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Abstract. This article deals with optimizing problems whose re-
strictions are nonholonomic. The central issue relates to dual non-
holonomic programs (what they mean and how they are solved?)
when the nonholonomic constraints are given by Pfaff equations.
We emphasize that nonholonomic critical points are not the clas-
sical ones and that the nonholonomic Lagrange multipliers are not
the classical (holonomic) Lagrange multipliers. Topological signifi-
cance of Lagrange multipliers and dual function theory introduced
by EDO and EDP are key results. Also new Riemannian geome-
tries attached to a given nonholonomic constrained optimization
problem are introduced. The original results are surprising and
include: (i) aspects derived from the Vranceanu theory of nonholo-
nomic manifolds, and from the geometric distributions theory, (ii)
optimal problems in Darboux canonical coordinates.
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1 Pfaff non-holonomic constraint in optimization prob-
lems

The Pfaff nonholonomic constraints in optimal programs were introduced by
our mathematical school at University Politehnica of Bucharest (see [3], [4],
[7]-[26]).
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In this paper we address and solves the following original issues: (i) difference
between a program constrained by an integral submanifold of a Pfaff equa-
tion and a program constrained by a Pfaff equation; (ii) the non-holonomic
Lagrange-dual problem with weak respectively strong duality; (iii) the non-
holonomic Wolfe-dual problem; (iv) pertinent examples. In short, we present
a theory of nonholonomic Lagrange and Wolfe dual programs, as we signaled
in the preprint [23].
Let

ω = ωi(x)dxi = 0, i = 1, ..., n, x ∈ Rn, n ≥ 3,

be a non-completely integrable Pfaff equation (see also, [1], [5], [6], [27]).
The condition n ≥ 3 is imposed by the nonholonomy theory. For theoretical
reasons, we understand that the co-vector field ω = (ωi(x)) is C1 on Rn, and
has no critical point in Rn. To this Pfaff equation we attach the (n − 1)-
hyperplane

Hx = {ωi(x)dxi = 0} = {y = (y1, ..., yn) ∈ Rn |ωi(x)yi = 0}

in the n-space Rn.

Definition 1.1. (i) A submersion g = (gα), α = 1, ..., n−p, is called solution
of the Pfaff equation ω = ωi(x)dxi = 0 if g1(x) = 0, ..., gn−p(x) = 0 and
dg1(x) = 0, ..., dgn−p(x) = 0 imply ω = ωi(x)dxi = 0.
(ii) A p-dimensional submersed submanifold (M,ω, g,=) of Rn is called an
integral manifold of the Pfaff equation on Rn if dg(Mx) ⊆ Hx, for each point
x inM.

Definition 1.2. The Pfaff equation is said to be completely integrable if there
is one and only one integral manifold of maximum possible dimension n− 1
through each point of Rn.

Theorem 1.1. (Frobenius theorem) A necessary and sufficient condition
for the Pfaff equation ω = 0 to be completely integrable is ω ∧ dω = 0.

Here dω is the differential form of degree 2 obtained from ω by exterior
differentiation, and ∧ is the exterior product.

1.1 Integral curves

Let (Γ, g = (g1, ..., gn−1),=) be an integral curve of the non-completely inte-
grable Pfaff equation ω = ωi(x)dxi = 0. It can be written in the Cartesian
implicit form

Γ : g1(x) = 0, ..., gn−1(x) = 0,
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i.e., the equations g1(x) = 0, ..., gn−1(x) = 0 and dg1(x) = 0, ..., dgn−1 = 0
imply ωi(x)dxi = 0, for any dx. This means that

det


∂g1
∂x1

... ∂g1
∂xn

... ... ...
∂gn−1

∂x1
... ∂gn−1

∂xn

ω1 ... ωn

 = 0.

It follows that there exist the functions ν1(x), ..., νn−1(x), and the constant
µ, such that

n−1∑
α=1

να(x)
∂gα
∂xi

(x) = µωi(x), i = 1, ..., n,

for any point x.

1.2 The connection between critical points on an integral subman-
ifold and critical points with Pfaff non-holonomic constraint

Let f : Rn → R be a C2 function. Let us consider a non-holonomic program:

(NP ) min f(x) subject to ω = ωi(x)dxi = 0, i = 1, ..., n.

Suppose that a p-dimensional integral submanifold of the Pfaff equation
ω = ωi(x)dxi = 0 is (M,ω, g = (g1, ..., gn−p),=). We consider the attached
program

min
x
f(x) subject to x ∈M

or, equivalently,

min
x
f(x) subject to g1(x) = 0, ..., gn−p(x) = 0.

Theorem 1.2. A point in Rn is a nonholonomic constrained critical point
if and only if it is critical point constrained by each integral submanifold
containing it.

Proof (if) For a given integral submanifold, the associated Lagrange function
is

L(x, λ) = f(x) + λ1g1(x) + ...+ λn−pgn−p(x).

The critical point conditions are

df(x) + λ1dg1(x) + ...+ λn−pdgn−p(x) = 0, ∀dx; g1(x) = 0, ..., gn−p(x) = 0.
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Let X be a vector field tangent to the integral submanifold (and hence from
distribution), i.e.,

dg1(X) = 0, ..., dgn−p(X) = 0, ω(X) = 0.

It follows that at a critical point we must have df(X) = 0.
If the integral submanifold is arbitrary (both as dimension and as way of
description), i.e., g is arbitrary, i.e., X is an arbitrary vector field tangent
to M , then from the relations ω(X) = 0, df(X) = 0, ∀X, we obtain the
existence of a constant µ such that, at a critical point, which is independent
on g, we must have

(NCP ) df(x) + µω(x) = 0, ∀dx.

(only if) Each nonholonomic constrained critical point belongs to each crit-
ical point set associated to a constrained integral submanifold. Indeed, if X
is a vector field tangent to an integral submanifold, then

dg1(X) = 0, ..., dgn−p(X) = 0, ω(X) = 0.

It follows the existence of multipliers λ1, ..., λn−p such that

ω = λ1dg1(x) + ...+ λn−pdgn−p(x).

But df = −µω confirms the statement.

2 Attached Riemannian geometries

A nonholonomic optimization problem induces in Rn Riemannian metrics
were the set of critical points determines ”curves of fastest decay” for the
distribution ω.
Let us consider the system ”NCP = nonholonomic critical point”, where the
parameter µ is arbitrary.

2.1 First fundamental tensor

According to the implicit function theorem, if the matrix

(aij) =

(
∂2f

∂xi∂xj
+ µ

∂ωi
∂xj

)
is non-degenerate at a fixed critical point, then the system define a curve
x = x(µ). On the other hand, the matrix of elements gjk = δilaijakl is a
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Riemannian metric on Rn. Symbolically, a = (aij), g = ta a, g−1 = a−1 t(a−1)
and the geometry induced by g follows by usual rules.

By differentiation with respect to µ, we obtain

aij
dxj

dµ
+ ωi = 0.

Let ηk = δilaklωi. Then gkj
dxj

dµ
+ ηk = 0 and hence

gkj
dxk

dµ

dxj

dµ
+ ηk

dxk

dµ
= 0

Proposition 2.1. The angle between the vectors ηk and dxj

dµ
is always obtuse.

For geometrical interpretation, see subsection 3.2.

2.2 Second fundamental tensor

By symmetrization, it follows(
∂2f

∂xi∂xj
+
µ

2

(
∂ωi
∂xj

+
∂ωj
∂xi

))
dxi

dµ

dxj

dµ
+ ωi

dxi

dµ
= 0.

We reinterpret this equality, introducing the fundamental tensor

hij =
∂2f

∂xi∂xj
+
µ

2

(
∂ωi
∂xj

+
∂ωj
∂xi

)
,

and writing

hij
dxi

dµ

dxj

dµ
+ ωi

dxi

dµ
= 0.

If hij is positive definite, we have again ωi
dxi

dµ
< 0.

3 Eliminating ambiguities by geometric interpretation

The Pfaff equations theory can be source of misunderstanding. We can elim-
inate sometimes such problems by thinking in terms of differential geometry.
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3.1 Language of Vranceanu

Let γx0 be the image of an integral curve of the Pfaff equation ωi(x)dxi = 0
through the point x0. Denote by Σx0 = {γx0} the family of all images of
integral curves through the point x0. The pair

(D ⊂ Rn,Σ), Σ = {Σx0 |x0 ∈ D}

is called nonholonomic hypersurface on D attached to the Pfaff equation
ωi(x)dxi = 0 (see also, [27]).
To the Pfaff equation ωi(x)dxi = 0 and to the point x0 ∈ D, we attach the
unique (n− 1)-hyperplane

Hx0 = {x ∈ Rn | ωi(x0)(xi − xi0) = 0}.

Since all straight lines tangent to integral curves which pass through x0 are
included in Hx0 , the hyperplane Hx0 is called the tangent hyperplane at x0

of (D,Σ).

3.2 Language of distributions

Let us introduce the (n− 1)-hyperplane

Hx = {ωi(x)dxi = 0} = {y = (y1, ..., yn) ∈ Rn |ωi(x)yi = 0}

in the n-space Rn. The rule x → Hx gives a field H of hyperplanes in Rn,
or what we call (n − 1)-dimensional distribution: a linear subbundle of the
tangent bundle. In short H = ∪x∈RnHx ⊂ TRn. In subsequent explanations,
we shall prefer the distributions language being more suggestive.
Similarly, we can introduce the half-hyperplane

H−x = {ωi(x)dxi ≤ 0} = {y = (y1, ..., yn) ∈ Rn |ωi(x)yi ≤ 0}.

The rule x→ H−x gives a field H− called (−)-distribution.

Definition 3.1. A p-dimensional submersed submanifold (M,H, g,=) of Rn

is called an integral manifold of the distribution H on Rn if

dg(Mx) ⊆ H(g(x)) = Hx,

for each point x inM.

The field H− is used when the program refers to manifolds whose boundary
contains an integral manifold of a Pfaff equation. A manifold with boundary
is a manifold with an edge. The boundary of a (p+1)-manifold with boundary
is a p-manifold. In technical language, a manifold with boundary is a space
containing both interior points and boundary points.
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4 The Lagrange dual problem

Let (M,ω, g = (g1, ..., gn−p),=) be a p-dimensional integral submanifold of
the Pfaff equation ω = ωi(x)dxi = 0 and f : Rn → R be a C2 function.
Denote g = (gα), α = 1, ..., n− p, and we introduce the set

Ω = {x ∈ Rn | gα(x) = 0, α = 1, ..., n− p} = {x ∈ Rn | g(x) = 0}.

For each program

min
x
f(x) subject to x ∈M,

equivalently

min
x
{f(x) |x ∈ Ω},

we can repeat the theory of dual programs. The Lagrange function (or La-
grangian) of this program is

L(x, λ) = f(x) +

n−p∑
α=1

λαgα(x) = f(x)+ < λ, g >, x ∈ Rn, λ ∈ Rn−p.

The critical points with respect to the variable x are given by the system

(1) df(x)+ < λ, dg(x) >= 0,∀dx.

It follows x = x(λ), the dual function ψ(λ) = L(x(λ), λ) and the Lagrange
dual problem

max
λ

ψ(λ).

But, what we understand by the dual theory for the nonholonomic program
(NP)? Of course, we must ask an arbitrary integral submanifold. That is
why, the system (1) must be replace with the system

df(x) + µω(x) = 0,∀dx.

The solution of this system is of the form x = x(µ), an arbitrary dual function
is ψ(µ, λ) = L(x(µ), λ) and the Lagrange dual problem can be written

max
µ, λ

ψ(µ, λ).

Each Lagrange function L(x, λ) of (NP) is linear in λ.
If the distribution H is described by q Pfaff equations, then λ has (n − p)q
components and µ has q components.
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4.1 Dual nonholonomic Lagrange function

In the non-holonomic context, the constraint function g does not exists, but
it should be built at least on the critical point set {x(µ)}.
By analogy with the holonomic equality g(x̄(µ)) = c(µ), from the relation

df∗
dµ

(
dc

dµ

)−1

= −µ, we can define c(µ) by the Cauchy problem

(EC)
dc

dµ
= − 1

µ

df∗
dµ

, c(µ0) = 0 ,

and then a Lagrange dual function is defined by

(LDF ) θ(µ) = f∗(x̄(µ)) + µ c(µ) .

This function has the derivative θ′(µ) = c(µ).

Example 4.1. Let the objective function be f(x, y, z) = x2 +y2 +z2 and the
constraint Pfaff form ω = xdy + dz = 0. Then the critical points condition
df + µω = 0 gives us

x̄(µ) = 0 , ȳ(µ) = 0 , z̄(µ) = −µ
2
, f∗(x̄, ȳ, z̄) =

µ2

4
.

If, for instance, we take µ0 = 2, the solution for the primal problem will be
x̄ = 0, ȳ = 0, z̄ = −1 and f∗ = 1.
For the Lagrange dual problem the equation (EC) gives us

dc

dµ
= − 1

µ

µ

2
= −1

2
.

Consequently c(µ) = −µ
2

+ α . If, as instance, c0 = 0 for µ0 = 2, then α = 1

and the Lagrange dual function is

θ(µ) =
µ2

4
+ µ

(
−µ

2
+ 1
)

= −µ
2

4
+ µ .

It follows θ′(µ) = −µ
2

+ 1 = 0. Hence µ0 = 2 and we obtain the same solution

as in primal problem.

Example 4.2. Let consider the function f(x, y, z) = x2 + y2 − z and the
Pfaff form ω = xdy − zdz. Solve the primal problem

f(x, y, z) = extremum with constraint ω = 0.
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The differential Lagrange form of the problem is

dL = 2xdx+ 2ydy − dz + µ(xdy − zdz) .

The condition dL = 0, (as differential form) leads to the equations 2x =
0, 2y + µx = 0, −1 − µz = 0, whose solutions, the critical points, are x =
0, y = 0, z = −1/µ . For µ < 0 the critical points are points of constrained
minimum and the corresponding minimum values are f∗ = 1/µ . For µ ≥ 0
the critical points are not constrained extremum points.
For construct the dual problem, let us use the above described method. From

equation (EC) we have dc/dµ = 1/µ3. Then c(µ) = −1

2

(
1

µ2
− 1

µ2
0

)
and the

Lagrange dual function will be

θ(µ) =
1

µ
− µ

2

(
1

µ2
− 1

µ2
0

)
.

The critical points are given by the equation

θ′(µ) = −1

2

(
1

µ2
− 1

µ2
0

)
= c(µ) = 0

and a solution is µ0, i.e. the strong duality holds.

Another way Remind that a point (x0, y0, z0) is a minimum (maximum)
point for the function f(x, y, z), constrained by the Pfaff equation ω = 0, if
this point is a minimum (maximum) point for f restricted at any line solution
of ω = 0, passing through (x0, y0, z0) . So we reformulate the primal problem
for a suitable line passing through critical points, in our case (0, 0, 1/c) . Such
a line has the cartesian implicit equations{

y2 − z − 1/c = 0
2yz − x = 0 .

Then the Lagrange function of the problem is

L(x, y, z, λ, µ) = x2 + y2 − z + λ(y2 − z − 1/c) + µ(2yz − x) .

We obtain the following system of the critical points:

∂L

∂x
= 2x− µ = 0

∂L

∂y
= 2y + 2λy + 2µz = 0

∂L

∂z
= −1− λ+ 2µy = 0 .

This system has the solution (0, 0, 1/c) for µ = 0 and λ = 1 .
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4.2 Case of nonholonomic inequalities

Let (Rn, ω, g = (g1, ..., gn−p),≤,�) be a subset of Rn, attached to the Pfaff
inequation ω = ωi(x)dxi ≤ 0, whose boundary contains the p-dimensional
integral submanifold (M,ω, g = (g1, ..., gn−p),=,=) of the Pfaff equation.
Let f : Rn → R be a C2 function. Denote g = (gα), α = 1, ..., n− p, and we
introduce the set

Ω = {x ∈ Rn | gα(x) ≤ 0, α = 1, ..., n− p} = {x ∈ Rn | g(x) � 0}.

Theorem 4.1. (weak duality) The dual function yields lower bounds of
the initial optimal value f∗, i.e., for any λ, we have ϕ(λ) ≤ f∗. In other
words,

sup
λ
{ϕ(λ) |λ � 0} ≤ min

x∈Ω
{f(x)+ < λ, g(x) >, x ∈ Ω, λ � 0}.

Theorem 4.2. (strong duality) If the program (P) satisfies the Slater
condition and has finite optimal value, then

sup
λ
{ϕ(λ) |λ � 0} = min

x∈Ω
{f(x)}.

Moreover, then the dual optimal value is attained.

5 Nonholonomic Wolfe dual

The problem
max
x, µ
{f(x)}

subject to
∂f

∂xi
(x) + µωi(x) = 0, µ ≥ 0

is called the nonholonomic Wolfe dual (WDNP) of the nonholonomic program
(NP).
It follows x = x(µ) and f(x(µ)). That is why, solving the dual problem is
equivalent to find extrema of the function µ→ f(x(µ)).

5.1 Examples

(1) see [26], p.190-191 (Consumer theory with nonholonomic con-
straint) Suppose that

u(x) = xα1
1 x

α2
2 · · ·xαn

n , αi ≥ 0,
n∑
i=1

αi < 1, x = (x1, ..., xn) ∈ Rn
+
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is the utility function defined over n goods. Denote by pi(x) > 0, i = 1, ..., n,
the prices of the goods.
Let us determine what is the proportion of income that the associated con-
sumer will spend on each good, if the budget constraint is the Pfaff inequality∑n

i=1 pi(x)dxi ≥ 0.
The utility function is concave. We must look for critical points of the utility
function u subject to the given nonholonomic constraint. To determine the
constrained critical points, we use the Lagrange 1-form

η = du(x)− µ
n∑
i=1

pi(x)dxi =
n∑
i=1

(
αi
xi
u(x)− µpi(x)

)
dxi,

and we write the system

αiu(x)− µpi(x)xi = 0, i = 1, ..., n.

Suppose we have a critical point (solution) x∗ = x∗(µ), µ > 0. Each com-
ponent X∗i of the critical point is the quantity consumed of the ith good.
Moreover, pi(x

∗)x∗i is the income spend on the ith good and
∑n

i=1 pi(x
∗)x∗i is

the total income. Since

u(x)
n∑
i=1

αi − µ
n∑
i=1

pi(x
∗)x∗i = 0,

we find the proportion of the income spent on the ith good,

pi(x
∗)x∗i∑n

i=1 pi(x
∗)x∗i

=
αi∑n
i=1 αi

,

which is independent on consumed quantities and of prices (economic law).
Suppose we are interested in the maximum of the utility function u subject
to the nonholonomic constraint. To solve this problem, as usual we look for
a critical point x∗ = x∗(µ), µ > 0, which verify the equality in the budget
constraint (hyperplane)

∑n
i=1 pi(x

∗(µ))dxi = 0 and the negative definiteness
of the restriction of the quadratic form

d2u(x∗)− µ

2

n∑
i,j=1

(
∂pi
∂xj

+
∂pj
∂xi

)
(x∗) dxi dxj

to the budget hyperplane.
(2) Nonholonomic initial program Find extremum points of the function
f(x, y, z) = 2xy + z2 subject to zdx− dy ≥ 0, xdy + dz ≥ 0 (see [14]). The
constrained critical points are solutions of the system

2y − µ1z = 0, 2x+ µ1 − µ2x = 0, 2z − µ2 = 0, µ1 ≤ 0, µ2 ≤ 0.
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It follows the family of critical points

x =
µ1

µ2 − 2
, y =

1

4
µ1µ2, z =

1

2
µ2, µ1 ≤ 0, µ2 ≤ 0.

The nature of each critical point is fixed by the signature of the quadratic
form (4−µ2)dxdy−µ1dxdz+2dz2 restricted to µ2

2
dx−dy = 0, µ1

µ2−2
dy+dz = 0.

It follows the restriction q = µ2

(
µ21

(µ2−2)2
+ 2− µ2

2

)
dx2, which is negative

definite. All critical points are maximum points. The manifold of critical
points has the implicit Cartesian equation

xz(z − 1) = y, x ≥ 0, y ≥ 0, z ≤ 0.

The maximum value of the function f is

f(x(µ1, µ2), y(µ1, µ2), z(µ1, µ2)) =
µ2

1µ2

2(µ2 − 2)
+

1

4
µ2

2.

If we change the constraints into

zdx− dy ≤ 0, xdy + dz ≤ 0,

then it will be sufficient to have positive multipliers and a positive definite
quadratic form q in order that each critical point becomes a minimum point.
The PDEs system which gives us c1(µ1, µ), c2(µ1, µ2) is (see 1.2 )

µ1
∂c1

∂µ1

+ µ2
∂c1

∂µ2

= − µ1µ2

µ2 − 2

µ1
∂c2

∂µ1

+ µ2
∂c2

∂µ2

= −1

2
µ2 +

(
µ1

µ2 − 2

)2

,

with solutions, respectively,

c1(µ1, µ2) = −µ1 −
2µ1

µ2

ln |µ2 − 2|+ α1

(
µ1

µ2

)
,

c2(µ1, µ2) = −1

2
µ2 −

µ2
1

µ2
2

(
2

µ2 − 2
− ln |µ2 − 2|

)
+ α2

(
µ1

µ2

)
,

where α1 , α2 are arbitrary functions. The condition
∂c1

∂µ2

=
∂c2

∂µ1

is verified,

for instance, if α1

(
µ1

µ2

)
= ct. = α1 and α2

(
µ1

µ2

)
= −µ

2
1

µ2
2

+ α2 , α2 = ct.

Finally, the Lagrange dual function θ(µ1, µ2) = f∗ + µ1c1 + µ2c2 is

θ(µ1, µ2) = −µ
2
1

2
− 1

4
µ2

2 −
µ2

1

µ2

ln |µ2 − 2|+ α1µ1 + α2µ2 .
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Nonholonomic Wolfe dual program Find the extrema of the function

(µ1, µ2)→ ϕ(µ1, µ2) = f(x(µ1, µ2), y(µ1, µ2), z(µ1, µ2)), µ1 ≤ 0, µ2 ≤ 0.

Since

ϕ(µ1, µ2) =
µ2

1µ2

2(µ2 − 2)
+

1

4
µ2

2 ≥ 0,

in the conditions of the problem, the critical point µ1 = 0, µ2 = 0 is a min-
imum point. Also, all the points of the form (µ1 < 0, µ2 = 0) are minimum
points.

6 Extrema in canonical coordinates

The next Theorem, which gives the canonical Pfaff forms (and hence canon-
ical nonholonomic constraints), is named after Jean Gaston Darboux who
established it as the solution of the Pfaff problem (see [1], [27]).

Theorem 6.1. (Darboux Theorem) Suppose that ω is a differential 1-
form on an n-dimensional manifold, such that dω has constant rank p. If
ω∧(dω)p = 0 everywhere, then there is a local system of coordinates x1, ..., xp,
y1, ..., yp in which

ω =

p∑
i=1

xidyi.

If, on the other hand, ω ∧ (dω)p 6= 0 everywhere, then there is a local system
of coordinates x1, ..., xp, y1, ..., yp, z in which

ω =

p∑
i=1

xidyi + dz (contact form)

or

ω =
1

2

(
p∑
i=1

xidyi −
p∑
i=1

yidxi

)
+ dz (symmetric normal form).

From the normal form of Darboux, we see that the maximal integral mani-
folds are of dimension p. For the contact form equation

ω =

p∑
i=1

xidyi + dz = 0,
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they are given by

z = f(y1, ..., yp), x1 = − ∂f
∂y1

, ..., xp = − ∂f
∂yp

,

where f is a C2 arbitrary function.

6.1 Case of even number of variables

Let us find the extrema of a function f(x, y), x = (xi), y = (yi), i = 1, ..., n,
subject to a nonholonomic constraint written as Pfaff equation ω = x1dy1 +
...+ xndyn = 0.
The constrained critical points are solutions of the system

∂f

∂xi
= 0,

∂f

∂yi
+ µxi = 0.

6.2 Case of odd number of variables

Let us find the extrema of a function f(x, y, z), x = (xi), y = (yi), i = 1, ..., n
subject to a nonholonomic constraint ω = x1dy1 + ...+ xndyn + dz = 0. The
constrained critical points are solutions of the system

∂f

∂xi
= 0,

∂f

∂yi
+ µxi = 0,

∂f

∂z
+ µ = 0.

To decide the type of a critical point (x0, y0, z0), we use the restriction of the
quadratic form Q = d2f(x0, y0, z0) +µδijdx

idyj to the hyperplane δijx
i
0dy

j +
dz = 0 and its signature. Since

d2f =
∂2f

∂xi∂xj
dxidxj +

∂2f

∂yi∂yj
dyidyj + 2

∂2f

∂xi∂yj
dxidyj

+2

(
∂2f

∂xi∂z
dxi +

∂2f

∂yi∂z
dyi
)
dz +

∂2f

∂z2
dz2,

the restriction of Q is

q =
∂2f

∂xi∂xj
dxidxj +

∂2f

∂yi∂yj
dyidyj + 2

∂2f

∂xi∂yj
dxidyj + µδijdx

idyj

−2

(
∂2f

∂xi∂z
dxi +

∂2f

∂yi∂z
dyi
)
δklx

k
0dy

l +
∂2f

∂z2
(δklx

k
0dy

l)2.
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6.2.1 Another point of view

The general solution of the Pfaff equation ω = x1dy1 + ... + xndyn + dz = 0
is

z = ϕ(y), x = −∂ϕ
∂y

(y), where ϕ is arbitrary.

Consequently the previous nonholonomic program can be written

min f(x, y, z) subject to z = ϕ(y), x = −∂ϕ
∂y

(y).

In this form, it is similar to a classical program, but the function ϕ is arbi-
trary. For each ϕ, we attach a Lagrangian

L(x, y, z, λ1, λ2) = f(x, y, z) + λ1(z − ϕ(y)) + λ2

(
x+

∂ϕ

∂y
(y)

)
.

It follows the system which describes the critical points

∂L

∂x
=
∂f

∂x
+ λ2 = 0,

∂L

∂z
=
∂f

∂z
+ λ1 = 0

∂L

∂y
=
∂f

∂y
− λ1

∂ϕ

∂y
+ λ2

∂2ϕ

∂y∂y
= 0

∂L

∂λ1

= z − ϕ(y) = 0,
∂L

∂λ2

= x+
∂ϕ

∂y
(y) = 0.

This means that the critical points with respect to x, y and z must verifies
the constraints of the initial program.
In this context, it is very clear what means a Lagrange dual program. The
dual function is

ψ(λ1, λ2) = L(x(λ1, λ2), y(λ1, λ2), z(λ1, λ2), λ1, λ2).

Example 6.1. Find extremum points of the function f(x, y, z) = x + y +
z + 1

2
(x2 + y2 + z2) subject to dz − xdy = 0.

The constrained critical points are solutions of the system

∂f

∂x
= 0,

∂f

∂y
− µx = 0,

∂f

∂z
+ µ = 0,

i.e., x = 1, y = 1− µ, z = 1 + µ.
The nature of critical points is determined by the signature of the restriction
q of the quadratic form Q = −(dx2 + dy2 + dz2) − µdxdy to the plane
dz = dy. It follows q = −(dx2 + 2dy2) − µdxdy. This quadratic form is
negative definite for µ2 < 8, i.e., µ ∈ (−2

√
2, 2
√

2). In this case, all critical
points are maximum points.
The function ϕ(µ) = f(x(µ), y(µ), z(µ)) = 3

2
− µ2 is increasing on (−2

√
2, 0)

and decreasing on (0, 2
√

2). Also, inf ϕ(µ) = 3
2
− 8.
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6.2.2 Passing to an even number of variables

The point (x, y, z) belong to the contact manifold defined by ω = xdy+dz =
0. Let t be the number to be multiplied with 1-form ω to obtain a point of a
symplectic (2n + 2)-manifold described by the 1-form η = tω = txdy + tdz.
If we pass to the coordinates P = (P I) = (p, p0), p = tx, p0 = t, Q = (QI) =
(q, q0), q = y, q0 = z, then η = PdQ and hence dη = dP ∧ dQ.
Having in mind the changing of the variables, the function f(x, y, z) becomes

f
(
p
p0
, q, q0

)
= ϕ(P,Q). The constrained critical points are solutions of the

system
∂ϕ

∂P I
= 0,

∂ϕ

∂Qi
+ µxi = 0,

∂ϕ

∂z
+ µ = 0.

6.2.3 Contact Hamiltonian

Let X = ẋi ∂
∂xi

+ ẏi ∂
∂yi

+ ż ∂
∂z
, i = 1, ..., n be the contact vector field. Let

K(x, y, z) be the contact Hamiltonian, which is defined by

K(x, y, z) = ω(X), Xcdω|ω=0 = dK.

In case of ω = xdy + dz, we have dω|ω=0 = −dx ∧ dy. It follows the Hamil-
tonian K = xẏ + ż and the contact flow

ẋ = −∂K
∂y

+ x
∂K

∂z
, ẏ =

∂K

∂x
, ż = K − x∂K

∂x
.

Open problem Find extrema of the contact Hamiltonian K(x, y, z) con-
strained by ω = xdy + dz = 0.
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[10] C. Udrişte and O. Dogaru, Extrema with Nonholonomic Constraints, Sci. Bull.,
Polytechnic Institute of Bucharest, Seria Energetică, Tomul L, (1988), 3-8
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theory (see [28]), (2004), 177-192

[26] C. Udriste, M. Ferrara, and D. Opriş, Economic Geometric Dynamics, Geometry
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