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DUALITIES FOR ROOT SYSTEMS WITH AUTOMORPHISMS

AND APPLICATIONS TO NON-SPLIT GROUPS

THOMAS J. HAINES

Abstract. This article establishes some elementary dualities for root systems
with automorphisms. We give several applications to reductive groups over
non-archimedean local fields: (1) the proof of a conjecture of Pappas-Rapoport-
Smithling characterizing the extremal elements of the {µ}-admissible sets at-
tached to general non-split groups; (2) for quasi-split groups, a simple uniform
description of the Bruhat-Tits échelonnage root system Σ0, the Knop root

system Σ̃0 and the Macdonald root system Σ1, in terms of Galois actions on
the absolute roots Φ; and (3) for quasi-split groups, the construction of the
geometric basis of the center of a parahoric Hecke algebra, and the expression
of certain important elements of the stable Bernstein center in terms of this
basis. The latter gives an explicit form of the test function conjecture for
general Shimura varieties with parahoric level structure.
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1. Main results

Suppose Φ ⊃ Δ is a based root system in a real vector space V which is stabilized
by a finite group I acting linearly on V . We assume Φ is reduced. There are four
natural ways to construct “I-fixed” reduced based root systems associated to the
I-action on (V,Φ,Δ). Namely, the operations of norm NI and modified norm N ′

I

give rise to based reduced root systems NI(Φ) ⊃ NI(Δ) (resp., N ′
I(Φ) ⊃ N ′

I(Δ)) in
V I . Also, the operations of restriction resI and modified restriction res′I give rise to
based reduced root systems in VI . (See Definitions 3.1, 3.3.) These four operations
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yield two pairs of dual root systems (see Proposition 3.5). Suppose Φ∨ ⊃ Δ∨ is the
dual based root system to Φ ⊃ Δ. Then:

Theorem A. The based root system (VI , resI(Φ
∨), resI(Δ

∨)) is dual to (V I , N ′
I(Φ),

N ′
I(Δ)), and (VI , res

′
I(Φ

∨), res′I(Δ
∨)) is dual to (V I , NI(Φ), NI(Δ)).

A basic example of the above situation comes from non-split groups over certain
local fields. Let F be a non-archimedean local field and let F̆ be the completion of
its maximal unramified extension in some separable closure F̄ of F . Let I denote
the absolute Galois group of F̆ and let WF = I ⋊ 〈τ 〉 be the Weil group of F ,
where τ is a geometric Frobenius element; these groups will act through finite
quotients on the root systems which follow and we use the same letters to denote
these quotients. Let G be a connected reductive group over F . We assume G is
quasi-split over F . Let A be a maximal F -split torus in G, with centralizer the
maximal F -torus T = CentG(A); let B = TU be an F -rational Borel subgroup
with unipotent radical U . Let Φ = Φ(G, T ) be the set of absolute roots of G/F̄

with simple B-positive roots Δ ⊂ Φ. Let Φ̆, Φ0 be the sets of relative roots for
G/F̆ and G/F . Recall that Φ̆ and Φ0 need not be reduced.

The four reduced root systems attached to Φ ⊃ Δ turn out to be related to
Bruhat-Tits theory. In [BT1, §1.4], Bruhat-Tits defined the échelonnage reduced

based root systems Σ̆ and Σ0 associated to G/F̆ and G/F , which play a key role
in the structure theory of those groups and their affine Weyl groups (cf. [HR08]).

One can read off Σ̆ and Σ0 from the tables of [BT1, §1.4] and [Tits, §4]. There

are also the root system Σ̃0 of Knop [Kn] and the root system Σ1 of Macdonald
[Mac, §3] used in the study of the associated affine Hecke algebras with possibly
unequal parameters. It does not seem to have been noticed before that, when G/F

is quasi-split, Σ̆, Σ0, Σ̃0, and Σ1 can each be described in a simple uniform way
using only the Galois actions on the absolute roots Φ (see Theorems 6.1, 6.3, 6.8,
and Corollary 6.10).

Theorem B. Suppose G/F is quasi-split. Then Σ̆, Σ0, Σ̃0, and Σ1 can be char-

acterized in terms of the WF -action on the absolute roots Φ, as follows:

Σ̆ ∼= N ′
I(Φ),

Σ0
∼= res′τ (Σ̆),

Σ̃0
∼= resτ (Σ̆),

Σ1 = res′τ (Σ̆) ∪ resτ (Σ̆).

Another application of the ideas behind Theorem A relates to Rapoport-Zink
local models of Shimura varieties. Let {μ} denote a geometric conjugacy class in the
cocharacter group X∗(G). In [PRS], Pappas, Rapoport, and Smithling announce
two conjectures on the {μ}-admissible subset Adm({μ}) of the extended affine Weyl

group W̃ = X∗(T )I ⋊ W̆ . Their Conjecture 4.39 on vertexwise admissibility was
proved in [HH]. In this article we prove the other conjecture, [PRS, Conj. 4.22], on
the extremal elements in Adm({μ}). Here we do not need to assume G is quasi-

split over F (in any case it will automatically be quasi-split over F̆ by Steinberg’s
theorem).

Theorem C. The extremal elements of Adm({μ}) are the images in X∗(T )I of

the F̆ -rational elements Λ̃{μ} in the geometric conjugacy class {μ} ⊂ X∗(G).
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See Conjecture 4.1 and Theorem 4.2. This is of fundamental importance for
understanding the geometry of special fibers of Rapoport-Zink local models. If
(GQp

, {μ}) is the p-adic data associated to PEL Shimura data (G/Q, {h},KpKp)
where Kp ⊂ G(Qp) is an Iwahori subgroup, and if Mμ is the associated Rapoport-
Zink local model [RZ], then Theorem C ensures that we have a good understanding
of the set of irreducible components in the special fiber of Mμ. See §4 for more
discussion.

We now assume again that G/F is quasi-split. With Theorems B and C in hand,
we can construct and study a geometric basis for the center Z(G(F ), J) of the
parahoric Hecke algebra associated to G(F ) and a parahoric subgroup J ⊂ G(F ).

Recall that WF acts on the dual group Ĝ, preserving a splitting (B̂, T̂ , X̂). A dual-

group consequence of Theorem C is that there is an isomorphism of ĜI-modules

V I
μ =

⊕

λ̄∈Wt(μ̄)+

aλ̄,μVλ̄

for aλ̄,μ ∈ Z≥0. Here λ̄ ∈ X∗(T̂ I) is the image of λ ∈ X∗(T̂ ), Vμ and Vλ̄ are

irreducible highest weight representations of the reductive groups Ĝ and ĜI , and

Wt(μ̄) is the set of T̂ I -weights in Vμ̄. These extend to representations V I
μ and Vλ̄,1

of ĜI ⋊ 〈τ 〉 (see §5.2 and §7.1). The following theorem summarizes Lemma 7.4 and
Theorem 7.5.

Theorem D. There is a basis {Cλ̄,J}λ̄ for Z(G(F ), J) indexed by λ̄ ∈ X∗(T̂ I)+,τ ,

characterized by:

Cλ̄,J acts on πJ by the scalar tr(s(π)⋊ τ |Vλ̄,1)

whenever π is an irreducible smooth representation of G(F ) with πJ 	= 0 and Satake

parameter s(π) (see [H15]). Furthermore, in terms of Bernstein functions zν̄,J ∈
Z(G(F ), J) and certain Kazhdan-Lusztig polynomials Pwν̄ ,wλ̄

(q1/2) associated to

the affine Hecke algebra with parameters H(W̃ τ , Sτ
aff , L) there is an equality

(1.1) Cλ̄,J =
∑

ν̄∈Wt(λ̄)+,τ

Pwν̄ ,wλ̄
(1) zν̄,J .

We call the Cλ̄,J the geometric basis elements for the following reason: when F =

Fq((t)) and J = L+Pf (Fq) = Pf (Fq[[t]]) is a very special maximal parahoric subgroup
of G(Fq((t))), Cλ̄,J is the element of H(G(Fq((t))), J) arising, via the function-sheaf

dictionary, from the equivariant perverse sheaf on the affine flag variety LG/L+Pf

which corresponds to Vλ̄ ∈ Rep(ĜI) under the geometric Satake isomorphism (see
[Ric2], [Zhu1]). Moreover, in the case where G/Fq((t)) is split and J = Pa(Fq[[t]]) is
an Iwahori subgroup, we may interpret (1.1) as the identity proved by Gaitsgory
[Ga] (see also [HN02,GH])

trss(τ |RΨMμ) =
∑

λ�μ

mμ(λ)zλ,

where Mμ is the piece of the Beilinson-Gaitsgory degeneration indexed by the dom-
inant cocharacter μ, RΨMμ is the (suitably normalized) complex of nearby cy-
cles (with corresponding function trss(τ |RΨMμ)), and where for dominant λ, μ ∈

X∗(T̂ ), mμ(λ) is the multiplicity of the λ-weight space in Vμ.
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This is all connected with expectations related to the stable Bernstein center and

the geometric Bernstein center of [H14]. From Vμ ∈ Rep(Ĝ⋊WF ) we construct an
element ZVμ

of the geometric Bernstein center (see §7.4), and we can regard it as a
distribution in the usual Bernstein center. By convolving this distribution with the
characteristic function 1J , we get an element ZVμ

∗ 1J ∈ Z(G(F ), J). For τ -fixed

and dominant λ̄, the multiplicity space Hμ(λ̄) of Vλ̄ in V I
μ |ĜI carries an action of

τ . Using this, in Theorem 7.12 we give the following explicit formula in terms of
the geometric basis:

ZVμ
∗ 1J =

∑

λ̄∈Wt(μ̄)+,τ

tr(τ |Hμ(λ̄))Cλ̄,J .

In §8, we explain how this gives an explicit form of the Test Function Conjecture
for Shimura varieties with parahoric level at p (see [H14, §7]), in the case where
G = GQp

is quasi-split over the relevant extension of Qp.
We now give an outline of the contents of the paper. In §2 we list some notation

that will be used throughout the article. In §3 we define the four operations giving
“I-fixed” root systems, and prove the basic duality result in Proposition 3.5 (The-
orem A). In §4 we prove the Pappas-Rapoport-Smithling conjecture (Theorem C)
and also explain an earlier geometric approach in §4.2. In §5 we explain how the
duality operations on root systems are related to the operation of taking I-fixed

points in the dual group Ĝ, and we construct highest weight representations of the

possibily disconnected reductive group ĜI ; these play a role in §7. In §6, we prove
Theorem B, in several steps. In §7 we prove Theorem D. This relies on the Twisted
Weyl character formula (recalled in Theorem 7.9) and Knop’s version of the Lusztig
character formula (Theorem 7.10); note that Theorem B is a key ingredient used
to relate these two formulas. Also in §7 we prove the formula for ZVμ

∗ 1J (Theo-
rem 7.12). Finally, in §8, we explain the implications of this formula for the Test
Function Conjecture for parahoric level [H14, §7].

2. General notation

Given a reductive group G, we let Gsc denote the simply connected cover of the
derived group Gder, and let Tsc denote the pull-back along Gsc → G of a maximal
torus T ; note Tsc is a maximal torus of Gsc.

For any possibly non-reduced root system R in an R-vector space V , let Rred

(resp., Rred) denote the reduced root system we get by discarding all roots of the
form 2a (resp., 1

2a) where a ∈ R.
For any based root system R, we let R+ denote the positive roots. For a lattice

of (co)weights X, we let X+ denote the subset of dominant elements.

3. Notions of duality for root systems with automorphisms

Let Φ ⊃ Δ be a based root system in an R-vector space V . We assume Φ is
reduced. Suppose a finite group I ⊂ AutR(V ) preserves Φ and Δ. Then we say I is
a group of automorphisms of the root system (V,Φ,Δ). Choose a positive definite
symmetric bilinear form (· | ·) on V . We may assume it is I-invariant. We also use
(· | ·) to identify V with its R-linear dual. For v ∈ V − {0} we define

v∨ :=
2v

(v | v)
.
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Then for α ∈ Φ we have the reflection sα on V defined by sα(v) = v − 2(α|v)
(α|α) α.

Then let W ⊂ AutR(V ) be the finite Weyl group of (V,Φ,Δ). Recall that (W,S) is
a Coxeter system with S := {sα |α ∈ Δ}. Note that I acts on the Coxeter system
(W,S). Also, (· | ·) is W ⋊ I-invariant.

We will construct four reduced root systems associated to the I-action on
(V,Φ,Δ), which live naturally in the vector spaces VI or V I . Sometimes it will
be convenient to identify these vector spaces, using the I-averaging map

VI
∼
→ V I

v̄ �→ v⋄ :=
1

|Iv|

∑

σ∈I

σ(v),

where v̄ is the image of v ∈ V in VI .

Definition 3.1.

(1) For v ∈ V , define its norm NI(v) :=
∑

v′∈Iv

v′.

(2) Let resI(v) = v̄ denote the image of v in VI .
(3) For α ∈ Δ, define its modified norm

N ′
I(α) =

{
NI(α) if the elements in Iα are pairwise (· | ·)-orthogonal,

2NI(α) otherwise.

(4) For α ∈ Δ, define its modified restriction

res′I(α) =

{
resI(α) if the elements in Iα are pairwise (· | ·)-orthogonal,

2 resI(α) otherwise.

For α ∈ Φ+, its I-average α⋄ is never 0 (since I permutes the simple positive
roots, which are linearly independent). If Φ is the set of absolute roots for a

connected reductive group over F̆ , then resI(Φ
+) ∼= (Φ+)⋄ is precisely the set of

positive relative roots Φ̆+ for G/F̆ (cf., e.g., [Sp, 15.5.1]).

Lemma 3.2. Let α ∈ Δ, and let Iα denote the I-orbit of α. Then

(3.1) (α∨)⋄ =

{
1

|Iα| (α
⋄)∨ if the roots in Iα are pairwise (· | ·)-orthogonal,

1
2 |Iα| (α

⋄)∨ otherwise.

Proof. Clearly (α∨)⋄ = 2
(α |α) α

⋄ = (α⋄ |α⋄)
(α |α) (α⋄)∨. Therefore, we just need to com-

pute the ratio (α⋄ |α⋄)
(α |α) . The group I permutes the irreducible subsystems in Φ,

each of which carries an action of its stabilizer in I. Also, if v = v1, . . . , vk ∈ V
are pairwise orthogonal vectors with (vi | vi) = (v | v) for all i and with average v⋄,
then (v⋄ | v⋄) = 1

k (v | v). These two remarks reduce us to considering irreducible Φ,
and also prove the first case of the lemma. The second case only arises when Φ is
of type A2n, and I acts via the non-trivial diagram automorphism. In that case we
may assume the I-orbit of α is {en − en+1, en+1 − en+2} and (· | ·) is the standard
inner product on R2n+1, and the lemma follows by direct computation. �

Definition 3.3. We define four reduced root systems, the first two in V I and the
latter two in VI :

(1) NI(Φ) := W INI(Δ),
(2) N ′

I(Φ) := W IN ′
I(Δ),
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(3) resI(Φ) := W IresI(Δ),
(4) res′I(Φ) := W Ires′I(Δ).

The root systems

NI(Φ), N
′
I(Φ), resI(Φ), res

′
I(Φ)

come equipped with natural bases

NI(Δ), N ′
I(Δ), resI(Δ), res′I(Δ),

and all have Weyl groups naturally identified with W I .

Remark 3.4. To show that resI(Φ) and res′I(Φ) are root systems and have Weyl
groups identical to W I , one may use, for instance, the argument of [H15, Lem. 4.2].
Indeed, resI(Φ) (resp., res

′
I(Φ)) identifies with the set of short (resp., long) vectors

in the set of all I-averages of elements of Φ, and the latter set is a possibly non-
reduced root system; further, both short and long subsystems have W I as Weyl
group, as explained in the proof of [H15, Lem. 4.2]. Then by Proposition 3.5 below,
we can also show that NI(Φ) and N ′

I(Φ) are root systems and we may also identify
their Weyl groups with W I .

The following proposition shows that the operations resI and N ′
I (resp., res′I and

NI) are dual to each other, as claimed in Theorem A.

Proposition 3.5. Let (V,Φ∨,Δ∨) be the dual root system to (V,Φ,Δ) defined

using (· | ·), endowed with the induced action by the group I. Via the isomorphism

VI
∼
→ V I , there are identifications

resI(Φ
∨)∨ = N ′

I(Φ),

res′I(Φ
∨)∨ = NI(Φ).

Proof. Using Lemma 3.2, we see that resI(α
∨)∨ = N ′

I(α) and res′I(α
∨)∨ = NI(α)

for α ∈ Δ. The proposition follows. �

Remark 3.6. The essential point was already made in [KS, (1.3.9)].

Example. Let V = R2n+1, let Φ = {±(ei−ej) | 1 ≤ i < j ≤ 2n+1} be the standard
Type A2n root system, and consider the standard simple roots Δ = {ei − ei+1 | 1 ≤
i ≤ 2n}. Let I = 〈τ 〉 where τ operates by

τ (x1, . . . , x2n+1) = (−x2n+1, . . . ,−x1).

Then τ -averaging gives an isomorphism

Vτ
∼
→ V τ = {(x1, . . . , xn, 0,−xn, . . . ,−x1) |xi ∈ R}.

We identify V τ = Rn in the obvious way. Then inside V τ we describe the four sets
of simple positive roots:

resτ (Δ) = {
e1 − e2

2
, . . . ,

en−1 − en
2

,
en
2
} Type Bn,

res′τ (Δ) = {
e1 − e2

2
, . . . ,

en−1 − en
2

, en} Type Cn,

Nτ (Δ) = {e1 − e2, . . . , en−1 − en, en} Type Bn,

N ′
τ (Δ) = {e1 − e2, . . . , en−1 − en, 2en} Type Cn.
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4. Extremal elements in admissible sets

4.1. Statement of Pappas-Rapoport-Smithling conjecture. We consider a
connected reductive group G over the field F̆ . Recall that G/F̆ is quasi-split

by Steinberg’s theorem. Let S be a maximal F̆ -split torus in G with central-
izer the maximal torus T . Let W = W (G, T ) be the absolute Weyl group and

let W̆ = W (G,S) be the relative Weyl group. Let W̃ = NG(T )(F̆ )/T (F̆ )1 be the

Iwahori-Weyl group (cf., e.g., [PRS, §4]); recall T (F̆ )1 is the kernel of the Kottwitz

homomorphism κT : T (F̆ ) → X∗(T )I of [Ko97, §7]. We fix a special vertex o in

the apartment V = X∗(T )I ⊗ R. Given o, there is a natural action of W̃ on the

apartment such that we may identify W̆ with the fixer of o in W̃ . We thus get

a decomposition W̃ = X∗(T )I ⋊ W̆ (identifying W̃ with the extended affine Weyl

group over F̆ ). For an element λ ∈ X∗(T )I , we write tλ when viewing it as a

“translation” element in X∗(T )I ⋊ W̆ . In general X∗(T )I might have torsion, and
we write X∗(T )I/tors for the quotient by its torsion subgroup; this quotient acts
freely, by translations, on the real vector space X∗(T )I ⊗ R.

The group W̃ carries a Bruhat order ≤ in a natural way (see §4.3).

Fix a geometric conjugacy class of cocharacters {μ} ⊂ X∗(G). Let Λ̃{μ} be
those elements of {μ} whose image in X∗(T ) ⊗ R lies in the closure of a Weyl

chamber corresponding to an F̆ -rational Borel subgroup of G. Fix a representative

μ ∈ X∗(T ) in the geometric conjugacy class {μ}, with μ ∈ Λ̃{μ}. Thus Λ̃{μ} = W̆μ,

since all F̆ -rational Borel subgroups containing T are W̆ -conjugate. Denote by ν̄

the image of ν ∈ X∗(T ) in X∗(T )I , and let Λ{μ} be the image of Λ̃{μ}. Then

Λ{μ} = W̆ μ̄.
The following conjecture of Pappas-Rapoport-Smithling [PRS, Conj. 4.22] is one

of the main motivations for this article.

Conjecture 4.1. Let {μ̄} denote the image of the W -conjugacy class {μ} in

X∗(T )I . Then the set of maximal elements in {μ̄} with respect to the Bruhat order

is precisely the set Λ{μ}.

Note that Conjecture 4.1 only has content when G/F̆ is non-split. It arose in
connection with the {μ}-admissible set, defined to be

(4.1) Adm({μ}) = {w ∈ W̃ | w ≤ tμ̄′ for some μ′ ∈ {μ}}.

Conjecture 4.1 means that the extremal elements in this set are the translations
of the form tμ̄′ where μ̄′ ∈ Λ{μ}. It implies that the {μ}-admissible set as defined
above coincides with the way it is defined in [PRS, Def. 4.23]:

(4.2) Adm({μ}) = {w ∈ W̃ | w ≤ tμ̄′ for some μ̄′ ∈ Λ{μ}}.

The admissible set plays a role in the theory of local models of Shimura varieties
and in related matters (see [PRS]). In particular, if (G = GQp

, {μ}) arises as the
p-adic data associated to Shimura data (G/Q, {h}) and if Mμ denotes a local model
for the corresponding Shimura variety with Iwahori level structure at p, then the set
Adm({μ}) is supposed to parametrize the Iwahori-orbits in the special fiber of Mμ.
Conjecture 4.1 means that Λ{μ} should parametrize the irreducible components of
the special fiber (see §4.2). For many other favorable combinatorial properties of
Adm({μ}), see [HH].
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In this paper we will prove Conjecture 4.1 (and thus Theorem C). In fact we
will prove the following theorem, which implies Conjecture 4.1. For ν1, ν2 ∈ X∗(T ),
write ν1 � ν2 if ν2 − ν1 is a sum of positive coroots in Φ∨+; see §4.3. Define

Wt(μ) := {ν ∈ X∗(T ) | wν � μ, ∀w ∈ W}

(Wt stands for “weight” and the term reflects the parallel – established by Propo-
sition 5.2 and Corollary 5.3 – with the dual group side; see §5). Note that {μ} ⊆
Wt(μ).

Theorem 4.2. In the image Wt(μ) ⊂ X∗(T )I , the maximal elements with respect

to the Bruhat order are precisely the elements of Λ{μ}.

4.2. A geometric approach to Conjecture 4.1. Assume we are in the function
field setting: F̆ = k((t)) and OF̆ = k[[t]], where k = Fp for a prime p.1 In this
context, Timo Richarz [Ric2] has defined “local models” Mμ over Spec(k[[t]]) in
complete generality.

Consider a description of the special fiber Mμ ⊗OF̆
k on reduced loci as the

following union of Schubert varieties:

(4.3) Mμ ⊗OF̆
k =

⋃

w∈Adm({μ})

Sw,

where here Adm({μ}) is defined as in (4.2). If such a description holds, then it
is possible to deduce a proof of Conjecture 4.1. For example, Richarz gave such
an argument for Conjecture 4.1 in [Ric2, Rem. 3.13], and proved the inclusion “⊇”
of (4.3) holds in general. Further, Zhu’s proof of the Coherence Conjecture [Zhu2]

implies that “⊆” holds in the case where G/F̆ is tamely ramified (Mμ may be taken
to represent his global Schubert variety). In fact, Zhu had earlier proved (4.3) in
the function field case, also under some hypotheses of tame ramification for the
group G/F̆ [Zhu2, Thm. 3].

The upshot is that Conjecture 4.1 was already known to hold in the function-
field setting, when G is tamely ramified over F̆ . It seems difficult to use the same
method to go beyond the function-field setting and the case where G is tamely
ramified. The advantage of the simple combinatorial proof of this article is clearly
that it does not rely on any such hypotheses on the field F̆ or on the group G/F̆ .2

4.3. Proof of Theorem 4.2. Before giving the proof, we specify how the root
systems we consider arise from the group G. Let Φ be the set of absolute roots
for (G, T ). Let us fix a Borel subgroup B ⊃ T which is defined over F̆ . Write
B = T

∏
α>0 Uα (this determines the notion of (B-)positive root and dominant

Weyl chamber in the vector space X∗(T ) ⊗ R). Let Δ denote the set of simple

B-positive roots in Φ, with simple coroots Δ∨. Let Φ̆ be the set of relative roots
for (G,S), with set of simple B-positive roots denoted by Δ̆ and simple coroots by

Δ̆∨.
For any root system R with positive roots R+, we will consider the integral (resp.,

rational resp., real) cone Z≥0R
∨+ (resp., Q≥0R

∨+ resp., R≥0R
∨+) generated by the

positive coroots. Of course the group generated by the former is the coroot lattice
Q∨(R) := ZR∨.

1More generally, we may replace k by any algebraically closed field of characteristic p > 0.
2Subsequently, the author and Timo Richarz proved in [HaRi, Thm. 6.12] that (4.3) always

holds, with no tameness assumption. But Theorem 4.2 is an ingredient in this proof.
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Recall W̃ is the Iwahori-Weyl group for G/F̆ and that it decomposes as W̃ =

X∗(T )I ⋊ W̆ and acts in a natural way on X∗(S) ⊗ R = X∗(T )
I ⊗ R. Let ă be

a base alcove in the apartment X∗(S) ⊗ R of the Bruhat-Tits building B(G, F̆ )
corresponding to the torus S. We assume ă is the alcove in the B-dominant Weyl

chamber whose closure contains the origin o (our fixed special vertex). Let Ωă ⊂ W̃
denote the subgroup stabilizing ă.

By Bruhat-Tits theory, associated to GF̆ , S there is a reduced root system Σ̆

whose affine Weyl group Waff(Σ̆) := ZΣ̆∨ ⋊ W̆ may be identified with the Iwahori-

Weyl group of Gsc/F̆ (we refer to [BT1, §1.4] and [HR08] for details); Σ̆ is called

an échelonnage root system for Φ̆ by Bruhat-Tits. In general Σ̆ is not contained in
Φ̆, although every element of Σ̆ is a positive multiple of an element of Φ̆ and vice
versa. The group Waff(Σ̆) acts on X∗(S)⊗ R in the obvious way and is a Coxeter
group whose generators are the simple affine reflections Saff through the walls of

ă. There is an isomorphism W̃ = Waff(Σ̆)⋊Ωă. This is used to extend the Bruhat

order ≤ and the length function ℓ(·) from Waff(Σ̆) to W̃ .

Recall that Λ̃{μ} denotes the elements of {μ} whose image in X∗(T )⊗ R lies in

the closure of a Weyl chamber corresponding to an F̆ -rational Borel subgroup of
G. Fix a representative μ ∈ X∗(T ) in the geometric conjugacy class {μ}, whose
image in X∗(T ) ⊗ R lies in the closed Weyl chamber corresponding to B. Define

Λ{μ}, Wt(μ) and Wt(μ) as in §4.1.
We can now prove Theorem 4.2.

Proof. Let λ ∈ Wt(μ) be arbitrary. Our goal is to prove that tλ̄ ≤ tμ̄′ for some

μ̄′ ∈ W̆ μ̄. The first step is to prove that λ̄ � μ̄ in the partial ordering on X∗(T )I
determined by the positive coroots Σ̆∨+; we must show that μ̄− λ̄ ∈ Z≥0Σ̆

∨+.

We have μ− λ ∈ Z≥0Φ
∨+. Therefore, μ̄− λ̄ ∈ Z≥0Φ∨+. By [HR08, Lem. 15 and

proof of Prop. 13], we have

(4.4) Q∨(Φ)I = X∗(Tsc)I = Q∨(Σ̆).

Thus we deduce that

μ̄− λ̄ ∈ Q∨(Σ̆) ∩ Z≥0Φ∨+.

We now claim that

(4.5) Q∨(Σ̆) ∩ Z≥0Φ∨+ ⊆ Z≥0Σ̆
∨+.

In order to see this inclusion, it is enough to check it after applying the map

X∗(T )I → X∗(T )
I ⊗Q

ν̄ �→ ν⋄,

where ν⋄ is the average over the I-orbit of ν. The reason it is sufficient to check
(4.5) holds after applying ν̄ �→ ν⋄ is that the kernel of this map is the torsion

subgroup X∗(T )I,tors and both sides of (4.5) are contained in Q∨(Σ̆), a torsion-free
subgroup of X∗(T )I .

Any element in Φ̆+ is a positive scalar times an element in Σ̆+ (and vice versa),
and thus the same holds for coroots. Hence, using Lemma 3.2, we see that

(4.6) Z≥0(Φ∨+)⋄ ⊂ Q≥0Φ̆
∨+ ⊂ R≥0Σ̆

∨+.

The inclusion (4.5) follows.
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Now we have proved that λ̄ � μ̄ in the dominance order on X∗(T )I determined

by Σ̆∨. Let λ̄dom be the unique dominant element in the W̆ -orbit of λ̄. Then the
same argument can be applied to show λ̄dom � μ̄.

It follows that tλ̄dom
≤ tμ̄ in the Bruhat order. This is explained in [PRS,

Rem. 4.17] as a consequence of [Ric1, Cor. 1.8], but it can also be seen as a conse-
quence of [Rap05, Lem. 3.8 and proof of Prop. 3.5].

It is well known that ℓ(tλ̄) = ℓ(tλ̄dom
).

Lemma 4.3. Let ν̄ ∈ X∗(T )I . If x ∈ W̃ and s ∈ Saff have ℓ(x) = ℓ(sxs), and if

x ≤ tν̄ , then there exists ν̄′ ∈ W̆ ν̄ such that sxs ≤ tν̄′ .

Proof. The proof is the same as that of [H01, Lemma 4.5]. �

Since λ̄ results from λ̄dom by a sequence of length-preserving conjugations by
elements s ∈ Saff , repeated use of Lemma 4.3 shows that tλ̄ ≤ tμ̄′ for some μ̄′ ∈ W̆ μ̄.
This completes the proof of Theorem 4.2. �

5. Automorphisms and dual groups

5.1. On root systems of fixed points in dual groups. We continue to assume
G is an arbitrary connected reductive group over F̆ (which is automatically quasi-
split).

Let Ĝ be the complex dual group of G. Since G/F̆ is quasi-split, associated
to G there is an I-fixed splitting (T,B,X =

∑
α∈∆ Xα). By construction of the

L-group (cf. [Ko84, §1]), Ĝ carries an action by I which factors through a finite

quotient and fixes a splitting of the form (T̂ , B̂, X̂). Since G/F̆ is quasi-split,

the I-action on T̂ inherited from that on Ĝ agrees with that derived from the I-

action on X∗(T ) = X∗(T̂ ) (comp. [H15, §5]). We can write B̂ = T̂
∏

α>0 Uα∨ and

X̂ =
∑

α∈∆ Xα∨ .
For any possibly non-reduced root system R, recall the reduced root systems

Rred and Rred defined in §2.

Proposition 5.1. The group H := ĜI is reductive and its neutral component

H◦ = ĜI,◦ is equipped with the splitting (TH , BH , XH) := (T̂ I,◦, B̂I,◦, X̂). The

maximal torus TH is the neutral component of the diagonalizable subgroup T̂ I ⊂ ĜI .

Moreover, the root system for (H,TH , BH) is isomorphic to [(Φ∨)⋄]red and has

{(α∨)⋄ | α ∈ Δ} as its simple positive roots.

Proof. Most of this is covered by the statement of [H15, Prop. 4.1]; the last assertion
was established during the proof of that proposition. �

Proposition 5.2. There is an equality of based root systems

[(Φ∨)⋄]red = Σ̆∨.

Proof. By (4.4), we have (ZΦ∨)I = ZΣ̆∨. Applying ν �→ ν⋄ we get the equality

Z(Φ∨)⋄ = ZΣ̆∨

of lattices in X∗(T )
I ⊗Q. The two lattices have identical monoids of positive cones

as

(5.1) Z≥0(Φ
∨)⋄,+ = Z(Φ∨)⋄ ∩ R≥0Φ̆

∨+ = ZΣ̆∨ ∩ R≥0Φ̆
∨+ = Z≥0Σ̆

∨+.
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Therefore, the minimal positive elements of these monoids – i.e., the two bases of
the two root systems [(Φ∨)⋄]red and Σ̆∨ – must coincide, and thus the based root
systems coincide. �

Corollary 5.3. The root system for (ĜI,◦, T̂ I,◦) is the root system X∗(T )I/tors ⊃

Σ̆∨ and in particular is of type dual to Σ̆.

Remark 5.4. Corollary 5.3 is used implicitly in the works of Zhu [Zhu1] and Richarz
[Ric2] on the geometric Satake isomorphism for certain non-split groups. For ex-
ample, see [Zhu1, Lem. 4.10] and [Ric2, Def.A.7].

5.2. On highest weight representations. Under the identification X∗(T ) =

X∗(T̂ ), we may view Wt(μ) as weights of T̂ . Let Vμ denote the irreducible repre-

sentation of Ĝ with highest weight μ. Then Wt(μ) is precisely the set of T̂ -weights

of Vμ. It follows that Wt(μ) is precisely the set of T̂ I -weights of the image Vμ|ĜI

of Vμ under the restriction map Rep(Ĝ) → Rep(ĜI); since T̂ I is a diagonalizable
group, weights for it exist.

By (5.1), the natural partial orders � on Wt(μ) and on the weights of Vμ|ĜI

coincide.
Let ν̄♭ denote the image of ν̄ in X∗(T )I/tors. Let X∗(T )

+
I and X∗(T )

♭,+
I be the

set of B-dominant elements in X∗(T )I and X∗(T )
♭
I . Let H := ĜI and H◦ := ĜI,◦.

The following lemma provides the theorem of the highest weight for the possibly
disconnected reductive group H. Some of this was done, in a different way, by Zhu
[Zhu1, Lem. 4.10].

Lemma 5.5.

(1) Every irreducible representation of H is a highest weight representation Vλ̄

for some λ̄ ∈ X∗(T )
+
I .

(2) Let Vλ̄ be an irreducible representation of H with highest weight λ̄. Then

Vλ̄|H◦ is irreducible and has highest weight λ̄♭.

(3) Every irreducible representation of H◦ is of the form Vλ̄|H◦ for some λ̄ ∈
X∗(T )

+
I .

(4) For ν̄ ∈ X∗(T )
+
I = X∗(T̂ I)+ with image ν̄♭ ∈ X∗(T )I/tors = X∗(T̂ I,◦),

and for Vλ̄♭ = Vλ̄|ĜI,◦ , we have

(5.2) Vλ̄(ν̄)|T̂ I,◦ = Vλ̄♭(ν̄♭).

Proof. We deduce this from the theorem of the highest weight for the connected

reductive group H◦, as follows. By [H15, §4, 5], we have ĜI = Z(Ĝ)I · ĜI,◦ and

ĜI,◦ ∩ T̂ I = T̂ I,◦. It follows that Z(ĜI) = Z(Ĝ)I · Z(ĜI,◦) and

H = Z(H) ·H◦,

T̂ I = Z(H) · T̂ I,◦,(5.3)

Z(H◦) ⊂ T̂ I,◦.

Suppose (V, ρ◦) is an irreducible representation of H◦. This is a highest weight

representation for some element λ̄♭ ∈ X∗(T )
♭,+
I = X∗(T̂ I,◦)+, the image of an

element λ̄ ∈ X∗(T )
+
I = X∗(T̂ I)+. The restriction of ρ◦ to Z(H) ∩ H◦ = Z(H◦)

acts through the central character, which is the restriction of λ̄♭ to Z(H◦). Using
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(5.3), we can extend ρ◦ to a representation (V, ρ) of H by setting

ρ(zh◦) = λ̄(z) ρ◦(h◦),

where z ∈ Z(H) and h◦ ∈ H◦. This is irreducible and has highest weight λ̄.
This constructs all the irreducible highest weight representations (Vλ̄, ρλ̄) of H, and
proves (3). Clearly (5.3) implies (2). If (V, ρ) is any irreducible representation of H,

then it has some maximal weight, say λ̄ ∈ X∗(T̂ )+. By (5.3) the restriction V |H◦ is
irreducible, has maximal weight λ̄♭, and hence is the highest weight representation
for λ̄♭. But then Vλ̄|H◦ ∼= V |H◦ , and as the central characters of V and Vλ̄ are both
λ̄|Z(H), (5.3) shows that V ∼= Vλ̄, and hence (1). Part (4) is straightforward. �

6. Bruhat-Tits, Knop, and Macdonald root systems

6.1. The échelonnage root system Σ̆. Recall (§4.3) the reduced root system

Σ̆ which is attached to a connected reductive group G over F̆ . We may rephrase
Proposition 5.2 as follows.

Theorem 6.1. The Bruhat-Tits root system Σ̆ attached to a group G/F̆ with ab-

solute root system Φ can be characterized by the identifications

resI(Φ
∨) = Σ̆∨,

N ′
I(Φ)

∼= Σ̆.

Proof. The equality in the first line follows from Proposition 5.2, and this implies
the isomorphism in the second line by Proposition 3.5. �

Remark 6.2. The set Σ̆ has previously been described in terms of Φ̆ instead of Φ, in
a non-uniform way. For example, in the work of Prasad-Raghunathan [PrRa, §2.8]

(cf. [PRS, 4.15]), one finds the following description of Σ̆ for G/F̆ simply connected
and absolutely simple:

• If G is split, then Σ̆ = Φ̆.
• If G is non-split and Φ̆ is reduced, then Σ̆ ∼= Φ̆∨ = { 2α

(α |α) | α ∈ Φ̆}.

• If Φ̆ is non-reduced, then Σ̆ is the subset of roots α ∈ Φ̆ for which 2α /∈ Φ̆.

One can use Theorem 6.1 together with Lemma 3.2 to give another proof of the
above description of Prasad-Raghunathan.

6.2. The échelonnage root system Σ0. For the remainder of the article, we
assume G is a quasi-split group over the field F . Let A be a maximal F -split torus
in G with centralizer the F -rational torus T . Fix an F -rational Borel subgroup
B = TU containing T . Let S ⊂ T be the maximal F̆ -split subtorus.

Let WF be the Weil group of the non-archimedean local field F , and write
I ⊂ WF for the inertia subgroup; recall I is isomorphic to the absolute Galois
group of F̆ . Let τ ∈ WF denote a geometric Frobenius element.

We have the relative Weyl group W I = W̆ for G/F̆ , and the relative Weyl group

W0 = (W̆ )〈τ〉 for G/F . See [H15, Prop. 4.1]. Let Φ0 ⊂ X∗(S)τ ⊗ R = X∗(A)⊗ R
be the set of relative roots for G/F , in other words, the set of WF -averages of the

elements of Φ, as well as the set of τ -averages of elements of Φ̆.
We fix once and for all a very special vertex o in the closure of the alcove ă in

the apartment X∗(S)
τ ⊗ R for G/F . This means that o is also a special vertex in

the apartment X∗(S)⊗ R for G/F̆ ; very special vertices exist for quasi-split G/F
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by [Zhu1, §6]. If G/F is unramified, a vertex o is very special if and only if it

is hyperspecial. Recall W̃ acts on the apartment X∗(S) ⊗ R, and we may view

W̆ (resp., W0 = W̆ τ ) as the subgroup of W̃ (resp., W̃ τ ) fixing o. According to
Bruhat-Tits theory ([BT1, §1.4]) to Φ0 we associate a reduced root system Σ0 such
that, as in §4.3, Waff(Σ0) := ZΣ∨

0 ⋊W0 is identified with the Iwahori-Weyl group

W̃ (Gsc/F ) of Gsc/F . Given o, we get decompositions of the Iwahori-Weyl groups

W̃ (Gsc/F̆ ) = ZΣ̆∨ ⋊ W̆ ,

W̃ (Gsc/F ) = ZΣ∨
0 ⋊W0,

where the first decomposition is τ -equivariant; see §4.3. We may assume the alcove
ă from §4.3 is the τ -invariant alcove of the apartment X∗(S)⊗R corresponding to
an alcove a ⊂ X∗(A) ⊗ R whose closure contains o. Then it is known thanks to
T.Richarz that

W̃ (Gsc/F̆ )τ = W̃ (Gsc/F );

see [H14, Lem. 11.3.1]. Thus by comparing τ -fixed points, we deduce ZΣ∨
0 =(

ZΣ̆∨
)τ
, and hence (comparing bases as in Proposition 5.2)

(6.1) Σ∨
0 = Nτ (Σ̆

∨).

Now using Proposition 3.5 we obtain the following:

Theorem 6.3. For a quasi-split group G/F giving rise to Φ̆ and Σ̆ as in §6.1, the
échelonnage root system Σ0 attached to G/F can be characterized by the identities

Σ∨
0 = Nτ (Σ̆

∨),

Σ0
∼= res′τ (Σ̆).

Remark 6.4. Note that the descent Φ � Σ̆ is via the operation N ′
I , whereas the

descent Σ̆ � Σ0 is via res′τ . This should be contrasted with the relation between Φ

and the Bruhat-Tits affine roots: Φaff(G/F̆ ) is defined using the internal structure

of G/F̆ and is not transparent from Φ, and the descent Φaff(G/F̆ ) � Φaff(G/F ) is
via a restriction operation analogous to resτ (see [Tits, 1.10.1]).

Remark 6.5. Suppose G/F is not quasi-split. Then we can prove a weaker statement

related to Theorem 6.3. Note that τ still permutes the simple affine roots Δ̆aff and
the affine roots Σ̆aff = Σ̆ × Z associated to a τ -stable alcove ă in the apartment
associated to an F -rational maximal F̆ -split torus S ⊂ G. Let S̆aff denote the

simple affine reflections in W̆aff = W̃ (Gsc/F̆ ) and let (S̆aff/τ )<∞ denote the set

of 〈τ 〉-orbits π in S̆aff such that the parabolic subgroup W̆π ⊂ W̆aff generated by

all s ∈ π is finite. For each π ∈ (Saff/τ )<∞, define wπ ∈ W̆ τ
aff = Waff to be the

longest element in W̆π. Then (Waff , {wπ}π∈(S̆aff/τ)<∞
) is a Coxeter group. Further,

if ℓ̆ : W̆aff → Z≥0 is the length function on (W̆aff , S̆aff), and if w = wπ1
· · ·wπr

is a
reduced expression for w ∈ Waff , then

ℓ̆(w) =
r∑

i=1

ℓ̆(wπi
).

(For proofs, see [Mic].) Moreover, the simple affine roots Δ0,aff ⊂ Σ0 ⋊ Z are
the (minimally positive on ăτ ) affine roots corresponding to the reflections wπ,

π ∈ (S̆aff/τ )<∞. (Note that it is possible to have (S̆aff/τ )<∞ = ∅.)
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6.3. The Knop root system Σ̃0. Now we let L : Saff → Z be the system of
parameters associated to the group G(F ). More precisely, let Pa(OF ) ⊂ G(F )
(resp., Po(OF ) ⊂ G(F )) be the Iwahori (resp., very special parahoric) subgroup

corresponding to a (resp., o). We fix a set-theoretic embedding W̃ τ = X∗(T )
τ
I ⋊

W0 →֒ G(F ) by sending w ∈ W0 to any lift in NG(A)(F )∩Po(OF ) and by mapping
λ ∈ X∗(T )

τ
I to an element aλ ∈ T (F ) such that κT (aλ) = −λ. (Here κT is the

Kottwitz homomorphism κT : T (F̆ ) → X∗(T )I normalized as in [Ko97, §7]; for
instance, if T = Gm, and ̟ is a uniformizer of F , then κT (̟) = 1 ∈ Z.)

Let J = Pa(OF ), an Iwahori subgroup of G(F ), and set q = #(OF /̟). The
Iwahori-Hecke algebra H(G(F ), J) = C∞

c (J\G(F )/J) is a convolution algebra,
defined using the Haar measure dxJ with

∫
J
dxJ = 1. It is a specialization of the

affine Hecke algebra H(W̃ τ , Sτ
aff , L)

H(G(F ), J) ∼= H(W̃ τ , Sτ
aff , L)⊗Z[v,v−1] C

with respect to v �→ q1/2. Here Sτ
aff ⊂ AutR(X∗(A)⊗R) is the set of affine reflections

through the walls of a, and L : Sτ
aff → Z is a system of (possibly unequal) parameters

defined by qL(s) =
∫
JsJ

dxJ , for s ∈ Sτ
aff . In particular, if Tw := 1JwJ for w ∈ W̃ τ ,

then

T 2
s = (qL(s)−1)Ts + qL(s)Te.

Let Π0 ⊂ Σ0 be the set of simple roots. For any indivisible root a′ ∈ Φ0

corresponding to a root a ∈ Σ0, there is a unipotent subgroup Ua′ ⊂ G (having Lie
algebra ga′ +g2a′ , where g2a′ = 0 if 2a′ /∈ Φ0) and subgroups Ua+i ⊂ Ua′(F ), which
enter into the definition of the Bruhat-Tits affine roots Φaff (cf. [Land, 0.17, §4]).

We can now describe the above parameters in the notation of Macdonald [Mac,
§3.1] as

qL(s) = qa/2qa = qa+1 := [Ua : Ua−1],

where s = sa for a ∈ Π0. Further, we have

qL(s0) = q−ã+1+1 := [U−ã+1 : U−ã]

if s0 is the simple reflection corresponding to a simple affine root −ã+ 1.
We repeat some definitions from [Kn]. We say a ∈ Π0 is special if it is the long

simple root in a component of type Cn (setting C1 = A1), and has the property
that L(sa) 	= L(s0), where s0 is the reflection for the simple affine root −ã + 1 in
that component.

Remark 6.6. Noting that in a component of type Cn with simple positive roots

e1 − e2, . . . , en−1 − en, 2en

and ã = 2e1, we have q−2e1+1+1 = q−2e1 = q2en , and hence for a = 2en, L(sa) 	=
L(s0) is equivalent to qa+1 	= qa.

Definition 6.7. Following [Kn, (4.1.4)] we introduce the root system Σ̃0 spanned

by the set Π̃0 := {ǫ(a)a | a ∈ Π0}, where for a ∈ Π0, we define

ǫ(a) =

{
1
2 if a is special,

1 otherwise.

The following theorem should be compared with Theorem 6.3.
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Theorem 6.8. For G/F quasi-split, the root system Σ̃0 can be characterized by

the isomorphisms

Σ̃0
∼= resτ (Σ̆),

Σ̃∨
0
∼= N ′

τ (Σ̆
∨).

Proof. Our point of departure is the identification of Theorem 6.3: res′τ (Π̆) = Π0,

where Π̆ ⊂ Σ̆ and Π0 ⊂ Σ0 are the simple roots.
Now, to construct Π̃0 from Π0, we replace a ∈ Π0 with 1

2a precisely when a
is special, that is, the long simple root in a component C of type Cn such that
L(sa) 	= L(s0). Write a = res′τ (ă) for some ă ∈ Π̆. We claim a is special if and only
if

(i) ă belongs to a component C̆ in a union of components of type A2n in Π̆
which are permuted by 〈τ 〉, such that

(ii) some power τ i stabilizes and acts non-trivially on C̆, and

(iii) in C̆ = A2n, ă is one of the simple roots en − en+1 or en+1 − en+2 =
τ i(en − en+1).

Indeed, suppose ă satisfies (i-iii). Renaming τ i as τ , we may assume τ acts (non-

trivially) on C̆ = A2n and ă = en − en+1. Then a = 2en is the long simple root

in a component C of type Cn. The group Gsc,F̆ is then isomorphic to SL2n+1 (Σ̆

has type A2n implies Φ̆ has type A2n which implies Gsc,F̆ is split). The group

Gsc/F is therefore a non-split unramified group which is a form of SL2n+1 and is

non-residually split since τ does not act trivially on Δ̆ (cf. [Tits, 1.11]). Therefore,
Gsc/F is the group named 2A′

2n in the first line of the table in [Tits, p. 63], in
other words, an unramified SU(2n+ 1). The same table shows that L(sa) = 3 and
L(s0) = 1. It follows that a is special.

Conversely, assume a is special, in a component C; clearly C = Cn and a is the
long simple root. Then the component C̆ containing ă is one of a union permuted
by 〈τ 〉, and let 〈τ i〉 be the stabilizer of C̆. Replacing τ i by τ , we may assume Gsc/F̆

is simple with Π̆ = C̆ and Π0 = C. We need to understand which simple relative
root systems Φ0 can correspond to a quasi-split group Gsc/F with Σ0 of type Cn

(where C1 := A1). The tables in [Tits, 4.2, 4.3] show that the only possibilities for
Φ0 are named the following:

(a) residually split cases: A1, Cn, C-Bn, C-BCn (n ≥ 2), and C-BC1;
(b) non-residually split cases: 2A′

2n−1 (n ≥ 2) and 2A′
2n (n ≥ 1).

Note that the non-residually split Φ0 with Σ0 of type Cn which are not listed in (b)
(comprising 18 cases, ranging from Φ0 = dA2d−1 (d ≥ 2) to Φ0 = 4D5) correspond
to Gsc/F which are visibly non-quasi-split, since τ does not fix the simple affine

root for Δ̆.
Now among these, we need to understand which contain a as a special root. In

all cases of (a), and in the cases 2A′
2n−1 of (b), the tables show L(sa) = 1 = L(s0);

these are ruled out since a is special. The only remaining possibility is Φ0 = 2A′
2n.

As seen above, this group has Σ̆ of type A2n and Gsc,F̆ = SL2n+1, with τ acting

non-trivially. Since a is special, we must have ă ∈ {en − en+1, en+1 − en+2} and
these two roots are permuted by τ . (This case is really allowed, since the table
shows L(sa) = 3 	= 1 = L(s0).) Thus ă satisfies (i-iii). The claim is proved.
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On the other hand, to get resτ (Π̆) from res′τ (Π̆), we replace a = res′τ (ă) for ă ∈ Π̆
with 1

2a precisely when the elements of 〈τ 〉ă are not pairwise orthogonal. But this
happens exactly when ă satisfies (i-iii) above.

We have proved that Π̃0 and resτ (Π̆) result by applying the same procedure to

Π0 = res′τ (Π̆), hence they coincide. The theorem follows. �

Remark 6.9. We will use Theorem 6.8 to make the link between the twisted Weyl
character formula and the Lusztig character formula, in the proof of Theorem 7.5.

6.4. Macdonald root system Σ1. Macdonald [Mac] defined a root system Σ1 ⊂
Σ0∪

1
2Σ0 such that Σred

1 = Σ0, by requiring a/2 ∈ Σ1 for any a ∈ Σ0 with qa 	= qa+1.
This plays a crucial role in harmonic analysis on p-adic groups which are not split
([Mac, §3, 4]). The following is a corollary of Theorem 6.8, and when combined
with Theorems 6.1 and 6.3, it gives a way to understand Σ1 directly in terms of
Galois actions on the absolute roots Φ.

Corollary 6.10. Let G/F be quasi-split. Then Σ0 ∪ Σ̃0 = Σ1. Consequently,

Σ̃0 = resτ (Σ̆) = Σ1,red.

Proof. We may assume Σ0 is irreducible. Then Σ1 is also irreducible, and Σ0, Σ̃0,
and Σ1 all have the same Weyl group, W0. We suppose a ∈ Σ0. We need to show

that 1
2a ∈ Σ̃0 if and only if 1

2a ∈ Σ1. Since a is W0-conjugate to an element in Π0,

we may assume a ∈ Π0. If 1
2a ∈ Σ̃, then a is special and Remark 6.6 shows that

qa 	= qa+1, hence
1
2a ∈ Σ1. Conversely, if 1

2a ∈ Σ1, then Σ1 is not reduced, so it is
of type BCn. Then Σ0 is of type Cn, and a is the long simple root. By definition
of Σ1, we have qa 	= qa+1, and so again by Remark 6.6, we see a is special, and
1
2a ∈ Σ̃0. �

7. The geometric basis and the stable Bernstein center

Throughout this section, we retain the assumptions of §6.2: G,B, S, T are defined
and quasi-split over F . The case where G is not necessarily quasi-split over F will
be considered elsewhere.

7.1. The geometric basis for the center of a parahoric Hecke algebra. In
this section we construct a natural basis for the center of a parahoric Hecke algebra

indexed by certain highest weight representations of ĜI . We call this the geometric

basis.
The complex dual group Ĝ carries a WF -fixed splitting (B̂, T̂ , X̂), and we set

LG := Ĝ⋊WF . Let ĜI,◦ denote the connected component of the reductive group

ĜI . We identify the Weyl group of Ĝ with W , and then the Weyl group of ĜI,◦ is

identified with W I = W̆ and the Weyl group of ĜWF ,◦ = ĜI,τ,◦ is identified with
W0 = (W̆ )〈τ〉, the relative Weyl group of G/F . See [H15, Prop. 4.1].

Let n denote the order of τ ∈ Aut(ĜI). Let ξ ∈ C× be an n-th root of unity.

If λ̄ ∈ X∗(T̂ I)+,τ , then Vλ̄ ∈ Rep(ĜI) can be extended uniquely to a represen-

tation (Vλ̄,ξ, rλ̄,ξ) of Ĝ
I ⋊ 〈τ 〉 such that τ acts by the scalar ξ on the weight spaces

associated to all λ̄′ ∈ W0λ̄.
The irreducible T̂ I ⋊ 〈τ 〉-subrepresentations of Vλ̄,ξ are of the form

V0 ⊕ τ (V0)⊕ · · · ⊕ τd−1(V0),
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where V0 is some 1-dimensional T̂ I -subrepresentation of weight ν̄ ∈ Wt(λ̄), d (a
divisor of n) is the smallest element of N with τd(ν̄) = ν̄ , and τd acts on V0 by
multiplication by some ξ′n/d ∈ μn/d(C).

Definition 7.1. Write this representation as V0(ν̄, d, ξ
′
n/d); write mλ̄,ξ(ν̄, d, ξ

′
n/d)

for its multiplicity in Vλ̄,ξ|T̂ I⋊〈τ〉. If d = 1, write it simply as ν̄ ⊠ ξ′, and write

mλ̄,ξ(ν̄, ξ
′) for the multiplicity.

Thus

(7.1) Vλ̄,ξ|T̂ I⋊〈τ〉 =
⊕

ν̄,ξ′

mλ̄,ξ(ν̄, ξ
′) ν̄ ⊠ ξ′ ⊕

⊕

ν̄, d, ξ′
n/d

d>1

mλ̄,ξ(ν̄, d, ξ
′
n/d)V0(ν̄, d, ξ

′
n/d).

Here ν̄ ranges over Wt(λ̄). Note that an element ν̄ ∈ X∗(T̂ I)τ is B-dominant if

and only if 〈α, ν̄〉 ≥ 0 for all α ∈ Φ̆+, or equivalently, 〈α, ν̄〉 ≥ 0 for all α ∈ Φ+
0 .

Lemma 7.2. Fix ν̄ ∈ Wt(λ̄) ∩X∗(T̂ I)+,τ . Then:

(1) W̆ ν̄ ∩X∗(T̂ I)τ = W0 ν̄; and
(2) mλ̄,ξ(ν̄, d, ξ

′
n/d) = mλ̄,ξ(ν̄

′, d, ξ′n/d) for all ν̄′ ∈ W0ν̄.

Proof. Let ν̄′ ∈ W̆ ν̄ ∩X∗(T̂ I)τ and choose ν̄′′ ∈ W0 ν̄
′ which is B-dominant. Then

ν̄′′ ∈ W̆ ν̄ and is B-dominant, hence ν̄′′ = ν̄. This proves (1). For (2) we use the

fact that elements of W0 can be lifted to WF -fixed elements in NĜI,◦(T̂ I,◦) which

normalize T̂ I , by [H15, Prop. 4.1]. �

Let J ⊂ G(F ) be any parahoric subgroup which corresponds to a τ -stable facet

in the apartment X∗(S) ⊗ R of B(G, F̆ ), and let Z(G(F ), J) be the center of the

corresponding Hecke algebra. For ν̄ ∈ X∗(T̂ I)+,τ , let [ν̄] :=
∑

ν̄′∈W0 ν̄ ν̄
′. Under

the Bernstein isomorphism ([H14, Thm. 11.9.1])

(7.2) C[X∗(T̂ I)τ ]W0
∼
−→ Z(G(F ), J),

the class [ν̄] goes over to a function zν̄,J ∈ Z(G(F ), J). By [H14, 11.8], it is
characterized as follows: if π is an irreducible admissible representation of G(F )

with πJ 	= 0, and if s(π) ∈ (T̂ I)〈τ〉/W0 is the Satake parameter attached to π by
[H15], then

(7.3) zν̄,J acts on πJ by the scalar tr(s(π)⋊ τ | [ν̄]⊠ 1),

where [ν̄] ⊠ 1 :=
∑

ν̄′∈W0 ν̄ ν̄
′
⊠ 1. (See Definition 7.1.) It is known that {zλ̄,J}λ̄

forms a basis for Z(G(F ), J), as λ̄ ranges over X∗(T̂ I)+,τ (see [H14, Thm. 11.10.1]).

For λ̄∈X∗(T̂ I)+,τ , letWt(λ̄)+ = Wt(λ̄)∩X∗(T̂ I)+, Wt(λ̄)τ = Wt(λ̄)∩X∗(T̂ I)τ ,
and Wt(λ̄)+,τ = Wt(λ̄)+ ∩Wt(λ̄)τ .

The operator τ ∈ Aut(Vλ̄,1) preserves the T̂ I -weight space Vλ̄,1(ν̄), since the
weight ν̄ is τ -fixed.

Definition 7.3. For λ̄∈X∗(T̂ I)+,τ , define the geometric basis element of Z(G(F ), J)
by setting

Cλ̄,J =
∑

ν̄∈Wt(λ̄)+,τ

ξ′

mλ̄,1(ν̄, ξ
′) ξ′ zν̄,J =

∑

ν̄∈Wt(λ̄)+,τ

tr(τ |Vλ̄,1(ν̄)) zν̄,J .
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Note that mλ̄,1(λ̄, 1) = 1 and mλ̄,1(λ̄, ξ
′) = 0 if ξ′ 	= 1. This, together with

Lemma 7.2 and the above discussion, yields the following lemma.

Lemma 7.4. The elements {Cλ̄,J}λ̄ form a basis for Z(G(F ), J), characterized as

follows: in the notation of (7.3),

(7.4) Cλ̄,J acts on πJ by the scalar tr(s(π)⋊ τ |Vλ̄,1).

Note that in (7.1), the terms with d > 1 make no contribution to tr(s(π) ⋊
τ | Vλ̄,1).

7.2. Geometric basis in terms of Kazhdan-Lusztig polynomials. Fix ν̄ ∈
Wt(λ̄)+,τ as above. View λ̄ and ν̄ as elements in (X∗(T )I)

τ . These can be viewed
as “translation” elements tλ̄, tν̄ in the extended affine Weyl group

(7.5) W̃ τ = (X∗(T )I)
τ ⋊W0 = W̆ τ

aff ⋊ Ωτ
ă

for the group G/F (we are using the set-up of §6.2). Recall that the root system
Σ0 associated to the relative roots Φ0 for G/F satisfies

W̆ τ
aff

∼= Z[Σ∨
0 ]⋊W0.

The quasi-Coxeter group structure on the right hand side of (7.5) is used to define

the Bruhat order ≤ and the length function ℓ on W̃ τ in the usual way. For x, y ∈

W̃ τ with the same Ωτ
a-component we can define the Kazhdan-Lusztig polynomials

Px,y(q
1/2) ∈ Z[q1/2]. Here we need to use the KL polynomials attached to the

Coxeter group W̆ τ
aff and possibly unequal parameters; in our situation (see §6.3)

we need a special case of the general theory of Lusztig [Lus03]: the parameters are

of the form qL(w)/2, where L : W̃ τ → Z≥1 is defined as in §6.3, and satisfies the

properties required by Lusztig [Lus03, 3.1], such as L(w) > 0 for w ∈ W̃ τ . See also
[Kn].

Theorem 7.5. For λ̄ ∈ (X∗(T )I)
τ , let wλ̄ ∈ W0tλ̄W0 be the unique element of

maximal length in this double coset. Then for ν̄ ∈ Wt(λ̄)+,τ ,

tr(τ |Vλ̄,1(ν̄)) = Pwν̄ ,wλ̄
(1),

and thus

Cλ̄,J =
∑

ν̄∈Wt(λ̄)+,τ

Pwν̄ ,wλ̄
(1) zν̄,J .

We will prove Theorem 7.5 in §7.3.

Remark 7.6. Computing Cλ̄,J explicitly amounts to computing explicitly the co-
efficients tr(τ |Vλ̄,1(ν̄)) = Pwν̄ ,wλ̄

(1) and the elements zν̄,J . There are well-known
algorithms for computing Pwν̄ ,wλ̄

(1). As for the zν̄,J , the main problem is to com-
pute them explicitly when J = I is an Iwahori subgroup of G(F ), in terms of

the Iwahori-Matsumoto generators Tw (w ∈ W̃ τ ) for the Iwahori-Hecke algebra
H(G(F ), I). This can be done using the theory of alcove-walks; see [Gor07] and
[HR12, Appendix]. Thus, in principle, the geometric basis elements Cλ̄,J can be
computed explicitly, in every case.
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7.3. Proof of Theorem 7.5. The proof relies on the twisted Weyl character for-
mula (a.k.a. the Twining character formula of Jantzen [Jan]) and Lusztig’s character
formula for unequal parameters [Kn, Cor. 6.4]. Theorem 6.8 is what allows us to re-
late these two formulas. They apply to connected reductive complex groups with a
splitting-preserving automorphism. Using Lemma 5.5(4), we may replace λ̄, ν̄ with

λ̄♭, ν̄♭ and work in the connected reductive group ĜI,◦ endowed with the automor-
phism τ . Note that Pwν̄ ,wλ̄

(q1/2) = Pw
ν̄♭ ,wλ̄♭

(q1/2) because the torsion subgroup of

X∗(T )I lies in the center of W̃ and in particular in Ωă; see [HH, §8.1].

7.3.1. The Twisted Weyl character formula. We review the Twisted Weyl character
formula; a statement can be found in [Chr, Prop. 5.1]. This is equivalent to the so-
called Twining character formula of Jantzen [Jan, Satz 9].

Use the symbol eν̄
♭

to denote the element ν̄♭ ∈ X∗(T̂ I,◦) when it is viewed in

the group algebra C[X∗(T̂ I,◦)], so that we have eν̄eν̄
′

= eν̄+ν̄′

and w(eν̄) = ew(ν̄).
Then the Twisted Weyl character formula may be stated as follows.

Theorem 7.7 (Twisted Weyl character formula - original form). For

λ̄♭ ∈ X∗(T̂ I,◦)+,τ ,

there is an equality

(7.6)
∑

ν̄♭∈Wt(λ̄♭)τ

tr(τ |Vλ̄♭,1(ν̄
♭)) eν̄

♭

=
∑

w∈W0

w
( ∏

α∈N ′
τ (Σ̆

∨)+

1

1− e−α

)
· ewλ̄♭

.

Proof. See for instance [Chr, Prop. 5.1]. �

It is clear that the right hand side is the character of a highest weight represen-
tation of a suitable connected reductive group (since Propositions 5.1, 5.2, and 3.5

show that N ′
τ (Σ̆

∨) is the set of roots of
̂
(Ĥ◦

τ
), where H◦ := ĜI,◦).

Remark 7.8. All of the references known to the author (e.g., [Jan, Chr, KLP09,
Hong], and the references mentioned in [KLP09, Hong]) work with a simply con-

nected complex group instead of a connected reductive group such as ĜI,◦. One
way to give a conceptual proof in the general connected reductive case is to adapt
the argument of Hong [Hong], who proved Jantzen’s Twining character formula for
simply connected complex groups, using the geometric Satake correspondence.

Using Theorem 6.8, we can rewrite (7.6) in a form which is more convenient for
us.

Theorem 7.9 (Twisted Weyl character formula). For λ̄♭ ∈ X∗(T̂ I,◦)+,τ , there is

an equality

(7.7)
∑

ν̄♭∈Wt(λ̄♭)τ

tr(τ |Vλ̄♭,1(ν̄
♭)) eν̄

♭

=
∑

w∈W0

w
( ∏

α∈Σ̃+
0

1

1− e−α∨

)
· ewλ̄♭

.

We write the Twisted Weyl character formula as above in order to make the
connection with Knop’s version of the Lusztig character formula below.
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7.3.2. Analogue of Lusztig’s character formula. Combined with Theorem 7.9, the
following formula immediately implies Theorem 7.5.

Theorem 7.10 (Knop). The following analogue of Lusztig’s character formula

from [Lus83, Thm. 6.1] holds :

(7.8)
∑

w∈W0

w
( ∏

α∈Σ̃+
0

1

1− e−α∨

)
· ewλ̄♭

=
∑

ν̄♭∈Wt(λ̄♭)τ

Pw
ν̄♭ ,wλ̄♭

(1) · eν̄
♭

.

Proof. This follows from [Kn, Cor. 6.4], for which we sketch the proof. By the Weyl
character formula, the left hand side is the character of an irreducible representation

of a complex group with root system N ′
τ (Σ̆

∨) = Σ̃∨
0 and highest weight λ̄♭. By the

Demazure character formula (cf., e.g., [A]), the left hand side is also sλ̄♭ := Δw0
(eλ̄

♭

)
where Δw0

is the Demazure operator for the longest element w0 ∈ W0, relative to

the root system Σ̃0 ([Kn, p. 422]). Let Ψ be the “Satake isomorphism” of [Kn, (5.2)].

In [Kn, Thm. 6.2], Knop shows that Ψ(sλ̄♭) is a KL element in H(W̃ τ , Sτ
aff , L) for

wλ̄♭ in the sense of [Kn, Def. on p. 424]. This together with [Kn, Thm. 5.1, (6.1)]
shows that

(7.9) Ψ(sλ̄♭) =
∑

ν̄♭∈Wt(λ̄♭)+,τ

Pw
ν̄♭ ,wλ̄♭

(q1/2)Nν̄♭ ,

where, up to an integral power of q1/2, the element Nν̄♭ ([Kn, (5.3)]) is the standard
basis of the spherical affine Hecke algebra Hsph ([Kn, (5.1)]). This is therefore an
analogue of the Lusztig-Kato formula for quasi-split groups (a proof for split groups
can be found in [Ka] or [HKP, Thm. 7.8.1]). The result now follows by applying
Ψ−1 to (7.9) and then specializing q1/2 �→ 1. �

7.3.3. Conclusion of the proof of Theorem 7.5. Theorem 7.5 follows immediately
by combining Theorems 7.9 and 7.10. �

7.4. Some elements in the stable Bernstein center. We assume from now on
that the conjugacy class {μ} ⊂ X∗(T ) is defined over F . This is enough for the
applications to Shimura varieties which will be explained in §8. Let μ ∈ {μ} be
B-dominant; it is therefore fixed by WF . According to [Ko84, 2.1.2], there is a

unique way to extend Vμ ∈ Rep(Ĝ) to a representation (Vμ, rμ) of LG, such that
WF acts trivially on the weight spaces associated to all μ′ ∈ W0μ.

Our goal is to describe certain elements of the stable Bernstein center in terms
of the basis elements Cλ̄,J . The functions we want to understand are denoted

ZV ∗ 1J , where V ∈ Rep( LG). The ZV and are called elements of the geometric

Bernstein center in [H14, Def. 6.2.1]; the functions ZVμ
∗ 1J play an important

role in conjectures about cohomology of Shimura varieties ShKpJ (G, {h}) with
level structure at p given by a parahoric subgroup J ⊂ G(Qp); see especially the
conjectures related to quasi-split groups in [H14, §7.2], and §8 below.

Let us briefly recall the construction of ZV following [H14]. As in [H14, §5.7],

associated to a representation (V, r) of LG = Ĝ ⋊ WF we get an element ZV

in the stable Bernstein center of G/F . Assuming G satisfies the enhanced local
Langlands correspondence LLC+ (see [H14, 5.2.1]), we obtain an element in the
actual Bernstein center, also denoted by ZV . We view ZV as a G(F )-invariant
essentially compact distribution on G(F ). Then we get ZV ∗1J ∈ Z(G(F ), J) (here
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1J is the identity element of Z(G(F ), J)). It is characterized by

(7.10) ZV ∗ 1J acts on πJ by the scalar tr(ϕπ(τ ) |V
rϕπ(I)),

where ϕπ : WF → LG is the local Langlands parameter associated to π. We assume
from now on that when πJ 	= 0,

ϕπ(τ ) = s(π)⋊ τ,

ϕπ(γ) = 1⋊ γ

for all γ ∈ I (comp. [H15, Conj. 13.1]). (Of course, the existence and properties of
ϕπ for such π follow from the Deligne-Langlands correspondence, which is known
for many p-adic groups, e.g., [KL]. See also [H14, beginning of §7] for the proof
of these properties for general quasi-split groups G, assuming LLC+ holds for G.)
Our assumptions then imply that

(7.11) ZV ∗ 1J acts on πJ by the scalar tr(s(π)⋊ τ |V I),

where V I := V rμ(1⋊I). For our purposes, we could also define ZV ∗ 1J to be the
unique element of Z(G(F ), J) satisfying (7.11); this would be an unconditional
definition, avoiding the assumption that G satisfies LLC+. Let us prove that such
a function exists unconditionally. Let T (F )1 = ker(κT : T (F ) → X∗(T )

ΦF

IF
) be

the kernel of the Kottwitz homomorphism and consider the set Xw(T ) of weakly
unramified characters χ : T (F ) → C× (i.e., characters trivial on T (F )1). By the
Kottwitz isomorphism, we can view χ ∈ Xw(T ) as an element of the complex

diagonalizable group (T̂ IF )τ . If π has supercuspidal support (T, χ)G, then s(π)⋊
τ = χ ⋊ τ . The function χ �→ tr(χ ⋊ τ |V I) is clearly a regular function on the

quotient variety (T̂ IF )τ/W0, which is identified with the variety of supercuspidal
supports of representations with J-fixed vectors. By the theory of the Bernstein
center, this regular function gives rise to the desired unconditional function in
Z(G(F ), J).

Now we return to our F -rational conjugacy class {μ}. Now Vμ|ĜI is a represen-

tation of ĜI ⋊WF and of ĜI × I; decomposing into isotypical components for the

various irreducible representations Vλ̄ ∈ Rep(ĜI), and then looking at the contri-
bution of the trivial representation of I, we obtain V I

μ |ĜI as a sum of certain Vλ̄.

Let Wt(μ̄) denote the set of T̂ I -weights in Vμ̄. The proof of Theorem 4.2 shows
that

Wt(μ) ⊆ Wt(μ̄)

and μ̄ is the unique �-maximal element in both sets; in fact it also shows that
λ ≺ μ implies λ̄ ≺ μ̄, and thus the weight μ̄ appears in V I

μ |ĜI with multiplicity one.

Therefore, we get a decomposition in Rep(ĜI)

(7.12) V I
μ |ĜI = Vμ̄ ⊕

⊕

λ̄≺μ̄

aλ̄,μ Vλ̄,

where aλ̄,μ ∈ Z≥0 and λ̄ ranges over elements in the finite set Wt(μ) ∩ X∗(T̂ I)+.

Since every λ̄ ∈ Wt(μ̄) appears as a T̂ I -weight in Vμ̄, it also appears as a weight in
V I
μ |ĜI . It follows that we actually have equality

(7.13) Wt(μ) = Wt(μ̄).
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Remark 7.11. Because Vμ̄ appears with multiplicity one and μ̄ is the unique maxi-
mal element, the integers aλ̄,μ may be computed recursively in practice.

Now, V I
μ |ĜI and Vμ̄ both extend to representations of ĜI ⋊ 〈τ 〉. The remaining

summands in (7.12) are not necessarily stable under τ , but may be permuted.
But if we calculate the trace of an element of the form s(π) ⋊ τ , only those λ̄
which are τ -fixed will contribute, and for those, we can regard, as above, Vλ̄ as the

representation Vλ̄,1 of ĜI ⋊ 〈τ 〉.

Suppose λ̄ ∈ Wt(μ̄)+. Let V I
μ (λ̄) denote the sum of all ĜI -submodules of V I

μ

which are ĜI -isomorphic to Vλ̄.
If λ̄ ∈ Wt(μ̄)+,τ , we define the space Hμ(λ̄) of “vectors with highest weight λ̄”

appearing in (7.12). Namely, let Hμ(λ̄) ⊂ V I
μ be the set of all vectors v′ such that

T̂ I acts on v′ through the character λ̄, and v′ is killed by Lie(Û I,◦). Then as λ̄ is

τ -fixed and T̂ I and Û I,◦ are τ -stable, Hμ(λ̄) carries an action by τ , which may be

diagonalized. Thus, we have a ĜI ⋊ 〈τ 〉 isomorphism

(7.14) V I
μ (λ̄)

∼= Vλ̄,1 ⊗Hμ(λ̄),

where g ⋊ τ i acts on the right-hand side by the rule v ⊗ v′ �→ (gτ i)v ⊗ τ iv′.

Clearly we have isomorphisms of ĜI ⋊ 〈τ 〉-modules

(7.15) V I
μ |ĜI⋊〈τ〉 =

⊕

λ̄∈Wt(μ̄)+,τ

Vλ̄,1 ⊗Hμ(λ̄) ⊕
⊕

λ̄∈Wt(μ̄)+

τλ̄�=λ̄

V I
μ (λ̄).

In particular, for λ̄ ∈ Wt(μ̄)+,τ ,

dim(Hμ(λ̄)) = aλ̄,μ.

Comparing tr(s(π)⋊ τ | ·) on both sides of (7.15), it is clear that (7.4) and (7.11)
imply the following theorem.

Theorem 7.12. In the situation above,

ZVμ
∗ 1J =

∑

λ̄∈Wt(μ̄)+,τ

tr(τ |Hμ(λ̄))Cλ̄,J .

Note that tr(τ |Hμ(μ̄)) = 1 as Hμ(μ̄) is the trivial 1-dimensional representation
of τ .

8. On test functions for quasi-split groups and parahoric level

In [H14] several conjectures are announced about test functions for Shimura va-
rieties. We refer to [H14] for details on what is meant by “test function” and for the
statements of the conjectures in the general case. Here, we content ourselves to re-
late the previous sections of this paper to the conjectural test functions for Shimura
varieties coming from Shimura data (G/Q, {h},KpKp), where Kp ⊂ G(Qp) is a
parahoric subgroup, and where G is quasi-split over the relevant extension of the
local reflex field.

We will need the following general lemma. The proof is straightforward and will
be left to the reader.
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Lemma 8.1. Let E/F be a totally ramified extension of degree n. Let G be a

reductive group over F . Let WE = IE⋊〈τ 〉 and WF = IF ⋊〈τ 〉 be the corresponding
Weil groups. Suppose e = h1, h2, . . . , hn ∈ IF is a fixed set of representatives of

IF /IE (thus also of Ĝ ⋊WF /Ĝ ⋊WE). Let V ∈ Rep(Ĝ⋊WE), and consider the

induced representation in Rep(Ĝ⋊WF ) defined by

I(V ) = Z[Ĝ⋊WF ]⊗Z[Ĝ⋊WE ] V.

Then there is an isomorphism of ĜIF ⋊ 〈τ 〉-modules

V IE ∼
−→ I(V )IF(8.1)

v �−→
n∑

i=1

hi ⊗ v.

We need to recall some notation from [H14, §6]. Write G := GQp
, and sup-

pose E/Qp is the local reflex field, that is, the field of definition of the geometric
conjugacy class {μ} ⊂ X∗(GQ̄p

), where μ = μh is attached to h in the usual way.

Let Ej/E be an unramified extension of degree j ≥ 1 and let E0/Qp be the
maximal unramified subextension of E/Qp. Let Ej0/Qp be the maximal unramified
subextension of Ej/Qp. Then E/E0 and Ej/Ej0 are totally ramified of the same
degree, and Ej0 = Qpr , where r := j[E0 : Qp]. Thus we have a tower of fields

Ej

��
��
��
��
��

❅❅
❅❅

❅❅
❅❅

Qpr = Ej0

❏❏
❏❏

❏❏
❏❏

❏❏
E

⑥⑥
⑥⑥
⑥⑥
⑥⑥

E0

Qp.

As in [H14, §6], we have a representation V E
μ of Ĝ ⋊ WE , its restriction V

Ej

μ,j to

Ĝ⋊WEj
, and the induction of the latter to Ĝ⋊WEj0

V
Ej0

μ,j := Ind
Ĝ⋊WEj0

Ĝ⋊WEj

V
Ej

μ,j .

Now assume that G is quasi-split over Ej0 = Qpr . The conjugacy class
{μ} can be represented by an Ej-rational element μ, and this allows us to apply

the material of §7.4 to V
Ej0

μ,j .

Let JEj0
⊂ G(Ej0) be the parahoric subgroup corresponding to Kp ⊂ G(Qp).

The Test Function Conjecture, see [H14, §7.2], highlights the importance of the
function

(8.2) Z
V

Ej0
μ,j

∗ 1JEj0
∈ Z(G(Ej0), JEj0

).

Theorem 8.2 provides an explicit description of this function, answering a ques-
tion raised in [H14, §7.2].
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Theorem 8.2. When G/Ej0 is quasi-split,

(8.3)

Z
V

Ej0
μ,j

∗ 1JEj0
=

∑

λ̄∈Wt(μ̄)+,τ
Ej

tr(τ |Hμ,Ej
(λ̄))

∑

ν̄∈Wt(λ̄)+,τ
Ej

Pwν̄ ,wλ̄
(1)

( ∑

{ν̄′}⊂WEj
ν̄

z¯̄ν′

)
.

Here the subscripts Ej and Ej0 indicate objects attached to the appropriate group

GEj
or GEj0

. where {ν̄′} ranges over WEj0
-conjugacy classes in WEj

ν̄, and ¯̄ν′ ∈

X∗(T̂ IEj0 )τ is the image of ν̄′ ∈ X∗(T̂ IEj )τ .

Proof. This follows from the proof of Theorem 7.12 with F = Ej and with Vμ

replaced by V
Ej

μ,j , combined with Lemma 8.1 for F = Ej0 and E = Ej . �

To compute test functions when G/F = G/Qpr is not quasi-split, one should
simply take the image of the suitable analogue of (8.2) for a quasi-split inner form
G∗/F under a normalized transfer homomorphism. We refer to [H14, §7.3] for
details.

Recently, Kisin and Pappas [KiPa] constructed local models attached to abelian
type Shimura varieties with parahoric level structure at a prime p > 2. The above
formula (8.3) for the test function should play a role in describing the correspond-
ing local Hasse-Weil zeta functions in terms of automorphic forms: the nearby
cycles considered in [KiPa, §4.7] should be compared to (8.3) when pursuing the
Langlands-Kottwitz method, as for example in [HR12]. These formulas should also
be compared with the explicit results on nearby cycles in [PR03,PR05], and [Lev].3
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Ann. Sci. Éc. Norm. Supér. (4) 45 (2012), no. 5, 719–785 (2013). MR3053008
[HaRi] T. Haines and T. Richarz, The test function conjecture for parahoric local models,

preprint 2018. arXiv:1801.07094.
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