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DUALITIES FOR EQUATIONAL CLASSES
OF BROUWERIAN ALGEBRAS AND HEYTING ALGEBRAS

BY

BRIAN A. DAVEY(!)

ABSTRACT.   This paper focuses on the equational class S„ of Brouwerian
algebras and the equational class L„ of Heyting algebras generated by an »-ele-
ment chain.   Firstly, duality theories are developed for these classes.   Next, the
projectives in the dual categories are determined, and then, by applying the dual-
ities, the injectives and absolute subretracts in Sn and L„ are characterized.   Fi-
nally, free products and the finitely generated free algebras in S„ and L„ are de-
scribed.

Recently there has been considerable interest in distributive pseudocomple-
mented lattices, Brouwerian algebras and Heyting algebras. In particular, activity
has centered around the equational subclasses ([8], [11], [24], [35], [36]), and
steps have been made towards the determination of the injectives, absolute sub-
retracts, free products and free algebras in these classes ([1], [2], [3], [12], [19],
[20], [21], [27], [31], [32], [33], [34], [46], [47] ). In this work attention is
focused upon the equational class S„ of Brouwerian algebras and the equational
class Ln of Heyting algebras generated by an n-element chain. Firstly, a duality
theory is developed for each of these classes, the dual of an algebra being a Bool-
ean space endowed with a continuous action of the endomorphism monoid of the
n-element chain. Next, the projectives in the dual categories are determined, and
then, by applying the dualities, the injectives and absolute subretracts in S„ and
L„ are characterized.  Finally, free products and the finitely generated free algebras
in S„ and Ly, are described.

1. The categories.  Our standard references on category theory, universal
algebra, and lattice theory are S. Mac Lane [37], G. Grätzer [17], and G.
Gra'tzer [18] respectively; for our general topological requirements we refer to J.
Dugundji [13] and for a discussion of Boolean a spaces we call on P. R. Halmos
[23].
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120 B. A. DAVEY

ABrouwerian algebra A is a (necessarily distributive) lattice in which, for all
a, b EA, there exists a * b E A such that xAa<6<=>x<a*6.  Since A
necessarily has a unit, namely a * a, we regard Brouwerian algebras as universal
algebras of type < 2, 2, 2, 0> with operations < A, V, *, 1 >. A Hey ting algebra is
a Brouwerian algebra with zero, and so it is a universal algebra of type < 2, 2, 2,
0, 0> with operations <A, V, *, 0, 1 >. The standard results on Brouwerian and
Heyting algebras can be found in H. Rasiowa and R. Sikorski [43] where they are
referred to as relatively pseudocomplemented lattices and pseudo-Boolean algebras
respectively. In particular, recall that the classes of Brouwerian and Heyting alge-
bras are equational and that the lattice of congruences on a Brouwerian or Heyting
algebra is isomorphic to its lattice of filters. It follows immediately from the latter
fact that each Brouwerian or Heyting algebra has a distributive congruence lattice,
and that every equational class of Brouwerian or Heyting algebras has the congru-
ence extension property (see Definition 4.1).

We denote the «-element chain, 0 = c0 < cl < • • • < cn_2 < cn_1 = 1,
as a Brouwerian algebra by C„l and as a Heyting algebra by Cn. Note that in any
chain C the operation * of relative pseudocomplementation is determined as
follows:

Ü   ifa<i>,
a * b = \

(b  iia>b.

A relative Stone algebra is a Brouwerian algebra which satisfies the identity
(x * y) V (y * x) = 1. The equational class of all relative Stone algebras is de-
noted by Sw and, for 1 < n < ai, Sn denotes the equational subclass generated
by C¿. An L-algebra is a Heyting algebra satisfying (x * y) V (y * x) = 1. The
equation class of all ¿-algebras is denoted by Lw and, for 1 < « < w, LB denotes
the equational subclass generated by C„. It is well known ([2], [7], [8], [38])
that every interval in a relative Stone algebra is a Stone algebra; whence the name.
(A bounded lattice A in which the pseudocomplement a* = a * 0 exists for all
a E A is called pseudocomplemented. A Stone algebra is a distributive pseudo-
complemented lattice satisfying the identity x* V x** = 1.) Relative Stone alge-
bras date back to G. Grätzer and E. T. Schmidt [22] and I-algebras arise naturally
in the study of intermediate logics ([26], [27]). T. Hecht and T. Katrinák [24]
have shown that the lattices of equational subclasses of Sw and Lw are given by
the (w + l>chains Si C S2 C • • • C Sw and Lt C Lj C • • • C Lw, and that
Sw and L„ are characterized by the identity

(x0 * x,) V (*i * x2) V • • • V (x„_, * x„) = 1.

Throughout this work n will be fixed with 2 < n < w, unless otherwise
stated. The following result, which is also valid for Heyting algebras, is crucial.
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BROUWERIAN ALGEBRAS AND HEYTING ALGEBRAS 121

Proposition 1.1. Let Abe a Brouwerian algebra.
(i) A £ Sw if and only if for each prime filter F of A the set of prime fil-

ter containing F forms a chain.
(ii) A £ S„ if and only if for each prime filter F of A the set of prime fil-

ters containing F forms a chain with at most n — 1 elements.
(iii) Let g:A—*C* be an onto map, and for Ki<nletF¡= [C/)s_1.

Then g is a homomorphism if and only ifF¡ is a prime filter for 1 < i < n and
the chain Fn_i CFn_2 C • • • C Ft is the set of all prime filters containing
Fn-X = ir".

Proof,  (i) See [7], [8], [22], [38] or [48].
(ii)See [24].
(iii) Since the map g is onto, it is a homomorphism if and only if the unique

Brouwerian-algebra congruence determined by the filter Fn_1 = lg_1 has
{A - F,, F, - F2, F2-F3.F„_2 - F„_„ FM_,} as its set of congru-
ence classes. If F is a filter in a distributive lattice D, then the smallest congru-
ence \*>F on D with F as a congruence class is described as follows (see [6] or [44]):

<a, b > £ *F *=*• (a A / = b A / for some /£ F).
Let PF be the set of prime filters of D containing F. It is well known and easily
verified that

< a, b > £ tfF *=* (a £ P ** b £ P for all P £ ?F ).

Thus it is sufficient to show that the unique Brouwerian-algebra congruence de-
termined by a filter F of A coincides with the lattice congruence *F; but this is
proved in W. C. Nemitz [39].   D

This proposition allows us to describe the Horn-sets of the form Sn(A, Cnl )
and L„04, C„); in particular, we can describe the endomorphism monoids
EndiC,} ) and End(Cn).

Let e £ End(C,j). Then e is order preserving and there is a filter [ck) of
C* such that [ck)e = {1} and, for all /, / < k, c¡ e = c¡e implies / = /.
Conversely, any map e: C* —+C* with these properties is an endomorphism of
C*. It follows that

i-<ofr)+(r)+-"+(;::h"-'-
The endomorphisms of Cn are determined similarly; the only additional restric-
tion being Oe = 0. By identifying C% with the filter [ct) of Cn +1 we obtain a
one-to-one correspondence, in fact, a monoid isomorphism, between End(C^) and
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122 B. A. DA VEY

End(C„ + 1). Hence |End(C„)| = 2"~2. The identity map in both End(C„!) and
End(Q) is denoted by t; the zero of the monoid End(C,| ), namely the retraction
onto {1}, is denoted by 0.

Definition 1.2.  Let A G S„ and let F = Fk C Fk_ t C • • • C Fx be the
chain of all prime filters containing the prime filter F.  The homomorphism gF E
S„(A, C„ ) determined by F is defined by

II    if a EF = Fk,
e,   iîaEFi-Ft+l  (Ki<k),
0    ifaG/1-Fj.

If F is a filter of an algebra A E L„, then gF is defined in exactly the same
way. Proposition 1.1 guarantees that gF is well defined,  m essence, gF maps all
the elements of F to 1 and all the other elements of A as low as possible in the
chain. The following factorization lemma will prove to be particularly useful.

Lemma 13. (i) Let gESn(A, Ç,1 ) and let g^ be the homomorphism de-
termined by F = \g~i.  Then there exists e E End(C,j) with g = gle.

(ii) Let gELn(A, Ç,) and let g± be the homomorphism determined by
F= \g~x.  Then there exists e E End(C„) with g = g^e.

Proof. We only prove (i) since the proof of (ii) is almost identical.   let
F= Fk C Fk_1 C • • • C Fj be the chain of all prime filters containing F.   Let
a0 E A - F1, let a¡ E F¡ -Fi+1, and define e: C¡¡ -* C* by c¡e « 1 for ft < i
< n, and c¡e = a¡g for 0 < i < k.  By Proposition 1.1 (iii), g is constant on A -
Fv F¡ - Ft+ !   (1 < / < k), and Fk. Thus g = gie; and e is an endomorphism
of C\ since it is order preserving and, for all i, j <k,cie = ce implies /' = /.    D

A Boolean space is a zero-dimensional compact space, or equivalently, a com-
pact space with a basis of clopen sets. The category of Boolean spaces and con-
tinuous maps is denoted by ZComp, and for X, YE ZComp, C(X, Y) denotes
the set of continuous maps from X to Y.  Recall that any closed subspace of a
product of finite discrete spaces is a Boolean space, and hence S„(/l, C\ ) and
L„04, Cn) are Boolean spaces (regarded as subspaces of (C„J y4 and (CnY re-
spectively).

Let X be a pointed Boolean space. Then the set El(X) of point-preserving
continuous maps v>: X —*■ X is a monoid with id^ as identity and the retraction
onto the distinguished point as a zero. Let X„ be the category of pointed Bool-
ean spaces which have a continuous action of the monoid End(C^) (that is, a
semigroup homomorphism, e —► 7, from End(Cî) into El(X) such that ~=
id^-) for which 9 is the retraction onto the distinguished point. A map íí' G
C(X, Y) is a morphism of X„ if it is a point preserving and preserves the action
of End(C„'), that is, xe \Ji = x\pe for all x G X and all e E End(C,J). Observe
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BROUWERIAN ALGEBRAS AND HEYTING ALGEBRAS        123

that C„ £X„: 1 is the distinguished point and for all e £ End(C,j), 7 = e.
For all A £ S„ the Boolean space S„04, C*) may be lifted to an object of

X„: the constant map Î: A —* C„ onto {1} is the distinguished point and for
all e £ End(C„), 7 £ E^S^A, Çj)) is definedby ge = ge.   If h £ S„04, B), then
it is clear that

\Qi,cnly.sn(B,cln)-*sn{A>CnX)>

defined by.g&n(h, C*) = hg, is a morphism of Xn; whence Sn(-, C*): S„ —♦
X°p is a well-defined functor.  It is also easy to verify that for all X £ X„,
Xn(X, C^) is a subalgebra of (C¿)x, and that for all 0 £ Xn(X, Y),

X„(0, Cj ): X„( Y, Ç,1 ) — Xtt(X, C* ),
defined by <f5X„(0, C^) = 0(¿>, is a homomorphism; whence X„(-, C*): X°p —*
S„ is a well-defined functor.

In the next section we shall show that S„ and Xn are dual categories; the
next result paves the way. For each A € Sn define T)A : A —*■ X„(Sn(A, C,J), C%)
by arjA = Ta, where gTa = ag for all g £ S„04, C„); for each X £ X„ define
ex: X -> S„(X„ (X, C^), Ç|) by xex = rx, where <prx = x* for all ? £
X„C*. C«1).

Proposition 1.4.  <Sn(-, C^), Xn(-, C,J); 17, e> is an adjunction from S„
to X°p.

Proof.  By [37, Theorem 2, p. 81] it is sufficient to prove that 17 is a
natural transformation and that each r\A is universal to X„(-, Cn') from A. We
will only establish the universal mapping property since a simple calculation shows
that n is a well-defined natural transformation. Let A £ Sn, X £ X„, and let
h: A —► X„ (Z. C„') be a homomorphism. If 0: X —* S„(,4, CM') satisfies
t?4 X„(0, CjJ) = A, then 0 must be given by a(x0) = x(ah), and hence we must
prove that this defines a morphism of X„. But, since each of the maps ah (a £
A) is continuous, point preserving, and preserves the action of End(C^), it follows
immediately that 0 is continuous and point preserving, and that for each e £
End(C^), a(x70) = x7(ah) = (x(ah))7 = (a(x0))e'= a(jc07); whence 0 pre-
serves the action of End(C^).   D

Let X be a Boolean space. Then the set E(X) = C(X, X) is a monoid
with id^- as identity.  Let Y„ be the category of Boolean spaces which have a
continuous action, e —* 7, of the monoid End(C„); the morphisms of Yn being
the continuous maps which preserve the action of End(Cn). Observe that Cn £
Y„ : for all e £ End(C„), 7 = e.  The Horn-functors L„(-, C„): L„ —► Y°p
and Y„(-, C„): Y°p —► L„ are defined exactly as they were for S„ and X„.
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124 B. A. DAVEY

Qearly the analogue of Proposition 1.4 holds for L„ and Yn. As before,
for each A G L„ define nA: A -+ Yn(Ln(A, Cn), Cn) by ar¡A = ra, where gTa
= ag for ail g G Ln(A, Cn), and for each X EYn define

ex:X-+Ln(Yn(X,Cn),Cn)
by xex = rx, where ̂ r, = x<p for ail <¿> G Y,,^, C„).

Proposition 1.5.  < L„(-, C„), Y„(-, C„); r¡, e) is an adjunction from L„
toY°p.   D

The proofs of the duality theorems pivot around the following simple result.

Lemma 1.6.  (i) // <p G X„(S„04, C,|), C¿), then g<p E lm(g) for all g G
Sn(A, q|).

(Ü) //v G Yn(Ln(A, Cn), C„), then g<p E Im(f) for all g E Ln(A, Cn).
Proof. We only prove (i). Since <p preserves the action of End(C,}), by

Lemma 1.3 it is sufficient to show that g^E \m(g¿) for all g E Sn(A, C„).
Without loss of generality, assume that g is not the constant homomorphism 1.
Let Im(g¿) = (ck_t] U {1}, 1 < ft < n, and let ek be the endomorphism of
C* determined by the prime filter [ck). Clearly gt =g\,ek = £* */t ̂  nence
*i <P = t?i 7k <p = gi <pek = gi <pek ; whence gi <p E Im(efc) = Im(^ ).   D

2. The dualities.  Since we are primarily interested in representing algebras
as algebras of continuous functions, our emphasis is on dualities rather than full
dualities, in the following sense.

Definition 2.1.  Let A and X be categories and assume that D: A —*■ Xop
is left adjoint to E: Xop —> A. Then i.D. E) is a duality (between A and X) if
the unit 77: idA —► ED of the adjunction is a natural isomorphism, and is a full
duality if the counit e: idx —► DE is also a natural isomorphism.

Firstly, we will establish the duality between Ln and Yn; for the duality
between S„_! and Xn-1 will then follow. In order to do so we require H. A.
Priestley's duality for bounded distributive lattices.

A subset U of a poset X is increasing if x EU and y > x imply that y EU.
A partially ordered, topological space X is totally order disconnected if for all
x, y E X withx *£y there exists a clopen increasing subset U of X such that x EU
and y ÊU. The category of compact totally order-disconnected spaces and con-
tinuous order-preserving maps is denoted by P. (Note that the underlying space
of an object in P is a Boolean space.) The category of distributive lattices with
zero and unit is denoted by D. For each A E D let X(A) be the set of all prime
filters of A, and for each a G A let Ï a = {x G X(A)\a E x}. Order X(A) by
inclusion and let {Xa|a G 4} U {1(A) - Xa\a EA] be a basis fora topology
on X(A). Then 1(A) G P. If A G D(A, B), then 3C(ft): X(B) —► X(A) is defined
by xX(h) = xh~l. For each X E P let U(X) be the lattice of clopen increasing
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BROUWERIAN ALGEBRAS AND HEYTING ALGEBRAS 125

subsets of X with set union and intersection as operations. If 0 £ ?(X, Y),
then ÎI(0): U(Y) -* U(X) is defined by £/2I(0) = Í70-1. Both X : D -+ P°p
and ÎÎ : Pop —* D are well-defined functors. For each A £ D define t\A : A —*■
UX(A) by ar¡A = Xa, and for each X £ P define ex: X-+ XUÇX) by xex =
{ Ue U(X)\x e U); then <X, &; V, c> is an adjunction from D to Pop.

Theorem 2.2   (H. A. Priestley [40], [41 ] ). <X, K > is a full duality be-
tween D and P.   D

Remark 2.3. If A is a finite distributive lattice, then X(A) is discretely
topologized and hence A is isomorphic to the lattice of increasing subsets of the
poset X(A) of its prime filters.

With this tool we may now establish the duality between L„ and Y„.

Theorem 2.4.  < L„(-, Ç,), Y„(-, C„)> is a duality between L„ and Y„.

Proof.  Let A £ L„. Since each pair of distinct elements of a distributive
lattice can be separated by a prime filter, it follows, by Proposition 1.1, that
L(A, Cn) separates the points of A and hence i)A is an embedding. We now show
that r\A is also a surjection and hence is an isomorphism.

Define an equivalence relation R on Lw04, Cn) by (g, h) eR <=> \g~x =
1A-1 and note that [g]R = [£j]/î, where [g]R denotes the equivalence class of
g in L„(A, Cn)/R.  Define a partial order < on the quotient space by [g]R <
[h]R <=* \g~l Q Ihr1. Observe that

[g]R < [h]R *=*•£; < hi (pointwise) *=*gi = hie for some e £ End(C„).

We claim that Ln(A, Cn)lR is homeomorphic and order isomorphic to X(A).
Define G: Ln(A, Cn) —► X(4) by gG = lg~*. The map G is continuous since
it is clear that the preimages under G of the basic open sets Xa and X(A) — Xa
are open in Ln(A, Cn). Since G is constant on the equivalence classes of/? it
induces a homeomorphism G between L„(A, Cn)¡R and X(A) (see [13, Corollary
2.2, p. 227]).  Furthermore,

[£]/? < [h]R *=>lg~l Q 1A"1 <=*gG<hG*=>([g]R)G< ([h]R)G,

and hence G is an order-isomorphism.
If p£ Y„(L„04, C„), C„), then C/= 1^_1 isa clopen subset of Ln(A, Cn).

\{g £ U and <g, h)eR, then A £ £/.  Indeed, let £ = gxe and A = A^ /be fac-
torizations of ̂  and A via Lemma 1.3; then g^ = h±. Since g<¿> = 1 we have
Si Ve = 8ieV = g<P= 1 '> but g± <p £ Im(£;) (Lemma 1.6) and therefore g^= 1.
Hence h<p = hifp = hi*pf=gl<pf= 1/= 1, and so A £ K Thus the clopen set Uis
a union of R-equivalence classes and consequently U/R — {[g]R\geU} is clopen
in Ln(A, Cn)/R.  Assume that [g]R £ U/R.   If [g]R < [A]Ä, then there exists
e £ End(C„) with^e = A¿, and thus h^ = g±e¡p = g^e = le = 1. Hence
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126 B. A. DAVEY

hi EU aniso [h]R = [h±]R G U/R.  We have shown that U/R is a clopen in-
creasing subset of Ln(A, Cn)/R.

Since G: Ln(A, Cn)/R —*■ X(A) is an isomorphism in P, by Theorem 2.2
there exists a EA such that (U/R)G = Xa, that is,

(*) for all g G ^(A, Cn), gy = 1 if and only if ag = 1,

We claim that ar\A = $, that is, for all g E Ln(A, Cn), ag = g<p.
By Lemma 1.3 it is sufficient to prove that for all g E Ln(A, Cn), ag± =

gxy. Let \g~l = Fk C Fk_i C • • • C Fj be the chain of all prime filters con-
taining lg~l. For 1 < i < k, let g¡. A —► Cn be the homomorphism determined
by the prime filter F{, let ei G End(Cn) be the endomorphism determined by the
prime filter [c¡), and observe that g¡ = g± e¡.

UaEFk = lf-1,thena^ = 1 = gx <p by (*). IfaG4 -Fj.thena^ ¥=
1 and hence g^ + 1 by (*). But g^p E Im(gj) by Lemma 1.6, and hence gxy
= 0. Consequently gx<pex = giel>p = gl>p = 0, and so g^\p = 0. But, since a G
A - Fj, we also have ag^ = 0; whence ag^ = 0 = g^. Finally, assume that a G
F¡ - F;+ j, 1 < / < ft.   Clearly agl = 1 and ag¡+, + 1. Thus by (*), g^ = 1 and
Zi+i** 1- Henceil<Pei=gW=giV=l and¿?;<f«/+i =^^+,^ = ^+^^1,
that is, g^E [c¡) - [c¡+, ) = {c¡}. Hence g^ = c¡. But, since a G F¡ - F¡+ ¡,
we also have ag^ = c¡ ; whence ag; = cz = g; <¿>.   D

For n = 2 the duality reduces to M. H. Stone's duality for Boolean algebras
([45], see also [23]) and hence is full.

For n = 3 the duality is also full; we sketch a proof. By Proposition 1.1,
for all A E L3, every prime filter x G X(A) induces a homomorphism gx E
L3(A, C3), namely the homomorphism determined by x, and conversely, every
homomorphism g E L3(A, C3) is uniquely determined by the filter x = lg-1.
For all x G X(A) let x7x be the unique maximal filter containing x. Then 7X :
X(A) —* X(A) is continuous, X(A) E Y3, and the one-to-one correspondence de-
scribed above is a Y3-isomorphism between X(A) and L3(A, C3). Define a partial
order < on each X G Y3 by x < y <=> (x = v or x 7t = y).  Under this partial
order X is totally order disconnected, that is, X E P. Every clopen increasing sub-
set U of X determines a map ipv E Y3(X, C3):

if x EU,

ifx G (t/ef1)- U,

ifx€ to"1,

and conversely, every map <p E Y3(X, C3) is uniquely determined by the clopen
increasing subset U= l</>-1. This one-to-one correspondence is an L3-isomorphism

x<fiu=  jci

10
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BROUWERIAN ALGEBRAS AND HEYTING ALGEBRAS 127

between U(X) and Y3(X, C3). Since <X, ÍÍ) is a full duality between D and P
it follows that < L3(-, C3), Y3(-, C3)> is a full duality between L3 and Y3.
(An alternative proof may be obtained by applying the duality for Stone algebras
developed in [9] and [42].)

For n > 4 the duality is not full. Let X = {0, 1}, let 7= idx and for all
e # i let 7 be the retraction onto the point 1. It is easily checked that the action
of End(Cn) is well defined and that Yn(X, C„) = {</>0, \px, <p2], where 0<p0 =
l<p0 = 0, 0<¿>i = 0 and 1^ = cn_2, and (ty2 = l<p2 = 1. Hence Yn(X, C„) a
C3, which gives

| L„(Y„(J, C„), CJ = I L„(C3, CJ = « - 1 * 2;
whence e^ is not a surjection.

We turn now to S„ and X_.n n

Theorem 2.5. <S„(-, C*), Xn(-, C¿)) is a duality between S„ and Xn.

Proof.  If A £ S„, then 0A, the Heyting algebra obtained by adjoining a
new zero to A, is an object of LM+1 by Proposition 1.1. If g £ S„(/l, C\), then
identifying C^ with the filter [ct) of Cn + 1, we obtain Qg £ Ln + 1(0.4, Cn+j)
by extending g in the obvious manner. Since End(C,J) = End(Cn+ j) it follows
that Sn(A, C^)3£ Lh+ito^, Cn + 1),   where the distinguished point of
^n + iio-^' '-'n + i) *s ̂ e homomorphism Aj : QA —* C„ + 1 determined by the
prime filter,4. Note that for allge LB+1(0.f4, Cn+1),ge1 = hv If

f> e Yn +1 (Ln +1 (<A Cn +1 )' Cn +1 )»

then AjV £ Im(Aj) = {0, 1} by Lemma 1.6. If Aj</> = 0, then for all g £
Ln + iío^' c'»+i)wenaveeî^i =ge^ = Aji/)= 0 and sog<p = 0, that is, <¿> =
Ó,the identically zero map. Similarly, if A j <p = 1, then for all g £ L„ +1 (0/4, C„ +,),
8<PE fci). It follows readily that

Thus

Xn(Sn(A, C„'), Cln) - X„(L„+1(yl, C„ + 1), q¡)

a Y„(Ln+i(o^. C„+1), Cn + l) - {0} s 0¿ - {0} 'A.   G

For n = 2 the duality is full. A dual generalized Boolean algebra (DGBA)
is a distributive lattice with unit in which each principal filter is a Boolean alge-
bra. It is well known that a DGBA is a Brouwerian algebra and that S2  is the
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class of all DGBA's (see [29]). Since End^1) = {t, 6}, the action of End(C2!)
is trivial and hence X, is isomorphic to the category of pointed Boolean spaces.
For each X G X2 define the action of End(C3) on X by declaring that ex = B,
the retraction onto the distinguished point. Then X E Y3 and it is easily seen
that Y3(X, C3) s 0[X2(X, C\)]. Hence, since the duality between L3 and Y3
is full, we have

S2(X2(X, C¡), C\) s L3(0[X2(X, C\)],C3)
= L3(Y3(X,C3),C3)~X,

and thus the duality between S2 and X2 is full.
For n > 3 the duality is not full. Again let X = {0, 1}, let i = idx and

for e ^ t let 7 be the retraction onto the distinguished point 1. The action of
End(C^) is well defined and Xn(X, C*) = {<p0, i^}, where 0<¿>0 = cn_2 and
l</>0 = 1, and 0(¿>! = 1^=1. Hence

|S„(X„(X O Cn)\ = |SB(C2\ O = n #2,
and thus ex is not a surjection.

3. ZComp-free functors and sur-projectives in Xn and Yn. If there is a
faithful functor ¡—I : X —► C, then X is grounded in C and |-| is called a ground-
ing.  A category X has a C-/ree functor if it is grounded in C and the grounding
has a left adjoint B : C —> X. If C = Set, then g is simply called a free functor.
Forgetful functors are the most accessible examples of groundings and the forma-
tion of free algebras in an equation class is a typical example of a free functor.

If |-| : X —► Set is a grounding, then ip G X is a surjection if | y\ is onto.
An object P E X is sur-projective in X if for every surjection <p: X —*■ Y and
every morphism H P —>Y there exists \¡/': P —+ X with \¡jV = H Recall that X
is a retract of Y if there exist morphisms <p: X —* Y and \p: V—».YinX with
i^ = idx.

The following result, which is proved in [25], illustrates the importance of
ZComp-free functors.

Proposition 3.1. IfXis a category grounded in ZComp and % : ZComp
—*Xis a ZComp-free functor, then the following are equivalent:

(i) P is sur-projective in X;
(ii) P is a retract of %(ßS) for some set S where ß: Set —► ZComp is the

Stone-Cech compactification functor;
(iii) P is a retract offt(X) for some compact extremally disconnected

space X.    D
Xn and Yn are grounded in ZComp by the forgetful functors and we now

describe their ZComp-free functors. As a preliminary we prove a purely universal-
algebraic result.
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As before, if A is an algebra and B is a subalgebra of Ax, then for each
x e X the map r^ : B —► A is defined by ipVx = x$ for all ip £ B.  For all a £ A,
2: X —► A denotes the constant map onto {a}. The monoid of endomorphisms
of A is denoted by End (A) and the constant endomorphism onto a one-element
subalgebra {a} of A is denoted by a".

Proposition 3.2. Let A be a non trivial finite algebra all of whose nontrivial
subalgebras are subdirectly irreducible and assume that every algebra in the equa-
tional class A = HSP({^}) generated by A has a distributive congruence lattice.
If X is a Boolean space and B is a subalgebra of C(X, A) containing the constant
maps, then every homomorphism g £ A(B, A) is of the form Tx e for some x £ X
and some e £ End (4).

Proof.  Let g £ A(B, A). If Im(g) = {a}, then choose x £ X arbitrarily;
clearly g = Txä.  If Im (g) is nontrivial then it is subdirectly irreducible, and by
Jónsson's lemma [28, Lemma 3.1, p. 114] there is an maximal filter F of the
Boolean algebra of all subsets of X with @F \B < Ker(#), where @F is the con-
gruence on Ax given by

<^>, 0>£0F <=>(Eq(^0) = {x£AÏX0 = x0}£F).

Let F' = {U e F\ U is clopen in X}. Then F' is a maximal filter of the Boolean
algebra of clopen subsets of X, and hence, since A!" is a Boolean space, there
exists (a unique) x £ X such that F' = {U\ U is clopen in X and x £ U}.

Now Eq(</>, 0) = U (ay?-1 n a0-1 \a eA), and thus if <p, 0 £ C(X, 4),
then Eq(i¿>, 0) is clopen in X. Hence

<<?, 0>£0F|5<=>Eq(<¿>, 0)£F'<=*jc<¿> = jc0.

Define e: A —► A by ae = ag.  Since 5 contains the set {â\a e A} of con-
stant maps, e is well defined, and since A is isomorphic to {a|a £ A}, e is an
endomorphism. We claim that g = Yxe.  If <p £ B, then v<rx e) = x<pe = (jci¿>)£.
But <i/3, (x<p)> £ 0F|ß since xi/> = x(x^), and hence <i¿>, (xi¿>)> £ Ker(g) since
0F|5<Ker(^). Thus <¿>£ = (x<¿)£, and consequently <p(Txe) = ipg.   D

It is readily verified that for any algebra B of the same type as A, A(B, A)
is a closed subspace of AB, and hence A(B, A) is a Boolean space since A is finite.

Corollary 33. Assume that the conditions of the proposition hold and
that {a0,. .. , a„_ j} is the set ofpairwise distinct elements which form one-ele-
ment subalgebras of A. Let

UX) = (X x (EndG4)-{ J0, .... *„_,})) Ú {ä0,.... ?„_,}

a/K? de/wie ju^.: %(X) —► A(C(AT, 4), ^) by <*, e>M^ = T^e and a¡nx = S¡
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(i < n). Then ßx is a homeomorphism of $(X) onto A(C(X, A), A).

Proof.  The proposition guarantees that px is onto; we now show that it
is one-to-one.   Let <x, e),{y, /> G %(X). If e =£/, then there exists a G A with
ae + af, and consequently

â((x,e)px)=ârxe = aeïaf=âryf= â({y, f) px).

lie — / and x ¥*y, then let U be a clopen subset of X with x EU and y £ U.
Since Im(c) is nontrivial there exist a, b EA with ae =£ be.  Thus, after defining
ip E C(X, A) by U<p = {a} and (X - U)y = {b}, we have

V(<x, e)nx) = (/>rxe = xv>e =ae + be =y<pe = <pYye = <p(<>\ <?>,%).

It follows at once that px is one-to-one.
For each ̂  G Cí^, /l) and each a G yí let

dP\ à) = {g£ A(C(Y, >1), i4)| <pg = a}.

Since .4 is finite, {(i¿>; a)|<¿> E C(X, A); a G A} is a subbasis for the topology on
A(C(X, A), A). Let U = «x, e> G $(JOIx <¿><? = a}. If {a} is not a subalgebra
of A, then (1/7; a)pxl = Í/, and if {a} is a subalgebra of A, then ((/>; a)/^1 =
UU {ä}. Hence to prove that px is continuous it is sufficient to prove that U
is open in X; but, for every <x, e> G Í7, (ae-1)^-1 x {e} is an open neighbour-
hood of <x, e) contained in U. Thus px is continuous, and, since it is a bijection,
it is a homeomorphism.   D

Remark 3.4.  Let B be a Boolean algebra and let A be a finite algebra. It
is easily seen that the Boolean extension A [B] of A by B (see [17]) is isomor-
phic to C(X, A), where X is the Stone space of B. Thus Corollary 3.3 implies
that, under the assumptions of the proposition, A(A [B] ,A) is homeomorphic to

BCD.
For all X E ZComp let %l(X) = Xx (End(C„!) - {0})Ù {0}, let 0 be the

distinguished point of S'iX). and define the action of End(C^) on  %l(X) by

„    i(x.ef)   ifef±0,
<x, <?>/=< and0/=0.

(0 ife/=0,
If * E C(X, Y), then define g\tji) E Xn(%l(X), %l(Y)) by <x, e) g>(^) -
<xtf/, e> and 0 ̂ (i/O = 0- Clearly g1 : ZComp —► X„ is a well-defined functor.

Similarly, for all X E ZComp let %(X) = X x End(C„) and define the
action of End(C„) on %(X) by <x, e)f= <x, ef). If \¡i E C(X, Y), then de-
fine SGI-) G Y„(g(X), g(r)) by <x, e>g(*) = <x^, e>. Clearly g : ZComp -»
Yn is a well-defined functor.

Note that if 0 G C(X, Y), then C(*. O C(r, C„!) -»• C(*, C,}), defined
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by 1^0(0, C„') = 0i¿>, is a homomorphism, and hence C(-, Cn%): ZCompop —*
S„ is a well-defined functor; the functor C(-,Cn): ZCompop —► L„ is defined
similarly.

Theorem 3.5. fi) $l: ZComp —*X„   is naturally isomorphic to
L„(C(-, C*), Ç*): ZComp —► X„ and is a ZComp-free functor for Xn.

(ii) g : ZComp —► Y„ is naturally isomorphic to S„(C(-, Cn), C„):
ZComp —* Yn and is a ZComp-free functor for Yn.

Proof.   We only prove (i).  Since the lattice of congruences of a
Brouwerian algebra A is isomorphic to its lattice of filters, A is subdirectly irre-
ducible if and only if it has a unique coatom. Hence Cm is subdirectly irreduci-
ble for all m > 2 and consequently C* satisfies the conditions of Proposition 3.2.
Our first claim is that p: %1 —* S„(C(-, C„!), C„'), as defined in Corollary 3.3,
is a natural isomorphism. A simple calculation shows that ju is a natural trans-
formation, and by Corollary 3.3, ßx is a homeomorphism for each X £ ZComp.
Since, by definition, ßx preserves the distinguished point, it remains only to prove
that p.x preserves the action of End(Cn); but again this is a simple calculation.

The unit f : idZComp —♦ Xn of the adjunction from ZComp to Xn is de-
fined by xÇx = (x, t>. It is clear that f is a natural transformation and we now
show that f satisfies the universal mapping property. If Ye Xn and ip£ C(X, Y),
then define 0 £ Xn(%x(X), Y) by <x, e) 0 = x<pe and 0 0 = 1, where 1 de-
notes the distinguished point of Y.  Since xcx\¡/ = <jc, i> 0 = x<p we have f¿.0
= «¿>, and the uniqueness of 0 is immediate.   D

The free functors from Set into X„ and Yn may be obtained by composing
%l and g respectively with ß, the Stone-Cech compactification functor.

We can now describe the sur-projectives in X„ and Yn ; as usual, a proof is
only provided for the case of X^, which is the more technical of the two.

Recall that for 1 < k < n, ek £ End(C^) denotes the endomorphism de-
termined by the prime filter [ck), and note that en_l = i.  Let E\ = efcEnd(Cn!)
- {6} be the deleted right ideal of End(C„') generated by ek. If Xt,. . . ,Xn_l
are (possibly empty) Boolean spaces, then

Z=\j(Xk xEkl\l<*<n)Ù{6}

is a subobject of ff(Y), where Y = (j (Xk\ 1 <k<n), and t: %l(Y) -*Z,
defined by

!(x, eke)  ifxeXkvnàekei=d,
and 6 t = 6,

6 ifxeXkvnàeke = e,

is a retraction onto Z.
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Before stating and proving the characterization of the sur-projectives in X„
we require a lemma.

Lemma 3.6. Let X E ZComp and assume that P is a subobject offtl(X)
which is a retract.  Then <x, e) EPimplies that <x, ei)EP for all e G
End^1) - {0}.

Proof.   Let r: g1^)—>Fbe a retraction and let <x, e) EP. If<x, t>r
= 0, then <x, e) = <x, e)r = <x, i)7t = <x, i)t7= 67= 0, a contradiction;
hence there exists y E X and /G End(C¿) such that (x, t)r = {y, />.

Now <x, e) = <x, e>r = <x, i>eV = <x, i)t7= {y, f)7= (y, fe), and
thus x = y and e = fe.  But e = /e implies that a/ = a for all a G C\ for which
ae # 1. Hence /e¿ = e;, and since <x, /> G i> it follows that <x, e; > = <x, fe± )
= <x,f)eiEP.   D

Theorem 3.7.   77ie following are equivalent:
(i) P is sur-projective in X„;
(ii) P is a retract of%i(X) for some compact extremally disconnected

space X;
(iii) there are compact extremally disconnected spaces Xx,. . . ,Xn_x

such that P is isomorphic, in Xn, to

\J(Xk xF¿|Kft</i)Ú {0}.
Proof.  By Proposition 3.1, (i) is equivalent to (ii). If (iii) holds, then F

is a retract of g*( U(**l 1 < ft <«)) by the discussion above. Since each Xk is
compact and extremally disconnected so is Q (Xk | 1 < ft < n); hence (ii) holds.
It remains only to prove that (ii) implies (iii).

Without loss of generality, assume that F is a subobject of ^(X); let t:
%l(X) -*Pbe a retraction. Let Xn_x = {x GX\(x, i) G F} and for 1 < ft <
n - 1 let Xk = {xEX\(x, ek) GF;x € Xk+l}. Since ̂  G {ek\\ <k<n}
for all e E End^1) - {0} it follows, by Lemma 3.6, that

F = (j(Xk x El 11< ft < «) Ú {0}.
A clopen subset of a retract of a compact extremally disconnected space is

compact and extremally disconnected (see [16], [23]), and hence, since 0 is an
isolated point of %\X), it is sufficient to show that U (Xk\ 1 < ft < n) Û {0}
is a retract of X Ú { 0} and that each Xk is clopen in (J (Xk \ 1 < ft < n).

Let Y = U (Xk\l< k < n) and define o: X Û {0} —► Y Ú {0} by 0o =
0 and xo = <x, ex )rit, where it: %l(X) —* X 0 {0} is the obvious projection.
If <x, e) E P, then <x, ei > G F, by Lemma 3.6, and hence <x, ex > = <x, e; e, >
= <x, e; )7X G F.  Thus for all x G y, xa = <x, ex >tit = <x, ex )n = x.
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If U is open in X, then

i/o--1 ^{xexKx.e^TiteU}

= {xe X\<x, et >t £ U x (EndiC,,1 ) -   {0})}

= [(X x {e,}) n ([/ x (End^1 )-{0})r-1] it,

which is open in Jf since r is continuous and it is open.  Similarly,

{0}ff-t ={xeX\<x,el)T = 6}U{0}

= P'x{e1})n{0}r-1]jrU{0},

which is open in X Ù {0} since 0 is an isolated point of %l(X), t is continuous,
and »r is open. Hence a is a continuous retraction of X U {0} onto Y U {0}.

To show that each Xk is clopen in y it is sufficient to prove that for 1 <
k < n the set Uk = {x £ X\(x, ek)eP) is clopen in Y. Since t is continuous
and it being a projection parallel to a compact factor is both open and closed, it
follows that

Vk = [(X x {ek}) n(Xx {eifc})T-1] n

is clopen in X. We claim that Uk = Vk n Y.  lfxeuk, then <jc, efc > £P and
hence xevk CiY since <x, efc >r = (x, ek >. Conversely, assume that x £ Vk n
K  Then <jc, t?k > t = < y, ek > £ P for some y £ AT, and there exists /, with 1 <
Kn, such that <x, e¡)eP.  If / < k, then eke, = et, and hence <x, e¡> =
(x, e¡)r = <x, ek)7¡T = (x, ek)j7x = (y, ek)7¡ = (y, et); which implies that
x = y.  Thus <x, ek) = {y,ek)eP.  lfl>k, then e¡ek = ek, and hence <x, t?k>
= < jc, e7 > é\ £ P since < x, e¡ > £ F. In either case (x, ek)eP, giving x eUk as
required.   D

Let Ek = ekEnd(Cn) be the right ideal of End(C„) generated by ek. If
Jfj,. .. , Xn_ j are (possibly empty) Boolean spaces, then

z = 0(Xk xEk\Kk<n)
is a subobject of g(7), where y = Ú(Xk\l <k<n), and r: g(F)-*Z, de-
fined by

ix, e)t = (x, eke) forxeXk,

is a retraction onto Z.

Theorem 3.8.   77ie following are equivalent:
(i) P is sur-projective in Yn ;
(ii) P is a retract of g(AT) for some compact extremally disconnected

space X;
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(iii) there are compact extremally disconnected spaces Xx, . . . , Xn _,
such that P is isomorphic, in Yn, to

(j(XkxEk\Kk<n).   D

4. Injectives and absolute subretracts in Sn and L„. We recall some defi-
nitions; throughout this preamble A denotes an equational class of universal alge-
bras.

Definition 4.1.   Let A G A A is an injective in A if for all B, CE A,
with B a subalgebra of C, and every g E A(B, A), there exists g' E A(C, A) with
g'\B = g. A is a weak injective in A if for all B, CEA, with B a subalgebra of
C, and every surjection g E A(B, A), there exists g E A(C, A) with g'\B = g. A
is an absolute subretract in A if it is a retract of each of its extensions in A. A
is self-injective if for each subalgebra B of A and every g G A(5, A), there exists
g E A(A, A) with g'\B = g.   A maximal subdirectly irreducible algebra in A is a
subdirectly irreducible algebra with no subdirectly irreducible, proper extension
in A.  Let (A61S G A) be a family of algebras and let g: A —* U(A616 G A) be
an embedding of A as a subdirect product; if g also embeds A as a retract of
ll(As \8 E A), then A is a subdirect retract of the family (A6\8 G A)  A has
enough injectives if every algebra in A has an injective extension in A. Finally, A
satisfies the congruence extension property if for all A, B E A, with A a subalge-
bra of B, and every congruence 0 on A, there is a congruence 0' on B with
Q'\A = 0.

Some of the relationships which tie these concepts together are indicated in
the following result (see [4], [10], [20], and [21]).

Proposition 4.2.  (i) Every injective in A is a weak injective in A, and
every weak injective in A is an absolute subretract in A.

(ii) Every maximal subdirectly irreducible algebra in A is an absolute sub-
retract in A.

(iii) A subdirect retract of a family of weak injectives in A is itself a weak
injective in A.

(iv) If A satisfies the congruence extension property, then A is a weak in-
jective in A if and only if it is an absolute subretract in A.

(v) // A has enough injectives, then (in A) the concepts of injective, weak
injective, and absolute subretract are equivalent.

(vi) Assume that every algebra in A has a distributive congruence lattice
and that A = \SP({A}), where A is a finite, subdirectly irreducible algebra whose
subalgebras are either injective or subdirectly irreducible.  Then the following are
equivalent: (a) A has enough injectives; (b)A is injective in A; (c) A is self-injec-
tive. D
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Before tackling the injectives and absolute subretracts in S„ and L„ we
prove two further results.

If A, B £ A and 0 and i> are congruences on A and B respectively, then
define a congruence <0, $> on A x B by

««,, bl >, <a2, A2» £ < 0, $> <=* (<a,, a2> £ 0 and (bv b2> £ *).

If for all algebras A, B £ A every congruence onAxB can be factored in this
manner, then A has the product property on congruences. Note that if * is a
congruence on A x B which factors as ^ = <0, $>, then

<au a2 > £ 0 «=> «alf b), <a2, A» £ * for some b £ 5

*■» «a^ A>, <a2, A» £ * for all b £B;

the congruence $ behaves similarly. It is well known (see [15] ) that if every
algebra in A has a distributive congruence lattice, then A has the product prop-
erty on congruences.

Lemma 4.3. // A Aas the product property on congruences and
ll(A6 |S £ A) is an absolute subretract in A, then each A6 is also an absolute
subretract in A.

Proof.   Suppose that /: Ay —► B is an embedding.  Let A' = A - {7}
and for all a £ FI(^6|5 £ A) let a/= (ayo, a'>, where a' is the restriction of a
to n(/l6|ô £ A'); clearly

7T[<A* 18 £ A) — B x n^ô I5 G A')
is an embedding. Let

g: B xl[(A6 IS £ A') -*U(As Is e A)

be a retraction of /.  Let c £ ñ(A615 £ A') and define A: B —» Ay by AA =
<A, c>g7T7, where rr^,: II(/16|S £ A)—>Ay is the natural projection.

We claim that A is independent of the choice of c. Since A has the prod-
uct property on congruences there exist congruences 0 and $ on B and
n(i4615 £ A') respectively such that Ker(^i77) = <©,$>. Clearly it is sufficient
to prove that for all c, d £ U(AS |5 £ A'), {c, d) £ <3>, that is, there exists b £ B
such that ib, c)gny = {b, d)gny. Let a eAy; then b = af will suffice since
<A, c)gny = (af,c)giry = (a, c)Jgny = <a, c)ny = a, and similarly, (b, d)gny
= a.

It follows immediately that A is a homomorphism, and, since /A = id.  ,
Ay

we are through.   D
The following result was proved in [21] for the case in which A is an

equational class of distributive pseudocomplemented lattices.
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Proposition 4.4. If A is a finite, weak injective algebra in A, then C(X, A)
is a weak injective in A for every compact extremally disconnected space X.

Proof.   It is readily verified that the functor C(-, A): ZCbmpop —+ A
has the following properties:  (a) If <p is onto, then C(<A A) is one-to-one; (b) if
tp is one-to-one, then C(<?, A) is onto; (c) if (X815 G A) is a family of Boolean
spaces and X = )3( \J (X615 G A)) is their coproduct in ZComp, then C(X, A) s
ïl(C(X6, A)\5 G A). Indeed, (a) is trivial, (b) follows from the fact that every
finite space is injective in ZComp, and (c) follows from well-known properties of
the Stone-Oech compactification.

For every X E ZComp there is a surjection \¡/ E C(ßS, X) for some dis-
crete space S (e.g. let S be the underlying set of X), from which it follows, by
(a), (b), and (c), that C(H A) is an embedding of C(X, A) into C(ßS, A) S As
as a subdirect product.  Since X is extremally disconnected it is sur-projective in
ZComp (see [16] or [23]) and hence H ßS —► X is a retraction. Since any
functor preserves retractions it follows that C(4i,A) embeds C(X, A) in C(ßS, A)
as a retract, whence C(X, A) is a subdirect retract of copies of A.  Hence C(X, A)
is a weak injective in A by Proposition 4.2(iii).   D

Remark 4.5. Since compact extremally disconnected spaces are precisely
the Stone spaces of complete Boolean algebras (see [23]), Proposition 4.4 may
be restated as follows (cf. Remark 3.4).

'If A is a finite, weak injective algebra in A, then for every complete
Boolean algebra B the Boolean extension A [B] of A by B is a weak injective in A.'

We now have more than enough machinery to handle the injectives and
absolute subretracts in S„ and L„.

Lemma 4.6. Let 3 < n < co. Then for any nonempty Boolean space X,
C(X, C¿) is not self-injective, and for 2 < ft < n, C(X, Ck) is not an absolute
subretract in S„.

Proof.  Let ,4 = {c„_2, 1} C Cn!. Then C(X, A) is a subalgebra of
C(X, C,}). Define g: A —» C¿ by cn_2g = 0 and lg = 1, and define g:
C(X A) —► C(X, Ç|) by ipg = ipg.  If C(X, C\) were self-injective there would
be a homomorphism h: C(X, C*) —► C(X, C*) satisfying ¡ph = y g for all <p G
C(X, A). For each c E CjJ let c E C(X, C*) be the corresponding constant map.
Since 0 = cn_2g = cn_2h and cn_2 * Ô = Ô we obtain

Ô * Oh = c„_2h * Ôh = (cn_2 * Ô)h = Ôh,

which gives the contradiction 0 > OA.  Hence C(X, C*) is not self-injective.
Now let g : C¿ —► C\ embed C¿ as a filter of C„x, and define g : C(X, C¿)
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—* C(X, C\) by <pg = <pg. If C(X, Cl) is an absolute subretract, then there
exists a retraction A: C(X, C„') -* C(X, Ckl) of g.  Since Og > 0 it follows that
Ôg * Ô = Ô, and hence

Ô * ÔA = Ô£"A * ÔA = (Og * Ô)A = ÔA;
again we have the contradiction Ô > ÔA.  Hence C(X, C¿) is not an absolute sub-
retract in Sn. D

If B is a Boolean algebra, then let

n[5] = {<A0,.   ., *B_2>e#-X <*,<••• < bn_2}.

It is easily seen that n [B] is a Brouwerian (in fact, Heyting) algebra in which

<a0,... ,an_2) * <A0,. .., bn_2)

= ( A fl; VA,, A «;VA/,...,a;_2VAM_A.
\i=o /=i /

Furthermore, it is readily verified that n[B] s C(X, C\), where X is the Stone
space of B, and hence n[B] £ Sn.

For the definition and a discussion of n-valued Post algebras we refer to
G. Epstein [14]. Only the following facts are required here: (a) for every Bool-
ean algebra B, n[B] is an «-valued Post algebra, and conversely, each «-valued
Post algebra A is isomorphic to n[B], where B is the centre of A (the centre of
a bounded distributive lattice is its Boolean algebra of complemented elements);
(b) an «-valued Post algebra is complete if and only if its centre is complete. For
convenience, we regard the one-element algebra as an «-valued Post algebra.

Theorem 4.7.   77ic following are equivalent:
(i) A is a weak injective in S„ ;
(ii) A is an absolute subretract in S„ ;
(iii) there is a compact extremally disconnected space X such that A =;

CÍX Cfr
(iv) there is a complete Boolean algebra B such that A = n[5] ;
(v) A is a complete n-valued Post algebra.

Proof,  (i) <=> (ii). This equivalence follows from Proposition 4.2(iv) since
Brouwerian algebras have the congruence extension property.

(ii) <=> (iii). As we noted in the proof of Theorem 2.4, the set S =
Sn(A, C£) separates the points of A.  Thus A is isomorphic to a subalgebra of
(C\f s C(ßS, C;1), and so A is a retract of C(ßS, C„!). It follows that Sn(A, C„!)
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is a retract of S„ (C(ßS, C,J), C\), which, by Theorem 3.5, is isomorphic (in X„)
to %l(ßS). Since ßS is extremally disconnected, Theorem 3.7 implies that there
are (possibly empty) compact extremally disconnected spacesXx,. . . ,Xn_x
such that S„ (A, C*) is isomorphic to

Z = \J(Xk xF¿|Kft<w)Ú{0}.

For 1 < ft < n, Zk = (Xk x F¿) U {0} is a subobject of Z, and if <pk E
Xn(Zk, C*), then >p E Xn(Z, C„') may be defined by <p\Zk = <pk; in fact, Z is
the Xn-coproduct of the family (Zk\ 1 < ft < «). Hence, by Theorem 2.5,

A~Xn(Sn(A,Cln),C'n)~Xn(Z,Cln)

sIl(X„(^,Cw1)|l<ft<«).

We claim that Xn(Zk, Cxn) as C(*k, C¿+,). If ^ G X„(Zfc, Cn!), then

<x, ek)<p = <x, <?k>7kip = <x, efc>>pek,

and thus <x, efc ><¿> G Im(ek) = {0, cx,. . . , ck_x, 1}. Hence ̂  induces a map
í G Cí^jt, CjJ+1) defined by x<£ = <x, ek ><¿>. Conversely, each map ^ G
C(Xfc, C¿+1) induces a map ^ EXn(Zk, C„) defined by <x, e)$ = x4/e and
6[4> = 0. The map <£ —► £ is clearly a homomorphism and since ip = <p and
| - * it follows that X„(Zk, C„!) as C(*k, C¿+ x).

Thus 4 as n(C(^fc, C¿+ j)| 1 < ft < tj); but, since ̂  is an absolute subre-
tract, Lemma 4.3 and Lemma 4.6 imply that Xk is empty for 1 < ft < n - 1,
and hence (iii) follows.

(iii) =* (i). Since Brouwerian algebras have the congruence extension proper-
ty and since C\ is a maximal subdirectly irreducible algebra in S„ it follows, by
Proposition 4.2(ii) (iv), that C„ is a weak injective in S„. Hence (iii) implies (i)
by Proposition 4.4.

(iii) <=> (iv) <==> (v). Since a Boolean algebra is complete if and only if its
Stone space is extremally disconnected these equivalences follow from the dis-
cussion preceding the statement of the theorem.   D

Theorem 4.8.  Sn has enough injectives if and only ifn — 2. An algebra in
S2 is injective if and only if it is a complete Boolean algebra. And for 3 < n < <o,
S„ has only trivial injectives.

Proof.  C\ is trivially self-injective and by Lemma 4.6, with I A^| = 1, C\
is not self-injective for all n > 3. Hence, by Proposition 4.2(vi), only S2 has
enough injectives. By Proposition 4.2(v) and Theorem 4.7 an algebra in S2 is in-
jective if and only if it is a complete Boolean algebra since a 2-valued Post
algebra is nothing more than a Boolean algebra.  Since injective algebras are both
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self-injective and weak injective, Lemma 4.6 and Theorem 4.7 imply that for
« > 3, S„ has only trivial injectives.   □

We turn now to L„. Since the proofs are very similar to the corresponding
proofs for Sn they will only be sketched.

Lemma 4.9. Let 4 < n < «.  77ien for any nonempty Boolean space X,
C(X, Cn) is not self-injective, and for 3<k<n, C(X, Ck) is not an absolute subre-
tract in L„.

Proof.  Mimic the proof of Lemma 4.6. Assume that C(X, Cn) is self-
injective and let A = {0, cn_2, 1}. Define g: A —*■ Cn by Og = 0, cn_2g = cv
and \g = 1, define g : C(X, A) —*■ C(X, Cn) by <pg = <pg, and let A be an exten-
sion of g to an endomorphism of C(X, Cn). We find that ci * cxh = c, A, and
so c,A = Ô, giving the contradiction

Ô = ÔA = (c, * Ô)A = cxh * ÔA = Ô * Ô = î.
Assume that C(X Ck) is an absolute subretract in Ln, and let g: Ck —*■ Cn

be the embedding characterized by Og = 0 and [cx)g is a filter of Cn.  Define
~g: C(X, Ck) —* C(X, Cn) by <pg = <pg, and let A be a retraction of g.  Again we
find that cl * cxh = CjA, and so cxh = Ô. This gives rise to the contradiction
Ô = Î, as above.   D

Theorem 4.10.   77ie following are equivalent:
(i) A is a weak injective in L„;
(ii) A is an absolute subretract in Ln;
(iii) there are compact extremally disconnected spaces X0 and Xx such that

a~c(x0,c2)x C(xvctty,
(iv) there are complete Boolean algebras B0 and Bx such that A = B0 x

n[5,];
(v) there is a complete Boolean algebra B and a complete n-valued Post

algebra P such that A ^B x P.

Proof.  A proof can be obtained by making the obvious changes in the
proof of Theorem 4.7. In particular, note that for any compact extremally dis-
connected space X, C(X, C2) is isomorphic to the complete Boolean algebra of
clopen subsets of X, and hence C(X, C2) is an injective in Ln since every com-
plete Boolean algebra is an injective Heyting algebra (see [3] ).  Clearly, where
Lemma 4.6 was applied in the proof of Theorem 4.7 we now call on Lemma 4.9. D

Except for the characterization of the injectives in L3, the following result
is due to A. Day [12].

Theorem 4.11.   Ln has enough injectives if and only if n = 2 or n = 3. An
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algebra in L2 is injective if and only if it is a complete Boolean algebra. An alge-
bra in L3 is injective if and only if it is isomorphic to the direct product of a
complete Boolean algebra with a complete 3-valued Post algebra. For 4 < « < w,
an algebra in L„ is injective if and only if it is a complete Boolean algebra.

Proof.  Only the characterization of the injectives in L„ for n > 4 requires
more than a direct translation of the proof of Theorem 4.8. As was noted in the
proof of the previous theorem, complete Boolean algebras are injective in L„. If
A is injective in Ln, n > 4, then it is a weak injective in Ln and hence there are
Boolean algebras B0 and Bx such that A = B0 x n[Bx]. We shall show that if
fij is nontrivial, then n[Bx] is a retract of BQ x n[5j]. Since a retract of an
injective algebra is injective this contradicts the fact that n[5j] is not self-injective.

Let F be a maximal filter of n[Bx] and define g: n[Bx] —*-B0 x n[Bx] by

<l,a>   ifaGF,

<0,a>   ifa£F.

By Proposition l.l(iii), g is a homomorphism, and it is clear that the natural
projection of B0 x n[Bx] onto n[Fj] is a retraction of g.   O

Remark 4.12.   Recently, T. Katrinák and A. Mitschke [30] have character-
ized Post algebras, and R. Beazer [5] has characterized algebras of the form B0 x
n[2?j], in terms of their Brouwerian algebra structure. These characterizations
may be used to give algebraic proofs of Theorem 4.7 and Theorem 4.10 along the
lines of the proof of Theorem 2 in G. Grätzer and H. Lakser [21].

5. Free products and free algebras in S„ and L„. Free products in S„ and
L„ are readily described via the dualities. The free product of the family
(A615 G A) is denoted by *ïl(As |5 E A).

Theorem 5.1. (i) Let (As |5 E A) be a family of algebras of S„ and let
X6=Sn(A6,C¿). Then

*U(A& |8 G A) - X„ (n(*615 G A), C¿) .

(ii) Let (As\8 E A) be a family of nontrivial algebras of Ln and let X& =
Ln(As,Cn). Then

*U(AS IS G A) as Y„ (U(X6 IS G A), Cn).
Proof.  We only prove (i). Let X'„ be the image, under the functor

Sn(-, C*), of SL,.  Since S„ is equivalent to the dual ofX'n it follows that the
image, under the functor X„(—, C¡¡), of a direct product in X^ is a coproduct in
S„. Free products are only distinguished from coproducts by the requirement
that the natural homomorphism g : Ay —► *n(/l6 |5 G A) be an embedding. But

ag =
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By ~ ^A x#i(V Cn )» where wy: n(*618 £ A) —► .Y7 is the natural projection,
and thus gy is an embedding since iry is a surjection.   D

In 5.1 (ii) the algebra A6 is assumed to be nontrivial so that X6 will be non-
empty; the free product of Ct and C2 does not exist in L„ and hence this re-
quirement is necessary.

For all A £ S„ let P*(A) be the subset of Sn(A, C„!) consisting of those
homomorphisms which are determined by some prime filter of A (see Definition
1.2). If PJ,(A) is ordered pointwise, then the correspondence F —► gF is an
order-isomorphism between the poset X(A) of prime filters of A and the poset
Pn(A). Observe that if g, A £ Pn(A), then

g < A if and only ifge = h for some e £ End(Cn!).

Since each finite distributive lattice is determined by its poset of prime filters
(see Remark 2.3) it follows that every finite algebra A £ S„ is determined by the
poset P* (A). For an algebra A £ Ln, Vn(A) is defined similarly, and again, if A
is finite, then the poset P„(A) determines A.

Using this observation we can completely describe the finitely generated
free algebras in S„ and L„. For any equational class A and any ordinal k let
gA(/c) denote the k-generated free algebra in A with free generators {xy\y < k}.

Define the action of End(C„') on (C*)K pointwise; then it is clear that the
maP P« : Sfe(8s («0. cn) —* (<*)"• defined °y SPk = <'T*>T<,c »is an iso-
morphism in Xn. Let Pn(n) be the image of P¿(gs (k)) under pK and define
a partial order on P¿(k) by

a < A <=* (a7= b for some e £ End(C,})).

Clearly P¿(?5S (/c)) and P„(k) are order-isomorphic.

Proposition 5.2.  (i) g^fr) « X,«^1)", C«1).
(ii) ¿er a £ (C* )". 77ie« aePn(K)ifand only if there exists I, with 1 <

/ < «, swcA íAaí

{«7It<k} U{l}=(c,_,] U{1}.

Proof,  (i) Apply the duality.
(ü) If g e S„(ftSn(fc), C*), then Imfe) is the subalgebra of Çj generated

by {*7£l7 < k }, and hence Im(g) = {xyg\y < k} U {1}, since for all c, d £
C/!» c *de{c,d, 1}. Thus g is determined by a prime filter of gs (k) if and
only if {xy g17 < «•} U {1} = (c¡_, ] U {p }, where 1 < / < «.  After translating
from Sn(gs (k), C„j) to (C,})* via pK the result follows.   D
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Recall that 0A is obtained from A by adjoining a new zero.

Theorem 53.  (i) gs (m) as (C\)2m~l for all m < co.

(Ü) For n > 3, gs (0) as C\ and for Km < co,
m-l (m)

Bs(m)= Il [o<âsB_,(*))!     •
" fc=0

Proof.  It is clear that gs (0) as C\ for all « > 2, and hence we assume
that m > 1.

By applying Proposition 5.1(i) we find that g s (m) as (C2)2   -1 since
X2((C2)m, C2) is the set of all morphisms which map < 1, . . . , 1 > to 1 and
map each of the other 2m - 1 elements of (C\)m arbitrarily into C\.

Now consider n > 3. If a G P^ (m), then, by Proposition 5.2(h), there
exists i<m such that c¡ = 0. Thus if a, b E Vn (m) and a < ô, then af = 0 *=»
2>f = 0 (if a7= ô, then Oe = 0; for otherwise a7p. ?n(m)). Hence Ml =
(C\y" — {< 1, ..., 1 >} is the set of maximal elements of Pj,0n), and, in fact,
Vn(m) is the disjoint union of the family ((a] | a G M1). By Remark 2.3, gs (m)n
is isomorphic to the lattice of increasing subsets of ?„(m) and so is isomorphic
to IÏ(2I((a])|a G Af1), where 2I((a]) is the lattice of increasing subsets of (a]. It
is easily verified that if a EM1 has exactly ft < m coordinates equal to 1 (and
hence m - k equal to 0), then (a] is order-isomorphic to Pn_x(k) U{<1,..., 1>}.
Since there are (m) elements of M1 with exactly ft coordinates equal to 1 and
since the lattice of increasing subsets of Vn_ x(k) U {< 1,. . . , 1 >} is isomorphic
10 o($s      W)tne resu^ follows-   E

The action of End(C„) on (Cn)K is defined pointwise. The isomorphism
pK and the poset P„(«) are defined for the category Y„ as they were for X„. As
before, the partial order on ?„(k) is defined by

a < b <=* (a7= b for some e E End(C„)).

The proof of the following result is similar to the proof of Proposition 5.2
and is omitted.

Proposition 5.4.  (i) gL/j (K) as Yn((Cn)K, C„).
(ii) Let a E (Cn)K.  Then a E P„(k) if and only if there exists I, with 0 <

Kn, such that

{0}U{a7l7</c}U{l} = {0}U[c1,c/_1] U{1}.   □

Theorem 5.5.  (i) gL (m) as (C2fm for all m < co.

(ii) For n>3 and m < u,
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ovw>- n [«©s» .m1**.
n k=o       ^,_1

Proof.  Again it is clear that g,   (0) s C2 for all « > 2, and hence we
n

assume that m ~> 1.
That %L (w) = (C2)2    follows immediately from Proposition 5.4(i) since

C2 has no proper endomorphisms.
Now consider « > 3. It follows as in the proof of Theorem 5.3 that M =

(C2y" is the set of maximal elements in the poset Pn(m) and that P„(m) is the
disjoint union of the family ((a] |a CM). Consequently BL (m) is isomorphic

to n(?l((a])|a CM), where 21 ((a]) is the lattice of increasing subsets of (a]. Now
if a £ M has exactly k coordinates equal to 1, then (a] is order-isomorphic to
?„-i(k)l> {<1,...,1>} since

(a) if a, A £ Pn(m) and a < A, then ai = c1 <=>bi = cl, and
(b) by identifying C^, with the filter [ct) ofCn we find that End(C„)

sEndCC,,1.,).
Since there are (m) elements of M with exactly k coordinates equal to 1

and since the lattice of increasing subsets of P\_ x(k) U {< 1, . . . , 1 >} is iso-
morphic to 0(§s      (*)) tf10 result follows.   D

The following simple result allows us to relate the free algebras in the vari-
ous classes and also enables us to describe the finitely generated free algebras in
S   and L   .

Lemma 5.6. (i) Let A £ Sw. If A is n-generated then A £ S„+I.
(ii) Let A e Lw. If A is n-generated, then A £ L„+2.

Proof, (i) Let/1 £ Sw be «-generated and let F be a prime filter of A. We
shall prove that the chain of prime filters containing F has at most «-elements;
whence .4 £S„ + 1 by Proposition 1.1 (ii).

Let *F be the unique congruence on A with F as a congruence class. For all
a, bCA,(a *b) V (A *a)= 1 £ F and hence either a * A £F or A *aeF, that is,
[a] *F * [A] *F = [1] *F or [A] *F * [a] *F = [1] *F. But a Brouwerian algebra
C is a chain if and only if for all a, A£C, a*A = 1 orA*a= l;thuSi4/*Fisa
chain. Since A/$?F is generated by the images of the « generators of A it follows
that \A/VF\ = n + 1. Hence the chain of all prime filters containing F has at most
« elements by Proposition 1.1 (iii).

(ii) Let A e Lu be «-generated. Then A is (n + l)-generated as an object of
Sw. It follows, by (i), that A £ S„ + 2 and hence ACLn+2.   D

Our final result now follows easily; simply observe that if B is an equational
subclass of an equational class A and every m-generated algebra in A is an algebra in
B,thengA(m)sgB(«j).
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Theorem 5.7. (i) g s  (m) ai gs       rm\
WUÍ Wtlv     '

(ii)gLJ/«)^gLm+2(m)SgLm+2(m).

(ni) Ifn > m + 1, then gSjj(m) as g s ̂  +( (m).

(iv) Ifn>m + 2,fften gL (m) as gL       (m).
n wit x

r> m-1 fm)
(v) gs (m) as  n [o@SfJ(*))]  * •

fc = 0

m (m\
(vi)gL   (m)asn  tofôsj*))]       =5S  (w)x0(gs   (m)).   D

Remark 5.8. The finitely generated free algebras in Lw were first described
by A. Horn [27]. Theorem 5.3, Theorem 5.5, and Theorem 5.7 first appeared in
P.Köhler [31].
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