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Abstract

We introduce a new Priestley-style topological duality for N4-lattices, which are the algebraic coun-

terpart of paraconsistent Nelson logic. Our duality differs from the existing one, due to S. Odintsov,

in that we only rely on Esakia duality for Heyting algebras and not on the duality for De Morgan
algebras of Cornish and Fowler. A major advantage of our approach is that we obtain a simple

description for our topological structures, which allows us to extend the duality to other algebraic
structures such as N4-lattices with monotonic modal operators, and also to provide a neighborhood

semantics for the non-normal modal logic corresponding to these algebras.
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1 Introduction

Paraconsistent Nelson logic, which was introduced in [1] as an inconsistency-tolerant
counterpart of the better-known logic of Nelson [16, 23]. Paraconsistent Nelson logic
combines interesting features of intuitionistic, classical and many-valued logics (e.g.,
Belnap-Dunn four-valued logic); recent work has shown that it can also be seen as
one member of the wide family of substructural logics [25].

The work we present in this paper is a contribution towards a better topological
understanding of the algebraic counterpart of paraconsistent Nelson logic, namely
a variety of involutive lattices called N4-lattices in [17]. We present a Priestly-style
duality for those lattices and we develop a topological duality for N4-lattices expanded
with a monotone modal operator.

A Priestley-style duality for N4-lattices was already introduced by Odintsov [19],
generalizing the duality developed by Cignoli [5] for a subclass of N4-lattices called
N3-lattices. The main differences between the Cignoli-Odintsov approach and ours
are the following:

• we only rely on Esakia duality for Heyting algebras [12], whereas [5, 19] use both
Esakia duality and the duality for De Morgan algebras [8, 9]: as a consequence,
the dual spaces that we obtain are, in our opinion, easier to understand than those
considered in [5, 19];

• [5, 19] only deal with bounded N4-lattices, whereas we cover the non-bounded case
as well.

From our perspective, our duality has the further advantage that it can be easily
extended to obtain topological counterparts of N4-lattices with modal operators such
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2 Dualities for modal N4-lattices

as those introduced in [20, 24], and the resulting duality can be used to provide
a state-based semantics for the paraconsistent modal logic introduced in [24]. The
duality we present for non modal N4-latices has already been introduced in [15], to
which we will refer in the sequel.

The paper is organized as follows.
In Section 2 we introduce the abstract algebraic definition of N4-lattices and we

state a fundamental result of Odintsov [18], namely that every N4-lattice can be
represented through a concrete construction called twist-structure. We show that this
can be extended to a categorial equivalence, which will allow us to work, for our
duality, with a category of twist-structures instead of the category of N4-lattices as
defined in [19].

Section 3 contains the details of our duality. At the level of objects, on the algebraic
side we have twist-structures, that is, tuples 〈A,∇, ∇〉 where A is a Brouwerian lattice
(i.e., the 0-free subreduct of a Heyting algebra) and ∇, ∇are, respectively, a filter and
an ideal of A. On the topological side we have tuples 〈X,C,O〉 such that X is the
Priestley space corresponding to a Heyting algebra (an Esakia space) and C,O ⊆ X
are, respectively, a closed and an open set of the Priestley topology on X. We prove
that the two resulting categories are dually equivalent via the usual functors involved
in Priestley (and Esakia) duality.

In Section 4 we recall the algebraic definitions of monotonic N4-lattices [24] and BK-
lattices [20], which are both classes of N4-lattices augmented with monotone modal
operators. We see that twist-structure representations are available for these algebras
as well and, as in the non-modal case, we extend them to categorial equivalences that
employ the same functors.

Section 5 extends the duality of Section 3 to twist-structures corresponding to
N4-lattices with modal operators. At the level of objects, on the algebraic side we
have as before tuples 〈A,∇, ∇〉, but where A is now a Brouwerian lattice augmented
with modal operators. On the topological side, these operators are represented by
neighbourhood functions on the corresponding spaces [14]. We show that the usual
Priestley functors establish dualities between twist-structures augmented with modal
operators and the spaces thus obtained.

Finally, in Section 6 we show how the duality of Section 5 can be used to provide
a state-based semantics which is complete with respect to the paraconsistent modal
logic introduced in [24], thus solving one of the open problems posed in [24, Section
5].

2 Equivalence between N4-lattices and twist-structures

In this section we prove a result which is implicitly contained in [18], namely that
N4-lattices, viewed as a category, are equivalent to a category of twist-structures over
(i.e., special second powers of) Brouwerian lattices. This restricts to an equivalence
between bounded N4-lattices and twist-structures over bounded Brouwerian lattices
(i.e., Heyting algebras). In the next section we will develop a duality for the latter
category based on Esakia duality for Heyting algebras, which will allow us to obtain
a dual equivalence between the topological spaces thus introduced and the category
of (bounded) N4-lattices.

Let us start by introducing N4-lattices, which are our main objects of interest [18,
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Definition 2.3].

Definition 2.1
An N4-lattice is an algebra B = 〈B,∧,∨,→,∼〉 such that:

1. the reduct1 〈B,∧,∨,∼〉 is a De Morgan lattice, i.e., a distributive lattice equipped
with a unary operation ∼ : B → B (usually called negation) such that ∼∼ a = a
and ∼(a ∨ b) = ∼ a ∧ ∼ b for all a, b ∈ B,

2. the relation � defined, for all a, b ∈ B, as a � b iff a→ b = (a→ b)→ (a→ b), is
a pre-ordering (i.e., reflexive and transitive),

3. the relation ≡ defined, for all a, b ∈ B, as a ≡ b iff a � b and b � a, is a
congruence relation w.r.t. ∧,∨,→ and the quotient algebra B./ = 〈B,∧,∨,→〉/≡
is a Brouwerian lattice (see below),

4. for all a, b ∈ B, ∼(a→ b) ≡ a ∧ ∼ b,
5. for all a, b ∈ B, a ≤ b iff (a � b and ∼ b � ∼ a), where ≤ is the lattice order of

B.

B is said to be bounded if its lattice reduct is bounded, in which case we include the
bounds as constants in the algebraic signature.

We remind the reader that a Brouwerian lattice is a lattice 〈L,∧,∨〉 equipped with a
binary operation→ that satisfies the following residuation condition: for all a, b, c ∈ L,
a ∧ b ≤ c if and only if b ≤ a → c. Brouwerian lattices are precisely the 0-free
subreducts (i.e., subalgebras of reducts) of Heyting algebras2.

Although it is not apparent in the above definition, it is known [17] that N4-lattices
form a variety (therefore, the class of bounded N4-lattices is also a varietiy).

Condition (3) of the definition provides a way to associate a Brouwerian lattice to
any given N4-lattice. Conversely, we are now going to describe a method introduced
in [18, Definition 2.1] that allows us to construct an N4-lattice as a special power
of a Brouwerian lattice, and we shall see that each N4-lattice is isomorphic to one
obtained in this way3.

Let A = 〈A,∧,∨,→, 1〉 be a Brouwerian lattice. Consider the algebra A./ =
〈A×A,∧,∨,→,∼〉 with operations defined as follows:

• 〈a, b〉 ∧ 〈c, d〉 := 〈a ∧ c, b ∨ d〉
• 〈a, b〉 ∨ 〈c, d〉 := 〈a ∨ c, b ∧ d〉
• 〈a, b〉 → 〈c, d〉 := 〈a→ c, a ∧ d〉
• ∼〈a, b〉 := 〈b, a〉.

It is not difficult to check that A./ satisfies all conditions of Definition 2.1, i.e., A./

is an N4-lattice. If A has a minimum element 0, then by defining > := 〈1, 0〉 and
⊥ := 〈0, 1〉 we obtain a bounded N4-lattice. Notice that the operations ∧,∨,→ of A./

are defined component-wise just as in a direct product in the first component, while

1By a reduct of B we mean an algebra with the same carrier set, in which some of the algebraic operations of B

have been suppressed.
2 Brouwerian lattices are also known in the literature as generalized Heyting algebras [6], Brouwerian algebras [10],

implicative lattices [17] or relatively pseudo-complemented lattices [23]. Note also that some authors call “Brouwerian

lattices” structures that are (lattice-theoretic) dual to ours.
3 The origins of this construction can be traced back to [26] and also, independently, [13].
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they are somehow “twisted” in the second one. This explains the name twist-structure
over A for the algebra A./ used for instance in [18].

Although the construction described above indeed produces an N4-lattice, not all
N4-lattices are isomorphic to one constructed in this way. In order to obtain all
of them, we need to consider all {∧,∨,→,∼}-subalgebras of A./. The following
construction, due to Odintsov, provides a way of producing all such subalgebras.

Given our Brouwerian lattice A, denote by D(A) the set of dense elements of A,
defined as

D(A) := {a ∨ (a→ b) : a, b ∈ A}.
D(A) is always a lattice filter of A, so we may also call it the filter of dense elements
of A. If A has a bottom element 0, (i.e., if A is in fact a Heyting algebra, except
for the fact that no symbol for 0 is included as a constant in the algebraic language),
then the dense elements can also be obtained as follows:

D(A) = {a ∨ ¬a : a ∈ A} = {a ∈ A : ¬¬a = 1}

where ¬ is the Heyting negation of A, i.e., ¬a := a→ 0.
Now consider a lattice filter ∇ ⊆ A such that D(A) ⊆ ∇ and let

∇⊆ A be a lattice
ideal. Then the set

B := {〈a, b〉 ∈ A×A : a ∨ b ∈ ∇, a ∧ b ∈ ∇}

is closed under the operations ∧,∨,→,∼ of A./. Therefore 〈B,∧,∨,→,∼〉 is an N4-
lattice: following [18], we denote this algebra by Tw(A,∇, ∇). Notice also that, for
every a ∈ A, there is b ∈ A such that 〈a, b〉 ∈ Tw(A,∇, ∇). To see this, take a′ ∈ ∇

.
Then a ∨ (a → a′) ∈ D(A) ⊆ ∇ and since a ∧ (a → a′) = a ∧ a′ ∈ ∇

, we have
〈a, a→ a′〉 ∈ B. Thus, letting b := a→ a′, we obtain the desired result.

In order to show that any N4-lattice can be obtained as Tw(A,∇, ∇) for a suitable
choice of (A,∇, ∇), we define, for an arbitrary N4-lattice B,

∇(B) := {[a ∨ ∼ a] : a ∈ B}

where [b] denotes the equivalence class of b ∈ B modulo the relation ≡ introduced in
Definition 2.1. Similarly, we let

∇

(B) := {[a ∧ ∼ a] : a ∈ B}.

It is not difficult to check that ∇(B) is a lattice filter of the Brouwerian lattice
B./ = 〈B,∧,∨,→〉/≡ which contains the dense elements of B./, and that

∇

(B) is
an ideal of B./. Thus, we can construct the N4-lattice Tw(B./,∇(B),

∇

(B)), which
turns out to be isomorphic to B, as shown by the following result [18, Corollary 3.2].

Proposition 2.2 (cf. [15], Prop. 2.2)
Every N4-lattice (bounded N4-lattice) B is isomorphic to the algebra

Tw(B./,∇(B),

∇

(B))

where B./ is a Brouwerian lattice (Heyting algebra), through the map jB : B → B/≡
×B/≡ defined, for all a ∈ B, as

jB(a) := 〈[a], [∼ a]〉.
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Thus, any (bounded) N4-lattice can be associated to a triple of the form (A,∇, ∇)
with A a (bounded) Brouwerian lattice and ∇, ∇, respectively, a filter and an ideal of
A. We are going to see that jB is in fact the unit of a categorical equivalence between
two naturally associated categories.

We denote by N4 the category whose objects are N4-lattices and whose morphisms
are the algebraic N4-lattice homomorphisms. The category of bounded N4-lattices
(denoted N4⊥) is defined analogously, the corresponding objects being bounded N4-
lattices and the morphisms being the algebraic N4-lattice homomorphisms that pre-
serve the bounds.

On the other side of our equivalence, we define a category Twist whose objects are
triples A = (A,∇, ∇) such that:

• A is a Brouwerian lattice,

• ∇ is a lattice filter of A containing the dense elements D(A),

• ∇

is a lattice ideal of A.

We will refer to objects in this category as twist-structures, but notice that we view
them just as triples (A,∇, ∇) rather than as the product algebra Tw(A,∇, ∇) defined
above.

A morphism between two twist-structures A1 = (A1,∇1,

∇

1) and A2 = (A2,∇2,

∇

2)
is defined as a Brouwerian lattice homomorphism h : A1 → A2 such that

• h[∇1] ⊆ ∇2

• h[

∇

1] ⊆ ∇

2.

It is easy to check that the set-theoretic composition of morphisms gives a morphism
and that the identity morphism of a twist-structure is the identity homomorphism of
the underlying Brouwerian lattice. We define the category Twist⊥ by restricting the
objects to twist-structures over bounded Brouwerian lattices (i.e., Heyting algebras)
and by requiring that morphisms preserve the bounds. Note that Twist⊥ is a subcat-
egory of Twist which is not full because of the requirement that morphisms preserve
the bounds.

We proceed to define functors T : N4 → Twist and N : Twist → N4 that will allow
us to prove the equivalence between the two categories.

Given an N4-lattice B, we let

T (B) := (B./,∇(B),

∇

(B)).

If f : B1 → B2 is an N4-lattice homomorphism, we define T (f) : (B1)./ → (B2)./ as

T (f)([a]≡1) := [f(a)]≡2

where [a]≡1
is the equivalence class of a ∈ B1 modulo the relation introduced in

Definition 2.1 and likewise [b]≡2
∈ B2/≡2 for all b ∈ B2. The definition is sound

because a ≡1 a
′ implies that f(a) ≡2 f(b). The map T (f) is a morphism from (B1)./

to (B2)./ satisfying that T (f) ◦ π1 = π2 ◦ f , where πi : Bi → Bi/≡ is defined by
πi(b) := [b]≡i for all b ∈ Bi.

It is straightforward to check that T is indeed a functor from N4 to Twist. Note
that if B1,B2 are bounded and f preserves the bounds, then T (f) also preserves the
bounds. Thus T also gives a functor from N4⊥ to Twist⊥.
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Conversely, given a twist-structure A = (A,∇, ∇), we let

N(A) := Tw(A,∇, ∇).

We know by Proposition 2.2 that Tw(A,∇, ∇) is an N4-lattice. For a morphism
h : A1 → A2 between twist-structures A1 = (A1,∇1,

∇

1) and A2 = (A2,∇2,

∇

2), we
define the map N(h) : N(A1)→ N(A2), for all a, b ∈ A1, as

N(h)〈a, b〉 := 〈h(a), h(b)〉.

It is easy to see that this map is well defined, that is, if 〈a, b〉 ∈ N(A1), then
〈h(a), h(b)〉 ∈ N(A2), and that it is a homomorphism. As with T , it is straight-
forward to see that N is a functor from Twist to N4. Moreover, if A1,A2 are twist-
structures over bounded Brouwerian lattices and h : A1 → A2 preserves the bounds,
then N(h) : N(A1) → N(A2) is a bounded N4-lattice homomorphism. Therefore N
gives a functor from Twist⊥ to N4⊥.

Now, given an N4-lattice B, by Proposition 2.2 we have an algebraic isomorphism

jB : B ∼= N(T (B)).

It is easy to see that this implies that jB is an isomorphism in the category N4.
Conversely, given a twist-structure A, we define a function ηA : A → T (N(A)) as

follows: for all a ∈ A,
ηA(a) := [〈a, a′〉] (2.1)

where a′ ∈ A is an element we choose such that 〈a, a′〉 ∈ N(A) and [〈a, a′〉] is the
equivalence class of 〈a, a′〉 modulo the equivalence relation on T (N(A)) introduced in
Definition 2.1. In order to see that this definition is sound, notice first that such an
element a′ ∈ A always exists because π1[N(A)] = A, and secondly notice that for all
a, b, a′, b′ ∈ A, it holds that [〈a, a′〉] = [〈b, b′〉] if and only if a = b.

Proposition 2.3 (cf. [15], Prop. 2.3)
For any twist-structure A, the map ηA : A → T (N(A)) defined in (2.1) is an isomor-
phism in the category Twist.

Proof. (a). The map ηA is one-to-one. Let a, b, a′, b′ ∈ A and suppose that [〈a, a′〉] =
[〈b, b′〉]. Then, as noted above, a = b.
(b). ηA is onto. Let 〈a, b〉 ∈ N(A). As observed above, [〈a, b〉] = [〈a, c〉] for any c ∈ A
such that 〈a, c〉 ∈ N(A). Hence, [〈a, b〉] = [〈a, a′〉] = ηA(a).
(c). ηA is a homomorphism. Let a, b ∈ A. Then ηA(a) ∧ ηA(b) = [〈a, a′〉] ∧ [〈b, b′〉] =
[〈a, a′〉 ∧ 〈b, b′〉] = [〈a∧ b, a′ ∨ b′〉]. But [〈a∧ b, a′ ∨ b′〉] = [〈a∧ b, c〉] for any c ∈ A such
that 〈a ∧ b, c〉 ∈ N(A), so in particular we have that [〈a ∧ b, a′ ∨ b′〉] = ηA(a ∧ b). A
similar reasoning establishes the cases of the other operations.
(d). ηA[∇] = ∇(N(A)). It is sufficent to observe that

∇(N(A)) = {[〈a, b〉 ∨ ∼〈a, b〉] : 〈a, b〉 ∈ N(A)}
= {[〈a ∨ b, a ∧ b〉] : a ∨ b ∈ ∇, a ∧ b ∈ ∇}
= {[〈c, d〉] : c ∈ ∇, d ∈ ∇

, d ≤ c}
= {[〈c, d〉] : c ∈ ∇}
= ηA[∇].

(e). ηA[

∇

] =

∇

(N(A)). Similar to the proof of the previous point
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Proposition 2.4 (cf. [15], Prop. 2.4)
Let f : B1 → B2 be a morphism of N4-lattices. Then N(T (f)) ◦ jB1 = jB2 ◦ f .

Proof. For any a ∈ B1, we have that

N(T (f)) ◦ jB1(a) = N(T (f))(〈[a]≡1
, [∼ a]≡1

〉)
= 〈T (f)([a]≡1

), T (f)([∼ a]≡1
)〉

= 〈[f(a)]≡2
, [f(∼ a)]≡2

〉
= 〈[f(a)]≡2

, [∼ f(a)]≡2
〉

= jB2 ◦ f(a).

Proposition 2.5 (cf. [15], Prop. 2.5)
Let h : A1 → A2 be a morphism of twist-structures. Then T (N(h)) ◦ ηA1

= ηA2
◦ h.

Proof. For any a ∈ A1, we have that

T (N(h)) ◦ ηA1
(a) = T (N(h))([〈a, a′〉]≡1

)

= [N(h)(〈a, a′〉)]≡2

= [〈h(a), h(a′)〉]≡2

= [〈h(a), (h(a))′]≡2

= ηA2
◦ h(a).

Let us remind the reader that the equality [〈h(a), h(a′)〉]≡2
= [〈h(a), (h(a))′]≡2

holds
because [〈h(a), h(a′)〉]≡2

= [〈h(a), b〉]≡2
for any b ∈ A2 as long as 〈h(a), b〉 ∈ N(A2).

Propositions 2.4 and 2.5 imply the announced equivalence result (Figure 1).

Theorem 2.6 (cf. [15], Thm. 2.6)
Functors T : N4→ Twist and N : Twist→ N4 establish a natural equivalence between
the category N4 of (bounded) N4-lattices and the category Twist of twist-structures
over Brouwerian lattices (Heyting algebras).

N4 (N4⊥)

T ,,
Twist (Twist⊥)

N

kk

Fig. 1: Equivalence between (bounded) N4-lattices and twist-structures over
(bounded) Brouwerian lattices.

3 Topological duality for twist-structures

In this section we introduce a category of topological structures that will be proven
to be equivalent to the twist-structures considered in the previous section. As we
will build on Esakia duality for Heyting algebras, we begin by recalling essential
definitions and results on Esakia duality [12], which is itself based on Priestley duality
for distributive lattices [11].
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Esakia duality

Recall that a Priestley space is a compact topological ordered space X = 〈X, τ,≤〉
that satisfies the following separation condition: for every x, y ∈ X such that x 6≤ y
there exists a clopen up-set U with x ∈ U and y 6∈ U . A Priestley space is an Esakia
space if in addition it satisfies that for every clopen set U ⊆ X, the down-set ↓U is
clopen.

If A is a Heyting algebra, then 〈X(A), τ,⊆〉 is an Esakia space, where X(A) is the
set of the prime filters of A, τ is the topology generated by the sub-basis

{σA(a) : a ∈ A} ∪ {X(A)− σA(a) : a ∈ A}

with
σA(a) := {P ∈ X(A) : a ∈ P} (3.1)

Conversely, if X = 〈X, τ,≤〉 is an Esakia space, then the distributive lattice of its
clopen up-sets forms a Heyting algebra when endowed with the following implication
operation. For clopen up-sets U, V ⊆ X, we let

U →X V := {x ∈ X : ↑x ∩ U ⊆ V },

which also is a clopen up-set. We denote this Heyting algebra by A(X ). Notice that
implication can be equivalently defined as

U →X V := (↓ (U − V ))c.

The correspondence between Heyting algebras and Esakia spaces given by the maps
X(.) and A(.) can be turned into a dual equivalence between the category of Heyting
algebras and the category of Esakia spaces by extending those maps to contravariant
functors between the two categories.

The category of Heyting algebras has as objects these algebras and as morphisms
the algebraic homomorphisms between them. The objects of the category of Esakia
spaces are these spaces and the morphisms are Esakia functions, defined as follows.
Let X ,Y be Esakia spaces. A map f : X → Y is an Esakia function if it is continuous,
order-preserving and satisfies that ↑Y f(x) ⊆ f [↑Xx] for every x ∈ X.

If h : A1 → A2 is a homomorphism of Heyting algebras, then the map X(h) :
X(A2) → X(A1) between the corresponding Esakia spaces defined by X(h)(P ) =
h−1[P ] for every P ∈ X(A2) is an Esakia function. Conversely, if f : X1 → X2 is an
Esakia function, then the map A(f) : A(X2)→ A(X1) defined by A(f)(U) = f−1[U ]
for every clopen up-set of X2 is a Heyting algebra homomorphism.

The map X(.) so obtained is a contravariant functor from the category of Heyting
algebras to the category of Esakia spaces and the map A(.) a contravariant functor
in the other direction. The two functors establish a dual equivalence between those
categories. The natural transformations are given by the following families of mor-
phisms. For a Heyting algebra A, the map σA : A → A(X(A)) defined in (3.1) is
an isomorphism. If X is an Esakia space, the map εX : X → X(A(X )) defined by
εX (x) = {U ∈ A(X ) : x ∈ U} for every x ∈ X is a homeomorphism and an order
isomorphism.

Esakia duality can be adapted to obtain a topological duality for Brouwerian lattices
as these can be seen as Heyting algebras which possibly lack the bottom element. Our
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strategy is the following: to a Brouwerian lattice A we add a new bottom element,
thus obtaining a Heyting algebra A∗, and then we consider its dual Esakia space
X(A∗). Our original A can then be recovered as the algebra of the non-empty clopen
up-sets of X(A∗). Let us expound the details.

Let A = 〈A,∧,∨,→, 1〉 be a Brouwerian lattice. Regardless of whether A already
has a bottom element, we add a new one 0∗ and we set 0∗ ≤ a for all a ∈ A ∪ {0∗}.
This uniquely determines the behaviour of the Heyting implication, because on the
one hand it must hold that 0∗ → a = 1 for all a ∈ A ∪ {0∗}, and on the other hand
residuation implies that

a→ 0∗ =
∨
{b ∈ A ∪ {0∗} : a ∧ b ≤ 0∗}

which means that for a 6= 0∗ the only possible choice is b = 0∗. Hence we are led to
the following definition:

a→ 0∗ :=

{
0∗ if a ∈ A
1 otherwise (i.e., if a = 0∗).

Extending in this way → to the new universe A ∪ {0∗} we obtain a Heyting algebra,
which we denote by A∗. Note that X(A∗) = X(A) ∪A and the prime filter A of A∗

contains all prime filters of A∗.
Concerning the dense elements, we observe that D(A∗) = A because for every

a ∈ A, a ∨ (a → 0∗) = a ∨ 0∗ = a. Moreover, a Heyting algebra B is isomorphic to
A∗ for some Brouwerian lattice A if and only if, for every b ∈ B − {0}, b → 0 = 0.
Indeed, if B satisfies this last condition, then it is isomorphic to (B∗)

∗ where B∗ is
the Brouwerian lattice we obtain by deleting 0 from B.

Notice that if A1,A2 are Brouwerian lattices, a map h : A∗1 → A∗2 is a Heyting
algebra homomorphism if and only if the restriction h�A1

: A1 → A2 is a Brouwerian
lattice homomorphism. This implies that Brouwerian lattices, viewed as a category,
are equivalent to a full subcategory of Heyting algebras. Moreover the objects of this
subcategory are the Heyting algebras that satisfy the quasiequation: x ∧ y ≈ ⊥ ⇒
x ≈ ⊥.

Let A be a Brouwerian lattice. If we now look at X(A∗), the Esakia space corre-
sponding to A∗, we have that X(A∗) has a greatest element, namely A, and it holds
that A ∈ σA∗(a) for every a ∈ A. Moreover, the map σA∗ restricted to A establishes
an isomorphism between A and the algebra of non-empty clopen up-sets of X(A∗).
This makes it possible to recover the Brouwerian lattice A as the lattice of non-empty
clopen up-sets of the Esakia dual of A∗.

We say that an Esakia space 〈X,≤, τ〉 is a pointed Esakia space if the poset 〈X,≤〉
has a greatest element 1X . It immediately follows that the set of non-empty clopen
up-sets of a pointed Esakia space is closed under finite intersections, and therefore it
is a Brouwerian lattice (it may or may not have a least element, depending on whether
the subspace given by the elements different from 1X is an Esakia space or not).

Let X = 〈X,≤, τ〉 be a pointed Esakia space. Note that for every non-empty clopen
up-set U ⊆ X, we have U →X ∅ = {x ∈ X : ↑x ∩ U ⊆ ∅} = ∅. Denoting by A∗(X )
the Brouwerian lattice of non-empty clopen up-sets of X , we have that the algebra
of all clopen up-sets A(X ) is isomorphic to (A∗(X ))∗. We can thus, without loss of
generality, identify A(X ) and (A∗(X ))∗.
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For a Brouwerian lattice A, set X∗(A) := X(A∗). This is clearly a pointed Esakia
space and, as observed above, σA∗ restricted to A establishes an isomorphism between
A and A∗(X

∗(A)).
Now let h : A1 → A2 be a homomorphism between Brouwerian lattices A1,A2.

Then h extends to a unique Heyting algebra homomorphism h∗ : A∗1 → A∗2 that maps
the new element 0∗1 ∈ A∗1 to the new element 0∗2 ∈ A∗2. So the dual Esakia function
X(h∗) : X(A∗2) → X(A∗1) maps the top element of X(A∗2) (namely, A2) to the top
element of X(A∗1) (namely, A1). We denote the map X(h∗) by X∗(h).

If X1,X2 are pointed Esakia spaces and f : X1 → X2 is an Esakia function, then
the dual A(f) : A(X2) → A(X1) restricts to a Brouwerian lattice homomorphism
A∗(f) : A∗(X2) → A∗(X1) when, for every non-empty clopen up-set U ⊆ X2, f−1[U ]
is non-empty. This holds if and only if f(1X1

) = 1X2
. In fact, f(1X1

) = 1X2
obviously

implies that f−1[U ] is non-empty for every non-empty clopen up-set U ⊆ X2. On the
other hand, suppose that, for every non-empty clopen up-set U ⊆ X2, we had that
f−1[U ] is non-empty and f(1X1

) 6= 1X2
. Then, since 1X2

6≤ f(1X1
), there is a clopen

up-set U ⊆ X2 such that 1X2
∈ U and f(1X1

) 6∈ U . This would imply 1X1
6∈ f−1[U ],

which is not possible because f−1[U ] is a non-empty up-set.
Accordingly, we say that an Esakia function f : X1 → X2 between pointed Esakia

spaces X1,X2 is a pointed Esakia function (or morphism) if f(1X1) = 1X2 .
Of course if X is a pointed Esakia space, then X(A(X )) = X∗(A∗(X )) and the

homeomorphism and order isomorphism εX : X → X(A(X )) is a pointed Esakia
function. Therefore Esakia duality easily implies that X∗(.) and A∗(.) are contravari-
ant functors that establish a dual equivalence between the category of Brouwerian
lattices with their homomorphism and the category of pointed Esakia spaces with
pointed Esakia functions (Figure 2).

BrLat

X
))
pEsSp

A

hh

Fig. 2. Equivalence between Brouwerian lattices and pointed Esakia spaces.

Duality for twist-structures

The following property is going to be useful for the description of our topological
spaces.

Lemma 3.1 (cf. [15], Lemma 4.1)
Let P ⊆ A be a prime filter of a Brouwerian lattice A. Then D(A) ⊆ P if and only
if P is a maximal element of the poset of prime filters of A.

Proof. We will prove that, if P ( Q for some prime filter Q, then Q = A, so Q
is not prime. Assume that P ⊆ Q and there is some a ∈ Q such that a /∈ P . We
claim that, for an arbitrary element b ∈ A, it holds that b ∈ Q. By assumption we
have a ∨ (a → b) ∈ D(A) ⊆ P . Since P is prime and a /∈ P , we conclude that
a→ b ∈ P ⊆ Q. Now a, a→ b ∈ Q imply that a ∧ (a→ b) = a ∧ b ∈ Q. This means
that b ∈ Q as we claimed.
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Suppose now that P is a maximal element of the poset of prime filters of A. Let
a, b ∈ A and assume that a∨(a→ b) 6∈ P . Consider the filter F generated by P ∪{a}.
Then a → b 6∈ F . On the contrary there is c ∈ P such that c ∧ a ≤ a → b. Then
c ≤ a → (a → b) = a → b. It would thus follow that a → b ∈ P , against our
assumption. So there is a prime filter Q such that P  F ⊆ Q and a → b 6∈ Q.
Therefore P is not maximal: a contradiction. Hence D(A) ⊆ P .

Corollary 3.2
Let P ⊆ A be a prime filter of a Brouwerian lattice A such that D(A) ⊆ P . Then P
is a maximal element of the poset X(A∗)− {A}.

In the rest of the section we first present a duality for twist-structures over Heyting
algebras, and later we extend it to obtain a duality for all twist-structures.

Duality for twist-structures over Heyting algebras
From now on until the end of this subsection, unless otherwise specified, we con-
sider only twist-structures (A,∇, ∇) ∈ Twist⊥, that is twist-structures over Heyting
algebras.

Let A = (A,∇, ∇) ∈ Twist⊥ and let 〈X(A), τ,⊆〉 be the dual Esakia space of A.
Thanks to the isomorphism σA between A and the algebra of clopen up-sets of X(A),
the sets ∇, ∇⊆ A can be represented as follows. We let

CA :=
⋂
{σA(a) : a ∈ ∇}

which is obviously a closed up-set, and

OA :=
⋃
{σA(a) : a ∈ ∇}

which is an open up-set. It is easy to check that

CA = {P ∈ X(A) : ∇ ⊆ P} OA = {P ∈ X(A) : P ∩ ∇6= ∅}.

In the rest of the paper we will thus be using whichever of the above definitions is
more convenient. Let us also notice that CA is included in the set max(X(A)) of
maximal elements of our Esakia space (which also implies, trivially, that CA is an
up-set). This follows from Lemma 3.1, because P ∈ CA implies that D(A) ⊆ ∇ ⊆ P .
We use this insight to introduce formally the spaces we will deal with.

Definition 3.3 (cf. [15], Def. 4.2)
An NE-space is a structure X = 〈X,≤, τ, C,O〉 such that

1. 〈X,≤, τ〉 is an Esakia space,

2. C is a closed set such that C ⊆ max(X),

3. O is an open up-set.

In order to view NE-spaces as a category, we need to introduce a notion of NE-
morphism. We propose the following definition.

Definition 3.4 (cf. [15], Def. 4.3)
Let X1 = 〈X1,≤1, τ1, C1, O1〉 and X2 = 〈X2,≤2, τ2, C2, O2〉 be two NE-spaces. A
morphism is a map f : X1 → X2 such that
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1. f is an Esakia function, i.e., f is monotone, continuous and for every x ∈ X1,
↑f(x) ⊆ f [↑x],

2. f [C1] ⊆ C2,

3. f−1[O2] ⊆ O1.

Given NE-spaces X1,X2,X3 and NE-morphisms f : X1 → X2, g : X2 → X3, it is
easy to see that g ◦ f : X1 → X3 is also a morphism. Moreover, the identity map on
an NE-space is a morphism. So we indeed have a category NE-Sp of NE-spaces.

We are going to see that NE-Sp is dually equivalent to the category Twist⊥ of
twist-structures over Heyting algebras. It will thus follow that NE-Sp is also dually
equivalent to the category N4⊥ of bounded N4-lattices.

The definition immediately implies that, for any twist-structure A = (A,∇, ∇),

X(A) := 〈X(A), τ,⊆, CA, OA〉

is an NE-space. Given a morphism of twist-structures h : A1 → A2, we define the
map X(h) : X(A2)→ X(A1) as in Esakia duality, i.e., we let X(h)(P ) := h−1[P ] for
any P ∈ X(A2).

It is obvious that X(h) is an Esakia function. Let us check that the other require-
ments of Definition 3.4 are also met.

Lemma 3.5 (cf. [15], Lemma 4.4)
Let h : A1 → A2 be a morphism between twist-structures A1 = 〈A1,∇1,

∇

1〉 and
A2 = 〈A2,∇2,

∇

2〉. Then X(h) : X(A2) → X(A1) is an morphism between the
corresponding NE-spaces.

Proof. In order to see that X(h)[CA2 ] ⊆ CA1 , assume Q ∈ X(h)[CA2 ], i.e., Q ∈
h−1[CA2

]. This means that there is Q′ ∈ X(A2) such that ∇2 ⊆ Q′ and Q = h−1[Q′].
Since h is a morphism of twist-structures, we have that h[∇1] ⊆ ∇2. This implies
that ∇1 ⊆ h−1[∇2] ⊆ h−1[Q′] = Q. We conclude that ∇1 ⊆ Q, which means that
Q ∈ CA1 as desired.
Assume now that P ∈ X(h)−1[OA1 ]. This means that X(h)(P ) = h−1[P ] ∈ OA1 .
Then h−1[P ] ∩ ∇

1 6= ∅. Let a ∈ A1 be such that a ∈ h−1[P ] ∩ ∇

1. We then have
h(a) ∈ P ∩ h(

∇

1). From the assumptions we have P ∩ h(

∇

1) ⊆ P ∩ ∇

2, so we obtain
h(a) ∈ P ∩ ∇

2 6= ∅, which implies P ∈ OA2
as required. Thus, X(h) is indeed a

morphism of NE-spaces.

It follows from Esakia duality that the map X preserves composition and identity
maps. So we actually have a functor X : Twist⊥ → NE-Sp. We are now going to
define a functor A : NE-Sp→ Twist⊥ in the opposite direction.

To each NE-space X = 〈X,≤, τ, C,O〉 we associate a twist-structure in the following
way. Let A(X ) be the Heyting algebra of clopen up-sets of X . To the closed set C
we associate the following filter of A(X ):

∇C := {U ∈ A(X ) : C ⊆ U}.

Likewise, to the open up-set O we associate the following ideal of A(X ):

∇

O := {U ∈ A(X ) : U ⊆ O}.
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We need to ensure that∇C does indeed contain all dense elements of A(X ). For this
we notice that, since every dense element has the form U ∪ (↓U)c for some clopen up-
set U ∈ A(X ), condition (2) of Definition 3.3 is equivalent to the following property:
C ⊆ U ∪ (↓U)c for all U ∈ A(X ). In fact, we have

max(X) =
⋂
{U ∪ (↓U)c : U ∈ A(X )}.

To see this, assume x ∈ max(X). Then, for every clopen up-set U , we have that
x /∈ (↓U)c iff x ∈ ↓U iff there is y ∈ U such that x ≤ y. By maximality of x,
this means that x = y, so x ∈ U . Hence, x ∈ U ∪ (↓U)c for every U ∈ A(X ).
Conversely, suppose x /∈ max(X), i.e., there is y ∈ X such that x < y. Since X
is a Priestley space, we know that there is a clopen up-set V such that x /∈ V and
y ∈ V . Moreover, x ∈ ↓V , i.e., x /∈ (↓V )c. This means that x /∈ V ∪ (↓V )c, so
x /∈

⋂
{U ∪ (↓U)c : U ∈ A(X )}.

The above reasoning immediately implies that 〈A(X ),∇C ,

∇

O〉 is a twist-structure
over a Heyting algebra. Thus, for every object X ∈ NE-Sp, we have that A(X ) ∈
Twist⊥. Let us now look at morphisms.

Let X1 = 〈X1,≤1, τ1, C1, O1〉 and X2 = 〈X2,≤2, τ2, C2, O2〉 be NE-spaces, and let
f : X1 → X2 be an NE-morphism. Consider the dual map A(f) : A(X2) → A(X1)
between the Heyting algebras of clopen up-sets of the two spaces. We know from
Esakia duality that A(f) is a Heyting algebra homomorphism. Let us check that it is
in fact a twist-structure morphism (as defined in Section 2) from 〈A(X2),∇C2 ,

∇

O2
〉

to 〈A(X1),∇C1 ,

∇

O1〉.
Lemma 3.6 (cf. [15], Lemma 4.5)
Let f : X1 → X2 be a morphism of NE-spaces. Then A(f) : A(X2) → A(X1) is a
twist-structure morphism.

Proof. We need to show that A(f)[∇C2
] ⊆ ∇C1

and A(f)[

∇

O2
] ⊆ ∇

O1
. Let U ∈

A(f)[∇C2
] and V ∈ ∇C2

be such that U = A(f)(V ) = f−1[V ]. Since V ∈ ∇C2
we

have C2 ⊆ V . So f−1[C2] ⊆ f−1[V ]. Then, since f [C1] ⊆ C2, we have C1 ⊆ f−1[C2].
Therefore, C1 ⊆ f−1[V ]. Hence, f−1[V ] ∈ ∇C1 . Now let U ∈ A(f)[

∇

O2 ] and assume
that V ∈ ∇

O2 is such that A(f)(V ) = U , so that f−1[V ] = U . Since V ∈ ∇

O2 , we
have V ⊆ O2. Therefore, U = f−1[V ] ⊆ f−1[O2] ⊆ O1. Hence, U ∈ ∇

O1 .

We thus have a functor A : NE-Sp → Twist⊥ from the category NE-spaces to the
category of twist-structures over Heyting algebras. We are now going to see that, for
any twist-structure A and any NE-space X , there are natural isomorphisms σA : A ∼=
A(X(A)) and εX : X ∼= X(A(X )).

Given a twist-structure A = (A,∇, ∇), consider the twist-structure associated with
the dual space of A, that is, 〈A(X(A)),∇CA ,

∇

OA〉. We know by Esakia duality that
the map σA : A→ A(X(A)) defined by

σA(a) = {P ∈ X(A) : a ∈ P}

is a Heyting algebra isomorphism. Thus, we only need to check that σA is a twist-
structure morphism too. This follows from next lemma (we will omit the subscript of
σA when there is no ambiguity).

Lemma 3.7 (cf. [15], Lemma 4.6)
For any twist-structure A = 〈A,∇, ∇〉, the map σA : A→ A(X(A)) satisfies:
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(i) σA[∇] = ∇CA ,

(ii) σA[

∇

] =

∇

OA .

Proof. (i) Let a ∈ ∇. Then CA ⊆ σ(a), so σ(a) ∈ ∇CA . Let now σ(a) ∈ ∇CA . Then
CA ⊆ σ(a). Suppose that a 6∈ ∇. Let P be a prime filter such that ∇ ⊆ P and a 6∈ P .
Since P ∈ CA, we have CA 6⊆ σ(a), i.e., σ(a) /∈ ∇CA , a contradiction.
(ii) Let a ∈ ∇

. Then σ(a) ⊆ OA. Therefore, σ(a) ∈ ∇

OA . Suppose now that
σ(a) ∈ ∇

OA , i.e., σ(a) ⊆ OA. Suppose that a 6∈ ∇

. Let P be a prime filter such that
a ∈ P and P ∩ ∇

= ∅. Then P ∈ σ(a) and P /∈ OA, i.e., σ(a) 6⊆ OA, a contradiction.

Conversely, consider the NE-space corresponding to the twist-structure A(X ):

〈X(A(X )),⊆, τA, CA(X ), OA(X )〉.

Recall that the map εX : X → X(A(X )) defined, for all x ∈ X, by

εX (x) = {U ∈ A(X ) : x ∈ U}

is an Esakia-homeomorphism between 〈X,≤, τ〉 and 〈X(A(X )),⊆, τA〉. We check that
εX is in fact an NE-morphism as well.

Lemma 3.8 (cf. [15], Lemma 4.7)
For any NE-space X = 〈X,≤, τ, C,O〉, the map εX : X → X(A(X )) satisfies:

(i) εX [C] = CA(X ),

(ii) εX [O] = OA(X ).

Proof. (i) Recall that in a Priestley space any closed up-set is the intersection of all
the clopen up-sets containing it, and similarly any open up-set is the union of all the
clopen up-sets it contains (see, e.g., [7, Proposition A.1]). Given x ∈ C, we have to
see that

εX (x) ∈
⋂
{σ(U) : U ∈ ∇C},

that is, that for every U ∈ A(X ) such that C ⊆ U , it holds that U ∈ εX (x). Assume
then that C ⊆ U ∈ A(X ). Then x ∈ U , so U ∈ εX (x). Conversely, assume that x ∈ U
for every clopen up-set U ⊇ C. Since C is a closed up-set, C =

⋂
{U ∈ A(X ) : C ⊆

U}. Therefore, x ∈ C and εX (x) ∈ εX [C].
(ii) For x ∈ O, we have to see that

εX (x) ∈
⋃
{σ(U) : U ∈ ∇

O}.

That is, that U ∈ εX (x) for some U ∈ A(X ) with U ⊆ O. Suppose the contrary.
Then, for every U ∈ A(X ) with U ⊆ O, it holds that x /∈ U . Since O is an open
up-set, O =

⋃
{U ∈ A(X ) : U ⊆ O}. It follows that x 6∈ O, a contradiction. Hence,

εX (x) ∈
⋃
{σ(U) : U ∈ ∇

O}. Assume now that εX (x) ∈
⋃
{σ(U) : U ∈ ∇

O}. Then
there is a clopen up-set U ⊆ O such that x ∈ U . Therefore, x ∈ O and εX (x) ∈ εX [O].

The fact that σA and εX are natural follows immediately from Esakia duality. We
highlight these facts in the following lemmas.
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Lemma 3.9
Let h : A1 → A2 be a morphism of twist-structures. Then σA2

◦ h = A(X(h)) ◦ σA1
.

Lemma 3.10
Let f : X1 → X2 be a morphism of NE-spaces. Then εX2

◦ f = X(A(f)) ◦ εX1
.

Joining the previous results, we obtain the announced dual equivalences.

Theorem 3.11 (cf. [15], Thm. 4.8)
The functors X : Twist⊥ → NE-Sp and A : NE-Sp → Twist⊥ establish a dual equiva-

lence between the category Twist⊥ of twist-structures over Heyting algebras and the
category NE-Sp of NE-spaces.

Corollary 3.12 (cf. [15], Cor. 4.9)
The category N4⊥ of bounded N4-lattices and the category NE-Sp of NE-spaces are

dually equivalent via functors X ◦ T : N4⊥ → NE-Sp and N ◦A : NE-Sp→ N4⊥.

N4⊥

T
**
Twist⊥

N

hh

X
**
NE-Sp

A

ii

Fig. 3. Equivalence between bounded N4-lattices and NE-spaces.

Duality for Twist
The above duality for Twist⊥ can be adapted to obtain a topological duality for Twist,
the category of twist-structures over Brouwerian lattices. In this subsection, unless
otherwise specified, by twist-structure we mean a twist-structure over a Brouwerian
lattice.

Let A = (A,∇, ∇) ∈ Twist. We consider the Heyting algebra A∗ and it dual Esakia
space X(A∗), which is a pointed Esakia space in our terminology. We define CA and
OA similarly as before:

CA :=
⋂
{σA∗(a) : a ∈ ∇} OA :=

⋃
{σA∗(a) : a ∈ ∇}.

Then,

CA = {P ∈ X(A) : ∇ ⊆ P} ∪ {A} and OA = {P ∈ X(A) : P ∩ ∇6= ∅} ∪ {A}.

So these sets are respectively a non-empty closed up-set and a non-empty open up-set.
Moreover, the elements of CA−{A} are maximal among the points of X(A∗)−{A}.
The objects of the category which we will prove to be dual to Twist are topological
structures defined as follows.

Definition 3.13
A pointed NE-space is a structure X = 〈X,≤, τ, C,O〉 such that

1. 〈X,≤, τ〉 is a pointed Esakia space,
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2. C is a non-empty closed up-set such that the elements of C − {1X} are maximal
in X − {1X},

3. O is a non-empty open up-set.

It follows from the above considerations that, if A = (A,∇, ∇) is a twist-structure,
then X∗(A) := 〈X(A∗), CA, OA〉 is a pointed NE-space which we take as our candi-
date for the dual of A.

We observe that condition (2) of Definition 3.13 is equivalent to the following: for
all clopen up-sets U, V ∈ A(X ), if V 6= ∅, then C ⊆ U ∪ (U →X V ). To see this, let
us prove that

max(X − {1X}) =
⋂
{U ∪ (U →X V ) : U, V clopen up-sets and V 6= ∅} − {1X}.

Suppose x ∈ max(X − {1X}). Let U, V be clopen up-sets with V 6= ∅. Suppose that
x 6∈ U →X V . Then ↑x ∩ U 6⊆ V . By maximality of X, ↑x = {x, 1X}. Therefore
if x 6∈ U , then ↑x ∩ U = {1X} ⊆ V , a contradiction. Thus x ∈ U . Hence, x ∈

⋂
{U ∪

(U →X V ) : U, V clopen up-sets and V 6= ∅}. Conversely, suppose x /∈ max(X −
{1X}) and x 6= 1X , i.e., there is y ∈ X such that x < y < 1X . Since X is a Priestley
space, we know that there are clopen up-sets U, V such that x /∈ U , y ∈ U , y 6∈ V
and 1X ∈ V . Then x 6∈ U →X V , because y ∈ ↑x ∩ U and y 6∈ V . Therefore,
x 6∈ U ∪ (U →X V ). So x /∈

⋂
{U ∪ (U →X V ) : U, V clopen up-sets and V 6= ∅}.

Let X = 〈X,≤, τ, C,O〉 be a pointed NE-space. In the Brouwerian lattice A∗(X ) =
A(X ) − ∅ of non-empty clopen up-sets, we define the following filter ∇C and ideal∇
O:

∇C := {U ∈ A∗(X) : C ⊆ U} ∇
O := {U ∈ A∗(X ) : U ⊆ O}.

From the discussion above it immediately follows that (A∗(X),∇C ,

∇

O) is a twist-
structure, which we will take as our candidate for the dual of X .

We denote by pNE-Sp the category having as objects pointed NE-spaces and whose
morphisms are defined as follows.

Definition 3.14
Let X1 = 〈X1,≤1, τ1, C1, O1〉 and X2 = 〈X2,≤2, τ2, C2, O2〉 be pointed NE-spaces. A
pNE-morphism is a map f : X1 → X2 such that

1. f is a pointed Esakia function,

2. f [C1] ⊆ C2,

3. f−1[O2] ⊆ O1.

Let h : A1 → A1 be a morphism between twist-structures A1 = (A1,∇1,

∇

1)
and A2 = (A2,∇2,

∇

2). Let us consider the dual X(h∗) : X(A∗2) → X(A∗1) of the
extension h∗ : A∗1 → A∗2 of h. This map is a pointed Esakia function which satisfies
that X(h∗)[CA2

] ⊆ CA1
and X(h∗)−1[OA1

] ⊆ OA2
. The proof of this is analogous to

that of Lemma 3.5. Therefore X(h∗) is a pNE-morphism from X∗(A2) to X∗(A1).
In this context we denote X(h∗) by X∗(h).

Let now X1 = 〈X1,≤1, τ1, C1, O1〉 and X2 = 〈X2,≤2, τ2, C2, O2〉 be pointed NE-
spaces and f : X1 → X2 a pNE-morphism. Since f is a pointed Esakia function, the
dual A(f) : A(X2) → A(X1) of f as a pointed Esakia function when restricted to
A∗(X2) is a Brouwerian lattice homomorphism from A∗(X2) to A∗(X1). We denote
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this restriction by A∗(f). By a proof similar to that of Lemma 3.6, and taking into
account that f(t1) = t2, we obtain that A∗(f)[∇C2

] ⊆ ∇C1
and A∗(f)[

∇

O2 ] ⊆ ∇

O1 .
Therefore A∗(f) is a twist-structure morphism from A∗(X2) to A∗(X1). We take the
map A∗(f) as the dual of f in the category Twist.

If A = (A,∇, ∇) is a twist structure, it can be shown with a proof similar to that
of Lemma 3.7 that the map σA∗ restricted to A is an isomorphism between A and
A∗(X

∗(A)).
Let X = 〈X,≤, τ, C,O〉 be a pointed NE-space and consider the space X∗(A∗(X ))

corresponding to its dual twist-structure A∗(X ). We have that X ∗(A∗(X )) is the
pointed Esakia space dual to the Brouwerian lattice of the twist-structure A∗(X ), so
X∗(A∗(X )) is the dual Esakia space of the Heyting algebra A(X ) of clopen up-sets
of X . Hence, the map εX : X → X(A(X )) = X∗(A∗(X) is a homeomorphism and
an order isomorphism. Moreover, εX [C] = CA∗(X ) and εX [O] = OA∗(X ). The proof is
analogous to the proof of Lemma 3.8. Therefore εX is an isomorphism in the category
pNE-Sp.

From the above considerations the next theorem easily follows.

Theorem 3.15
X∗ : Twist → pNE-Sp and A∗ : pNE-Sp → Twist are contravariant functors that es-
tablish a dual equivalence between the category Twist of twist-structures and the
category pNE-Sp of pointed NE-spaces.

Corollary 3.16
The category N4 of N4-lattices and the category pNE-Sp of pointed NE-spaces are
dually equivalent via functors X∗ ◦ T : N4→ pNE-Sp and N ◦A∗ : pNE-Sp→ N4.

N4

T
))
Twist

N

gg

X
**
pNE-Sp

A

ii

Fig. 4. Equivalence between N4-lattices and pointed NE-spaces.

4 Modal N4-lattices

We are now going to extend the topological duality introduced in the previous section
to N4-lattices with modal unary operations.

Definition 4.1 ([24])
A monotone modal N4-lattice (MN4-lattice) is an algebra B = 〈B,∧,∨,→, ∼,2〉 such
that the reduct 〈B,∧,∨,→,∼〉 is an N4-lattice and, for all a, b ∈ B,

(Q1) if a � b, then 2a � 2b,

(Q2) if ∼ a � ∼ b, then ∼2a � ∼2b,

where � is the pre-order introduced in Definition 2.1. An MN4⊥-lattice (or a bounded
MN4-lattice) is an MN4-lattice whose lattice reduct is bounded.

It is easy to check that by defining 3 := ∼2∼ we obtain another unary operation
satisfying (Q1) and (Q2), i.e., for all a, b ∈ B,
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if a � b, then 3a � 3b,

if ∼ a � ∼ b, then ∼3a � ∼3b.

MN4-lattices obviously form a quasivariety; at present we do not know whether
this class is in fact a variety or not. Let us mention one subvariety of MN4-lattices
that is already known in the literature.

Definition 4.2
A BK-lattice is an algebra B = 〈B,∧,∨,→,∼,2,⊥〉 such that the reduct 〈B,∧,∨,→,∼,2〉
is a bounded MN4-lattice (with bottom element ⊥) and, for all a, b ∈ B,

(E1) (a→ b)→ a � a
(E2) 2a ∧2b � 2(a ∧ b)
(E3) 2(a→ a) = 2(a→ a)→ 2(a→ a)

(E4) −2a ≡ 3−a
(E5) −3a ≡ 2−a

where a ≡ b abbreviates the two equalities a � b and b � a, while −a abbreviates
a→ ⊥.

BK-lattices were introduced in [20] as an algebraic counterpart of the modal ex-
pansion of the Belnap-Dunn logic of [21], although the definition presented above is
adapted from [24, Definition 3.5]. It is worth pointing out that, since BK-lattices
are particular examples of (bounded) MN4-lattices, all the results that we will prove
about the latter apply to BK-lattices as well.

Conditions (Q1) and (Q2) ensure that in any MN4-lattice operations 2 and 3

are compatible with the relation ≡ introduced in Definition 2.1. So we can define
operations 2, 3 on the Brouwerian lattice B./ = 〈B,∧,∨,→〉/≡ as follows:

2[a] = [2a] and 3[a] = [∼2∼a]

These operations satisfy the following monotonicity properties (here ≤ denotes the
lattice order of B./):

if [a] ≤ [b], then 2[a] ≤ 2[b],

if [a] ≤ [b], then 3[a] ≤ 3[b].

These two properties explain the choice of the terminology “monotone modal N4-
lattice”.

Moreover, the filter ∇(B) ⊆ B/≡ and the ideal

∇

(B) ⊆ B/≡ satisfy:

• if a ∨ b ∈ ∇(B) and a ∧ b ∈ ∇

(B), then 2a ∨3b ∈ ∇(B) and 2a ∧3b ∈ ∇

(B).

These observations suggest a way to represent MN4-lattices as twist-structure prod-
ucts. We will need the following definitions.

Definition 4.3
A monotone bimodal Brouwerian lattice is an algebra A = 〈A,∧,∨,→ 2,3〉 such
that the reduct 〈A,∧,∨,→〉 is a Brouwerian lattice and 2,3 : A→ A are two mono-
tone maps. A monotone bimodal Heyting algebra is a bounded monotone bimodal
Brouwerian lattice.
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Given a monotone bimodal Brouwerian lattice A, we can construct an MN4-lattice
A./ in the following way:

• the N4-lattice reduct of A./ is the twist-structure 〈A,∧,∨,→〉./ introduced above,

• 2〈a, b〉 = 〈2a,3b〉 for any 〈a, b〉 ∈ A×A.

Routine checking shows that the algebra A./ is in fact an MN4-lattice [24, Proposition
4.3]. However, as in the case of N4-lattices, not all MN4-lattices arise in this way as we
need to consider all subalgebras of A./. These can be characterized in the following
way.

Let A = 〈A,∧,∨,→ 2,3〉 be a bimodal Brouwerian lattice, ∇ ⊆ A a filter con-
taining the dense elements of A and

∇⊆ A an ideal satisfying:

• if a ∨ b ∈ ∇(B) and a ∧ b ∈ ∇

(B), then 2a ∨3b ∈ ∇(B) and 2a ∧3b ∈ ∇

(B).

It is easy to check that the set

B := {〈a, b〉 ∈ A×A : a ∨ b ∈ ∇, a ∧ b ∈ ∇}

is a subalgebra of A./. Let us denote by Tw(A,∇, ∇) the MN4-lattice obtained
through this construction. The following result shows that all MN4-lattices arise in
this way.

Proposition 4.4
Every MN4-lattice (bounded MN4-lattice) B is isomorphic to the twist-structure
Tw(B./,∇(B),

∇
(B)), where B./ is a monotone bimodal Brouwerian lattice (Heyting

algebra), through the map jB : B → B/≡ ×B/≡ defined, for all a ∈ B, as

jB(a) := 〈[a], [∼ a]〉.

Proof. We know by Proposition 2.2 that the map jB is an isomorphism between the
N4-lattice reducts of B and Tw(B./,∇(B),

∇

(B)). By [24, Theorem 4.5], we have
that jB preserves the modal operator, which concludes our proof.

Using the above result, we are going to extend the categorial equivalence between
N4-lattices and twist-structures to MN4-lattices and modal twist-structures, defined
as follows.

Definition 4.5
A monotone modal twist-structure is a triple A = 〈A,∇, ∇〉 where

(i) A is a monotone bimodal Brouwerian lattice,

(ii) ∇ is a filter that includes the dense elements of A,

(iii)

∇

is an ideal of A,

(iv) for every a, b ∈ A, if a∨ b ∈ ∇ and a∧ b ∈ ∇

, then 2a∨3b ∈ ∇ and 2a∧3b ∈ ∇

.

Definition 4.6
Let A1 = 〈A1,∇1,

∇

1〉 and A2 = 〈A2,∇2,

∇

2〉 be monotone modal twist-structures.
A morphism from A1 to A2 is an homomorphism of monotone bimodal Brouwerian
lattices h : A1 → A2 such that

(i) h[∇1] ⊆ ∇2,
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(ii) h[

∇

1] ⊆ ∇

2.

The category of monotone modal twist-structures, denoted MTwist, has as objects
monotone modal twist-structures and as morphisms the above-defined maps between
them. We define the category MTwist⊥ by restricting the objects to bounded Brouwe-
rian lattices (i.e., Heyting algebras) and by requiring that the morphisms preserve the
bounds. We are going to prove that MTwist (MTwist⊥) is equivalent to the category
MN4 (MN4⊥) having as objects (bounded) MN4-lattices and as morphisms algebraic
(bounded) MN4-lattice homomorphisms.

We define functors T : MN4 → MTwist and N : MTwist → MN4 in the same way
as in the non-modal case, and likewise for the functions jB : B → N(H(B)) and
ηA : A → T (N(A)). We proceed to check that these definitions work in the modal
case as well.

Lemma 4.7
For any monotone modal twist-structure A, the map ηA : A → T (N(A)) defined in
(2.1) is an isomorphism in the category MTwist.

Proof. We need only to show that ηA(2a) = 2ηA(a) and ηA(3a) = 3ηA(a) for all
a ∈ A. We have that

ηA(2a) = [〈2a, (2a)′〉]≡
= [〈2a,3(a′)〉]≡
= [2〈a, a′〉]≡
= 2[〈a, a′〉]≡
= 2ηA(a).

We recall once more that the equality [〈2a, (2a)′〉]≡ = [〈2a,3(a′)〉]≡ holds because
it only depends on the first component of each pair. A similar argument allows us to
prove that ηA(3a) = 3ηA(a).

Lemma 4.8
Let h : A1 → A1 be a morphism of monotone modal twist-structures. Then the map
N(h) : N(A1) → N(A2) is such that N(h)(2〈a, b〉) = 2N(h)(〈a, b〉) for all 〈a, b〉 ∈
N(A1). Therefore N(h) is an MN4-lattice morphism.

Proof. It is sufficient to observe that we have N(h)(2〈a, b〉) = N(h)(〈2a,3b〉 =
〈h(2a), h(3b)〉 = 〈2h(a),3h(b)〉 = 2〈h(a), h(b)〉 = 2N(h)(〈a, b〉).
Lemma 4.9
Let f : B1 → B2 be an MN4-lattice homomorphism. Then

T (f)(2[a]≡) = 2T (f)([a]≡) and T (f)(3[a]≡) = 3T (f)([a]≡).

Therefore T (f) : T (B1)→ T (B2) is a monotone modal twist-structure morphism.

Proof. It is sufficient to observe that T (f)(2[a]≡) = T (f)([2a]≡) = [f(2a)]≡ =
[2f(a)]≡ = 2[f(a)]≡ = 2T (f)([a]≡). Similarly, T (f)(3[a]≡) = T (f)([∼2∼a]≡) =
[f(∼2∼a)]≡ = [∼2∼f(a)]≡ = 3[f(a)]≡ = 3T (f)([a]≡)

The previous lemmas (together with Proposition 4.4) immediately imply the an-
nounced equivalence result.
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Theorem 4.10
Functors T : MN4→ MTwist and N : MTwist→ MN4 establish a natural equivalence
between the category MN4 of (bounded) MN4-lattices and the category MTwist of
twist-structures over monotone bimodal Brouwerian lattices (Heyting algebras).

As mentioned above, BK-lattices are particular examples of bounded MN4-lattices.
To be more precise, we can rephrase the representation result proved in [20] in our
terms saying that BK-lattices correspond exactly to modal twist-structures A =
〈A,∇, ∇〉 such that:

• A is a modal Boolean algebra

• a ∈ ∇ implies 2a ∈ ∇
• a ∈ ∇

implies 3a ∈ ∇

.

We remind the reader that a modal Boolean algebra or simply a modal algebra [4] is
an algebra 〈A,∧,∨,→,2,3, 0, 1〉 such that the reduct 〈A,∧,∨,→, 0, 1〉 is a Boolean
algebra and the modal operations satisfy, for all a, b ∈ A: 2(a∧ b) = 2a∧2b, 21 = 1
and 2a = ¬3¬a, where ¬a denotes the Boolean complement of a.

It is easy to prove that the equivalence stated in Theorem 4.10 restricts to an
equivalence between full sub-categories corresponding to BK-lattices and to twist-
structures over modal Boolean algebras.

MN4 (MN4⊥)

T --
MTwist (MTwist⊥)

N

ll

BKlat

T
++
ModBA

N

jj

Fig. 5: Equivalence between modal N4-lattices and monotone bimodal Brouwerian
lattices.

5 Duality for modal twist-structures

In this section we extend our topological duality for twist-structures to modal twist-
structures. As in the non-modal case we relied on Esakia duality for Heyting algebras,
we will now build on the duality for distributive lattices with monotone operators of
[14].

Let A = 〈A,∧,∨,→ 2,3〉 be a monotone bimodal Heyting algebra and denote
by 〈X(A), τA,⊆〉 be the corresponding Esakia space. We denote by P↑(X(A)) the
collection of upward subsets of X(A) and by Fi(A) the set of all lattice filters of
A. For each operation • ∈ {2,3} we define a neighbourhood function ν• : X(A) →
P(P↑(X(A))) as follows: for every prime filter P ∈ X(A),

ν•(P ) = {U ∈ A(X(A)) : ∃F ∈ Fi(A) s.t. • [F ] ⊆ P and {Q ∈ X(A) : F ⊆ Q} ⊆ U}.
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Notice that ν•(P ) is an up-set of 〈P↑(X(A)),⊆〉. It is also obvious that ν• is monotone
with respect to the Esakia order of X(A). The structure 〈X(A), τA,⊆, ν2, ν3〉 will
be called the monotone modal Esakia space of A.

Using the neighbourhood function ν• we can represent the algebraic operation • in
the Heyting algebra of clopen up-sets of X(A) through the following definition: for
any U ∈ A(X(A)),

•ν•(U) := {P ∈ X(A) : U ∈ ν•(P )}.

The following proposition shows that the above definitions make sense and that, us-
ing them, we obtain that the isomorphism σA : A→ A(X(A)) preserves the monotone
modal operators as well.

Proposition 5.1
For every a ∈ A, σA(•a) = •ν•σA(a).

Proof. Let P ∈ σA(•a). Then •a ∈ P . Since • is monotone in A, it follows that
•[↑a] ⊆ P . Moreover, if Q ∈ X(A) is such that ↑a ⊆ Q, then Q ∈ σA(a). From
the fact that ↑a is a filter, it then follows that P ∈ •ν•σA(a). Suppose now that
P ∈ •ν•σA(a). Let F be a filter of A such that •[F ] ⊆ P and {Q ∈ X(A) : F ⊆
Q} ⊆ σA(a). We have to show that •a ∈ P . Suppose the contrary. Then a 6∈ F . So
there is a prime filter Q such that F ⊆ Q and a 6∈ Q. This contradicts the fact that
{Q ∈ X(A) : F ⊆ Q} ⊆ σA(a). Hence we conclude that •a ∈ P .

By Proposition 5.1 we already know that σA is an isomorphism between the mono-
tone bimodal Heyting algebra A = 〈A,∧,∨,→, 0, 1,2,3〉 and 〈A(X(A)),∩,∪,→
, ∅, X(A),2ν2 ,3ν3〉. Thus, in order to extend this to a monotone modal twist-
structure 〈A,∇, ∇〉, we only need to take care of representing ∇ and

∇

. Let us
look at how properties (ii)-(iv) of Definition 4.5 are reflected on the NE-space corre-
sponding to a monotone modal twist-structure.

Proposition 5.2
For any monotone modal twist-structure A = 〈A,∇, ∇〉 over a monotone bimodal

Heyting algebra, the maps ν2, ν3 : X(A) → P(P↑(X(A))) satisfy the following con-
dition: for all clopen up-sets U, V ∈ X(A),

if CA ⊆ U∪V and U∩V ⊆ OA, then CA ⊆ 2ν2U∪3ν3V and 2ν2U∩3ν3V ⊆ OA.

Proof. Let a, b ∈ A be such that σA(a) = U and σA(b) = V . Assume CA ⊆ U ∪ V
and U∩V ⊆ OA. From the first assumption we have CA ⊆ σA(a)∪σA(b) = σA(a∨b),
from the second σA(a) ∩ σA(b) = σA(a ∧ b) ⊆ OA. Let us check that a ∨ b ∈ ∇ and
a ∧ b ∈ ∇

. The first assumption means that, for every prime filter P ⊇ ∇, one
has a ∨ b ∈ P . Now, if a ∨ b /∈ ∇, there would be a prime filter P ⊇ ∇ such that
a ∨ b 6∈ P , a contradiction. Similarly, a ∧ b /∈ ∇

implies that there is a prime filter
P such that a ∧ b ∈ P and

∇∩ P = ∅. Then P ∈ σA(a ∧ b) and therefore P ∈ OA.
This means P ∩ ∇6= ∅, a contradiction. We conclude that a ∨ b ∈ ∇ and a ∧ b ∈ ∇

.
Applying Definition 4.5 (iv), we have 2a ∨ 3b ∈ ∇ and 2a ∧ 3b ∈ ∇

. Therefore,
CA ⊆ σA(2a ∨ 3b) = σA(2a) ∪ σA(3b) = 2ν2σA(a) ∪ 3ν3σA(b) = 2ν2U ∪ 3ν3V .
Similarly we obtain σA(2a ∧3b) = σA(2a) ∩ σA(3b) = 2ν2U ∩3ν3V ⊆ OA.

We put the above observations together to introduce our formal definition of spaces
corresponding to monotone modal twist-structures over Heyting algebras.
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Let 〈X,≤, τ, C,O〉 be an NE-space and let ν be a neighborhood function. Recall
that the corresponding modal operation on the set of clopen up-sets is defined by

•ν(U) = {x ∈ X : U ∈ ν(x)}.

Definition 5.3
A monotone modal NE-space (MNE-space) is a structure X = 〈X,≤, τ, ν1, ν2, C,O〉
such that 〈X,≤, τ, C,O〉 is an NE-space and νi : X → P(P↑(X)) are neighbourhood
functions satisfying the following properties: for all x, y ∈ X and all clopen up-sets
U, V ∈ A(X ),

(i) x ≤ y implies νi(x) ⊆ νi(y) with i ∈ {1, 2}
(ii) 2ν1U, 3ν2U ∈ A(X )

(iii) if C ⊆ U ∪ V and U ∩ V ⊆ O, then C ⊆ 2ν1U ∪3ν2V and 2ν1U ∪3ν2V ⊆ O,

(iv) νi(x) is an up-set for each i ∈ {1, 2} and for all x ∈ X,

where 2ν1 ,3ν2 are, respectively, the modal operations corresponding to the neigh-
borhood functions ν1 and ν2.

The above observations immediately imply that the space corresponding to a mono-
tone modal twist-structure satisfies the properties of Definition 5.3.

Proposition 5.4
Let A = 〈A,∇, ∇〉 be a monotone modal twist-structure over a Heyting algebra.
Then

X(A) = 〈X(A),⊆, τA, ν2, ν3, CA, OA〉

is an MNE-space.

Conversely, let us check that the Heyting algebra of clopen up-sets of an MNE-space
is the algebraic reduct of a monotone modal twist-structure.

Proposition 5.5
Let X = 〈X,≤, τ, ν1, ν2, C,O〉 be an MNE-space. Then the twist-structure A(X ) =
〈A(X ),∇C ,

∇

O〉 is a monotone modal twist-structure over a Heyting algebra, when
we endow A(X ) with 2ν1 and 3ν2 .

Proof. Let U, V ∈ A(X ). If U ⊆ V , then 2ν1U ⊆ 2ν1V and 3ν2U ⊆ 3ν2V be-
cause ν1(x), ν2(x) ∈ P↑(X) for all x ∈ X. Hence, 〈A(X ),2ν1 ,3ν2〉 is a monotone
bimodal Heyting algebra. It remains to check that ∇C and

∇

O satisfy property (iv)
of Definition 4.5. Suppose that U ∪ V ∈ ∇C and U ∩ V ∈ ∇

O. The former means
that C ⊆ U ∪ V , the latter that U ∩ V ⊆ O. Then, by Definition 5.3 (iii), we have
C ⊆ 2ν1U ∪3ν2V and 2ν1U ∩3ν2V ⊆ O. Hence we obtain 2ν1U ∪3ν2V ∈ ∇C and
2ν1U ∩3ν2V ∈

∇

O.
In order to view MNE-spaces as a category, we need to specify the morphisms. This

is done through the following definition.

Definition 5.6
A map f : X → X ′ between two MNE-spaces X and X ′ is an MNE-morphism if f is
an NE-morphism which additionally satisfies that, for every x ∈ X and every clopen
up-set U ∈ A(X ′),
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(i) U ∈ ν′1(f(x)) if and only if f−1[U ] ∈ ν1(x),

(ii) U ∈ ν′2(f(x)) if and only if f−1[U ] ∈ ν2(x).

It is easy to see that the composition of MNE-morphisms is an MNE-morphism and
that the identity map of an MNE-space is a morphism. We can thus define a category
MNE-Sp having as objects MNE-spaces and as morphisms MNE-morphisms. We
proceed to introduce functors X : MTwist⊥ → MNE-Sp and A : MNE-Sp → MTwist⊥

adopting the same definitions as for (non-modal) twist-structures and NE-spaces.
Let us check that Definition 5.6 is actually capturing the essential properties of

morphisms between spaces that are dual to modal twist-structures.

Lemma 5.7
Let h : A → A′ be a morphism between monotone modal twist-structures A =
〈A,∇, ∇〉 and A′ = 〈A′,∇′, ∇′〉 over a Heyting algebra. Then X(h) : X (A′)→ X (A)
is an MNE-morphism between the corresponding spaces.

Proof. By Lemma 3.5, we just need to check that that conditions (i) and (ii) of
Definition 5.6 are satisfied. We only prove (i) as the proof of (ii) is the analogous.
Let P ∈ X(A′) and U ∈ A(X(A)). We can assume that U = σA(a) for some a ∈ A.
Suppose that U ∈ ν1(X(h)(P )). Let F ⊆ A be a filter such that 2[F ] ⊆ X(h)(P ) =
h−1[P ] and such that {Q ∈ X(A) : F ⊆ Q} ⊆ σA(a). This implies that a ∈ F . Thus,
2a ∈ h−1[P ], i.e., h(2a) = 2′h(a) ∈ P . From the monotonicity of 2′ it follows that
2′[↑h(a)] ⊆ P . Moreover, if Q ∈ X(A) is such that ↑h(a) ⊆ Q, then Q ∈ σ(h(a)).
Therefore, since ↑h(a) is a filter of A′, we conclude that σA′(h(a)) ∈ ν′1(P ). Note
that Q ∈ X(h)−1[σA(a)] iff h−1[Q] ∈ σ(a) iff h(a) ∈ Q iff Q ∈ σA′(h(a)). Thus,
X(h)−1[σA(a)] = σA′(h(a)) ∈ ν′1(P ).
To prove the other implication of (i), suppose that X(h)−1[σ(a)] ∈ ν′1(P ). Then,
σA′(h(a)) ∈ ν′1(P ). Let G ⊆ A′ be a filter such that 2′[G] ⊆ P and {Q ∈ X(A′) :
G ⊆ Q} ⊆ σA′(h(a)). Then h−1[G] ⊆ h−1[2′−1[P ]] ⊆ 2[h−1[P ]] = 2−1[X(h)(P )].
Suppose that Q′ ∈ X(A) is such that h−1[G] ⊆ Q′ but a 6∈ Q′. Then h(a) 6∈ G.
So there is Q ∈ X(A′) such that G ⊆ Q and h(a) 6∈ Q, a contradiction. Thus
{Q′ ∈ X(A) : h−1[G] ⊆ Q′} ⊆ σA(a). We conclude that U = σA(a) ∈ ν1(X(h)(P )).

Next we check that the NE-space isomorphism εX : X ∼= X(A(X )) is an MNE-
morphism, and therefore an isomorphism in the category MNE-Sp.

Lemma 5.8
Let X = 〈X,≤, τ, C,O, ν1, ν2〉 be an MNE-space. Then the map εX : X → X(A(X ))
satisfies:

(i) ν2ν1 (εX (x)) = {εX [U ] : U ∈ ν1(x)},
(ii) ν3ν2 (εX (x)) = {εX [U ] : U ∈ ν2(x)}.

Proof. We only prove (i) as the proof of (ii) is analogous. Suppose that V ∈
ν2ν1 (εX (x)). Let D be a closed up-set of X(A(X )) such that D ⊆ V and with
the property that for every clopen up-set W of X(A(X )) with D ⊆ W it holds that
W ∈ ν2ν1 (εX (x)). Then ε−1X [D] is a closed set. We consider U = ε−1X [V ], which

is a clopen up-set of X. So, ε−1X [D] ⊆ U . Suppose now that W is a clopen up-set
of X such that ε−1X [D] ⊆ W . Then D ⊆ εX [W ] and εX [W ] is a clopen up-set of
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X(A(X )). So, εX [W ] ∈ ν2ν1 (εX (x)). Note that, for every clopen up-set V of X,
it holds that σX+(V ) = εX [V ]. So from Proposition 5.1 we have 2ν2ν1

σA(X )(W ) =

σA(X )(2ν1W ). Thus, 2ν2ν1
εX [W ] = εX [2ν1W ]. Since εX [W ] ∈ ν2ν1 (εX (x)), we have

εX (x) ∈ 2ν2ν1
εX [W ] and so εX (x) ∈ εX [2ν1W ]. Thus, x ∈ 2ν1W and so W ∈ ν1(x).

It follows that U ∈ ν1(x). Therefore εX [U ] = εX [ε−1X [V ]] = V ∈ {εX [U ] : U ∈ ν1(x)}.
Suppose now that U ∈ ν1(x). Then x ∈ 2ν1U . So εX (x) ∈ εX [2ν1U ] = σA(X )(2ν1U) =

2ν2ν1
σA(X )(U) = 2ν2ν1

εX [U ]. So, εX [U ] ∈ ν2ν1 (εX (x)).

Finally, let us check that MNE-morphisms give rise to monotone modal twist-
structure morphisms between the corresponding monotone modal twist-structures.

Lemma 5.9
Let f : X → X ′ be a morphism of MNE-spaces. Then A(f) : A(X ′) → A(X ) is a
monotone modal twist-structure morphism.

Proof. Recalling Lemma 3.6, we only need to prove that for every clopen up-set
U ∈ A(X ′), it holds that A(f)(2ν′1U) = 2ν1A(f)(U) and A(f)(2ν′2U) = 2ν2A(f)(U).
We only prove the first equality as the proof of the second one is similar. Let x ∈ X ′.
Then x ∈ A(f)(2ν′1U) if and only if f(x) ∈ 2ν′1U if and only if U ∈ ν′1(f(x)) if and

only if A(f)(U) = f−1[U ] ∈ ν1(x) if and only if x ∈ 2ν1A(f)(U).

Joining the previous results, one immediately sees that functors defined in the same
way as for (non-modal) twist-structures and NE-spaces yield an equivalence in the
modal case.

Theorem 5.10
The functors X : MTwist⊥ → MNE-Sp and A : MNE-Sp → MTwist⊥ establish a dual

equivalence between the category MTwist⊥ of modal twist-structures over bimodal
Heyting algebras and the category MNE-Sp of MNE-spaces.

Corollary 5.11
The category MN4⊥ of bounded MN4-lattices and the category MNE-Sp of MNE-

spaces are dually equivalent via the functors X ◦ T : MN4⊥ → MNE-Sp and N ◦
A : MNE-Sp→ MN4⊥.

The above result can be used to obtain a topological duality for BK-lattices by
restricting the objects of MTwist to modal twist-structures A = 〈A,∇, ∇〉 corre-
sponding to BK-lattices, in which case we know that A is a modal Boolean al-
gebra. It is then easy to see that the objects of the dual category are structures
X = 〈X,≤, τ, C,O, ν1, ν2〉 such that 〈X, τ〉 is a Stone space and, for every U ∈ A(X ),

• if C ⊆ U , then C ⊆ 2ν1U ,

• if U ⊆ O, then 3ν2V ⊆ O.

Moreover, since 2 and 3 are modal operators in the classical sense (i.e., they preserve,
respectively, finite meets and finite joins and are dual of one another), we can replace
the neigbourhood functions ν1, ν2 by a relation R and follow the duality theory for
Boolean algebras with operators [3, Chapter 5].

The equivalences obtained so far are displayed in Figure 6.
We are now going to expound how to extend the above duality between MNE-Sp and

MTwist⊥ to a duality between the category of MTwist⊥ and a category of monotone
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Fig. 6. Equivalence between bounded MN4-lattices and MNE-spaces.

modal NE-spaces. For this purpose we are interested in monotone bimodal Heyting
algebras A = 〈A,∧,∨,→ 2,3〉 satisfying the properties that 20 = 0, 30 = 0 and
that, for all a ∈ A− {0}, 2a,3a 6= 0.

Proposition 5.12
Let A = 〈A,∧,∨,→ 2,3〉 be a monotone bimodal Heyting algebra.

(i) if 20 = 0, 30 = 0, then for every neighborhood function ν• with • ∈ {2,3} and
every prime filter P , ∅ 6∈ ν•(P ), and therefore •ν•(∅) = ∅,

(ii) if for all a ∈ A − {0}, 2a,3a 6= 0, then for every neighborhood function ν• with
• ∈ {2,3} and every a ∈ A− {0}, •ν•(σA(a)) 6= ∅.

Proof. (i). Suppose that ∅ ∈ ν•(P ). Thus there is a filter F of A such that •[F ] ⊆ P
and {Q ∈ X(A) : F ⊆ Q} ⊆ ∅. Since every proper filter is included in some prime
filter, it follows that F = A. Therefore {•a : a ∈ A} ⊆ P . Now since •0 = 0 , 0 ∈ P ,
a contradiction. Therefore, ∅ 6∈ ν•(P ). Hence, •ν•(∅) = ∅.
(ii) Let a ∈ A− {0}. Then 2a 6= 0. Let P be a prime filter such that 2a ∈ P . Then
2[↑a] ⊆ P . Moreover, {Q ∈ X(A) : ↑a ⊆ Q} ⊆ σA(a). Therefore, P ∈ 2ν2(σA(a)).
In a similar way we obtain that 3ν3(σA(a)) 6= ∅.

Now we are in a position to introduce the dual space of a monotone modal twist-
structure A = 〈A,∇, ∇〉. Let us consider the dual pointed NE-space X∗(A) =
〈X(A∗), τA∗ ,⊆, CA, OA〉 of the twist-structure A (disregarding the monotone modal
operations). Recall that the Heyting algebra A∗ is obtained from A by adding a
new bottom element 0∗. We expand the operations 2 and 3 to A∗ = A ∪ {0∗} by
setting 20∗ = 0∗ and 30∗ = 0∗. Then we consider the dual monotone modal Esakia
space X(A∗) = 〈X(A∗),⊆, τA∗ , ν2, ν3〉 of 〈A∗,2,3〉. Recall that A is a prime fil-
ter of A∗. Also note that 〈X(A∗),⊆, τA∗〉 is a pointed Esakia space. The structure
X∗(A) = 〈X(A∗),⊆, τA∗ , ν2, ν3, CA, OA〉 will be the dual of A.

For a monotone modal twist-structure A = 〈A,∇, ∇〉, we already know that
σA∗ : A ∼= A∗(X

∗(A)) is an isomorphism of twist-structures between A and the
twist-structure A∗(X

∗(A)), when we disregard the modal part of A. In order to
see that σA∗ establishes an isomorphism of monotone modal twist-structures between
A and A∗(X

∗(A)), using Proposition 5.1 it only remains to see that for every a ∈ A,
2ν2σA∗(a) and 3ν3σA∗(a) are non-empty. This follows from Proposition 5.12.

In order to characterize abstractly the duals of monotone modal twist-structures,
we are now going to study some properties of the structure X∗(A) dual to A.

Proposition 5.13
Let A = 〈A,∇, ∇〉 be a monotone modal twist-structure. Then in the dual structure
〈X(A∗),⊆, τA∗ , ν2, ν3〉 we have ν2(A) = {σA∗(a) : a ∈ A} and ν3(A) = {σA∗(a) :
a ∈ A}.
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Proof. Let a ∈ A. Consider the filter ↑a. Then {Q ∈ X(A∗) : ↑a ⊆ Q} = σA∗(a).
Moreover, it is obvious that 2[↑a] ⊆ A. Thus, σA∗(a) ∈ ν2(A). Since ∅ 6∈ ν2(A),
σA∗(0

∗) = ∅ 6∈ ν2(A). Hence, ν2(A) = {σA∗(a) : a ∈ A}. In a similar way we obtain
that ν3(A) = {σA∗(a) : a ∈ A}.

Let A = 〈A,∇, ∇〉 be a monotone modal twist-structure. By a proof similar to
that of Proposition 5.2 we obtain that conditions (i)-(iv) in Definition 5.3 hold in
〈X(A∗),⊆, τA∗ , ν2, ν3〉. This and Proposition 5.13 lead us to the next definition.

Definition 5.14
A pointed monotone modal NE-space (pointed MNE-space) is a structure X = 〈X,≤
, τ, C,O, ν1, ν2〉 such that 〈X,≤, τ, C,O〉 is a pointed NE-space and νi : X → P(P↑(X))
are neighbourhood functions satisfying conditions (i)-(iv) in Definition 5.3 as well as
the following ones:

(i) ∅ 6∈ ν1(x) and ∅ 6∈ ν2(x), for every x ∈ X,

(ii) ν1(1X) = ν2(1X) = A∗(X), where 1X is the greatest element of 〈X,≤〉.

From Propositions 5.12 and 5.13 it follows that if A = 〈A,∇, ∇〉 is a monotone
modal twist-structure, then X(A∗) is a pointed monotone modal NE-space. In this
context we denote it by X∗(A).

We are now going to obtain the monotone modal twist-structure dual of a pointed
monotone modal NE-space.

Lemma 5.15
Let X = 〈X,≤, τ, C,O, ν1, ν2〉 be a pointed monotone modal NE-space. Then for
every non-empty clopen up-set U , 2ν1(U) and 3ν2(U) are non-empty.

Proof. Let U be a non-empty clopen up-set and let 1X be the greatest element of
〈X,≤〉. Then U ∈ ν1(1X). Therefore 1X ∈ 2ν1(U) and hence 2ν1(U) 6= ∅. In a
similar way we obtain that 3ν2(U) 6= ∅.

The above lemma implies that the restrictions of 2ν1 and 3ν2 to non-empty clopen
up-sets are monotone operations on the algebra of non-empty clopen up-sets of X .
Therefore, we take as dual of X the algebra A−(X ) = (A∗(X ),∇C ,

∇

O) corresponding
to the pointed NE-space 〈X,≤, τ, C,O〉 with A∗(X ) endowed with the operations 2ν1
and 3ν2 restricted to the universe of A∗(X ). It is then easy to see that A−(X ) =
(A∗(X ),∇C ,

∇

O) is a monotone modal twist-structure.
Let h : A1 → A2 be a morphism of monotone modal twist-structures A1 =

〈A1,∇1,

∇

1〉 and A2 = 〈A2,∇2,

∇

2〉. Then the extension of h to the homomor-
phism h∗ : A∗1 → A∗2 of Heyting algebras that maps 0∗1 to 0∗2 is also a homomor-
phism from the monotone modal Heyting algebra A∗1 to the monotone modal Heyt-
ing algebra A∗2 because h∗(210∗1) = h∗(0∗1) = 0∗2 = 220∗ = 22h

∗(0∗1), and similarly
h∗(310∗1) = 32h

∗(0∗1). We already know that X(h∗) is a pNE-morphism from X ∗(A2)
to X ∗(A1), if we disregard the modal part. With a proof similar to that of Lemma
5.7 we obtain that, for every P ∈ X(A∗2) and every clopen up-set U of X ∗(A1),

• U ∈ ν21(X(h∗)(P )) if and only if X(h∗)−1[U ] ∈ ν22(P ),

• U ∈ ν31
(X(h∗)(P )) if and only if X(h∗)−1[U ] ∈ ν32

(P ).

Thus we define morphisms between pointed monotone modal NE-spaces as follows.
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Definition 5.16
A map f : X → X ′ between two pointed monotone modal NE-spaces X and X ′ is
an pMNE-morphism if f is a pNE-morphism and satisfies that for every x ∈ X and
every clopen up-set U ∈ A∗(X ′),

(i) U ∈ ν′1(f(x)) if and only if f−1[U ] ∈ ν1(x),

(ii) U ∈ ν′2(f(x)) if and only if f−1[U ] ∈ ν2(x).

The definition implies that if h : A1 → A2 is a morphism of monotone modal twist-
structures, then X(h∗) : X ∗(A2)→ X ∗(A1) is an pMNE-morphism, which we denote
by X∗(h).

Let f : X → X ′ be an pMNE-morphism from a pointed monotone modal NE-space
X to a pointed monotone modal NE-space X ′. The dual A∗(f) : A−(X ′)→ A−(X) of
f as a pNE-morphism preserves also the modal operations (the proof is similar to that
of Lemma 5.9). Therefore, it is a monotone modal twist-structure homomorphism.

If X is a pointed MNE-space, then we know that the map εX : X → X ∗(A−(X ))
is an NE’-isomorphism (if we disregard the neighborhood maps). A proof analogous
to that of Lemma 5.8 allows us to establish that εX is an pMNE-isomorphism.

Let pMNE-Sp be the category of pointed MNE-spaces with pMNE-morphisms. Us-
ing the duality between MTwist⊥ and MNE-Sp together with the considerations above,
it is not difficult to prove the following theorem. Let X ∗(.) and A∗(.) be the maps we
obtain from the above definitions.

Theorem 5.17
The maps X ∗ : MTwist → pMNE-Sp and A∗ : pMNE-Sp → MTwist are contravariant
functors which establish a dual equivalence between the category MTwist of modal
twist-structures and the category pMNE-Sp of pointed MNE-spaces.

Corollary 5.18
The category MN4 of MN4-lattices and the category pMNE-Sp of pointed MNE-
spaces are dually equivalent via the functors X ∗ ◦ T : MN4 → pMNE-Sp and N ◦
A∗ : pMNE-Sp→ MN4.

The equivalences established by the above results are displayed below:

MN4

T
**
MTwist

N

ii

X
**
pMNE-Sp

A

ii

Table 1 below summarizes all the equivalence results established in this paper (we
have called BK-spaces the topological structures corresponding to BK-lattices, which
can be easily obtained by restricting Definition 5.3 to modal spaces [2, Definition 3.1]).

6 A semantics for paraconsistent modal logic MN 4

Pointed monotone modal NE-spaces can be used to provide a semantics for the para-
consistent modal logic MN4 introduced in [24]. This is a logic in the language
〈∧,∨,→,∼,2〉 that can be syntactically defined by adding to any complete calculus
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twist-structures over
topological
structures

N4-lattices Brouwerian lattices pointed
NE-spaces

bounded
N4-lattices

Heyting algebras NE-spaces

monotone modal
N4-lattices

monotone bimodal
Brouwerian lattices

pointed
MNE-spaces

bounded monotone
modal N4-lattices

monotone bimodal
Heyting algebras

MNE-spaces

BK-lattices modal Boolean alge-
bras

BK-spaces

Table 1. Summary of (dual) equivalences.

for paraconsistent Nelson logic (see, e.g., [24, Definition 2.1]) the following rules [24,
Definition 3.1]:

(21)
p→ q

2p→ 2q
(22)

¬p→ ¬q
¬2p→ ¬2q

This calculus, the consequence thereof we denote by `MN4, is complete with respect
to the algebraic semantics given by MN4-lattices as follows. Define the relation |=MN4

by

Γ |=MN4 ϕ if and only if for every MN4-lattice B and every homomorphism
h : Fm→ B, if for every ψ ∈ Γ, h(ψ) = h(ψ → ψ), then h(ϕ) = h(ϕ→ ϕ).

Then [24, Theorem 3.6] implies the following:

Theorem 6.1
For every set of formulas Γ and every formula ϕ,

Γ `MN4 ϕ iff Γ |=MN4 ϕ.

We are going to show that the `MN4 is also complete with respect to a semantics
provided by pointed MNE-spaces.

Let X = 〈X,≤, τ, C,O, ν1, ν2〉 be a pointed MNE-space. A valuation on X is a
map V : V ar → A∗(X )×A∗(X ) such that for every propositional variable p ∈ V ar,

(i) C ⊆ π1(V (p)) ∪ π2(V (p)),

(ii) π1(V (p)) ∩ π2(V (p)) ⊆ O.

Let V be a valuation on a pointed NE-space X = 〈X,≤, τ, C,O, ν1, ν2〉. We extend
it to a map V : For → A∗(X )×A∗(X ) by setting

• V (ϕ ∧ ψ) = 〈π1(V (ϕ)) ∩ π1(V (ψ)), π2(V (π) ∪ π2(V (ψ))〉,
• V (ϕ ∨ ψ) = 〈π1(V (ϕ)) ∪ π1(V (ψ)), π2(V (ϕ) ∩ π2(V (ψ))〉,
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• V (ϕ→ ψ) = 〈π1(V (ϕ))→ π1(V (ψ)), π1(V (ϕ)) ∩ π2(V (ψ))〉,
• V (∼ ϕ) = 〈π2(V (ϕ)), π1(V (ϕ))〉,
• V (2ϕ) = 〈2ν1V (ϕ),3ν2V (ϕ)〉.

Let V be a valuation on a pointed NE-space X = 〈X,≤, τ, C,O, ν1, ν2〉. For every
ϕ we let V1(ϕ) := π1(V (ϕ)) and V2(ϕ) := π2(V (ϕ)).

Lemma 6.2
Let V be a valuation on a pointed NE-space X = 〈X,≤, τ, C,O, ν1, ν2〉. Then for
every formula ϕ, C ⊆ V1(ϕ) ∪ V2(ϕ) and V1(ϕ) ∩ V2(ϕ) ⊆ O.

Proof. By definition of valuation it holds for every propositional variable. So V is a
map from the set of variables to the domain of the MN4-lattice Tw(A∗(X ),∇C ,

∇

O).
Therefore, if the corresponding condition to (i) and (ii) of the definition of valuation
hold for ϕ and ψ, then the corresponding conditions hold for ϕ ∧ ψ, ϕ ∨ ψ, ϕ → ψ
and ∼ ϕ. Moreover, from the definition of pointed NE-space it immediately follows
that the corresponding condition holds for 2ϕ.

Corollary 6.3
Let V be a valuation on a pointed NE-space X = 〈X,≤, τ, C,O, ν1, ν2〉. Then the
extension of V to the algebra of formulas is a homomorphism from this algebra to
Tw(A∗(X ),∇C ,

∇

O). Moreover, for every formula ϕ,

V1(ϕ) = X if and only if V (ϕ) = V (ϕ→ ϕ).

Proof. The rightward implication follows from the lemma. Suppose that V1(ϕ) = X.
Since V (ϕ→ ϕ) = 〈V1(ϕ)→ V1(ϕ), V1(ϕ)∩V2(ϕ)〉 we have V (ϕ→ ϕ) = 〈X,V2(ϕ)〉 =
〈V1(ϕ), V2(ϕ)〉 = V (ϕ). Assume now that V (ϕ) = V (ϕ→ ϕ). Then V1(ϕ) = V1(ϕ)→
V1(ϕ) = X.

We are now in a position to define a consequence relation.

Definition 6.4
For every set of formulas Γ and every formula ϕ, let

Γ |=pMNE ϕ if and only if for every pointed MNE-space X and every valuation V on
X , if for every ψ ∈ Γ, V1(ψ) = X, then V1(ϕ) = X.

In order to show that the paraconsistent modal logicMN4 is complete with respect
to the semantics provided by pointed MNE-spaces, we need to make some observa-
tions. Let B be an MN4-lattice and h a homomorphism from the algebra of formulas to
B. We consider the monotone modal twist-structure (B./,∇(B),

∇

(B)) and its dual
pointed NE-space 〈X(B./),⊆, τB./ , CB./ , OB./ , ν2, ν3〉. Recall that B is isomorphic
to Tw(B./,∇(B),

∇

(B)) by the map jB defined by jB(a) = 〈[a], [∼ a]〉 for every a ∈ B
and that (B./,∇(B),

∇

(B)) is isomorphic to (A∗(X
∗(B./)),∇CB./

,

∇

OB./
) by the map

σB./ . Thus, Tw(B./,∇(B),

∇

(B)) is isomorphic to Tw(A∗(X
∗(B./)),∇CB./

,

∇

OB./
)

via the map k defined by

k(〈[a], [∼ a]〉) = 〈σB./([a]), σB./([∼ a])〉.

Therefore, B is isomorphic to Tw(A∗(X
∗(B./)),∇CB./

,

∇

OB./
) by the map k ◦ jB.

Then, the map k ◦ jB ◦ h is a valuation on X∗(B./). Recall that the set of points
of X∗(B./) is the set X((B./)

∗) of prime filters of (B./)
∗, which is the set of prime

filters of B./ together with B./.
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Lemma 6.5
Let B be an MN4-lattice and h a homomorphism from the algebra of formulas to B.
The valuation k ◦ jB ◦ h on X∗(B./) satisfies that for every formula ψ,

h(ψ) = h(ψ → ψ) if and only if (k ◦ jB ◦ h)1(ψ) = X((B./)
∗).

Proof. For every formula ψ,

(k ◦ jB ◦ h)(ψ) = k(jB(h(ψ))) = 〈σB./([h(ψ)])], σB./([h(∼ ψ)])〉.

Suppose h(ψ) = h(ψ → ψ). Then [h(ψ)] = [h(ψ → ψ)] = [h(ψ)]→ [h(ψ)]. Therefore,

(k ◦ jB ◦ h)1(ψ) = σB./([h(ψ)]) = σB./([h(ψ)]→ [h(ψ)]) = X((B./)
∗).

Suppose now (k ◦ jB ◦h)1(ψ) = X((B./)
∗). That is, σB./([h(ψ)])] = X((B./)

∗). Since
σB./([h(ψ)] → [h(ψ)]) = X((B./)

∗), the injectivity of σB./ implies that [h(ψ)] →
[h(ψ)] = [h(ψ)]. But, then [h(ψ)] is the top element of the Heyting algebra (B./)

∗

which is also the top element of B./. Therefore, h(ψ) = h(ψ)→ h(ψ).

Proposition 6.6
For every set of formulas Γ and every formula ϕ,

Γ |=pMNE ϕ if and only if Γ |=MN4 ϕ.

Proof. Suppose Γ |=MN4 ϕ and Γ 6|=pMNE ϕ. Then, let X = 〈X,≤, τ, C,O, ν1, ν2〉
be an pointed NE-space and V a valuation on X such that for every ψ ∈ Γ, V1(ψ) = X
and V1(ϕ) 6= X. We consider the MN4-lattice Tw(A∗(X ),∇C ,

∇

0). The valuation
V gives a homomorphism from the algebra of formulas to Tw(A∗(X ),∇C ,

∇

0). It
holds that for every ψ ∈ Γ, V (ψ) = V (ψ → ψ). Therefore, since Γ |=MN4 ϕ,
V (ϕ) = V (ϕ→ ϕ), and so V1(ϕ) = X, a contradiction.
To prove the converse suppose Γ |=pMNE ϕ. Let B be an MN4-lattice and h a
homomorphism from the algebra of formulas to B such that for every ψ ∈ Γ, h(ψ) =
h(ψ → ψ). Consider the space X ∗(B./) and the valuation k ◦ jB ◦ h. Then for every
ψ ∈ Γ, (k ◦ jB ◦ h)1(ψ) = X(B./). Therefore, (k ◦ jB ◦ h)1(ϕ) = X((B./)

∗), and so
h(ϕ) = h(ϕ→ ϕ). We conclude that Γ |=MN4 ϕ.

As a corollary we obtain the announced completeness result.

Theorem 6.7
For every set of formulas Γ and every formula ϕ,

Γ `MN4 ϕ iff Γ |=pMNE ϕ.
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