
ar
X

iv
:1

11
0.

25
47

v2
  [

he
p-

th
] 

 2
0 

O
ct

 2
01

1

Preprint typeset in JHEP style - HYPER VERSION

Dualities for 3d Theories with Tensor Matter

Anton Kapustin 1, Hyungchul Kim 2, Jaemo Park2,3

1 California Institute of Technology, Pasadena, CA 91125, USA

2Department of Physics, POSTECH, Pohang 790-784, Korea
3Postech Center for Theoretical Physics (PCTP), Postech, Pohang 790-784,

Korea

E-mail: kapustin@theory.caltech.edu, dakiro@postech.ac.kr,

jaemo@postech.ac.kr

Abstract: We study dualities for N = 2 3d Chern-Simons matter theories

with gauge groups U/Sp/O, matter in the two-index tensor representations (ad-

joint/symmetric/antisymmetric) in addition to the fundamental representation, and

a superpotential. These dualities are analogous to Kutasov-Schwimmer-Seiberg du-

alities in 4d. We test them by computing the superconformal index and the partition

function on S3 for many dual pairs and find perfect agreement. In some cases we

find a simple dual description for theories with tensor matter and no superpotential,

thereby generalizing the ”Duality Appetizer” of Jafferis and Yin to an infinite class of

theories. We also investigate nonperturbative truncation of the chiral ring proposed

in the context of 4d dualities.

http://arxiv.org/abs/1110.2547v2
mailto:kapustin@theory.caltech.edu, dakiro@postech.ac.kr, jaemo@postech.ac.kr
mailto:kapustin@theory.caltech.edu, dakiro@postech.ac.kr, jaemo@postech.ac.kr


Contents

1. Introduction 1

2. The partition function and the superconformal index 2

3. 3d dualities with tensor matter 5

3.1 U(N) with an adjoint 5

3.2 O(N) with an adjoint 11

3.3 Sp(2N) with an antisymmetric tensor 14

3.4 U(N) with an antisymmetric tensor 18

3.5 U(N) with a symmetric tensor 20

3.6 Sp(2N) with an adjoint 21

3.7 O(N) with a symmetric traceless tensor 22

4. Concluding remarks 24

1. Introduction

Recently, there has been renewed interest in nonperturbative dualities between three

dimensional theories such as mirror symmetry and Seiberg-like dualities. This is

explained in part by the availability of sophisticated tools such as the partition func-

tion on S3 and the superconformal index. Using these tools, one can give impressive

evidence for various 3d dualities. Some of works in this area are [1]-[19]. One can

also obtain the R-charge of the fields by maximizing the free energy of the theory of

interest [20].

In this paper we continue this line of research and study Seiberg-like dualities

for N = 2 d = 3 gauge theories with classical gauge groups and matter both in

the fundamental and the two index tensor representations. Many of these proposed

dualities can be motivated using the Hanany-Witten brane setup and brane moves

passing through configurations with coincident NS5 branes [21, 22]. Similar dualities

for N = 1 d = 4 theories have been studied in the 90’s by Kutasov and collaborators

[23, 24, 25] and others [26, 27, 28]. We explore various 3d gauge theories with classical
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groups U/O/Sp and with matters in adjoint/symmetric/antisymmetric representa-

tions combined with fundamental representations and propose dual descriptions for

them. We subject these dualities to various tests such as the comparison of the S3

partition functions and the superconformal indices.

Theories with matter in the tensor representations are far more complicated

than those with just the fundamental matter. In 4d, to simplify the analysis, the

superpotential for the matter in tensor representations is introduced so that the

chiral ring is truncated. To this date, the dual description of such theories without

the superpotential is not known. In 3d one can also introduce the Chern-Simons

coupling. In some cases we propose a dual description of a 3d gauge theory which has

no superpotential but has a nonzero Chern-Simons coupling instead. The simplest

example of this sort is essentially the ”Duality Appetizer” found by Jafferis and

Yin [8]. We propose several infinite series of dualities which generalize the ”Duality

Appetizer”. In all these dualities a nontrivial looking nonabelian gauge theory is

mapped to a theory of free chiral multiplets. From the viewpoint of the nonabelian

gauge theory, the R-symmetry of the free chiral multiplets is accidental (the Jafferis-

Yin example is an exception in this regard). This gives a plethora of models where

the F-maximization procedure [20, 29] fails because of the presence of an accidental

R-symmetry.

Another peculiar feature worthy of mention is the nonperturbative truncation

of the chiral rings. It has been proposed in [24] that quantum effects lead to new

relations in the chiral ring. Without this quantum truncation the duality cannot

work. The index computation allows us to see that such truncation does indeed

occur in 3d N = 2 theories and clarifies its mechanism.

The content of the paper is as follows. In section 2, we briefly review the tools

we use (the partition function on S3 and the superconformal index). In section 3, we

handle seven cases of Seiberg-like dualities for theories with matter in both tensor

and fundamental representations and a superpotential. All these dualities have 4d

analogues, cf. [28]. We give evidence for the conjectured dualities by working out the

partition function and the superconformal index. For three classes of these theories

we also propose a dual description of the theory without the superpotential thereby

generalizing the Jafferis-Yin duality [8]. Section 4 contains some additional remarks.

2. The partition function and the superconformal index

The S3 partition function for N = 2 d = 3 superconformal gauge theories with

general R-charges was worked out in [20, 30] by generalizing the localization approach

of [31]. Consider a theory with gauge groupG and chiral multiplets in representations

Ri. Such a theory typically flows to an IR fixed point at which chiral multiplets can

have noncanonical conformal dimensions. N = 2 superconformal symmetry requires
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the dimension of a chiral field to be equal to its R-charge, so instead of conformal

dimensions we can equally well talk about R-charges. Let us denote the R-charge of

the scalar field in the chiral multiplet by ∆i. The partition function on S3 is given

by

Z =

∫

∏

Cartan

eiπTr u
2

∏

ρ(u)∈RG

(2 sinh πρ(u))
∏

ρ(u)∈Ri

el(1−∆i+iρ(u)). (2.1)

The integration is over the Cartan subalgebra of the gauge group G. For example, for

G = U(N) we have integration variables ua with a = 1, . . . , N . Tr denotes the trace

over Chern-Simons term, which is normalized such that for U(N) at Chern-Simons

level k, it is k times the ordinary trace. The factor
∏

ρ(u)∈G(2 sinh πρ(u)) comes from

the one-loop contribution from the vector multiplets. The product runs over the roots

of the gauge group G. Thus for G = U(N) we get a factor
∏

1≤a<b≤N(2 sinh π(ua −
ub))

2. The remaining terms come from the 1-loop contribution of matter multiplets,

where the product runs over all matter representations Ri and all weights of Ri. The

function l(z) is given by

l(z) = −z log(1− e2πiz) +
i

2

(

πz2 +
1

π
Li2(e

2πiz)

)

− iπ

12
. (2.2)

It can also be defined as the unique solution of dl(z)/dz = −πz cot(πz) satisfying

l(0) = 0. Thus for G = U(N) one chiral multiplet in the fundamental representation

contributes a factor
∏N

a=1 e
(l(1−∆+iua)). As argued in [20], the partition functions

of dual theories should agree as a function of R-charges ∆i. If a superpotential is

present, there is an additional constraint on ∆i coming from the requirement that

the superpotential have R-charge 2.

Next let us discuss the superconformal index for N = 2 d = 3 superconformal

field theories (SCFT). The bosonic subgroup of the 3-d N = 2 superconformal group

is SO(2, 3)× SO(2). There are three Cartan elements denoted by ǫ, j3 and R which

come from three factors SO(2)ǫ × SO(3)j3 × SO(2)R in the bosonic subgroup, re-

spectively. The superconformal index for an N = 2 d = 3 SCFT is defined as follows

[32]:

I(x, y) = Tr(−1)F exp(−β ′{Q, S})xǫ+j3
∏

j

y
Fj

j (2.3)

where Q is a special supercharge with quantum numbers ǫ = 1
2
, j3 = −1

2
and R = 1,

and S = Q†. The trace is taken over the Hilbert space in the SCFT on R × S2 (or

equivalently over the space of local gauge-invariant operators on R
3). The operators

S and Q satisfy the following anti-commutation relation:

{Q, S} = ǫ− R− j3 := ∆. (2.4)

As usual, only BPS states satisfying the bound ∆ = 0 contribute to the index,

and therefore the index is independent of the parameter β ′. If we have additional
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conserved charges Fj commuting with the chosen supercharges (Q, S), we can turn

on the associated chemical potentials yj, and then the index counts the algebraic

number of BPS states weighted by their quantum numbers.

The superconformal index is exactly calculable using the localization technique

[33, 34]. It can be written in the following form:

I(x, y) =

∑

m

∫

da
1

|Wm|
e−S

(0)
CS

(a,m)eib0(a,m)
∏

j

y
q0j(m)
j xǫ0(m) exp

[

∞
∑

n=1

1

n
ftot(e

ina, yn, xn)

]

(2.5)

The origin of this formula is as follows. To compute the trace over the Hilbert

space on S2 ×R, we use path-integral on S2 ×S1 with suitable boundary conditions

on the fields. The path-integral is evaluated using localization, which means that we

have to sum or integrate over all BPS saddle points. The saddle points are spherically

symmetric configurations on S2×S1 which are labeled by magnetic fluxes on S2 and

holonomy along S1. The magnetic fluxes are denoted by {m} and take values in

the cocharacter lattice of G (i.e. in Hom(U(1), T ), where T is the maximal torus

of G), while the eigenvalues of the holonomy are denoted {a} and take values in

T . S
(0)
CS(a,m) is the classical action for the (monopole+holonomy) configuration on

S2×S1, ǫ0(m) is the Casmir energy of the vacuum state on S2 with magnetic flux m,

q0j(m) is the Fj-charge of the vacuum state, and b0(a,m) represents the contribution

coming from the electric charge of the vacuum state. The last factor comes from

taking the trace over a Fock space built on a particular vacuum state. |Wm| is the

order of the Weyl group of the part of G which is left unbroken by the magnetic

fluxes m . These ingredients in the formula for the index are given by the following

explicit expressions:

S
(0)
CS(a,m) = i

∑

ρ∈RF

kρ(m)ρ(a), (2.6)

b0(a,m) = −1

2

∑

Φ

∑

ρ∈RΦ

|ρ(m)|ρ(a),

q0j(m) = −1

2

∑

Φ

∑

ρ∈RΦ

|ρ(m)|Fj(Φ),

ǫ0(m) =
1

2

∑

Φ

(1−∆Φ)
∑

ρ∈RΦ

|ρ(m)| − 1

2

∑

α∈G

|α(m)|,

ftot(e
ia, y, x) = fvector(e

ia, x) + fchiral(e
ia, y, x),

fvector(e
ia, x) = −

∑

α∈G

eiα(a)x|α(m)|,

fchiral(e
ia, y, x) =

∑

Φ

∑

ρ∈RΦ

[

eiρ(a)
∏

j

y
Fj

j

x|ρ(m)|+∆Φ

1− x2
− e−iρ(a)

∏

j

y
−Fj

j

x|ρ(m)|+2−∆Φ

1− x2

]

– 4 –



where
∑

ρ∈RF
,
∑

Φ,
∑

ρ∈RΦ
and

∑

α∈G represent summations over all fundamental

weights of G, all chiral multiplets, all weights of the representation RΦ, and all roots

of G, respectively. For G = O(N) we need to carry out an additional Z2 projection

corresponding to an element of O(N) whose determinant is −1. This is explained in

[13].

3. 3d dualities with tensor matter

3.1 U(N) with an adjoint

The following duality has been proposed in [2, 3, 16]:

• Electric theory: U(Nc)k gauge group,Nf pairs of fundamental/anti-fundamental

chiral superfields Qa, Q̃b(where a, b denote flavor indices), an adjoint superfield

X , and the superpotential We = TrXn+1.

• Magnetic theory: U(n(Nf+k)−Nc)−k gauge theory, Nf pairs of fundamental/anti-

fundamental chiral superfields qa, q̃
a, Nf × Nf singlet superfields (Mj)

a
b , j =

1, · · · , n, an adjoint superfield Y and a superpotentialWm = Tr Y n+1+
∑n

j=1Mj q̃Y
n−jq.

Here it is assumed that k > 0. We will call this the Niarchos duality. It is a 3d

analog of the Kutasov-Schwimmer-Seiberg duality [23, 24, 25]. In the absence of

a superpotential these theories are superconformal, with scaling dimensions of the

fields depending on k. It is assumed that n is such that the superpotential is a

relevant perturbation of both electric and magnetic theories which drives the theory

to a new IR fixed point. Below we will compute in some cases the dimension of X

using F -maximization and determine the range of n for which this is true.

We denote the R-charge of Q by R(Q) = r. Superconformal R-charges of both

X and Y are 2
n+1

due to the superpotential. Duality is supposed to map chiral ring

generators TrXj to Tr Y j , j = 1, . . . , n − 1, and QaXj−1Q̃b to (Mj)
a
b , j = 1, . . . , n.

This determines R(q) = 2
n+1

− r, R(Mj) =
2(j−1)
n+1

+ 2r. Note that for n = 1, one can

integrate out X and Y , and the conjectured duality reduces to Seiberg-like duality

with only fundamental and anti-fundamental fields [1].

Let us first consider Nf = 0 and k = 1. The proposed duality says that U(Nc)1
Chern-Simons theory with an adjoint X and W = TrXn+1 is dual to U(n − Nc)−1

theory with an adjoint Y and W = Tr Y n+1, where the subscript of the gauge group

denotes the Chern-Simons level. An intriguing special case is n = Nc, when the du-

ality conjecture says that the theory with gauge group U(Nc)1, an adjoint superfield

X and W = TrXNc+1 is dual to a trivial CFT (i.e. the theory is massive). Also, for

n < Nc the rank of the magnetic group is negative, which we interpret as a sign of

spontaneous breaking of supersymmetry, as in [35].
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To understand what is going on, let us set Nc = 2, i.e. let us consider U(2)1
with an adjoint and a superpotential W = TrX3. Since U(2) = (SU(2)× U(1))/Z2

and X is neutral with respect to the U(1) subgroup, the U(1) part of the gauge

multiplet is essentially a trivial TQFT and on a flat space-time can be ignored.

Further, v = TrX is a singlet with respect to the gauge group and couples to the

rest of the theory only through the superpotential. On the other hand, Jafferis

and Yin [8] provided strong evidence that SU(2)1 theory with an adjoint and no

superpotential is dual to a single free superfield. This superfield is dual to the

composite superfield u = Tr (X − 1
2
v)2.The superpotential deformation W = TrX3

can be expressed in terms of v and u as W = 1
4
v3 + 3

2
uv. Appealing to the Jafferis-

Yin duality, we see that in flat spacetime U(2)1 theory with W = TrX3 is dual to

a theory of two free superfields u, v perturbed by the above superpotential. This

superpotential has a unique nondegenerate critical point u = v = 0, hence it makes

the theory massive, as predicted by the duality. Furthermore, it is now clear why

deformations by W = TrX = v and W = TrX2 = u + 1
2
v2 break supersymmetry:

such superpotentials do not have critical points when written in terms of free fields

u and v.

Next one may ask if the duality continues to hold on more general manifolds.

It was already pointed out in [8] that the S3 the partition functions of SU(2)1 with

an adjoint and a free theory differ by a factor 1/
√
2 and that this factor can be

interpreted as a partition function of a decoupled U(1) Chern-Simons theory at

level 2. That is, it was proposed in [8] that perhaps the dual of SU(2)1 with an

adjoint is a free chiral superfield times the U(1)2 TQFT. We propose an alternative

interpretation of this factor. We move it to the other side and interpret
√
2 as the

partition function of U(1) Chern-Simons theory at level 1/2. This is suggested by the

fact that on S3, U(2)1 theory is equivalent to SU(2)1×U(1)1/2 theory.1 We propose

that U(2)1 with an adjoint and W = 0 is dual to a theory of two free superfields u

and v. As explained above, this leads to the correct behavior when perturbed by the

superpotential W = TrXn+1 for n = 0, 1, 2 (supersymmetry breaking for n = 0, 1

and massive theory for n = 2).

A generalization of the Jafferis-Yin duality to Nc > 1 should now be obvious. We

propose that U(Nc)1 gauge theory with an adjoint X and vanishing superpotential

is dual to a theory of Nc free fields u1, . . . , uNc
. The moduli spaces of both theories

are Nc-dimensional, and we identify ui with TrX i. Clearly, for any i perturbing

the magnetic side by W = ui leads to supersymmetry breaking, in agreement with

the fact that perturbing the electric theory by W = TrX i, i = 1, . . . , Nc, leads

to supersymmetry breaking. Furthermore, it is easy to see that W = TrXNc+1

1On a non-simply-connected manifold, a half-integral level would make the U(1) Chern-Simons

action not gauge-invariant, but on S3 it does not cause any problems because π1(X) = 0, and

therefore all gauge transformations are topologically trivial.
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expressed as a function of ui has a unique nondegenerate critical point u1 = . . . =

uNc
= 0, which means that perturbing the magnetic theory by such a superpotential

leads to a massive theory, again in agreement with the conjectured duality.

The simplest test of the generalized Jafferis-Yin duality is to consider the low-

energy limit of the theory at a generic point in the moduli space. Generically, the

gauge group is broken down to U(1)Nc , with all the U(1) factors having Chern-

Simons level 1. Since U(1) Chern-Simons theory at level 1 is essentially trivial [36],

the low-energy effective theory is the theory of Nc free fields (the moduli).2

Generalized Jafferis-Yin duality can be further tested by computing the par-

tition function on S3 or the superconformal index. The following subtlety has to

be kept in mind. If we denote the R-charge of X to be r, then the superfields

TrX,TrX2, · · · ,TrXNc have R-charge

r, 2r, · · · , Ncr (3.1)

respectively. However, we know that free chiral multiplets have R-charge 1
2
. Thus on

the electric side the correct superconformal R-symmetry is an accidental symmetry

which cannot be seen on the classical level. Consequently when we test the above

conjecture, on the magnetic side we should use the non-canonical R-charges for chiral

multiplets of the free theory as specified in eq. (3.1). We performed this computation

numerically forNc = 3, the results are displayed in Table 1. To the accuracy achieved,

the results agree with the duality prediction. For higher Nc the S
3 partition function

is difficult to evaluate because the integrand oscillates rapidly.

r 0.2 0.3 0.4 0.5 0.6 0.7

log |Z| -0.613634 -0.635679 -0.318126 0.000000 -0.163086 -0.326744

Table 1: S3 partition function of the U(3)1 theory with an adjoint superfield X and

W = 0 as a function of r = R(X). The result agrees to the accuracy achieved with

the partition function of three free chiral superfields with R-charges r, 2r, and 3r.

We also worked out the superconformal index for these theories. It is easy to

check that the superconformal index of the U(Nc)1 theory with matter in the adjoint

is the same as that of the SU(Nc)1 theory with an adjoint and an extra free superfield

(i.e. the U(1) factor in the gauge group may be simply ignored). For Nc = 2, 3 we

get:

1. SU(2)1 with one adjoint X of R-charge r ≈ One free chiral multiplet dual to

TrX2 with R-charge 2r

2The proposal of [8] that SU(2)1 theory with an adjoint is dual to a free theory times a decoupled

U(1)2 TQFT also passes this test, since along the moduli space SU(2)1 is broken down to U(1)2,

times the decoupled modulus field.

– 7 –



I = 1−x2 − 2x4 − 2x6 − 2x8 +x4r +x6r +x8r +x2r(1−x4 − 2x6)+x−2r(−x2 −
x4 + x8) + x−4r(x6 + x8) + . . .

2. SU(3)1 with one adjoint X of R-charge r ≈ Two free chiral multiplets dual to

TrX2, TrX3 with R-charge 2r, 3r

I = 1− 2x2 − 3x4 + x4−5r − x2−3r − x2−2r + x4r + x5r + 2x6r − 2x2+r + x3r(1−
2x2) + x2r(1− x2) + x−r(−x2 − x4) + . . .

For Nf > 0 we cannot get rid of the U(1) factor so easily. We test the duality

for several low values of Nf , Nc and k by computing the superconformal index, the

results are displayed in the Table 2. In all cases we checked the duality is confirmed.

For Nf = 0 we omit some duplicate cases which differ from the one displayed only

by a change of sign of k.

(Nf , k, Nc) Electric Magnetic

n = 2, Nf + k = 1 U(Nc) U(2−Nc) Index

(0,1,1) U(1) U(1) 1 + x2/3 + x8/3 − x4 + x14/3 + x16/3 − x6 +

x22/3 − x8 + . . .

(0,1,2) U(2) U(0) 1

n = 2, Nf + k = 2 U(Nc) U(4−Nc)

(0,2,1) U(1) U(3) 1 + x2/3 + x8/3 − x4 + . . .

(1,1,1) U(1) U(3) 1 + x2/3 + x8/3 + (1 + x2/3)x2r + x4r + . . .

(0,2,2) U(2) U(2) 1+x2/3+x4/3+x8/3+x10/3−x4+x14/3+ . . .

(1,1,2) U(2) U(2) 1+x2/3 + x4/3 + x4r + x2r(1+2x2/3 + x4/3) +

x−2r(−x8/3 − x10/3) + . . .

(1,1,3) U(3) U(1) 1 + x2/3 − x2 − x8/3 + x4r + x2r(1 + 2x2/3 +

x4/3) + x−2r(−x2 − x8/3 − x10/3) + . . .

n = 2, Nf + k = 3 U(Nc) U(6−Nc)

(0,3,3) U(3) U(3) 1 + x2/3 + x4/3 + x2 + x8/3 + 2x10/3 + . . .

(1,2,3) U(3) U(3) 1 + x2/3 + x4/3 − x2 − 3x8/3 − x
10
3
−2r + x4r +

x2r(1 + 2x2/3 + 2x4/3) + . . .

(2,1,3) U(3) U(3) 1+x2/3+x4/3−7x2−15x8/3−x4−4r−4x
10
3
−2r+

4x3−r+10x4r+4x
7
3
+r+x2r(4+8x2/3+8x4/3)+

. . .

n = 3, Nf + k = 1 U(Nc) U(3−Nc)

(0,1,1) U(0) U(3) 1

(0,1,1) U(1) U(2) 1+
√
x+x+x5/2+x3−x4+2x5+x11/2−x6+. . .

n = 3, Nf + k = 2 U(Nc) U(6−Nc)

(0,2,3) U(3) U(3) 1 +
√
x+ 2x+ 2x3/2 + x2 + x5/2 + 2x3 + . . .
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(1,1,3) U(3) U(3) 1+
√
x+2x+2x3/2+x2−x

5
2
−2r+x4r+x2r(1+

2
√
x+ 4x) + . . .

n = 4, Nf + k = 1 U(Nc) U(4−Nc)

(0,1,2) U(2) U(2) 1+x2/5+2x4/5+x6/5+x8/5+x12/5+2x14/5+. . .

(0,1,3) U(3) U(1) 1 + x2/5 + x4/5 + . . .

Table 2: Superconformal index for U(N) gauge theories with an adjoint and a su-

perpotential.

The S3 partition function for rank higher than 2 is difficult to evaluate because

the integrand oscillates rapidly. Apart from Nf = 0, the only case which we were

able to test using Mathematica is Nf = k = 1, Nc = 2 and W = TrX3. In this case

both the electric and magnetic gauge groups are U(2), but on the magnetic side there

are singlet fields Mj , j = 1, 2, which couple to q, q̃ and Y via a superpotential. The

partition functions agree well numerically; their values as a function of r = R(Q) are

displayed in Table 3.

r − 1/3 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

log |Z| -0.423782 -1.66927 -1.94454 -1.91804 -1.73155 -1.45191 -1.12236

Table 3: S3 partition function for U(2) theory with Nf = k = 1, an adjoint superfield

X , and a superpotential W = TrX3 as a function of r = R(Q). The dual theory is

the same, plus singlets M1,M2 coupled via a superpotential. The partition functions

of the electric and magnetic theories agree to the accuracy achieved.

Next, let us look at the chiral ring structure. We already discussed the action of

duality on the chiral ring generators. These generators also give identifiable contri-

butions to the index: the generator TrX i contributes a term x
2i

n+1 to the index, while

the matrix generator (Mj)
a
b contributes the term N2

f · x2r+ 2j
n+1 . Of course, products

of generators (if they are not Q-exact) also contribute to the index. For example,

for n = 2 the generators contribute as follows: TrX ∼ x2/3, (M1)
a
b ∼ N2

f · x2r and

(M2)
a
b ∼ N2

f · x2r+2/3 term. But TrX · (M1)
a
b has the same energy as (M2)

a
b . Thus

for Nc > 1 the total contribution to the index is 2N2
f · x2r+2/3. For Nc = 1 (M2)

a
b is

identical to TrX · (M1)
a
b , so the total contribution is N2

f · x2r+2/3.

Let us now discuss the nonperturbative truncation of the chiral ring. On the

classical level the relations in the chiral ring arise both from the superpotential and

the characteristic equation satisfied by X . Thus on the classical level the independent

generators among TrX i are those with i ≤ min(n−1, Nc). This may lead to a conflict

with duality, since in general the ranks of the electric and magnetic gauge groups are

different. In the 4d case, it was proposed in [24] that on the quantum level there are

additional relations in the chiral ring of the electric (resp. magnetic) theory coming
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from the magnetic (resp. electric) characteristic equation. In the 3d case, we are

able to check this for some dual pairs of theories.

We have seen already some examples of nonperturbative truncation for Nf = 0

and k = 1. For example, if Nc = 2 and n = 3, the electric chiral ring is spanned

classically by TrX and TrX2. But since the magnetic gauge group is U(1), the

magnetic characteristic equation imposes an extra relation Tr Y 2 = (Tr Y )2, which

means that there should be only one independent generator v = TrX satisfying the

relation v3 = 0. To see how this comes about, recall that by virtue of the Jafferis-

Yin duality the superpotential deformation TrX4 can be written in terms of free

superfields v = TrX and u = Tr (X− v/2)2 as u2/2+3uv2/2+ v4/8. This leads to a

chiral ring relation u = −3v2/2. Thus the quantum chiral ring is generated by v, as

predicted. The relation v3 = 0 is also reproduced since after expressing u through v

the superpotential becomes W = −v4.

Another example of nonpertubative truncation occurs for (n,Nf , k, Nc) = (4, 0, 1, 3).

The magnetic gauge group is U(1), thus duality predicts that on the quantum level

only TrX is an independent generator. On the classical level however the opera-

tors TrX , TrX2 and TrX3 are all independent. Superconformal index suggests a

mechanism for this truncation. The index on the electric side receives a contribution

2 · x4/5 from (TrX)2 and TrX2. But it also receives a contribution −x4/5 from the

monopole operator with magnetic flux (m1, m2, m3) = (−1, 0, 1). This suggests that

on the quantum level TrX2 “pairs” up with a monopole operator and disappears

(i.e. becomes either exact or not closed).

As mentioned above, the duality is expected to hold only for small enough n,

namely for those n for which W = TrXn+1 is a relevant deformation of the theory

with W = 0. Let us determine this range for Nc = 2 and several small values of Nf

and k. First of all, as discussed above, for Nf = 0 and k = 1 the IR dimensions of

v = TrX and u = Tr (X − v/2)2 are 1/2. Hence the superpotential W = TrXn+1 is

relevant for n < 6. For larger n it contains only irrelevant or marginally irrelevant

terms. For Nf = 0 and k = 2 we do not have a simple dual description of the theory

with W = 0 and so we do not know the exact scaling dimension of u (the scaling

dimension of v is always 1/2, because it is decoupled). However, we can determine

the dimension of u numerically using F -maximization.3 This gives R(u) ≃ 0.58

[8]. From this we conclude that the superpotential W = TrXn+1 is relevant for

n < 6. Similarly, for Nf = 1 and k = 1 F -maximization gives R(u) ≃ 0.54, hence

the superpotential W = TrXn+1 is relevant for n < 6. For large Nf and/or k the

theory becomes weakly-coupled and therefore R(u) approaches 1. Thus for Nf ≫ 1

or k ≫ 1 the superpotential W = TrXn+1 is relevant for n < 3.

3This procedure is valid only if the superconformal R-symmetry is not accidental. The fact

that log |Z| indeed has a minimum as a function of r and this minimum obeys the unitarity bound

provides some evidence that this is indeed the case.
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3.2 O(N) with an adjoint

The Kutasov-Schwimmer-Seiberg duality in 4d has been generalized to other classical

groups and types of two-index tensors in [26, 27, 28] . In the rest of this paper we

propose similar generalizations in 3d. In this subsection we consider replacing U(N)

with O(N). Specifically we propose that the following two N = 2 d = 3 Chern-

Simons theories are dual:

• Electric theory: O(Nc)k gauge theory with Nf fundamental chiral multiplets

Qa with a = 1, . . . , Nf , and an adjoint chiral multiplet X with a superpotential

We = TrX2(n+1).

• Magnetic theory: O((2n+ 1)(Nf + k) + 2 −Nc)−k gauge theory with Nf fun-

damental chiral multiplets qa with a = 1, . . . , Nf , an adjoint chiral multiplet

Y , color-singlet chiral multiplets Mab
j , j = 0, . . . , 2n, a, b = 1, . . . , Nf which are

symmetric (resp. anti-symmetric) for even (resp. odd) j, and a superpotential

Wm = Tr Y 2(n+1) +
∑2n

j=0M
ab
j qaY

2n−jqb.

This is an orthogonal version of the Niarchos duality. It is supposed to hold for

small enough n, so that the superpotential deformations TrX2n+2 and Tr Y 2n+2 are

relevant. R-charge assignments are given by R(Q) = r, R(q) = 1
n+1

− r, R(Mj) =
j

n+1
+ 2r, R(X) = R(Y ) = 1

n+1
. Note that for n = 0 the above duality is equivalent

to the duality considered in [9].

Let us begin by considering the case Nf = 0, k = 1. The above duality says

that O(Nc)1 gauge theory with an adjoint X and W = TrX2(n+1) is dual to O(2n+

3 − Nc)−1 gauge theory with an adjoint Y and W = Tr Y 2(n+1). If Nc = 2n + 3 or

Nc = 2n + 2, the dual theory is trivial (note that when the gauge group is O(1),

the adjoint is zero). If 2n + 3 < Nc, then the rank of the magnetic gauge group is

negative which we interpret as a sign that supersymmetry is spontaneously broken.

It turns out that some of these results follow naturally from an SO version of

the Jafferis-Yin duality:

• SO(2Nc + 2) gauge theory with Chern-Simons level 1, an adjoint chiral super-

field X and W = 0 is dual to a theory of Nc + 1 free chiral superfields σ2, σ4,

. . ., σ2Nc
and p.

This duality maps the chiral operator TrX2j to σ2j and the chiral operator PfX to

p. Thus if we assign X R-charge r, then σ2j should be assigned R-charge 2rj, and

p should have R-charge (Nc + 1)r. Note that this R-symmetry is not the supercon-

formal R-symmetry. The latter would assign R-charge 1/2 to all σ2j and p. The

superconformal R-symmetry is an accidental symmetry from the point of view of the

SO(2Nc + 2) gauge theory. This duality is partially motivated by the fact that the
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moduli space of the SO(2Nc + 2) gauge theory is parameterized by the expectation

values of the fields σ2j , j = 1, . . . , Nc and p which do not satisfy any constraints.

Note also that at a generic point in the moduli space the low-energy theory contains,

apart from moduli, Nc+1 copies of the SO(2) Chern-Simons theory at level 1. How-

ever, since the latter theory is essentially trivial [36], there is no contradiction with

the conjectured duality.

An orthogonal version of the Jafferis-Yin duality is obtained from the SO version

by gauging a discrete symmetry which acts by an automorphism of SO(2Nc + 2).

Under this Z2 symmetry the fields σ2j = TrX2j are even, while PfX is odd. Thus

the dual of O(2Nc + 2)1 gauge theory with an adjoint is a Z2 orbifold of the free

theory of superfields σ2j and p where the generator of Z2 flips the sign of p and

leaves all other superfields invariant.

Let us perturb both sides of the orthogonal Jafferis-Yin duality by a superpo-

tential W = TrX2(Nc+1). Thanks to the characteristic equation satisfied by X and

the identity detX = (PfX)2, this superpotential is a quadratic function of the fields

p, σ2j with a unique nondegenerate critical point p = σ2j = 0. Hence the IR limit

of the perturbed theory is trivial as expected. If instead we perturb the theory by

W = TrX2(n+1) with n = 0, 1, . . . , Nc − 1, the symmetry is broken spontaneously,

since in terms of dual free fields such a superpotential is a linear function. This

provides some evidence for the orthogonal version of the Jafferis-Yin duality.

As a further check let us verify that for smallNc the SO version of the Jafferis-Yin

duality follows from other known results. For Nc = 0 the electric theory becomes

a product of a free theory of a single chiral superfield X and U(1) Chern-Simons

theory at level 1. Since U(1)1 Chern-Simons theory is essentially trivial [36], this

agrees with the duality statement. For Nc = 1 the electric theory has gauge group

SO(4) = (SU(2)×SU(2))/Z2, and the adjoint of SO(4) is a sum of adjoints for each

SU(2) factor. Hence by virtue of the “Duality Appetizer” duality SO(4)1 theory

with an adjoint X is dual to a theory of two free chiral fields σ2 and σ′
2. For Nc = 2

the electric gauge group is SO(6) = SU(4)/Z2, so the statement of the SO duality

is essentially the same as the statement of the unitary Jafferis-Yin duality discussed

in the previous section.

The first case of SO Jafferis-Yin duality which does not reduce to any previously-

studied duality is when the electric gauge group is SO(8). To test it, we computed

the superconformal index of SO(8)1 and O(8)1 theories with an adjoint and W = 0,

the results are displayed below:

1. SO(8)1 with one adjoint X of R-charge r ≈ Four free chiral multiplets σ2, σ4,

σ6 and p with R-charges 2r, 4r, 6r, 4r.

I = 1− 11x2 − x2−6r − 3x2−4r − 6x2−2r + x2r + . . .
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2. O(8)1 one adjoint X of R charge r ≈ A Z2-orbifold of the theory of four free

chiral multiplets σ2, σ4, σ6 and p with R-charges 2r, 4r, 6r, 4r.

I = 1− 7x2 − x2−6r − 2x2−4r − 4x2−2r + x2r + . . .

For Nf > 1 or k > 1 we do not have a simple dual description of the theory

without the superpotential. For theories with the superpotential W = TrX2(n+1)

we worked out the superconformal index for several low values of Nf , Nc, k and n.

The results are displayed in Table 4 and are in complete agreement with the duality

predictions.

(Nf , k, Nc) Electric Magnetic

n = 1, Nf + k = 1 O(Nc) O(5−Nc) Index

(0,1,1) O(1) O(4) 1

(0,1,2) O(2) O(3) 1 + x+ x3 − x4 + . . .

n = 1, Nf + k = 2 O(Nc) O(8−Nc)

(0,2,2) O(2) O(6) 1 + x+ x3 + . . .

(1,1,2) O(2) O(6) 1+x+x3+x6r +x2r(1+x)+x4r(1+x)+ . . .

(0,2,3) O(3) O(5) 1 + x− x2 + 2x3 + 2x7/2 − 2x4 + . . .

(1,1,3) O(3) O(5) 1 + x− x3 + x6r + x4r(1 + 2x) + x2r(1 + 2x+

x2) + . . .

(0,2,4) O(4) O(4) 1 + x+ x2 + 2x3 + x5 + . . .

(1,1,4) O(4) O(4) 1 + x+ x2 − x3 − x3−2r + x6r + x4r(1 + 2x) +

x2r(1 + 2x+ 2x2) + . . .

(1,1,5) O(5) O(3) 1+x−2x3−5x4+x8r+x6r(1+2x)+x4r(1+

2x+3x2)+x2r(1+2x+2x2−x3)+x−2r(−x3−
x4) + . . .

(1,1,6) O(6) O(2) 1+x−x2− 2x3+x6r +x4r(1+2x)+x2r(1+

2x+ x2) + x−2r(−x2 − 2x3) + . . .

n = 1, Nf + k = 3 O(Nc) O(11−Nc)

(2,1,5) O(5) O(6) 1 + x− 3x2 + 6x4r + x2r(3 +
√
x+ 6x) + . . .

n = 2, Nf + k = 1 O(Nc) O(7−Nc)

(0,1,1) O(1) O(6) 1

(0,1,2) O(2) O(5) 1 + x2/3 + x4/3 + x8/3 + . . .

(0,1,3) O(3) O(4) 1 + x2/3 + x4/3 + x8/3 + . . .

n = 2, Nf + k = 2 O(Nc) O(12−Nc)

(0,2,6) O(6) O(6) 1 + x2/3 + 2x4/3 + 2x2 + . . .

(1,1,6) O(6) O(6) 1+x2/3+2x4/3+2x2+x8/3+(1+2x2/3)x6r+

x8r + x4r(1 + 2x2/3 +5x4/3) + x2r(1+ 2x2/3 +

4x4/3 + 5x2) + x−2r(−x8/3 − 2x10/3) + . . .
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Table 4: Superconformal index for O(N) gauge theories with an adjoint and a su-

perpotential.

In the case Nc = 3, k = 1, Nf = 1, n = 1 we also computed the S3 partition

function of both electric and magnetic theories and verified that they agree up to

a phase. The results of this computation are presented in Table 5. Note that for

Nf = 1 the singlet fields Mj on the magnetic side exist only for even j (one for each

even j, j = 0, . . . , 2n).

r 0.10 0.15 0.20 0.25 0.30 0.35 0.40

log |Z| -1.49400 -1.82653 -2.01289 -2.11015 -2.14535 -2.13404 -2.08640

Table 5: S3 partition function of the O(3)1 theory with one fundamental superfield

Q, an adjoint X , and W = TrX4, as a function of r = R(Q). The magnetic dual

theory has the same partition function to the accuracy achieved.

3.3 Sp(2N) with an antisymmetric tensor

In this section we consider a duality for Sp(2Nc) gauge theories with 2Nf funda-

mental superfields and an antisymmetric tensor superfield. 4 This theory was also

discussed in [37]. Let J be the invariant antisymmetric tensor in the product of the

2N -dimensional representation of Sp(2N) with itself. An antisymmetric tensor X

satisfies X t = −X . Note that Tr (XJ) is gauge-invariant, and therefore the antisym-

metric tensor representation is reducible: it decomposes into a singlet and the anti-

symmetric traceless tensor representation. The latter representation is irreducible.

The singlet part couples to the rest of the theory only through the superpotential.

A slightly different theory is obtained by requiring X to satisfy Tr(XJ) = 0. All the

results described below can be easily modified to accommodate this difference.

We propose the following dual pair:

• Electric: Sp(2Nc)k gauge theory with 2Nf fundamental chiral multiplets Qa,

a = 1, . . . , 2Nf , an antisymmetric chiral mutliplet X , and a superpotential

We = Tr (XJ)n+1;

• Magnetic: Sp(2
(

n(Nf + k − 1)− Nc

)

)−k gauge theory with 2Nf fundamental

chiral multiplets qa, a = 1, . . . , 2Nf , an antisymmetric chiral multiplet Y , and

4Our conventions are that Sp(2N) has rank N so that Sp(2) = SU(2). The number of funda-

mental superfields is taken to be even so that the Chern-Simons coupling is integral. If the number

of fundamentals were odd, cancelation of global anomalies would require the Chern-Simons coupling

to be half-integral.
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n ·Nf(2Nf − 1) singlet chiral multiplets Mab
j , j = 1, . . . , n with the superpo-

tential

Wm = Tr (Y J)n+1 +
n

∑

j=1

Mab
j qaJ(Y J)n−jqb.

This duality is supposed to hold for small enough n, so that the superpotential

deformations Tr (XJ)n+1 and Tr (Y J)n+1 are relevant. R-charge assignments are

R(Q) = r, R(q) = 2
n+1

− r, R(Mj) =
2(j−1)
n+1

+ 2r, R(X) = R(Y ) = 2
n+1

. The duality

maps the chiral ring generators Tr (XJ)j to Tr(Y J)j , j = 1, . . . , n− 1 and the chiral

ring generators QaJ(XJ)j−1Qb to Mab
j , j = 1, . . . , n.

As before we begin with the case Nf = 0. If we set the Chern-Simons level k to 2,

then Sp(2Nc)2 theory with W = Tr (XJ)n+1 is supposed to be dual to Sp(2(n−Nc))2
theory with W = Tr (Y J)n+1. Letting n = Nc, we are led to the conclusion that

Sp(2Nc)2 theory with W = Tr (XJ)Nc+1 is a trivial theory. Letting n < Nc we

conclude that Sp(2Nc)2 theory with W = Tr (XJ)n+1 for n < Nc breaks supersym-

metry spontaneously. This behavior suggests the following symplectic version of the

Jafferis-Yin duality:

• Sp(2Nc) gauge theory with Chern-Simons level k = 2, an antisymmetric tensor

X with R-charge r and zero superpotential is dual to a theory of Nc free chiral

multiplets with R-charges r, 2r, . . . , Ncr.

The simplest check of this duality is to note that at a generic point in the moduli

space the gauge group is broken down to Sp(2)Nc , where each Sp(2) = SU(2) factor

has Chern-Simons level 2. Apart from this TQFT, the only other fields in the low-

energy theory are the moduli with R-charges r, 2r, . . . , Ncr which correspond to

the chiral ring generators Tr (XJ)j for j = 1, . . . , Nc. Now we note that SU(2)2
Chern-Simons theory is trivial,5 therefore along the moduli space the duality holds

true.

Another simple check is to note that W = Tr (XJ)Nc+1 is a massive superpo-

tential when written in terms of free fields σj = Tr (XJ)j, j = 1, . . . , Nc. Hence this

deformation leads to a trivial theory. On the other hand, if we deform the theory

by adding a superpotential W = Tr (XJ)j for j = 1, . . . , Nc, we get spontaneous

supersymmetry breaking, in agreement with the duality conjecture.

To test this duality further, one can compute the superconformal index of the

Sp(2Nc)2 theories with an antisymmetric tensor superfield X . Below we list the

results for a couple low values of Nc.

5Here it is important to remember about the difference between the supersymmetric SU(2)

Chern-Simons theory and bosonic SU(2) Chern-Simons theory: the former theory at level k is

equivalent to the latter theory at level k − 2 sign(k) [38]. Hence supersymmetric Chern-Simons at

level 2 is equivalent to bosonic Chern-Simons at level 0, which is trivial.
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1. Sp(2)2 gauge theory with an antisymmetric Xof R-charge r ≈ One free chiral

multiplet with R-charge r

I = 1−x2−2x4+xr+x2r+x3r+x4r+x5r+x6r+x7r+x8r+x−r(−x2−x4)+. . .

2. Sp(4)2 gauge theory with an antisymmetric X of R-charge r ≈ Two free chiral

multiplets with R-charge r, 2r

I = 1−x2−2x4+xr+x2r+x3r+x4r+x5r+x6r+x7r+x8r+x−r(−x2−x4)+ . . .

3. Sp(6)2 with an antisymmetric X of R-charge r ≈ Three free chiral multiplets

with R-charge r, 2r, 3r

I = 1− 6x2 − x2−3r − 2x2−2r − 4x2−r + 2x2r + 3x3r + xr(1− 8x2) + . . .

The first of these dualities is obvious, since for Sp(2) gauge group X is a free

field, and Sp(2)2 N = 2 Chern-Simons theory is trivial. The second one is not really

new either: Sp(4)2 theory with an antisymmetric X is equivalent to the O(5)2 theory

with Nf = 1 matter superfield in the vector representation plus a decoupled free field

(the “trace” part of X).6 But O(5)2 theory with a single vector is equivalent to a

free chiral superfield by virtue of the orthogonal Seiberg duality of [9]. Hence Sp(4)2
with an antisymmetric X is equivalent to a pair of free superfields. The third duality

is genuinely new.

For Nf > 0 we check the symplectic duality with W = Tr (XJ)n+1 by computing

the superconformal index for several low values of Nf , Nc, k, n. The indices of dual

theories agree in all the cases we studied.

(Nf , k, Nc) Electric Magnetic

n = 2, Nf + k = 2 Sp(2Nc) Sp(2(2−Nc)) Index

(0,2,1) Sp(2) Sp(2) 1 + x2/3 + x8/3 + . . .

(1,1,1) Sp(2) Sp(2) 1+x2/3−x2+(1+x2/3)x2r+x4r+x−2r(−x2−
x8/3) + . . .

n = 2, Nf + k = 3 Sp(2Nc) Sp(2(4−Nc))

(0,3,1) Sp(2) Sp(6) 1 + x2/3 + x8/3 + . . .

(1,2,1) Sp(2) Sp(6) 1+x2/3−4x2−3x8/3+(1+x2/3)x2r+x4r+ . . .

(2,1,1) Sp(2) Sp(6) 1 + x2/3 − 16x2 − 15x8/3 − x4−4r + (6 +

6x2/3)x2r + 20x4r + . . .

(0,3,2) Sp(4) Sp(4) 1 + x2/3 + x4/3 + x8/3 + . . .

6One might naively think that Sp(4)2 theory is related to SO(5)2 theory. But since SO(5) =

Sp(4)/Z2, the two theories have different magnetic flux quantization conditions, and as a conse-

quence SO(5)2 theory has additional monopole operators with nontrivial ’t Hooft magnetic flux

not allowed for Sp(4)2. One can show that at Chern-Simons level 2 these additional operators are

projected out by the Z2 subgroup of O(5) ≃ SO(5) × Z2. So Sp(4)2 theory is equivalent to O(5)2
theory.
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(1,2,2) Sp(4) Sp(4) 1 + x2/3 + x4/3 − 4x2 − 4x8/3 + x4r + x2r(1 +

2x2/3 + x4/3) + x−2r(−x8/3 − x10/3) + . . .

(2,1,3) Sp(4) Sp(4) 1+x2/3+x4/3−16x2−51x8/3+21x4r+x2r(6+

12x2/3 + 6x4/3) + x−2r(−6x8/3 − 12x10/3) +

x−4r(−x10/3 − x4) + . . .

(1,2,3) Sp(6) Sp(2) 1+ x2/3 − 5x2− 5x8/3 + x4r + x2r(1+ 2x2/3 +

x4/3) + x−2r(−x2 − x8/3 + 3x10/3) + . . .

(2,1,3) Sp(6) Sp(2) 1+x2/3− 52x2− 108x8/3+6x
14
3
−6r +21x4r +

x2r(6+12x2/3+6x4/3)+x−2r(−6x2−12x8/3+

14x10/3) + x−4r(−x8/3 − x10/3 + 15x4) + . . .

n = 3, Nf + k = 2 Sp(2Nc) Sp(2(3−Nc))

(0,2,1) Sp(2) Sp(4) 1 +
√
x+ x+ x5/2 + x3 + . . .

(1,1,1) Sp(2) Sp(4) 1 +
√
x + x − x2 + x6r + x2r(1 +

√
x + x) +

x4r(1+
√
x+x)+x−2r(−x2−x5/2−x3)+ . . .

(1,1,2) Sp(4) Sp(2) 1+
√
x+x−x3/2 − 3x2− 3x5/2− 2x3+x6r +

x4r(1+2
√
x+3x)+x2r(1+2

√
x+2x−2x2)+

x−2r(−x3/2 − 2x2 − 2x5/2 − x3) + x−4r(x7/2 +

x4) + . . .

Table 6: Superconformal index for Sp(2N) gauge theories with an antisymmetric

tensor and a superpotential.

Chiral ring generators give readily identifiable contributions to the index. For

example, for n = 2 (i.e. cubic superpotential) the generator Tr(XJ) contributes x2/3,

while both Tr (XJ)2 as well as (Tr (XJ))2 contribute a term 1 · x4/3. The mesons

contribute as follows: Mab
1 ∼ Nf (2Nf − 1) · x2r, Mab

2 ∼ Nf (2Nf − 1) · x2r+ 2
3 . One

can also observe the nonperturbative truncation of the chiral ring for Sp(6)-Sp(2)

and Sp(4)-Sp(2) dual pairs. Consider first n = 2 and the Sp(6)e-Sp(2)m dual pair.

On the magnetic side we have a “classical” contribution x2/3 from Tr (Y J) and no

contribution of the form x4/3 because for Sp(2) theory (Tr (Y J))2 is proportional to

Tr (Y J)2, and the latter is zero because of the superpotential Wm = Tr (Y J)3. On

the electric side, both (Tr (XJ))2 and Tr (XJ)2 contribute to the coefficient of the

term x4/3, but this “classical” contribution is canceled by a monopole operator with

the magnetic charge (1, 0, 0). Similarly, on the magnetic side there is a contribution

x2r+2/3 from Tr (Y J) ·M1, while on the electric side there is a classical contribution

2x2r+2/3 from Tr (XJ)QJQ and QJXJQ which is partially canceled by a monopole

operator.

Another case of nonperturbative truncation occurs for n = 3 and the Sp(4)e-

Sp(2)m dual pair. The operators Tr (XJ) and Tr (Y J) contribute x1/2 on both

sides of the duality. On the magnetic side the contribution x comes entirely from
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(Tr (Y J))2. On the electric side there are classical contributions of this form from

both (Tr (XJ))2 and Tr (XJ)2, but they are partially canceled by a monopole op-

erator with magnetic charge (1, 0). Similarly, the contribution x3/2 on the electric

side from Tr (XJ)2Tr (XJ) is canceled by a monopole operator with charge (1, 0).

Similarly, on the magnetic side there is a term x2r+1/2 coming from M1Tr (Y J), while

on the electric side there are contributions of this form both from Tr (XJ) ·QJQ and

QJXJQ which are partially canceled by a monopole operator.

3.4 U(N) with an antisymmetric tensor

An antisymmetric tensor flavor of U(N) is a pair of chiral multiplets X and X̃ , one

in the antisymmetric tensor representation and one in the dual representation. We

propose the following duality:

• Electric theory: U(Nc)k theory with Nf fundamental flavors Qa, Q̃a, an anti-

symmetric tensor flavor X , X̃ , and the superpotential We = Tr (X̃X)n+1

• Magnetic theory: U((2n+1)(Nf +k)−2n−Nc)−k theory with Nf fundamental

flavors qa, q̃
a, an antisymmetric tensor flavor Y , Ỹ , (n+1) ·N2

f singlets (Mj)
a
b ,

j = 0, · · · , n, nNf (Nf − 1) singlets (Pl)
ab and (P̃l)ab, l = 0, · · · , n− 1, and the

superpotential

Wm = tr(Ỹ Y )n+1+

n
∑

j=0

Mjq(Ỹ Y )n−j q̃+

n−1
∑

l=0

(

Plq(Ỹ Y )n−1−lỸ q+P̃lq̃Y (Ỹ Y )n−1−lq̃
)

The singlets P ab
l and (P̃l)ab are antisymmetric in flavor indices. Chiral ring

generators are mapped as follows:

Qa(X̃X)jQ̃b → (Mj)
a
b , (3.2)

Qa(X̃X)lX̃Qb → (Pl)
ab, (3.3)

Q̃aX(X̃X)lQ̃b → (P̃l)ab, (3.4)

Tr (XX̃)j → Tr(Y Ỹ )j . (3.5)

R-charge assignments are R(Q) = r, R(q) = 1
n+1

− r, R(Mj) = 2j
n+1

+ 2r, R(Pl) =

R(P̃l) =
2l+1
n+1

+ 2r, R(X) = R(X̃) = R(Y ) = R(Ỹ ) = 1
n+1

.

We have computed the superconformal index for several dual pairs, the results

are displayed in Table 7. In all cases the duality is confirmed.

(Nf , k, Nc) Electric Magnetic

n = 1, Nf + k = 2 U(Nc) U(4−Nc) Index

(0,2,1) U(1) U(3) 1

(1,1,1) U(1) U(3) 1− x4 − x4−2r + x2r + x4r + x6r + x8r + . . .

– 18 –



(0,2,2) U(2) U(2) 1 + x− 3x2 + 4x3 − 4x4 + . . .

(1,1,2) U(2) U(2) 1+x−x3−3x4+x8r+x6r(1+x)+x2r(1+x+

x2)+x4r(1+x+x2)+x−2r(−x2−x3−2x4)+. . .

(1,1,3) U(3) U(1) 1−x2 − 2x3 +x6r +x2r(1+x)+x4r(1+x)+

x−2r(−x2 − x3) + . . .

n = 1, Nf + k = 3 U(Nc) U(7−Nc)

(2,1,4) U(4) U(3) 1+x−9x2−16x5/2−36x3−x3−4r +4x3−r +

20x6r+4x
5
2
+r+x4r(10+8

√
x+29x)+x2r(4+

2
√
x+8x+2x3/2−32x2)+x−2r(−2x5/2−8x3−

2x7/2) + . . .

n = 2, Nf + k = 2 U(Nc) U(6−Nc)

(0,2,3) U(3) U(3) 1 + x2/3 + x8/3 + . . .

(1,1,3) U(3) U(3) 1 + x2/3 − x2 − x8/3 + (1 + 2x2/3)x6r + x8r +

x2r(1+2x2/3+x4/3)+x4r(1+2x2/3+2x4/3)+

x−2r(−x2 − x8/3 − x10/3) + . . .

Table 7: Superconformal index for U(N) gauge theories with an antisymmetric tensor

flavor and a superpotential.

It is difficult to compute the S3 partition function numerically if the rank of the

gauge group is higher than two. We computed the partition function as a function

of r in the case n = 1, (Nf , k, Nc) = (1, 1, 2) where both the electric and magnetic

gauge groups are U(2) and verified that they agree up to a phase. The results are

presented in Table 8.

r 0.1 0.15 0.2 0.25 0.3 0.35 0.4

log|Z| -1.62436 -1.86564 -1.97182 -2.00027 -1.97853 -1.92297 -1.84478

Table 8: S3 partition function of U(2) theory with an antisymmetric tensor flavor,

Nf = k = 1 and a superpotential W = Tr (XX̃)2 as a function of r = R(Q). The

dual theory is the same plus singlets M1 and M2 coupled via a superpotential. The

partition functions agree to the accuracy achieved.

Using these results we can investigate nonperturbative truncation of the chi-

ral ring. On the classical level, the superpotential truncates the chiral ring so

that monomials X(X̃X)n or (X̃X)nX̃ and all operators containing them are Q-

exact. On electric side, the classical chiral ring contains the following generators:

Tr (XX̃)i(∼ 1 · x 2i
n+1 in index), i = 1, · · · , n, Qa(X̃X)jQ̃b (∼ N2

f · x2r+ 2j
n+1 ), j =

0, · · · , n, Qa(X̃X)lX̃Qb and Q̃aX(X̃X)lQ̃b(∼ Nf (Nf−1)

2
· x2r+ 2l+1

n+1 ), l = 0, · · · , n − 1.

Similarly, on the magnetic side, the classical chiral ring contains the following genera-

tors: Tr (Y Ỹ )i(∼ 1·x 2i
n+1 in index), i = 1, · · · , n, (Mj)

a
b (∼ N2

f ·x2r+ 2j
n+1 ), j = 0, · · · , n,
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(Pl)
ab and (P̃l)ab(∼ Nf (Nf−1)

2
· x2r+ 2l+1

n+1 ), l = 0, · · · , n − 1. The generators appear to

match. However, for low enough rank of the electric or magnetic gauge group addi-

tional relations appear on the classical level which may require new nonperturbative

relations in the chiral ring of the dual theory.

Consider the following example. Let (n,Nf , k, Nc) = (1, 1, 1, 3), so that the

electric gauge group is U(3)1, the magnetic gauge group is U(1)−1, and the electric

superpotential is quartic, W = Tr (XX̃)2. For Nc > 1 we have a chiral ring generator

TrXX̃ which contributes a term 1·x to the index. However, since the magnetic gauge

group is U(1), in the magnetic theory the antisymmetric tensor vanishes, and there

is no operator which gives such a contribution. On the electric side the contribution

of TrXX̃ is canceled by a monopole operator. Thus Tr (XX̃) is truncated by a

quantum effect on the electric side. Further, for generic Nc on the electric side we

expect contributions of the form x2r+1 from QX̃XQ̃ and QQ̃·TrXX̃ , so its coefficient

is 2N2
f = 2. However, if TrXX̃ is truncated, the coefficient of x2r+1 must be N2

f = 1,

which is indeed what we see in this case.

3.5 U(N) with a symmetric tensor

A symmetric tensor flavor of U(N) is a pair of chiral multiplets X and X̃, one in the

symmetric tensor representation and one in the dual representation. We propose the

following duality:

• Electric theory: U(Nc)k gauge theory with Nf fundamental flavors Qa, Q̃a, a

symmetric tensor flavor X , X̃ and a superpotential We = tr(X̃X)n+1.

• Magnetic theory: U((2n + 1)(Nf + k) + 2n − Nc)−k gauge theory with Nf

fundamental flavors qa, q̃
a, a symmetric flavor Y , Ỹ , (n + 1)Nf × Nf singlets

(Mj)
a
b , j = 0, · · · , n, nNf(Nf + 1) singlets (Pl)

ab, (P̃l)ab, l = 0, · · · , n− 1, and

a superpotential

Wm = Tr (Ỹ Y )n+1+

n
∑

j=0

Mjq(Ỹ Y )n−j q̃+

n−1
∑

l=0

(

Plq(Ỹ Y )n−1−lỸ q+P̃lq̃Y (Ỹ Y )n−1−lq̃
)

Chiral ring generators map as follows:

Qa(X̃X)jQ̃b → (Mj)
a
b , (3.6)

Qa(X̃X)lX̃Qb → (Pl)
ab, (3.7)

Q̃aX(X̃X)lQ̃b → (P̃l)ab, (3.8)

Tr (XX̃)j → Tr (Y Ỹ )j. (3.9)

R-charge assignments are R(Q) = r, R(q) = 1
n+1

− r, R(Mj) = 2j
n+1

+ 2r, R(Pl) =

R(P̃l) =
2l+1
n+1

+ 2r, R(X) = R(X̃) = R(Y ) = R(Ỹ ) = 1
n+1

.
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We have computed the superconformal index for several dual pairs, the results

are displayed in Table 9. In all cases the duality is confirmed.

(Nf , k, Nc) Electric Magnetic

n = 1, Nf + k = 1 U(Nc) U(5−Nc) Index

(0,1,1) U(1) U(4) 1 + x− x2 + . . .

(0,1,2) U(2) U(3) 1 + x− x2 + 2x3 − x4 + . . .

n = 1, Nf + k = 2 U(Nc) U(8−Nc)

(1,1,4) U(4) U(4) 1+x−2x2−2x5/2−3x3+x6r+x4r(1+2
√
x+

5x) + x2r(1 + 2
√
x+ 2x+ 2x3/2) + . . .

Table 9: Superconformal index for U(N) gauge theories with a symmetric tensor

flavor and a superpotential.

The chiral ring structure of U(N) with a symmetric tensor is almost the same

as that of U(N) with an antisymmetric tensor except that singlets Pl and P̃l are

symmetric in flavor indices rather than antisymmetric. The generators of the chiral

ring make the following contributions to the index: tr(XX̃)i ∼ 1 ·x 2i
n+1 , i = 1, · · · , n,

(Mj)
a
b ∼ N2

f ·x2r+ 2j
n+1 , j = 0, · · · , n, (Pl)

ab, (P̃l)ab ∼ Nf (Nf+1)

2
·x2r+ 2l+1

n+1 , l = 0, · · · , n−1.

3.6 Sp(2N) with an adjoint

We propose the following duality:

• Electric theory: Sp(2Nc)k gauge theory with 2Nf fundamental chiral multiplets

Qa, an adjoint chiral multiplet X , and a superpotential We = TrX2(n+1)

• Magnetic theory: Sp(2
(

(2n+ 1)(Nf + k)−Nc − 1
)

)−k gauge theory with 2Nf

fundamental chiral multiplets qa, singlets Mab
j = QaJXjQb, j = 0, . . . , 2n

which are symmetric (resp. antisymmetric) in their flavor indices for odd (resp.

even) j, an adjoint chiral multiplet Y , and a superpotential

Wm = TrY 2(n+1) +

2n
∑

j=0

MabqaJY
2n−jqb

Chiral ring generators map as follows:

QaJXjQb → Mab
j , j = 0, . . . , 2n (3.10)

TrX2j → Tr Y 2j , j = 1, . . . , n. (3.11)

R-charge assignment are R(Q) = r, R(q) = 1
n+1

− r, R(Mj) = j
n+1

+ 2r, R(X) =

R(Y ) = 1
n+1

. Note that since XJ is symmetric, TrX2j+1 vanishes for any integer j.

Note also that for n = 0 this duality reduces to the symplectic 3d Seiberg duality.
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We have computed the superconformal index for several dual pairs, the results

are displayed in Table 10. In all cases the duality is confirmed.

(Nf , k, Nc) Electric Magnetic

n = 1, Nf + k = 1 Sp(2Nc) Sp(2(2−Nc)) Index

(0,1,1) Sp(2) Sp(2) 1

n = 1, Nf + k = 2 Sp(2Nc) Sp(2(5−Nc))

(0,2,2) Sp(4) Sp(6) 1 + x+ x3 + . . .

(1,1,2) Sp(4) Sp(6) 1+x−4x2−8x5/2−9x3−x3−2r+x6r+x4r(1+

3
√
x+8x)+x2r(1+3

√
x+2x+3x3/2−3x2)+. . .

(1,1,3) Sp(6) Sp(4) 1 + x− 4x2 + x4r + x2r(1 + 3
√
x+ 2x) + . . .

n = 2, Nf + k = 1 Sp(2Nc) Sp(2(4−Nc))

(0,1,1) Sp(2) Sp(6) 1 + x2/3 + . . .

(0,1,2) Sp(4) Sp(4) 1 + x2/3 + x4/3 + x8/3 + . . .

Table 10: Superconformal index for Sp(2N) gauge theories with an adjoint and a

superpotential.

Chiral ring generators make identifiable contributions to the index: TrX2i ∼
x

2i
n+1 , Mab

2j ∼ Nf (2Nf − 1) · x2r+ 2j
n+1 , Mab

2j+1 ∼ Nf (2Nf + 1) · x2r+ 2j+1
n+1 . Note that the

theory with (n,Nf , k, Nc) = (1, 0, 1, 1) has a trivial index I = 1. Technically, this

happens because the contributions of all BPS states are exactly canceled by monopole

operators. In fact, the whole theory is almost trivial in the IR limit (reduces to a

TQFT) as a consequence of the Jafferis-Yin duality [8]. Indeed, the Jafferis-Yin

duality says that modulo a topological sector Sp(2)1 with an adjoint X is equivalent

to a free theory whose only chiral superfield u is dual to TrX2. Under this duality

the superpotential deformation We = TrX4 is mapped to the mass term for u. Thus

the theory with the superpotential is IR trivial modulo a topological sector (which

is described by a U(1)2 Chern-Simons theory).

3.7 O(N) with a symmetric traceless tensor

We propose the following duality:

• Electric theory: O(Nc)k gauge theory with Nf fundamental chiral multiplets

Qa, a symmetric traceless chiral multiplet X , and a superpotential We =

TrXn+1

• Magnetic theory: O(n(Nf + k + 2) − Nc) gauge theory with Nf fundamental

chiral multiplets qa, nNf (Nf + 1)/2 singlets Mab
j , j = 1, . . . , n, a symmetric
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traceless chiral multiplet Y , and a superpotential

Wm = Tr Y n+1 +

n
∑

j=1

MabqaY
n−jqb.

Chiral ring generators map as follows:

QaXj−1Qb → Mab
j , j = 1, . . . , n, (3.12)

TrXj → Tr Y j , j = 2, . . . , n. (3.13)

R-charge assignments are R(Q) = r, R(q) = 2
n+1

− r, R(Mj) =
2(j−1)
n+1

+ 2r, R(X) =

R(Y ) = 2
n+1

. Note for n = 1 this duality reduces to the 3d orthogonal Seiberg duality

of [9].

We have computed the superconformal index for several dual pairs, the results

are displayed in Table 11. In all cases the duality is confirmed.

(Nf , k, Nc) Electric Magnetic

n = 2, Nf + k = 1 O(Nc) O(6−Nc) Index

(0,1,1) O(1) O(5) 1

(0,1,2) O(2) O(4) 1 + x4/3 − x2 + x8/3 − x4 + . . .

(0,1,3) O(3) O(3) 1 + x4/3 + x10/3 − x4 + . . .

n = 2, Nf + k = 2 O(Nc) O(8−Nc)

(0,2,3) O(3) O(5) 1 + x4/3 + 2x10/3 − x4 + . . .

(1,1,3) O(3) O(5) 1+x4/3−x2+x4r +x2r(1+x2/3+x4/3)+ . . .

(0,2,4) O(4) O(4) 1 + x4/3 + x8/3 + x10/3 + . . .

(1,1,4) O(4) O(4) 1 + x4/3 − x2 + x8/3 − x10/3 − 3x4 + x6r +

x4r(1 + x2/3 + 2x4/3) + x2r(1 + x2/3 + x4/3 +

x2) + x−2r(−x4 − x14/3) + . . .

(1,1,5) O(5) O(3) 1 + x4/3 − x2 − x
10
3
−2r + x4r + x2r(1 + x2/3 +

x4/3) + . . .

n = 2, Nf + k = 3 O(Nc) O(10−Nc)

(0,3,5) O(5) O(5) 1 + x4/3 + x8/3 + . . .

(1,2,5) O(5) O(5) 1+x4/3−x2+x4r +x2r(1+x2/3+x4/3)+ . . .

(2,1,5) O(5) O(5) 1+x4/3−4x2−3x8/3+6x4r+x2r(3+3x2/3+

3x4/3) + . . .

n = 3, Nf + k = 1 O(Nc) O(9−Nc)

(0,1,3) O(3) O(6) 1 + x+ x3/2 + 2x3 + . . .

(0,1,4) O(4) O(5) 1 + x+ x3/2 + x2 + x3 + . . .

Table 11: Superconformal index for O(N) gauge theories with a symmetric traceless

tensor and a superpotential.
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Chiral ring generators make identifiable contributions to the superconformal in-

dex: TrX i ∼ 1 · x 2i
n+1 , i = 2, · · · , n and (Mj)

ab ∼ Nf (Nf+1)

2
· x2r+

2(j−1)
n+1 , j = 1, · · · , n.

There are many cases where the chiral ring is truncated nonperturbatively. For ex-

ample, if the electric gauge group is O(1), the traceless symmetric X vanishes, so the

operators Tr Y j on the magnetic side must be truncated. The extreme case of this is

when Nf = 0, when the whole theory must be IR trivial. On the magnetic side, the

contributions to the index coming from the classical generators of the chiral ring are

canceled by monopole operators.

4. Concluding remarks

We have proposed and tested seven classes of dualities involving N = 2 Chern-

Simons gauge theories with tensor and fundamental matter and a superpotential. In

the first three cases (U(N) with an adjoint, SO(2N) with an adjoint, and Sp(2N)

with an antisymmetric tensor) we found that for a special value of the Chern-Simons

coupling the theory with Nf = 0 and no superpotential is dual to a free theory. In

the remaining four cases (U(N) with an (anti)symmetric tensor flavor, Sp(2N) with

an adjoint and O(N) with a symmetric traceless tensor) one can argue that such a

description does not exist, for any value of the Chern-Simons coupling. To see this,

note that far along the moduli space each of these theories reduces to a free CFT

describing the moduli and a Chern-Simons TQFT whose gauge group is the unbroken

part of the UV gauge group. For example, Sp(2N)k theory with an adjoint reduces

to a theory of N free fields times N copies of U(1) gauge theory at level 2k. Since

the TQFT part is nontrivial for all k and N , the Sp(2N)k theory with an adjoint

cannot be dual to a free theory of moduli for any N or k.

In a similar spirit, consider the O(N) theory with a traceless symmetric tensor

and no superpotential. Far along the moduli space the gauge group is broken down

to a discrete subgroup isomorphic to O(1)N which is again nontrivial. Thus at best

one could hope that the full theory is a product of a free CFT describing the moduli

and a topological gauge theory with a discrete gauge group. However, even this

is not possible. Indeed, if this were true, we would expect that supersymmetry is

spontaneously broken whenever the theory is perturbed by a superpotential TrXj

with j < N + 1. But the rank of the magnetic gauge group indicates that this

happens only for j < 1 +N/(k + 2), which is strictly smaller.

Similar arguments can be used to rule out a free dual for U(N) theory with a

symmetric or antisymmetric tensor flavor (excepting of course the case G = U(1)

with an antisymmetric tensor and Nf = 0).

In this paper we only considered dualities for theories with nonzero Chern-Simons

couplings. It would also be interesting to find dualities for similar theories with no

Chern-Simons couplings, along the lines of [39, 18].
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