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SUMMARY

This paper employs semidefinite programming duality theory to develop new alternative linear matrix
inequality (LMI) tools for eventually periodic systems. These tools are then utilized to rederive an
important version of the Kalman–Yakubovich–Popov (KYP) Lemma for such systems, and further give
new synthesis results. Copyright # 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper, we continue our work started in Reference [1] on the control of eventually periodic
systems. Such systems are aperiodic for an initial amount of time, and then become periodic
afterwards. Eventually periodic dynamics arise in various scenarios. One of these scenarios is
when linearizing a system along a trajectory composed of an aperiodic manoeuver and a
subsequent periodic orbit. Another is when considering plants with uncertain initial states. It is
worth noting that both finite horizon and periodic systems are subclasses of eventually periodic
systems.

Primarily, this paper serves as a gateway for the use of semidefinite programming duality
results in control problems involving eventually periodic systems. In fact, we will show that all
analysis and synthesis convex conditions pertaining to the ‘2-induced control of such systems
can be provided in terms of finite-dimensional semidefinite programming problems. Then, by
appealing to the vast literature on duality, it is possible to develop new alternative tools that
would potentially offer new theoretical insight and possibly help provide new results in this area
of research. Specifically, in this paper, we will invoke one of the theorems of alternatives of
Reference [2], which is itself a special case of the Hahn–Banach separation theorem, to develop
new alternative linear matrix inequality (LMI) tools that would be later used to rederive an
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important version of the Kalman–Yakubovich–Popov (KYP) Lemma for eventually periodic
systems, originally proved in Reference [1], and further give new synthesis results.

The main contributions of this paper are:

* establishing that the existence of a synthesis for an eventually periodic plant is always
equivalent to the existence of an eventually periodic synthesis, having the same periodicity
as the plant but probably exhibiting longer transient time variation;

* using alternative LMI tools, which stem from semidefinite programming duality theory to
(1) give a simpler derivation of an important version of the KYP lemma for eventually
periodic systems; and (2) closely study each of the synthesis conditions, highlighting
consequently certain cases where a synthesis if existent can always be chosen to be of the
same eventually periodic class as the plant.

Note that most of the synthesis results of this paper are also given in the conference paper [3],
but the alternative proofs herein are overall far simpler and more concise.

The literature on semidefinite programming is vast; some of the seminal papers on this subject
are References [4–6], and we refer the reader to Reference [2] for further references. In addition
to its applications in control, semidefinite programming has lots of applications in
combinatorial optimization; see for instance Reference [7]. Also, some important references
on convex optimization problems and associated duality theory are References [8, 9]. The
general machinery used to obtain the results of this paper is motivated by the work in
References [2, 10–12], combined with the time-varying system machinery developed in Reference
[13]. There is a rich literature in the area of time-varying systems, and a comprehensive list of
general references can be found in Reference [14]. Finally, while Reference [2] constitutes the
main inspiration for this work, it is worth noting that, as stated in Reference [2], there are other
papers that utilize notions from convex optimization duality to give new proofs of existing
results (see, for example, Reference [15]) or derive new ones [16].

2. PRELIMINARIES

We now introduce our notation and gather some elementary facts. The set of real numbers and
that of real n�m matrices are denoted by R and Rn�m; respectively. Given a square matrix
X 2 Rn�n; the dimension of X is dimðXÞ ¼ n: The image space and kernel of a linear mapping A
are denoted by ImA and KerA; respectively. If Si is a sequence of operators, then diagðSiÞ
denotes their block-diagonal augmentation.

Given two Hilbert spaces E and F ; we denote the space of bounded linear operators mapping
E to F by LðE;FÞ; and shorten this to LðEÞ when E equals F : If X is in LðE;FÞ; we denote the
E to F induced norm of X by jjX jjE!F ; when the spaces involved are obvious, we write simply
jjX jj: The adjoint of X is written X n:When an operator X 2LðEÞ is self-adjoint, we use X � 0
to mean it is negative definite; that is there exists a number a > 0 such that, for all non-zero
x 2 E; the inequality hx;Xxi5� ajjxjj2 holds, where h�; �i denotes the inner product and jj � jj
denotes the corresponding norm on E:

The main Hilbert space of interest in this paper is formed from an infinite sequence of
Euclidean spaces J ¼ ðRn0 ;Rn1 ;Rn2 ; . . .Þ; and is denoted by ‘2ðJÞ: It consists of elements x ¼
ðx0; x1; x2; . . .Þ; with each xk 2 Rnk ; such that jjxjj2 ¼

P1
k¼0 jjxkjj

251: The inner product of x; y
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in ‘2ðJÞ is hence defined as the sum hx; yi‘2 ¼
P1

k¼0 hxk; ykiRnk : If the sequence of spaces J is
clear from the context, then the notation ‘2ðJÞ is abbreviated to ‘2:

One of the most important operators used in the paper is the unilateral shift operator Z
defined as follows:

Z : ‘2ðRn1 ;Rn2 ; . . .Þ ! ‘2ðRn0 ;Rn1 ;Rn2 ; . . .Þ

ða1; a2; . . .Þ/
Z
ð0; a1; a2; . . .Þ

Following the notation and approach in Reference [13], we make the following definitions.

Definition 1
A bounded linear operator Q mapping ‘2ðRm0 ;Rm1 ; . . .Þ to ‘2ðRn0 ;Rn1 ; . . .Þ is block-diagonal if
there exists a sequence of matrices Qk in Rnk�mk such that, for all w; z; if z ¼ Qw; then zk ¼ Qkwk:
Then Q has the representation diagðQ0;Q1;Q2; . . .Þ:

Definition 2
An operator P on ‘2 is ðh; qÞ-eventually periodic if, for some integers h50 and q51; we have

ZqððZnÞhPZhÞ ¼ ððZnÞhPZhÞZq ð1Þ

In the case where the finite horizon length h is not known or when only the period length q is
relevant, we simply refer to P as eventually q-periodic.

Note that when h ¼ 0; equality (1) reduces to the following: ZqP ¼ PZq: Hence, in such a case,
P simply commutes with the q-shift, and we accordingly refer to P as a q-periodic operator.
Throughout the sequel we set h50 and q51 to be some fixed integers.

We denote the first period truncation of a q-periodic block-diagonal operator Q by #Q; and
define such a matrix as #Q :¼ diagðQ0; . . . ;Qq�1Þ: Also, we define the cyclic shift matrix #Z for
q52 by

#Z ¼

0 � � � 0 I

I . .
.

0

. .
. ..

.

I 0

2
66666664

3
77777775

so that #Zn #Q #Z ¼ diagðQ1; . . . ;Qq�1;Q0Þ: For q ¼ 1; we set #Z ¼ I :
Now, suppose that Q is an ðN; qÞ-eventually periodic block-diagonal operator, then we define

*Q to be the ðN; qÞ-truncation of Q; namely *Q :¼ diagðQ0;Q1; . . . ;QNþq�1Þ; which is a matrix.
Also, we define the shift matrices Z1 and Z2 for i; j ¼ 1; . . . ;N þ q by

Z1 ¼ ½aij � where aij ¼
I if i ¼ 2; . . . ;N þ q; j ¼ i � 1

0 otherwise

(

Z2 ¼ ½bij � where bij ¼
I if i ¼ N þ 1; j ¼ N þ q

0 otherwise

(
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For N ¼ 0; q ¼ 1; we set Z1 ¼ 0: And so, excluding the preceding case, given a block-diagonal
matrix *Q; we have Zn

1
*QZ1 ¼ diagðQ1; . . . ;QNþq�1; 0Þ and Zn

2
*QZ2 ¼ diagð0; . . . ; 0;QNÞ:

Having established these definitions, we are now ready to consider the main subject of this paper.

3. EVENTUALLY PERIODIC PLANTS AND LMI TOOLS

This section is divided into two subsections. The first formulates the ‘2-induced control problem
for eventually periodic systems, and the second reviews some useful analysis and synthesis
results from References [1, 13] pertaining to this problem.

3.1. Problem formulation

Let G be a linear time-varying (LTV) discrete-time system defined by the state space equation

xkþ1

zk

yk

2
664

3
775 ¼

Ak B1k B2k

C1k D11k D12k

C2k D21k 0

2
664

3
775

xk

wk

uk

2
664

3
775 x0 ¼ 0 ð2Þ

for w 2 ‘2; where the block-diagonal operators, defined by the sequences of the above state space
matrices, are ðh; qÞ-eventually periodic. Because of such eventually periodic dynamics, we refer
to G as an ðh; qÞ-eventually periodic plant. The input channels into plant G are the exogenous
disturbances w and the applied control u; and the corresponding output channels are the
exogenous errors z and the measurements y; respectively. The signals xk; zk;wk; yk; and uk are
real and have time-varying dimensions which we denote by nk; nzk; nwk; nyk; and nuk; respectively.

We suppose this system is being controlled by an LTV controller K whose state space
equation is

xKkþ1

uk

" #
¼

AK
k BK

k

CK
k DK

k

" #
xKk

yk

" #
xK0 ¼ 0

where xKk 2 R
rk : The connection of G and K is shown in Figure 1. Since D22 ¼ 0; this

interconnection is always well posed.
We write the realization of the closed-loop system as

xLkþ1 ¼ AL
kx

L
k þ BL

kwk

zk ¼ CL
k x

L
k þDL

kwk

ð3Þ

Figure 1. Closed-loop system.
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where xLk 2 R
nkþrk contains the combined states of G and K at time k; and AL

k ;B
L
k ;C

L
k and DL

k are
appropriately defined. This closed-loop system may be written more compactly in operator form
as

xL ¼ ZALxL þ ZBLw

z ¼ CLxL þDLw
ð4Þ

where Z is the shift operator on ‘2: Assuming the relevant inverse exists, we can write the map
from w to z as

w/z ¼ CLðI � ZALÞ�1ZBL þDL

We will say this closed-loop state space system is stable when I � ZAL has a bounded inverse;
this is equivalent to exponential stability as shown in Reference [13]. In the case of an eventually
periodic controller, the closed-loop system would be eventually periodic as well, and so its
stability boils down to the stability of its periodic part.

The following definition expresses our synthesis goal.

Definition 3
A controller K is an admissible synthesis for plant G in Figure 1 if I � ZAL has a bounded
inverse and the closed-loop performance inequality jjw/zjj‘2�‘251 is achieved.

3.2. Analysis and synthesis results

We now briefly review some analysis and synthesis results; see References [1, 13] for an in-depth
presentation. To start, we define the set XL to consist of all the positive definite block-diagonal
operators X 2Lð‘2Þ of the form X ¼ diagðX0;X1; . . .Þ; where Xi 2 RðniþriÞ�ðniþriÞ: Similarly, we
define the set X; except that here the matrix blocks Xi 2 Rni�ni : Following is the KYP lemma for
LTV models as given in Reference [13].

Lemma 4
Suppose operators AL;BL;CL; and DL are block-diagonal. The following conditions are
equivalent:

(i) jjCLðI � ZALÞ�1ZBL þDLjj51 and I � ZAL has a bounded inverse;
(ii) There exists X 2 XL such that

ZAL ZBL

CL DL

" #n
X 0

0 I

" #
ZAL ZBL

CL DL

" #
�

X 0

0 I

" #
� 0 ð5Þ

In the event that the controller state space operators are ðN; qÞ-eventually periodic for some
integer N5h; then the closed-loop state space operators AL;BL;CL; and DL are also ðN; qÞ-
eventually periodic, and condition (ii) in the above lemma can be further strengthened by
imposing additional structure on the operator X : In fact, Reference [1] shows that, in such a
case, a solution in XL exists to inequality (5) if and only if an ðN; qÞ-eventually periodic solution
in XL exists. Later in this paper, we will present another proof to the previous statement using
one of the theorems of alternatives given in Reference [2]. Following is the main synthesis result
from Reference [13] for LTV systems.
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Theorem 5
There exists an admissible LTV synthesis K for ðh; qÞ-eventually periodic plant G; with state
dimension rk4nk for all k; if and only if there exist operators R;S 2 X satisfying

F nRF � V n
1 Z

nRZV1 þH � 0 ð6Þ

J nZnSZJ �U n
1 SU1 þW � 0 ð7Þ

R I

I S

" #
k0 ð8Þ

where

Im ½V n
1 V n

2 �
n ¼ Ker½Bn

2 Dn
12�; ½V n

1 V n
2 � ½V

n
1 V n

2 �
n ¼ I

Im ½U n
1 U n

2 �
n ¼ Ker½C2 D21�; ½U n

1 U n
2 � ½U

n
1 U n

2 �
n ¼ I

ð9Þ

and

F ¼ AnV1 þ Cn
1 V2; M ¼ Bn

1 V1 þDn
11V2; H ¼M nM � V n

2 V2

J ¼ AU1 þ B1U2; L ¼ C1U1 þD11U2; W ¼ LnL�U n
2 U2

ð10Þ

Solutions R and S can then be used to construct a controller K ; as shown in References
[10, 12, 13]. Note that all of the system operators in (6) and (7) are block-diagonal and ðh; qÞ-
eventually periodic.

The synthesis conditions in Theorem 5 are convex, yet infinite-dimensional as they pertain to
the existence of a general LTV synthesis. However, if we seek an ðN; qÞ-eventually periodic
synthesis for some integer N5h; then these inequalities reduce to finite-dimensional conditions
as shown in the following synthesis result from Reference [1]; note that an ðh; qÞ-eventually
periodic operator is also ðN; qÞ-eventually periodic for all integers N5h:

Theorem 6
Suppose that integer N5h: There exists an admissible ðN; qÞ-eventually periodic synthesis K for
ðh; qÞ-eventually periodic plant G; with state dimension rk4nk for all k; if and only if there exist
block-diagonal matrices *R; *S 2 *X satisfying

*F n *R *F � *V n
1 ðZ

n
1
*RZ1 þ Zn

2
*RZ2Þ *V1 þ *H � 0 ð11Þ

*J nðZn
1
*SZ1 þ Zn

2
*SZ2Þ *J � *U n

1
*S *U1 þ *W � 0 ð12Þ

*R I

I *S

" #
k0 ð13Þ

where the notation *Q denotes the ðN; qÞ-truncation of Q; and the set *X :¼ f *X : X 2 Xg:
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We remark that if the synthesis conditions in Theorem 6 are invalid, we can only say that there
exists no admissible ðN; qÞ-eventually periodic synthesis; but this does not necessarily imply the
non-existence of a different admissible synthesis, be it a general LTV synthesis, in which case
inequalities (6), (7) and (8) would hold, or still an eventually periodic one but with a larger finite
horizon length or larger period. In the next section, we will show that, when it comes to
eventually periodic plants, we need not worry about infinite-dimensional synthesis conditions
and corresponding LTV syntheses generally exhibiting infinite time variation, since, for such
plants, an admissible synthesis exists if and only if an admissible eventually periodic synthesis
exists, albeit the finite horizon length of such an eventually periodic synthesis is still to be
determined in general.

4. FINITE-DIMENSIONAL SEMIDEFINITE PROGRAMMING PROBLEMS

A very appealing feature about the ‘2-induced control problem for discrete-time eventually
periodic systems is that all the analysis and synthesis convex conditions derived can be provided
in terms of finite-dimensional semidefinite programming problems. To elaborate more on this,
consider the following linear operator inequality in variable X :

e1PnZnXZPþ e2QnXQþ T � 0 ð14Þ

where Xg0; P;Q and T ¼ T n are all block-diagonal operators with compatible matrix block
dimensions, and the integers e1; e2 2 f�1; 1g: This inequality represents a general form of the
analysis condition (5) and synthesis conditions (6) and (7). Let Xg denote the set of positive
definite block-diagonal solutions X ; of the same structure as operator QQn; satisfying inequality
(14). Finding a solution X 2 Xg to (14) is in general an infinite-dimensional semidefinite
programming problem. However, if the operators P;Q and T are ðh; qÞ-eventually periodic, then
a solution X 2 Xg exists if and only if an ðN; qÞ-eventually periodic solution inXg exists for some
integer N5h; as we will show in the next proposition. Accordingly, in such a case, we only need
to consider a finite number of matrix variables, and hence a finite number of LMIs; yet this
number is still to be determined in general.

Proposition 7
Suppose that P;Q; and T ¼ T n are block-diagonal operators with compatible matrix block
dimensions, and integers e1; e2 2 f�1; 1g: Then the following hold:

(i) If P;Q; and T are q-periodic, then there exists a solution in Xg to inequality (14) if and
only if there exists a q-periodic operator X 2 Xg such that

e1 #Pn #Zn #X #Z #Pþ e2 #Qn #X #Qþ #T � 0

(ii) If P;Q; and T are ðh; qÞ-eventually periodic, then there exists a solution inXg to inequality
(14) if and only if there exists an ðN; qÞ-eventually periodic operator in Xg for some
integer N5h such that

e1 *PnðZn
1
*XZ1 þ Zn

2
*XZ2Þ *Pþ e2 *Qn *X *Qþ *T � 0 ð15Þ

where the notation *Q denotes the ðN; qÞ-truncation of Q.
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For space considerations, we will only provide the outline of the proof. The proof of Part (i)
employs a similar averaging technique to that used in the proof of Theorem 20 in Reference [13].
As for Part (ii), the proof follows from exactly the same argument as that of the proof of Lemma
7 in Reference [1], which amounts to equivalently rewriting inequality (14) as an infinite
sequence of LMIs, each corresponding to a distinct time k, then making use of the continuity
and convexity properties of these LMIs, together with Part (i), to construct an eventually q-
periodic solution.

As stated earlier, inequality (14) represents a general form of the analysis condition (5) and
synthesis conditions (6) and (7), and so, the results of Proposition 7 clearly apply to these
conditions. In fact, the said results still apply in the case where we have two inequalities of the
form of (14) admitting two solutions R;S 2 Xg; which are coupled by condition (8). Specifically,
we have the following synthesis result.

Theorem 8
Given an ðh; qÞ-eventually periodic plant G, there exists an admissible synthesis K for G if and
only if there exists an admissible ðN; qÞ-eventually periodic synthesis for some integer N5h;
which in turn is equivalent to the existence of ðN; qÞ-eventually periodic operators R;S 2 X for
some N5h satisfying the synthesis LMIs (11)–(13).

Proof
The proof of the ‘if’ direction is immediate. To prove the ‘only if’ direction, we first note that,
since there exists an admissible synthesis for the ðh; qÞ-eventually periodic plant, then definitely
there exists an admissible synthesis for the q-periodic portion of this plant. Then invoking
Theorem 22 of Reference [13], we deduce that there exists an admissible q-periodic synthesis for
this periodic part; the proof uses the same averaging argument as that of Part (i) of Proposition
7, which is given in details in the proof of Theorem 20 in Reference [13]. Then, given q-periodic
solutions to the periodic parts of the synthesis conditions, we apply the same argument as that of
the proof of Part (ii) of Proposition 7 to each of the synthesis conditions (6) and (7), yet using
the same e and x for both cases (see proof of Lemma 7 in Reference [1]), so that, for some inte-
ger N5h; the resulting ðN; qÞ-eventually periodic solutions would still satisfy the coupling
condition (8). &

The question at this point is whether we can find reasonable values for the finite
horizon lengths of such eventually q-periodic syntheses. This is still an open problem
in general. We will show later in this paper that, given an ðh; qÞ-eventually periodic plant,
a solution in X exists to the synthesis condition (6) if and only if an ðh; qÞ-eventually
periodic solution in X exists; however, this cannot be said for the synthesis condition
(7). Moreover, even if (6) and (7) both admit solutions in the subclass of ðN; qÞ-eventually
periodic operators in X for some N5h; none of these solutions might satisfy the
coupling condition (8), and hence we may need to settle for a larger finite horizon length.
We will also consider in the sequel a couple of special cases where inequality (7) simplifies
significantly and then an admissible synthesis if existent can always be chosen to be ðh; qÞ-
eventually periodic.
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Remark 9
The results of Proposition 7 can be extended to a more general linear operator inequality than
(14), but this is not necessary for this paper. Having said that, it is reasonable to deduce that, given
eventually periodic plants, then regardless of the control problem, if the solutions are expressible
in terms of linear operator inequalities that can be equivalently written as infinite sequences
of LMIs, most probably the arguments of the proofs of Proposition 7 and Theorem 8 can still
be utilized to prove similar results for the control problem in question, mainly that the
solutions can be equivalently provided in terms of finite-dimensional semidefinite programming
problems.

Remark 10
We say a synthesis is g-admissible if it stabilizes the closed-loop system and further guarantees
that jjw/zjj‘2!‘25g: Clearly, a g-admissible synthesis for G is an admissible synthesis for %G;
where %G has the same system realization as G except that %C1 ¼ ð1=gÞC1; %D11 ¼ ð1=gÞD11; and
%D12 ¼ ð1=gÞD12: Given a stabilizable and detectable ðh; qÞ-eventually periodic plant G, let gN
denote the minimum g; up to a certain tolerance, that is achievable by an ðN; qÞ-eventually
periodic synthesis where N5h: Then, it is clear from the preceding and Theorem 6 that the value
of gN and a corresponding gN-admissible ðN; qÞ-eventually periodic synthesis can be obtained by
solving the following semidefinite programming optimization problem:

minimize: g2

subject to: *F n *R *F � *V n
1 ðZ

n
1
*RZ1 þ Zn

2
*RZ2Þ *V1 þ *M n *M � g2 *V n

2
*V2 � 0

*J nðZn
1
*SZ1 þ Zn

2
*SZ2Þ *J � *U n

1
*S *U1 � *U n

2
*U2

*Ln

*L �g2I

" #
� 0

*R I

I *S

" #
k0; *R; *S 2 *X

ð16Þ

where the notation *Q denotes the ðN; qÞ-truncation of Q, and the above system matrices are
defined in (9) and (10). Solving (16) for an increasing sequence of finite horizon lengths Ni; where
N0 ¼ h; results in a non-increasing sequence of optimal values gNi

: Hence, there is a trade-off in
general between N (the ‘size’ of the synthesis) and g (the desired performance). Clearly,
the sequence gNi

can serve as a guideline for choosing a synthesis of reasonable size and
performance. For example, once the difference between two consecutive elements in this
sequence, say gNj

and gNjþ1
; falls within a certain tolerance, we may then terminate the iteration

and use the solutions *R and *S corresponding to gNj
to construct a gNj

-admissible ðNj ; qÞ-
eventually periodic synthesis.

5. A STRONG THEOREM OF ALTERNATIVES

As the literature on duality for finite-dimensional semidefinite programming problems is vast,
many of the already available duality results can be rephrased to suit our control problem, and,
as a result, help provide new theoretical insight and maybe even new results for such a problem.
It is worth noting that, in this paper, by invoking only one of the theorems of alternatives of
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Reference [2], which is itself a special case of the Hahn–Banach separation theorem, we give a
simpler derivation of an important version of the KYP lemma for eventually periodic systems,
first given in Reference [1], and further provide new synthesis results, whose proofs are mostly
simpler and more concise than the ones given in the conference paper [3]. Hence the appeal of
using such duality results. Following is the aforementioned theorem of alternatives from
Reference [2].

Theorem 11
Suppose that V is a finite-dimensional vector space with an inner product h�; �iV; and that S is
a space of block-diagonal self-adjoint matrices of the form X ¼ diagðX0;X1; . . . ;XsÞ; where
Xi ¼ X n

i 2 R
mi�mi for some integers mi > 0 and s50; and with inner product hX ;YiS ¼

traceðXY Þ: Then, given a linear mapping E :V!S; its adjoint mapping En; and a matrix
E0 2S; exactly one of the following statements is true:

(1) There exists an x 2V satisfying the LMI EðxÞ þ E0g0;
(2) There exists a non-zero Y 2S such that Yk0; EnðYÞ ¼ 0; and hE0;YiS40:

Remark 12
In the preceding theorem statement, the vector space V can also be chosen as a space of block-
diagonal symmetric matrices, like S; and the above result would still hold. This is particularly
convenient for our case. Frequently, one might be tempted to use a subspace of S; rather than
the whole spaceS; since some LMIs might have special structures; this is also appealing because
the subspace of a finite-dimensional Hilbert space is itself a Hilbert space, and hence self-dual.
But then the result of the above theorem may no longer hold. Specifically, if we are to apply the
above theorem to the synthesis conditions (11)–(13), the special structure of the coupling
condition (13) might suggest using a subspace of S instead of S; notably one consisting of
block-diagonal symmetric matrices in S where a number of the matrix blocks, namely those
corresponding to the coupling condition, are of the following form:

X aI

aI Y

" #

with X ;Y being symmetric matrices, and a 2 R: But, in such a case, it is not difficult to show by a
counter example that the result of Theorem 11 no longer applies.

The next result follows directly from Theorem 11.

Proposition 13
Suppose that the operators P;Q; and T are block-diagonal and ðh; qÞ-eventually periodic, and
that T ¼ T n: Then, given an integer N5h; exactly one of the following statements is true:

(i) There exists an ðN; qÞ-eventually periodic operator X 2 Xg satisfying inequality (15);
(ii) There exists a block-diagonal matrix Y ¼ diagðY0;Y1; . . . ;YNþq�1Þ=0; where Yik0 is of

the same dimension as the square matrix Qn
i Qi for all i, such that

traceð *TYÞ50

e1ðZ1
*PY *PnZn

1 þ Z2
*PY *PnZn

2 Þ þ e2 *QY *Qn
k0

ð17Þ
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Proof
To start, we define the following sets:

V ¼ f *X ¼ diagðX0;X1; . . . ;XNþq�1Þ : Xi ¼ X n
i and dimðXiÞ ¼ dimðQiQ

n
i Þg

S ¼ fG ¼ diagðG0;G1; . . . ;GNþq�1; *XÞ : *X 2V;Gi ¼ Gn
i and dimðGiÞ ¼ dimðQn

i QiÞg

Also, we define the linear map E :V!S by

Eð *XÞ ¼ diagð�e1 *PnZn
1
*XZ1

*P� e1 *PnZn
2
*XZ2

*P� e2 *Qn *X *Q; *XÞ

Then, setting E0 ¼ diagð� *T ; 0Þ 2S; we can equivalently write inequality (15), together with the
constraint *Xg0; as Eð *XÞ þ E0g0:

Lastly, we define the adjoint of the map E by En : S!V such that for all matrices *X 2V
and �Y ¼ diagðY ; &YÞ 2S; where &Y 2V; we have

hEð *XÞ; %YiS ¼ h *X ;E
nð %YÞiV

with hA;Bi ¼ traceðABÞ: It can be easily verified that En :S!V is given by

Enð %YÞ ¼ �e1Z1
*PY *PnZn

1 � e1Z2
*PY *PnZn

2 � e2 *QY *Qn þ &Y

Then, by invoking Theorem 11, we deduce that the non-existence of a matrix *X 2V satisfying
inequality Eð *XÞ þ E0g0 is equivalent to the existence of a non-zero matrix %Y 2S such that
%Yk0; Enð %YÞ ¼ 0; and hE0; %YiS40; which is, in turn, clearly equivalent to statement (ii). Note
that the non-zero constraint ð %Y=0Þ can be restricted to the matrix Y since, if Y ¼ 0; then the
equality Enð %YÞ ¼ 0 implies that %Y ¼ 0: &

Following is an alternative statement of Theorem 6.

Theorem 14
Suppose that integer N5h: There exists no admissible ðN; qÞ-eventually periodic synthesis
for ðh; qÞ-eventually periodic plant G if and only if there exist block-diagonal matrices Yfk0;
Ybk0; and Yc of the form Yj ¼ diagðYj;0;Yj;1; . . . ;Yj;Nþq�1Þ for j ¼ f ; b; c; where dimðYf ;iÞ ¼
dimðF n

i FiÞ; dimðYb;iÞ ¼ dimðJ n
i JiÞ; and Yci 2 Rni�ni ; such that ðYf ;YbÞ=ð0; 0Þ and

traceð *HYf Þ þ traceð *WYbÞ52traceðYcÞ

� *FYf
*F n þ Z1

*V1Yf
*V n
1 Z

n
1 þ Z2

*V1Yf
*V n
1 Z

n
2 Yc

Y n
c �Z1

*JYb
*J nZn

1 � Z2
*JYb

*J nZn
2 þ *U1Yb

*U n
1

" #
%0

ð18Þ

This result stems from Theorems 6 and 11. Note that, at a first glance, the fact that the coupling
condition (13) is a non-strict inequality seems to undermine the applicability of Theorem 11.
However, because of the continuity property of LMIs, a slight perturbation of the solutions
ensures that the existence of solutions in *X to the synthesis conditions of Theorem 6 is
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equivalent to the existence of matrices *R; *S; 2 *X satisfying LMIs (11) and (12), respectively, as
well as the strict coupling inequality

*R I

I *S

" #
g0

Then, Theorem 11 is clearly applicable, and so following a similar argument to that of the proof
of Proposition 13, we can prove Theorem 14; the complete proof is omitted for space
considerations. Note that the coupling condition (13) already implies that *R; *Sg0; and so we
need not redundantly account for the positive definiteness of the solutions.

In the following, we will say that inequality (14) is a primal LMI and that inequalities (17) are
the corresponding alternative LMIs; similarly, inequalities (18) are the alternative LMIs for the
primal synthesis conditions (11)–(13). Appealing to Proposition 7 and Theorem 8, it is clear that
the periodicity of any eventually periodic solution in the context of these results is always equal
to that of the plant, namely q; the only variable in general is the finite horizon length of such a
solution. With that in mind, and for notational clarity and simplicity, we will denote the
solutions of the alternative LMIs only in terms of the finite horizon lengths of the primal
eventually q-periodic solutions as follows.

Definition 15
A matrix Y is said to be an N-solution of alternative LMIs (17) if Y is a non-zero block-diagonal
matrix of the form Y ¼ diagðY0;Y1; . . . ;YNþq�1Þ; where Yik0 is of the same dimension as the
square matrix Qn

i Qi for all i. Furthermore, the triplet ðYf ;Yb;YcÞ is said to be an N-solution of
alternative LMIs (18) if ðYf ;YbÞ=ð0; 0Þ; and Yfk0; Ybk0; and Yc are block-diagonal matrices
of the form Yj ¼ diagðYj;0;Yj;1; . . . ;Yj;Nþq�1Þ for j ¼ f ; b; c; where dimðYf ;iÞ ¼ dimðF n

i FiÞ;
dimðYb;iÞ ¼ dimðJ n

i JiÞ; and Yci 2 Rni�ni :

Clearly, the existence of an N-solution to some alternative LMIs implies the existence of
a t-solution for all integers t; where h4t4N:

6. KYP LEMMA FOR EVENTUALLY PERIODIC SYSTEMS

This section gives an alternative derivation of an important version of the KYP lemma for
eventually periodic systems, originally given in Reference [1]. Specifically, we will utilize
Propositions 7 and 13 to show that, given an ðN; qÞ-eventually periodic closed-loop system, there
exists a solution in XL to inequality (5) if and only if there exists an ðN; qÞ-eventually periodic
solution in XL:

Relating inequality (14) to (5), we set e1 ¼ 1; e2 ¼ �1; and further make the following
assignments for all integers i50:

Pi ¼ ½AL
i BL

i �; Qi ¼ ½I 0�; Ti ¼
C

L*
i CL

i C
L*
i DL

i

D
L*
i CL

i D
L*
i DL

i � I

2
4

3
5
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Then, we write inequality (5) more conveniently as

PnZnXZP�QnXQþ T � 0 ð19Þ

Following are a couple of useful propositions; the proofs are given in the appendix for
completeness.

Proposition 16
Suppose that X is a positive semidefinite matrix partitioned as follows:

X ¼
X11 X12

X n
12 X22

" #

where rankðX11Þ ¼ m51: Then, there exist matrices S;G and O of compatible dimensions such
that S has full column rank equal to m and

X ¼
X11 X12

X n
12 X22

" #
¼

S 0

G O

" #
S 0

G O

" #n
¼

SSn SGn

GSn GGn þ OOn

" #

Proposition 17
Given matrices S and G such that SSn

%GGn; then there exists a matrix O such that OnO%I
and GO ¼ S:

Next we give a new proof of the following result from Reference [1].

Theorem 18
Given an ðN; qÞ-eventually periodic closed-loop system, the existence of a solution in
XL to inequality (5) is equivalent to the existence of an ðN; qÞ-eventually periodic solution
in XL:

Proof
Note that, out of all the finite horizon, only the last instant is relevant to this proof, and
hence we assume without loss of generality that the finite horizon length N is equal to 1; the
q-periodic case, where N ¼ 0; is already addressed in Part (i) of Proposition 7. Since the
converse is immediate, we only need to prove the claim that if a solution in XL exists to
inequality (19), then a ð1; qÞ-eventually periodic solution in XL exists. After invoking Part (ii) of
Proposition 7, the contrapositive of this claim is as follows: if no ð1; qÞ-eventually periodic
solution in XL exists to inequality (19), then there does not exist any ðt; qÞ-eventually periodic
solution in XL for all t51; or equivalently, by Proposition 13, if there exists a 1-solution
satisfying the alternative LMIs to inequality (19), then there exists a t-solution for all t51:
Proposition 13 entails that the non-existence of a ð1; qÞ-eventually periodic solution in XL to
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inequality (19) is equivalent to the existence of a 1-solution Y ¼ diagðY0;Y1; . . . ;YqÞ to the
following LMIs: Pq

i¼0 traceðTiYiÞ50

Q0Y0Q
n
0 ¼ 0

Q1Y1Q
n
1 %P0Y0P

n
0 þ PqYqP

n
q

Q2Y2Q
n
2 %P1Y1P

n
1

..

.

QqYqQ
n
q %Pq�1Yq�1P

n
q�1

ð20Þ

where Y=0; Yik0 is a square matrix of dimension ni þ ri þ nwi; and

QiYiQ
n
i ¼ ½Iniþri 0�

Yi;11 Yi;12

Y n
i;12 Yi;22

" #
Iniþri

0

" #
¼ Yi;11

Suppose that Y1;11=0; then, by Proposition 16, there exist matrices S;G; and O of compatible
dimensions such that S has full column rank equal to rankðY1;11Þ; and

Y1 ¼
Y1;11 Y1;12

Y n
1;12 Y1;22

" #
¼

S 0

G O

" #
S 0

G O

" #n

¼
SSn SGn

GSn GGn þ OOn

" #

In the event that Y1;11 ¼ 0; then also Y1;12 ¼ 0 since Y1k0; and the above still applies except
that S ¼ 0; G ¼ 0 and Y1;22 ¼ OOn: Now, clearly P0Y0P

n
0 k0 and PqYqP

n
q k0; and hence, there

exist matrices S1 and S2 of compatible dimensions such that P0Y0P
n
0 ¼ S1Sn

1 and PqYqP
n
q ¼

S2Sn
2 : Then the inequality Q1Y1Q

n
1 %P0Y0P

n
0 þ PqYqP

n
q can be equivalently written as SSn

%

½S1 S2�½S1 S2�n; and so by Proposition 17, there exists a matrix Y such that YnY%I and
½S1 S2�Y ¼ S: At this point, we partition the matrix GYn ¼ ½G1 G2� in accordance with the
partitioning of the matrix ½S1 S2�; and further define the matrix C¼ I �YnYk0 and

%Y1 ¼
S1 0

G1 O

" #
S1 0

G1 O

" #n

¼
S1Sn

1 S1Gn
1

G1Sn
1 G1Gn

1 þ OOn

" #
k0

%Yi ¼
Pi�1Yi�1P

n
i�1 Yi;12

Y n
i;12 Yi;22

" #
k0 for i ¼ 2; 3; . . . ; q

%Yqþ1 ¼
S2 0

G2 GC1=2

" #
S2 0

G2 GC1=2

" #n

¼
S2Sn

2 S2Gn
2

G2Sn
2 G2Gn

2 þ GCGn

" #
k0
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Note that %Yik0 for i ¼ 2; . . . ; q since, from (20), Pi�1Yi�1P
n
i�1kYi;11: It can be easily verified

that the following LMIs hold:

traceðT0Y0Þ þ
Pqþ1

i¼1 traceðTi %YiÞ50

Q0Y0Q
n
0 ¼ 0

Q1 %Y1Q
n
1 %P0Y0P

n
0

Q2 %Y2Q
n
2 %P1 %Y1P

n
1 þ P1 %Yqþ1P

n
1

Q3 %Y3Q
n
3 %P2

�Y2P
n
2

..

.

Qqþ1 %Yqþ1Q
n
qþ1 ¼ Q1 %Yqþ1Q

n
1 %Pq %YqP

n
q

where %Y ¼ diagðY0; %Y1; . . . ; %Yqþ1Þ=0: Thus, we have constructed a 2-solution %Y to the
alternative LMIs from a given 1-solution. Finally, we can apply the previous argument
recursively, and show that, given a 1-solution to (20), we can always construct a t-solution for
all t51: &

7. NEW SYNTHESIS RESULTS

As stated in Theorem 8, given an ðh; qÞ-eventually periodic plant, the existence of an admissible
synthesis for this plant is equivalent to the existence of an ðN; qÞ-eventually periodic synthesis for
some N5h: While this result establishes that the solution of the synthesis ‘2-induced control
problem for eventually periodic systems can always be expressed in terms of finite-dimensional
convex conditions, it does not exactly specify these conditions. Granted that such conditions are
somewhat truncations of the synthesis conditions (6–8), yet the extent of such truncations is not
explicit in the theorem statement. In fact, the value of N above is still not known in general. This
section is divided into two subsections. The first one closely examines each of the synthesis
conditions (6), (7) and (8) to see which of these conditions contribute to the indefiniteness of N.
Then, based on our findings, we consider in the second subsection two cases where an admissible
synthesis exists if and only if an admissible ðh; qÞ-eventually periodic synthesis exists.

7.1. Synthesis conditions

We start with the following theorem pertaining to the synthesis condition (6).

Theorem 19
Given an ðh; qÞ-eventually periodic plant, then a solution in X exists to the synthesis condition
(6) if and only if an ðh; qÞ-eventually periodic solution in X exists.

Proof
As in the proof of Theorem 18, we will assume without loss of generality that the finite horizon
length h is equal to 1. The proof of the ‘if’ direction is immediate, and so we only need to prove
the ‘only if’ direction. Hence, we need to show that the existence of a 1-solution to the
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alternative LMIs of inequality (11), as given by Proposition 13, implies the existence of an N-
solution for all N51: Suppose that the non-zero matrix Y ¼ diagðY0;Y1; . . . ;YqÞ is a 1-solution
of the aforementioned alternative LMIs, namely:Pq

i¼0 traceðHiYiÞ50

V10Y0V
n
10 þ V1qYqV

n
1q%F1Y1F

n
1

V11Y1V
n
11%F2Y2F

n
2

..

.

V1;q�1Yq�1V
n
1;q�1%FqYqF

n
q

The second LMI in the above sequence can be equivalently written as

½V10Y
1=2
0 V1qY

1=2
q �½V10Y

1=2
0 V1qY

1=2
q �

n
%F1Y1F

n
1

and hence, by Proposition 17, there exists a matrix S such that SSn
%I ; and

F1Y
1=2
1 S ¼ ½V10Y

1=2
0 V1qY

1=2
q �

Partition S appropriately as S ¼ ½S1 S2� so that

F1Y
1=2
1 S1 ¼ V10Y

1=2
0 and F1Y

1=2
1 S2 ¼ V1qY

1=2
q

Then, for any G of proper dimensions such that GGn
%I ; define the following matrices:

Y1a ¼ Y
1=2
1 ðS1Sn

1 þ ðI � SSnÞ1=2ðI � GGnÞðI � SSnÞ1=2ÞY1=2
1

Y1b ¼ Y
1=2
1 ðS2Sn

2 þ ðI � SSnÞ1=2GGnðI � SSnÞ1=2ÞY1=2
1

Note that Y1ak0; Y1bk0 and Y1a þ Y1b ¼ Y1: Then the following LMIs clearly hold:

traceðH0Y0Þ þ traceðH1Y1aÞ þ
Pq

i¼2 traceðHiYiÞ þ traceðH1Y1bÞ50

V10Y0V
n
10%F1Y1aF

n
1

V11Y1V
n
11 ¼ V11Y1aV

n
11 þ V11Y1bV

n
11%F2Y2F

n
2

V12Y2V
n
12%F3Y3F

n
3

..

.

V1;q�1Yq�1V
n
1;q�1%FqYqF

n
q

V1qYqV
n
1q%F1Y1bF

n
1

Thus, the matrix diagðY0;Y1a;Y2; . . . ;Yq;Y1bÞ is a 2-solution to the alternative LMIs of
inequality (11). So, we have constructed a 2-solution from a given 1-solution. Finally, we can
apply the previous argument recursively, and show that, given a 1-solution to the alternative
LMIs, we can always construct an N-solution for all N51: &

Note that a different proof which does not use any duality results is given in the conference
paper [3]; the proof above though is far simpler and more concise.
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The result of Theorem 19 does not apply in general to the synthesis condition (7). It is not
difficult to construct counter examples to show that, given an ðh; qÞ-eventually periodic plant, the
existence of a solution in X to inequality (7) does not necessarily imply the existence of an ðh; qÞ-
eventually periodic solution inX:However, if we are to drop the constraint that the solution has
to be positive definite, and expand our search for solutions to the set Xe; whose elements are
bounded, self-adjoint and of the same form as those of the set X; but without the positive
definiteness restriction, then we have the following result.

Theorem 20
Given an ðh; qÞ-eventually periodic plant, there exists a solution in Xe to the synthesis condition
(7) if and only if there exists an ðh; qÞ-eventually periodic solution in Xe:

Proof
Note that the proofs of Proposition 7 can be easily rephrased to suit this case, and as a result, a
solution in Xe exists to inequality (7) if and only if an eventually q-periodic solution in Xe exists.
As in the proof of Theorem 18, we will assume without loss of generality that the finite horizon
length h is equal to 1. Since the converse is immediate, we only need to prove the ‘only if’
direction of the above result. To start, we have to alter Proposition 13 slightly so as to apply in
this case where the primal solution belongs to the set Xe instead of X: By appealing to the proof
of this proposition, it is not difficult to see that in this case the alternative LMIs (17) change as
follows. The first LMI, i.e. the trace condition, stays the same, while the second LMI becomes
an equality; the solution to the alternative LMIs still has to be non-zero, positive semidefinite
and block-diagonal. With this in mind, and while still adopting the same notation as before for
simplicity, we need to show that, given a 1-solution to the alternative LMIs, then there exists an
N-solution for all N51: Suppose that the non-zero matrix Y ¼ diagðY0;Y1; . . . ;YqÞk0 is
a 1-solution to the alternative LMIs; hence the following hold:Pq

i¼0 traceðWiYiÞ50

U10Y0U
n
10 ¼ 0

U11Y1U
n
11 ¼ J0Y0J

n
0 þ JqYqJ

n
q

U12Y2U
n
12 ¼ J1Y1J

n
1

..

.

U1qYqU
n
1q ¼ Jq�1Yq�1J

n
q�1

Focusing on the equality U11Y1U
n
11 ¼ J0Y0J

n
0 þ JqYqJ

n
q ; we can always find matrices Y1 andY2

such that

Y1Y
n
1 ¼ J0Y0J

n
0 ; Y2Y

n
2 ¼ JqYqJ

n
q ; and dimð½Y1 Y2�n½Y1 Y2�Þ5dimðY1Þ

Then, it is immediate that there exists a matrix S of appropriate dimensions such that SSn ¼ I
and U11Y

1=2
1 S ¼ ½Y1 Y2�: Partition S ¼ ½S1 S2� conformably with the partitioning of the

matrix ½Y1 Y2� so that

U11Y
1=2
1 S1 ¼ Y1 and U11Y

1=2
1 S2 ¼ Y2
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Define Y1a ¼ Y
1=2
1 S1Sn

1 Y
1=2
1 k0; and Y1b ¼ Y

1=2
1 S2Sn

2 Y
1=2
1 k0; clearly, Y1a þ Y1b ¼ Y1: Conse-

quently, we have

traceðW0Y0Þ þ traceðW1Y1aÞ þ
Pq

i¼2 traceðWiYiÞ þ traceðW1Y1bÞ50

U10Y0U
n
10 ¼ 0

U11Y1aU
n
11 ¼ J0Y0J

n
0

U12Y2U
n
12 ¼ J1Y1aJ

n
1 þ J1Y1bJ

n
1

U13Y3U
n
13 ¼ J2Y2J

n
2

..

.

U1qYqU
n
1q ¼ Jq�1Yq�1J

n
q�1

U11Y1bU
n
11 ¼ JqYqJ

n
q

Thus, the matrix diagðY0;Y1a;Y2; . . . ;Yq;Y1bÞ is a 2-solution to the alternative LMIs,
constructed from the given 1-solution Y : Finally, we can apply the previous argument
recursively, and show that, given a 1-solution to the alternative LMIs, we can always construct
an N-solution for all N51: &

Remark 21
Another proof to Theorem 20 which does not employ any theorems of alternatives is outlined as
follows. First, by Finsler’s lemma, the existence of a solution in Xe to the synthesis condition (7)
is equivalent to the existence of an operator S 2 Xe and a scalar a > 0 such that

A B1

C1 D11

" #n
ZnSZ

I

" #
A B1

C1 D11

" #
�

S

I

" #
� a

Cn
2

Dn
21

" #
½C2 D21� � 0 ð21Þ

Formally define

OiðXÞ :¼ An
i XAi þ Cn

1iC1i � aCn
2iC2i � EðBn

1iXB1i þDn
11iD11i � I � aDn

21iD21iÞ
�1E n

where E ¼ An
i XB1i þ Cn

1iD11i � aCn
2iD21i; so that, by applying the Schur complement formula to

(21), we get OiðSiþ1Þ � Si for all i50: Then, following a similar argument to that used for the
proof of Theorem 12 in Reference [1], we can construct from any eventually q-periodic operator
in Xe satisfying inequality (7) an ðh; qÞ-eventually periodic solution in Xe: The detailed proof
above though is clearly far simpler and more concise.

The preceding theorem is appealing; however, the positive definiteness of the solution of the
synthesis condition (7) is necessary for the validity of the coupling condition (8). In fact, it is not
difficult to construct examples to show that, even when both of the synthesis conditions (6) and
(7) admit solutions in the subclass of the ðN; qÞ-eventually periodic operators of X for some
N5h; none of such solutions might satisfy the coupling condition (8), and accordingly we may
need to settle for a larger finite horizon length.
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7.2. Special cases

This subsection considers two cases of ðh; qÞ-eventually periodic plants where the synthesis
condition (7) simplifies significantly and, as a result, an admissible synthesis if existent can
always be chosen to be ðh; qÞ-eventually periodic.

Theorem 22
Suppose that plant G is ðh; qÞ-eventually periodic, and that the periodic part of G has exactly
measurable states, that is, for all i ¼ h; . . . ; hþ q� 1; we have C2i ¼ I ; D21i ¼ 0: Then there
exists an admissible synthesis K for G; with state dimension ri4ni for all i; if and only if there
exists an admissible ðh; qÞ-eventually periodic synthesis.

Proof
As in the previous proofs, assume h ¼ 1: Then, we only need to show that the existence of a 1-solution
to the alternative LMIs (18) implies the existence of anN-solution for allN51:Note that, in this case,
appealing to the definitions in (9), it is not difficult to see that U1i ¼ 0; U2i ¼ I for all i ¼ 1; 2; . . . ; q:
If we start with a 2-solution, then the argument for constructing from this solution an N-solution for
all N52 is rather simple, as we will show next. On the other hand, constructing a 2-solution from a
1-solution is slightly more involved and is accordingly provided in the appendix. We start with a
2-solution ðYf ;Yb;YcÞ to the alternative LMIs (18); hence the following hold:Pqþ1

i¼0 traceðHiYfiÞ þ
Pqþ1

i¼0 traceðWiYbiÞ52
Pqþ1

i¼1 traceðYciÞ

U10Yb0U
n
10 ¼ 0

V10Yf 0V
n
10 � F1Yf 1F

n
1 Yc1

Y n
c1 �B10Yb0B

n
10

" #
%0

V11Yf 1V
n
11 þ V11Yf ;qþ1V

n
11 � F2Yf 2F

n
2 Yc2

Y n
c2 �B11Yb1B

n
11 � B11Yb;qþ1B

n
11

" #
%0

V12Yf 2V
n
12 � F3Yf 3F

n
3 Yc3

Y n
c3 �B12Yb2B

n
12

" #
%0

..

.

V1;q�1Yf ;q�1V
n
1;q�1 � FqYfqF

n
q Ycq

Y n
cq �B1;q�1Yb;q�1B

n
1;q�1

" #
%0

V1qYfqV
n
1q � F1Yf ;qþ1F

n
1 Yc;qþ1

Y n
c;qþ1 �B1qYbqB

n
1q

" #
%0

The fourth LMI in the preceding sequence implies that V11Yf 1V
n
11 þ V11Yf ;qþ1V

n
11%F2Yf 2F

n
2 : Then

appealing to the argument in the proof of Theorem 19, there exists a matrix S ¼ ½S1 S2� such that

SSn
%I ; F2Y

1=2
f 2 S1 ¼ V11Y

1=2
f 1 ; and F2Y

1=2
f 2 S2 ¼ V11Y

1=2
f ;qþ1
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Then we define Yf 2;a ¼ Y
1=2
f 2 S1Sn

1 Y
1=2
f 2 k0 and Yf 2;b ¼ Y

1=2
f 2 ðI � S1Sn

1 ÞY
1=2
f 2 k0: The following

ensue: Yf 2;a þ Yf 2;b ¼ Yf 2; V11Yf 1V
n
11 ¼ F2Yf 2;aF

n
2 ; and

V11Yf ;qþ1V
n
11 � F2Yf 2;bF

n
2 ¼ V11Yf 1V

n
11 þ V11Yf ;qþ1V

n
11 � F2Yf 2F

n
2

Defining %Yf ¼ diagðYf 0;Yf 1;Yf 2;a;Yf 3; . . . ;Yf ;qþ1;Yf 2;bÞ; %Yb ¼ diagðYb0; 0;Yb2; . . . ;Ybq;Yb1 þ
Yb;qþ1; 0Þ; and %Yc ¼ diagð0;Yc1; 0;Yc3; . . . ;Yc;qþ1;Yc1Þ; then the triplet ð %Yf ; %Yb; %YcÞ constitutes a
3-solution to the alternative LMIs (18). Following the same argument recursively, we can construct
from any 2-solution to the alternative LMIs an N-solution for all N52: This provisionally ends the
proof of Theorem 22. &

Remark 23
In the event that C2i ¼ I and D21i ¼ 0 for all i ¼ 0; 1; . . . ; hþ q� 1; that is the ðh; qÞ-eventually
periodic plant G has exactly measurable states, then an admissible synthesis for G exists if and
only if an admissible ðh; qÞ-eventually periodic static synthesis exists, as shown in Theorem 14 of
Reference [3]. Also, for such a case, instead of first trying to find solutions to the synthesis
conditions and then, if successful, solving for the static controller, we may lump both of these
steps into one, as shown in Theorem 15 of Reference [3]. As for the more general case where
only the periodic part of plant G has exactly measurable states, it is not difficult to generalize the
proof of Theorem 14 of Reference [3] to show that an admissible synthesis if existent can always
be chosen to be ðh; qÞ-eventually periodic such that the periodic part is static, that is the control
law ui ¼ DK

i yi for i ¼ h; hþ 1; . . . ; note that, in this case, AK
h�1 and BK

h�1 are empty matrices with
zero row dimensions.

Theorem 24
Suppose that plant G is ðh; qÞ-eventually periodic, and that the state disturbance is a linear
transformation of the sensor noise at each point of the finite horizon, that is, for all i ¼
0; 1; . . . ; h� 1; we have B1i ¼ TiD21i for some matrix Ti: Then there exists an admissible
synthesis K for G; with state dimension ri4ni for all i; if and only if there exists an admissible
ðh; qÞ-eventually periodic synthesis.

Proof
We only need to prove the ‘only if’ direction. Consider an h-solution ðYf ;Yb;YcÞ to the
alternative LMIs (18). Then the following are necessarily valid:

U10Yb0U
n
10 ¼ 0

U1;iþ1Yb;iþ1U
n
1;iþ1%JiYbiJ

n
i

ð22Þ

for i ¼ 0; 1; . . . ; h� 2: From the definitions in (9), we have C2iU1i þD21iU2i ¼ 0 for all i50; and
since in this case B1i ¼ TiD21i for some matrix Ti at each instant in the finite horizon, then
clearly the equality TiC2iU1i ¼ �B1iU2i holds for all i ¼ 0; 1; . . . ; h� 1: Accordingly, as the
matrix U10Yb0U

n
10 ¼ 0; then B10U20Yb0U

n
20B

n
10 ¼ J0Yb0J

n
0 ¼ 0; and so, from (22), we get U11

Yb1U
n
11 ¼ 0; and so on. Consequently, we have U1iYbiU

n
1i ¼ 0 and JiYbiJ

n
i ¼ 0 for i ¼

0; 1; . . . ; h� 1; the first equality implies that traceðWiYbiÞ40 and, together with the second one,
justifies taking Ybi ¼ 0 for i ¼ 0; 1; . . . ; h� 1: Having mentioned this, we assume h ¼ 1 as this
clearly does not detract from the generality of the ensuing proof. So now, the triplet ðYf ;Yb;YcÞ
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is a 1-solution to the LMIs (18) with Yb0 ¼ 0; namely,Pq
i¼0 traceðHiYfiÞ þ

Pq
i¼1 traceðWiYbiÞ52

Pq
i¼1 traceðYciÞ

V10Yf 0V
n
10 þ V1qYfqV

n
1q � F1Yf 1F

n
1 Yc1

Y n
c1 U11Yb1U

n
11 � J0ð0ÞJ n

0 � JqYbqJ
n
q

" #
%0

V11Yf 1V
n
11 � F2Yf 2F

n
2 Yc2

Y n
c2 U12Yb2U

n
12 � J1Yb1J

n
1

" #
%0

..

.

V1;q�1Yf ;q�1V
n
1;q�1 � FqYfqF

n
q Ycq

Y n
cq U1qYbqU

n
1q � Jq�1Yb;q�1J

n
q�1

" #
%0

Then, the second inequality in the above sequence of LMIs implies that V10Yf 0V
n
10 þ

V1qYfqV
n
1q%F1Yf 1F

n
1 : Appealing to the argument in the proof of Theorem 19, there exists a

matrix S ¼ ½S1 S2� such that

SSn
%I ; F1Y

1=2
f 1 S1 ¼ V10Y

1=2
f 0 ; and F1Y

1=2
f 1 S2 ¼ V1qY

1=2
fq

Then defining Yf 1;a ¼ Y
1=2
f 1 S1Sn

1 Y
1=2
f 1 k0 and Yf 1;b ¼ Y

1=2
f 1 ðI � S1Sn

1 ÞY
1=2
f 1 k0; it is clear that the

triplet ð %Yf ; %Yb; %YcÞ is a 2-solution to the alternative LMIs (18), where %Yf ¼ diagðYf 0;Yf 1;a;Yf 2

; . . . ;Yfq;Yf 1;bÞ; %Yb ¼ diagð0; 0;Yb2;Yb3; . . . ;Ybq;Yb1Þ; and %Yc ¼ diagð0; 0;Yc2;Yc3; . . . ;Ycq;Yc1Þ:
Following the same argument recursively, we can construct an N-solution for all N51: &

Remark 25
Following are some comments on the last result. Suppose the existence of an admissible
synthesis for an ðh; qÞ-eventually periodic plant. If the matrices D21i; for i ¼ 0; 1; . . . ; h� 1; have
each full column rank, then the condition B1i ¼ TiD21i becomes trivial, and an admissible ðh; qÞ-
eventually periodic synthesis exists. Also, the case where the finite horizon matrices U1i have
each full column rank guarantees admissible ðh; qÞ-eventually periodic syntheses.

8. CONCLUSIONS

The main contribution of this paper is a new theoretical insight for the analysis and synthesis ‘2-
induced control problems of eventually periodic systems. The paper shows that, for such
systems, the analysis and synthesis solutions can always be provided in terms of finite-
dimensional semidefinite programming problems. As there exists a vast literature on duality for
such problems, one can utilize various duality results such as theorems of alternatives to better
understand the control problem at hand and consequently give new results. In this respect, this
paper serves as a gateway for using semidefinite programming duality results in control
problems involving eventually periodic systems.

Specifically, we utilize herein a theorem of strong alternatives to give a new proof of an
existing analysis result, namely an important version of the KYP lemma for eventually periodic
systems, and further closely study the synthesis conditions for the ‘2-induced control of these
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systems. Based on this, we consider two special cases, where the synthesis if existent can always
be chosen to be of the same eventually periodic class as the plant.

APPENDIX A

Proof of Proposition 16
By the Schur complement formula, the condition Xk0 is equivalent to

X11k0; X n
12ðI � X11X

y
11Þ ¼ 0; X22 � X n

12X
y
11X12k0 ðA1Þ

where Xy11 denotes the Moore–Penrose inverse of X11: Since X11k0; then there exists a matrix S
with full column rank equal to m such that X11 ¼ SSn: Also, from the second inequality in (A1),
we have X12 ¼ ðX11X

y
11Þ

nX12 ¼ X11X
y
11X12 ¼ SGn; where G ¼ X n

12X
y
11S: Finally, as X

n
12X

y
11X12 ¼

GSnðSSnÞySGn ¼ GGn; the last inequality in (A1) can be rewritten as X22kGGn; and hence
there exists a matrix O such that X22 ¼ GGn þ OOn: &

Proof of Proposition 17
To start, for all x 2 Ker Gn; we have xnSSnx4xnGGnx ¼ 0; but since xnSSnx50; then Snx ¼
0 and so x 2 Ker Sn: Hence, Ker Gn � KerSn; which is equivalent to saying that Im S � Im G:
Then, clearly GGyS ¼ S; where Gy denotes the Moore–Penrose inverse of G: Setting O ¼ GyS
and noticing that OOn ¼ GySSnGy*%GyGGnGy*%I complete the proof. &

Proof of Theorem 22 (conclusion)
The proof of Theorem 22 provided in the main text took provisionally ‘constructing a 2-solution
from a 1-solution’ to be feasible. This is proved here.

Given a ð1; qÞ-eventually periodic plant, we provide here the procedure for constructing a 2-
solution from a 1-solution to the alternative LMIs (18) in the case where C2i ¼ I ; D21i ¼ 0 for all
i ¼ 1; 2; . . . ; q: To start, consider the 1-solution ðYf ;Yb;YcÞ to the alternative LMIs (18), where
these LMIs simplify in this case to the following:

Pq
i¼0 traceðHiYfiÞ þ

Pq
i¼0 traceðWiYbiÞ52

Pq
i¼1 traceðYciÞ

U10Yb0U
n
10 ¼ 0

V10Yf 0V
n
10 þ V1qYfqV

n
1q � F1Yf 1F

n
1 Yc1

Y n
c1 �B10Yb0B

n
10 � B1qYbqB

n
1q

" #
%0

V11Yf 1V
n
11 � F2Yf 2F

n
2 Yc2

Y n
c2 �B11Yb1B

n
11

" #
%0

..

.

V1;q�1Yf ;q�1V
n
1;q�1 � FqYfqF

n
q Ycq

Y n
cq �B1;q�1Yb;q�1B

n
1;q�1

" #
%0
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The third LMI in the preceding sequence can be equivalently written as

E2 Y n
c1

Yc1 E1

" #
k0 ðA2Þ

where E1 ¼ F1Yf 1F
n
1 � V10Yf 0V

n
10 � V1qYfqV

n
1qk0 and E2 ¼ B10Yb0B

n
10 þ B1qYbqB

n
1qk0: Let

Y1 ¼ ðB10Yb0B
n
10Þ

1=2 and Y2 ¼ ðB1qYbqB
n
1qÞ

1=2

then E2 ¼ Y1Y
n
1 þY2Y

n
2 : Assume the most general case where Y1 and Y2 are both non-zero

matrices; the special cases require simple proofs that the reader can easily deduce at this point.
By the previous assumption, E2 is non-zero and so there exists a matrix Y with full column rank
such that E2 ¼ ½Y1 Y2�½Y1 Y2�n ¼ YYn: Then clearly there exists a matrix F appropriately
partitioned as ½F1 F2� in accordance with the partitioning of the matrix ½Y1 Y2� such that
FFn ¼ I and YF ¼ ½Y1 Y2�; hence, YF1 ¼ Y1 and YF2 ¼ Y2:

The inequality E1k0 is conveniently written as V10Yf 0V
n
10 þ V1qYfqV

n
1q%F1Yf 1F

n
1 :

Then, following the same argument as that in the proof of Theorem 19, there exists a matrix
S ¼ ½S1 S2� such that

SSn
%I ; F1Y

1=2
f 1 S1 ¼ V10Y

1=2
f 0 ; and F1Y

1=2
f 1 S2 ¼ V1qY

1=2
fq

Note that E1 ¼ OOn; where O ¼ F1Y
1=2
f 1 ðI � SSnÞ1=2: Applying Proposition 16 to inequality

(A2), there exist matrices %O and #O of appropriate dimensions such that

E2 Y n
c1

Yc1 E1

" #
¼

YYn Y%On

%OYn %O%On þ #O#On

" #

Clearly, %O%On
%OOn; and hence, by Proposition 17, there exists a matrix C such that CCn

%I
and OC ¼ %O: Thus, Yc1 ¼ OCYn:

Define D; D1 and D2 by D ¼ CF ¼ ½CF1 CF2� ¼ ½D1 D2�; that is, D1 ¼ CF1 and D2 ¼ CF2:
Note that DDn ¼ CCn

%I : Also, define O1 ¼ OD1 and O2 ¼ OD2: The following are valid:

Y1Y
n
1 Y1O

n
1

O1Y
n
1 OOn � O2O

n
2

" #
k0 and

Y2Y
n
2 Y2O

n
2

O2Y
n
2 O2O

n
2

" #
k0 ðA3Þ

Note that the first inequality in (A3) is valid since OOn � O2O
n
2 kO1O

n
1 : Going back to the

proof of Theorem 19, and setting G in the said proof equal to D2; we define the following
matrices:

Yf 1;a ¼Y
1=2
f 1 ðS1Sn

1 þ ðI � SSnÞ1=2ðI � D2D
n
2 ÞðI � SSnÞ1=2ÞY1=2

f 1 k0

Yf 1;b ¼Y
1=2
f 1 ðS2Sn

2 þ ðI � SSnÞ1=2D2D
n
2 ðI � SSnÞ1=2ÞY1=2

f 1 k0
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where Yf 1;a þ Yf 1;b ¼ Yf 1: Then, we have OOn � O2O
n
2 ¼ F1Yf 1;aF

n
1 � V10Yf 0V

n
10 and

O2O
n
2 ¼ F1Yf 1;bF

n
1 � V1qYfqV

n
1q: Thus, inequalities (A3) can be equivalently written as

V10Yf 0V
n
10 � F1Yf 1;aF

n
1 Yc1;a

Y n
c1;a �B10Yb0B

n
10

" #
%0

V1qYfqV
n
1q � F1Yf 1;bF

n
1 Yc1;b

Y n
c1;b �B1qYbqB

n
1q

" #
%0

where Yc1;a ¼ O1Y
n
1 and Yc1;b ¼ O2Y

n
2 : Notice that

Yc1;a þ Yc1;b ¼ ½O1 O2�½Y1 Y2�n ¼ ODFnYn ¼ Yc1

since D ¼ CF and FFn ¼ I : Consequently, from the preceding, it is obvious that the following
LMIs hold:

traceðH0Yf 0Þ þ traceðH1Yf 1;aÞ þ
Pq

i¼2 traceðHiYfiÞ þ traceðH1Yf 1;bÞ þ
Pq

i¼0 traceðWiYbiÞ

þtraceððW1Þð0ÞÞ52 traceðYc1;aÞ þ
Pq

i¼2 traceðYciÞ þ traceðYc1;bÞ
� �

V10Yf 0V
n
10 � F1Yf 1;aF

n
1 Yc1;a

Y n
c1;a �B10Yb0B

n
10

" #
%0

V11Yf 1;aV
n
11 þ V11Yf 1;bV

n
11 � F2Yf 2F

n
2 Yc2

Y n
c2 �B11Yb1B

n
11 � B11ð0ÞBn

11

" #
%0

V12Yf 2V
n
12 � F3Yf 3F

n
3 Yc3

Y n
c3 �B12Yb2B

n
12

" #
%0

..

.

V1;q�1Yf ;q�1V
n
1;q�1 � FqYfqF

n
q Ycq

Y n
cq �B1;q�1Yb;q�1B

n
1;q�1

" #
%0

V1qYfqV
n
1q � F1Yf 1;bF

n
1 Yc1;b

Y n
c1;b �B1qYbqB

n
1q

" #
%0

Thus, from the given 1-solution, we have constructed a 2-solution to the alternative LMIs (18),
namely the triplet ð %Yf ; %Yb; %YcÞ; where %Yf ¼ diagðYf 0;Yf 1;a;Yf 2; . . . ;Yfq;Yf 1;bÞ; %Yb ¼ diagðYb0;
Yb1; . . . ;Ybq; 0Þ; and %Yc ¼ diagð0;Yc1;a;Yc2; . . . ;Ycq;Yc1;bÞ: &
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