices are called group of symplectic matrices and denoted in the
following form as in[1]

Sp(n,HD) =
{
σ ∈ Mn(HD) : (Kσ)

t
σ = In

}
.

If we choose n = 1 as a special case, we obtain

Sp(1,HD) =
{
σ ∈ M1(HD) : (Kσ)

t
σ = 1

}
= {σ ∈ M1(HD) : Nσ = 1}
= S3

D.

Then, Sp(1,HD) ∼= S3
D is found. If σ ∈ Sp(1,HD), it is the form

σ =

[
A0 +A1i −A2 −A3i
A2 −A3i A0 −A1i

]
and (Kσ)

t
σ = 1.

If the dual pieces of σ are taken zero, σ ∈ Sp(1,H) since

σ =

[
A0 −A2

A2 A0

]
=

[
a0 + a1i a2 − a3i
a2 − a3i a0 − a1i

]
.

Furthermore, it is found σ ∈ S3 since (Kσ)
t
σ = 1 or Nσ = 1. Hence, the isomorphism

Sp(1,H) ∼= S3 is obtained. Now, let the imaginary pieces of σ be zero. For σ =[
a0 −a2
a2 a0

]
, we find Kσ = σ. Since (Kσ)

t
σ = 1 than σtσ = 1, we find σ ∈ S1. Thus,
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the isomorphism Sp(1,C) ∼= S1 is obtained. Finally, we may write the followings ın
general:

SUD (2) ∼= S3
D

∼= Sp (1,HD) .

As a special case of this statement we find

SU (2) ∼= S3 ∼= Sp (1,H) .

It also obtained as a special case of this last statement that

SO (2) ∼= S1 ∼= Sp (1,C) .
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Ankara Üniversitesi, Fen Fakültesi,
Matematik Bölümü, Ankara, Turkey.
E-mail: yyayli@science.ankara.edu.tr


