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We study a model of heat conduction with stochastic diffusion of energy. We obtain
a dual particle process which describes the evolution of all the correlation func-
tions. An exact expression for the covariance of the energy exhibits long-range
correlations in the presence of a current. We discuss the formal connection of this
model with the simple symmetric exclusion process. © 2007 American Institute of
Physics. �DOI: 10.1063/1.2711373�

I. INTRODUCTION

Simple systems of particles on a lattice have received considerable attention in the last years,
as they are a testing ground for exploring the properties of far from equilibrium states, for which
at present no general theory is available.

Amongst the most studied models are the so-called exclusion processes in which particles
diffuse amongst empty sites on a lattice. The problem has been attacked with techniques of
statistical mechanics and probability, and many analytic results are available,15,17,20 in particular,
for the simple symmetric exclusion process �SEP�.

One is also interested in the transport of continuous quantities, especially energy. Kipnis,
Marchioro, and Presutti11 �KMP� have introduced a model of energy transport in which the energy
of neighboring sites is randomly redistributed. This model has also been thoroughly studied,
although analytic solutions, in particular, for the steady-state correlation functions, are harder to
obtain than in the SEP. Both the KMP and the SEP have an interesting �and rather exceptional�
feature: the evolution of the K-point correlation functions can be exactly mapped onto a diffusion
equation for K particles. This so-called “duality property”15 is a powerful tool, which in the study
of the SEP yields the complete ergodic theory �see Ref. 15�.

Despite the resemblance between energy and particle transport, studying both models is not a
redundant exercise, as the SEP and the KMP models also show intriguing differences,4 mainly in
their large-deviation functions. Perhaps the most striking is the fact that in the implementation of
an “additivity principle” of the large deviation functions of two subsystems, the density at the
interface has to be maximized in one case, and minimized on the other, in order to obtain the
correct result.6

In this paper we shall study a family of models of energy transport which, we shall argue, are
the natural counterpart of the SEP models. In each site i of the lattice there is a free particle with
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momentum xi. Between any two neighboring sites �i , i+1� and for any small time interval there is
a random exchange of momentum that leaves �xi

2+xi+1
2 � invariant. The same transport terms were

already considered in models of wave propagation in random media.21,1 They later appeared as the
high-energy limit of a chain with deterministic dynamics9 and were also used as a stochastic
perturbation �mimicking nonlinearities� of an oscillator chain.3,8

In the present paper we construct for our energy diffusion model a dual process that expresses
the evolution of the K-point correlation functions of the kinetic energies in terms of a process of
K interacting random walkers. We also give a closed expression for the stationary covariance
�xi

2 ;xj
2� which confirms the presence of long-range correlations in the nonequilibrium stationary

state �as already found before in the SEP Ref. 19�.
The energy diffusion model is clearly very close from the physical point of view to the KMP

model. But at the same time, as we have mentioned, it can be viewed as the continuation of the
SEP family in the following sense: on the one hand, the SEP can naturally be generalized18 to
processes in which up to n particles are allowed per site �the usual SEP has n=1�, and hopping
rates are proportional to the number of particles at the departure and the number of “holes” at the
arrival site. On the other hand, the energy diffusion model can be generalized to having in each
site i of the lattice m free particles with momenta xi,�, �=1, . . . ,m, and the random exchange
between xi,� and xi+1,� leaves 	��xi,�

2 +xi+1,�
2 � invariant. We shall see below that the energy trans-

port model with m particles per site formally corresponds to the continuation of the SEP family to
negative occupation number: m=−n /2. In other words, the energy diffusion model as defined
above is, formally, the SEP with −1/2 particles per site.

The rest of our paper is organized as follows. In Sec. II we define our energy diffusion model.
In Sec. III we construct the dual process of interacting random walkers and derive the basic
corollaries of duality, namely, existence and uniqueness of the stationary measure and expression
of the stationary correlation functions in terms of absorption probabilities. In Secs. IV and V we
derive the exact stationary temperature profile and energy-energy correlation function. In Sec. VI
we show that our model satisfies local equilibrium. In Sec. VII we show a formal connection
between our model and the SEP family, showing that the energy diffusion model can be viewed as
a bosonic version of the SEP. In Sec. VIII we discuss possible asymmetric extensions of our
model.

II. THE MODEL

The model is defined as a stochastic process on N-dimensional vectors �x1 , . . . ,xN��RN which
have to be interpreted as momenta associated with lattice sites �1, . . . ,N�. Additionally, lattice sites
1 and N are in contact with a heat reservoir at temperature TL, respectively, TR.

The process is defined by its generator L �acting on the core of C� functions f with compact
support�,

L = L1 + LN + 	
i=1

N−1

Li,i+1, �2.1�

with

L1f = TL
�2f

�x1
2 − x1

�f

�x1
, �2.2�

LNf = TR
�2f

�xN
2 − xN

�f

�xN
, �2.3�
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Li,i+1f = 
xi
�

�xi+1
− xi+1

�

�xi
�2

�f� . �2.4�

This corresponds in the language of Fokker-Planck equation �or master equation� to the following
evolution equation for the time-dependent probability density p�x , t�:

�p�x,t�
�t

= L*p�x,t� , �2.5�

where L* is the adjoint �in L2�dx�� of L, i.e., more explicitly,

L* = L1
* + LN

* + 	
i=1

N−1

Li,i+1,

L1
*f = TL

�2f

�x1
2 +

�

�x1
�x1f� ,

LN
* f = TR

�2f

�xN
2 +

�

�xN
�xNf� .

Let us first motivate the choice of this generator �2.1�. The L1 and LN part is the generator of
the usual Ornstein-Uhlenbeck process which represents thermaliting noise corresponding to heat
baths at temperatures TL, respectively, TR.

To explain the other part, consider the operator

A = 
x
�

�y
− y

�

�y
�2

. �2.6�

In polar coordinates x=r cos �, y=r sin �, this operator simply reads

A =
�2

��2 ,

which means that in the process �x�t� ,y�t�� corresponding to, Eq. �2.6�, r�t�=r�0� and ��t� per-
forms a Brownian motion on the interval �0, 2��. More precisely, from the Itô formula, it follows
that the generator �2.6� corresponds to the stochastic differential equations �in Itô sense�

dx�t� = − x�t�dt + �2y�t�dB�t� ,

dy�t� = − y�t�dt − �2x�t�dB�t� , �2.7�

where B�t� is the standard Brownian motion. In other words r2�t�=x2�t�+y2�t�=r2�0� with prob-
ability 1 and the angular variable ��t�=arctan�y�t� /x�t�� is a martingale.

The bulk part 	iLi,i+1 of the process �x1�t� , . . . ,xN�t�� corresponds then to the stochastic dif-
ferential equations

dx1�t� = − x1�t�dt + �2x2�t�dB1,2�t� ,

dxi�t� = − 2xi�t�dt + �2xi+1�t�dBi,i+1�t� − �2xi−1�t�dBi−1,i�t�, i � �2,N − 1� ,
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dxN�t� = − xN�t�dt − �2xN−1�t�dBN−1,N�t� , �2.8�

where Bi,i+1�t��i=1, . . . ,N−1� are independent Brownian motions and B0,1�t�=BN,N+1�t�=0. In this
process, the total kinetic energy 	ixi

2�t� is conserved, i.e., 	ixi
2�t�=	ixi

2�0� with probability 1, as
can be seen easily from Itô’s formula.

The full process, i.e., the process with generator �2.1� �including the boundary terms L1 ,LN�,
corresponds to the system of stochastic differential equations

dx1�t� = − 2x1�t�dt + �2x2�t�dB1,2�t� + �2TLdW�t� ,

dxi�t� = − 2xi�t�dt + �2xi+1�t�dBi,i+1�t� − �2xi−1�t�dBi−1,i�t�, i � �2,N − 1� ,

dxN�t� = − 2xN�t�dt − �2xN−1�t�dBN−1,N�t� + �2TRdW��t� , �2.9�

where W�t�, W��t� are two independent Brownian motions, independent of all the other Bi,i+1�t�.

III. DUALITY

The main tool which considerably simplifies the analysis of this model is duality. First note
that the equations for the evolution of correlation functions of degree n for the x process are
closed, i.e., the time derivative of the expectation of a polynomial of degree n in the variables
x1 , . . . ,xn does not involve expectations of polynomials of higher order.9

We now show that the evolution in time of well-chosen polynomials reduces to a Markovian
evolution of their indices. If we interpret the indices of the polynomials as discrete �indistinguish-
able� particle configurations �i.e., specifying for each site i� �0, . . . ,N+1� the number of par-
ticles�, then the evolution of the indices turns out to become a jump process that conserves the
total number of particles. This jump process is called the dual process. A similar situation arises in
the case of the SEP �which is self-dual�,15 in the case of an infinite system of independent random
walkers �where the Poisson polynomials have the self-dual property�,10 and in the KMP model.11

We index our polynomials by a vector �= ��0 , . . . ,�N+1�, �i�N and introduce the notation x
= �x0 ,x1 , . . . ,xN ,xN+1�, where the first and last components are fixed by x0=�TL and xN+1=�TR.
The polynomial D�� ,x� is then defined by

D��,x� = TL
�0TR

�N+1
i=1

N
x2�i

�2�i − 1�!!
. �3.1�

Only even powers of xi need to be considered, since other stationary correlations vanish due to the
invariance of the generator under the transformation xi→−xi. We interpret ���=NN+2 as pre-
scribing the number of particles in each lattice site i� �0, . . . ,N+1�.

In order to introduce the generator of the dual process, we define, for ���, i , j� �0, . . . ,N
+1�, the configuration �i,j to be the configuration obtained from � by removing one particle at i and
adding one particle at j. On the dual variables ���, we then define the following generator:

L	��� ª 2�1�	��1,0� − 	���� + 2�1�2�2 + 1��	��1,2� − 	����

+ 	
i=2

N−1

�2�i�2�i−1 + 1��	��i,i−1� − 	���� + 2�i�2�i+1 + 1��	��i,i+1� − 	�����

+ 2�N�2�N−1 + 1��	��N,N−1� − 	���� + 2�N�	��N,N+1� − 	���� , �3.2�

where 	 :�→R is an arbitrary function of the finite particle configurations.
In other words, we can describe the process generated by L as follows: a configuration �

= ��0 , . . . ,�N+1� represents K particles �or walkers� on �0,1 , . . . ,N+1�, with K=	i=0
N+1�i. The walk-

ers can only jump to neighboring sites and are stuck when arriving to sites 0 or N+1. The rate at
which there is a jump of a walker depends on how many walkers there are at neighboring sites. If
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we have �i walkers at site i, �i−1 walkers at site i−1, and �i+1 walkers at site i+1 �for i=2, . . .N
−1� then each of the walkers at site i jumps to site i−1 at rate 2�2�i−1+1� and to site i+1 at rate
2�2�i+1+1�. At the boundaries, each of the �1 walkers at site 1 is absorbed at site 0 at rate 2 and
it jumps to site 2 at rate 2�2�2+1�; each of the �N walkers at site N is absorbed at site N+1 at rate
2 and it jumps to site N−1 at rate 2�2�N−1+1�. Note that this process conserves the number of
particles, i.e.,

���t�� = 	
i=0

N+1

�i�t� = 	
i=0

N+1

�i�0� = ���0�� .

For a single particle, i.e., �=
i, the dual process is then ��t�=
X�t�, where X�t� is a continuous-
time simple symmetric nearest neighbor random walk jumping at rate 2 and absorbed upon hitting
0 or N+1. For two particles, i.e., �=
i+
 j, the particles perform independent symmetric nearest
neighbor random walks at rate 2, except when they are sitting at neighboring sites. In that case,
i.e., if the two walkers are at neighboring places, one of them jumps to the place of the other one
at rate 6 �and other jumps are still at rate 2�.

Remark 1: This attractive interaction between the dual walkers has to be compared with the
repulsive (hard-core) interaction between the walkers in the SEP.

In order to formulate our duality result and its consequences, we denote by Ê� expectation in
the dual process �i.e., the process with generator �3.2�� starting from �. We can now formulate the
duality result.

Theorem 1: Let ��t� denote the process with generator (3.2) and x�t� the process
�x0�t� ,x1�t� ,x2�t� , . . . ,xN�t� ,xN+1�t��, where �x1�t� , . . . ,xN�t�� is the process with generator (2.1)
and where x0�t�=�TL, xN+1�t�=�TR. Then we have

Ex�D��,x�t��� = Ê��D���t�,x�� . �3.3�

Proof: Start from Eq. �2.1�. For i=1, . . . ,N−1 we have

Li,i+1D��,x� = TL
�0TR

�N+1
 
k��i,i+1�

xk
2�k

�2�k − 1�!!�
�
2�i+1�2�i+1 − 1�

xi
2�i+2

�2�i − 1�!!
xi+1

2�i+1−2

�2�i+1 − 1�!!
− 2�i�2�i+1 + 1�

xi
2�i

�2�i − 1�!!
xi+1

2�i+1

�2�i+1 − 1�!!

− 2�i+1�2�i + 1�
xi

2�i

�2�i − 1�!!
xi+1

2�i+1

�2�i+1 − 1�!!
+ 2�i�2�i − 1�

xi
2�i−2

�2�i − 1�!!
xi+1

2�i+1+2

�2�i+1 − 1�!!
� ,

which implies

Li,i+1D��,x� = �2�i+1�2�i + 1��D��i+1,i,x� − D��,x�� + 2�i�2�i+1 + 1��D��i,i+1,x� − D��,x��� .

Furthermore

L1D��,x� = TR
�N+1
 

k��1�

xk
2�k

�2�k − 1�!!� � 
TL
�0+12�1�2�1 − 1�

x1
2�1−2

�2�1 − 1�!!
− TL

�02�1

x1
2�1

�2�1 − 1�!!
�

= 2�1�D��1,0,x� − D��,x��

and

LND��,x� = TL
�0
 

k��N�

xk
2�k

�2�k − 1�!!� � 
TR
�N+1+12�N�2�N − 1�

xN
2�N−2

�2�N − 1�!!
− TR

�N+12�N

xN
2�N

�2�N − 1�!!
�

= 2�N�D��N,N+1,x� − D��,x�� .
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Therefore, we obtain

LD��,x� = LD��,x� , �3.4�

where in the lhs of Eq. �3.4� the operator L is working on the x variable, and in the rhs the operator
L is working on the � variable.

This relation then lifts to the semigroups and the processes via a standard argument, see, e.g.,
the proof of Theorem 1.1 page 363 in Ref. 15. �Notice that informally by Eq. �3.4� ExD�� ,x�t��
=etLD�� , · ��x�=etLD�· ,x����= Ê�D���t� ,x��. �

Notice that in the dual process all particles are eventually absorbed at one of the boundaries 0,
N+1. Hence, the limiting configuration of the dual process starting from ��� will always be of
the form k
0+ l
N+1, where k+ l=	i�i. We say that a function f :�→R is harmonic for the process

generated by L if f���= Ê��f���t���. Since the configurations of the type k
0+ l
N+1 are absorbing,
the corresponding absorption probabilities

ckl��� = P̂������ = k
0 + l
N+1� �3.5�

are harmonic.
The following propositions give some consequences of duality.
Proposition 1: If TL=TR=T, then the unique stationary measure of the process x�t�

= �x1�t� , . . . ,xN�t�� is the Gaussian product measure with probability density function

�T�x� =
1

�2�T�N/2 exp
− 	
i=1

N
xi

2

2T
� . �3.6�

From every initial condition �x1 , . . . ,xN� the process converges in distribution to �T.
Proof: We first show stationarity of �T. If TL=TR=T, for the Gaussian measure �3.6� we have

� D��,x��T�x�dx = T���,

where ���=	i=1
N �i. Therefore, using Eq. �3.3�

� Ex�D��,x�t����T�x�dx = Ê�� D���t�,x��T�x�dx = Ê�T
���t�� = T��� =� D��,x��T�x�dx ,

�3.7�

where in the third equality we used that in the dual process the number of particles is conserved.
Next, to prove the convergence, remember that in the dual process eventually all particles are
absorbed at 0 or at N+1. Therefore, if TL=TR=T,

lim
t→�

Ex�D��,x�t��� = 	
k,l:k+l=���

P̂������ = k
0 + l
N+1�TkTl = T��� =� D��,x��T�x�dx . �3.8�

�

Proposition 2: For all TL�TR, there is a unique stationary measure TL,TR
which has finite

moments of every order, and for this measure one has

TL,TR
�D��,x�� = 	

k,l:k+l=���
TL

kTR
l ckl��� , �3.9�

where ckl��� are the absorption probabilities defined in Eq. �3.5�.
Proof: If TL,TR

is invariant and has finite moment of all order, then, by Eq. �3.3� we have
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� D��,x�TL,TR
�dx� = lim

t→�
� Ex�D��,x�t���TL,TR

�dx� =� �lim
t→�

E�
ˆ �D���t�,x���TL,TR

�dx�

= 	
k,l:k+l=���

TL
kTR

l P̂������ = k
0 + l
N+1� , �3.10�

where in the last equation we used that eventually all particle are absorbed at one of the absorbing
states 0 or N+1. Conversely, if Eq. �3.9� holds, then, since the absorption probabilities are har-
monic for the dual process, by Eq. �3.3� we have

� D��,x�TL,TR
�dx� =� Ê��D���t�,x��TL,TR

�dx� =� Ex�D��,x�t���TL,TR
�dx� ,

which shows invariance of TL,TR
. �

IV. TEMPERATURE PROFILE

The following proposition shows the convergence to and linearity of the limiting temperature
profile �linearity of the stationary temperature profile has been shown before in Ref. 9�.

Proposition 3:

a) Starting from x�RN, the local temperature at site i satisfies

Ex�xi
2�t�� = Êi�xX�t�

2 � = 	
j

pt�i, j�xj
2, �4.1�

where X�t� is continuous-time simple symmetric random walk jumping at rate 2, and ab-
sorbed at 0, N+1, and where pt�i , j� denotes the transition probability of this random walk
to go from i to j in time t.

b) The stationary temperature profile is given by

Ti ª TL,TR
�xi

2� = TLP̂i�X��� = 0� + TRP̂i�X��� = N + 1� = TL
1 −
i

N + 1
� + TR
 i

N + 1
� .

�4.2�

c) For the stationary local temperature autocorrelation function we have

ETL,TR
�xi

2�0�xj
2�t�� − TiTj = 	

k=1

N

P̂ j�Xt = k,� � t�TL,TR
�xi

2xk
2� − TiTjP̂ j�� � t� , �4.3�

where � is the absorption time of the random walk �Xt : t�0�. As a consequence,

lim
t→�

ETL,TR
�xi

2�0�xj
2�t�� − TiTj

P̂ j�� � t�
= − TiTj +

1

N
	
k=1

N

TL,TR
�xi

2xk
2� . �4.4�

Proof:

a� This follows from Eq. �3.3� and the fact that the dual process starting from a single particle
at i is given by the random walk X�t�.

b� This follows by taking the limit t→� in Eq. �4.1� and the well-known formula for the
absorption probabilities of the random walk X�t�.

c� The first statement �Eq. �4.3�� follows from Eqs. �4.1� and �4.2�. The second statement �Eq.
�4.4�� follows from the fact that the quasistationary distribution of the random walk X�t� is
the uniform measure on �1, . . . ,N�, i.e., for any function f : �1, . . . ,N�→R:
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lim
t→�

Êi�f�Xt��� � t� =
1

N
	
j=1

N

f�j� .

�

V. STATIONARY TWO POINT CORRELATION FUNCTION

We now study the two point function TL,TR
�xi

2xj
2�. In the dual process we then have two

particles starting at sites i and j of which we denote the positions at time t by �Xt ,Yt�. From Eq.
�3.2� we see that these two particles behave as two independent random walkers �with rate 2� as
long as they are not at neighboring sites. When they are at neighbor sites then on the next step they
prefer to be on the same site compared to being further separated.

From Eq. �3.9� we infer

TL,TR
�xi

2xj
2� = �1 + 2
i,j��TL

2P̂ij��X�,Y�� = �0�� + TR
2P̂ij��X�,Y�� = �N + 1��

+ TLTRP̂ij��X�,Y�� = �0,N + 1��� . �5.1�

Unfortunately, now the absorption probabilities cannot be obtained by elementary probabilistic
considerations since the two random walkers of the dual process are interacting �attracting each
other when they are at nearest neighbor sites�. We therefore proceed by directly solving the linear
equations for yi,j =TL,TR

�xi
2xj

2�. We restrict ourself to the case 1� i� j�N since TL,TR
�xi

2xj
2� is

obviously symmetric. We further denote yi=Ti=TL,TR
�xi

2�.
The yi,j then satisfy the following system of linear equations:

3yi−1,i − 2yi,i + 3yi,i+1 = 0, j = i ,

yi−1,i+1 + yi+1,i+1 + yi,i + yi,i+2 − 8yi,i+1 = 0, j = i + 1,

yi−1,j + yi+1,j + yi,j−1 + yi,j+1 − 4yi,j = 0, j � i + 2, �5.2�

with boundary conditions given by

yi,N+1 = yiyN+1 = yiTR, i = 0, . . . ,N + 1,

y0,j = y0yj = TLyj, j = 0, . . . ,N + 1. �5.3�

Plugging in the ansatz

yi,j = A + Bi + Cj + Dij ,

we find that these equations have the following solution: if j� i then

yi,j = TL
2 + i

TR − TL

N + 1

TL + 2

TR − TL

N + 3
� + j

TL�TR − TL�
N + 1

+ ij
�TR − TL�2

�N + 1��N + 3�
, �5.4�

and for the diagonal i= j we have

yi,i = 3
TL
2 −

�TR − TL�2

�N + 1��N + 3�� + 6i
TR − TL

N + 1

TL +

TR − TL

N + 3
� + 3i2 �TR − TL�2

�N + 1��N + 3�
. �5.5�

The solution can also be written as a quadratic form in TL and TR and then the coefficients of the
quadratic form add up to 1 outside of diagonal and to 3 on the diagonal �as can be seen directly
from Eq. �5.1��. Explicitly
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yi,j = 
1 −
i

N + 3
�
1 −

j

N + 1
�TL

2 +
i�2 + j�

�N + 1��N + 3�
TR

2

+ �1 − 
1 −
i

N + 3
�
1 −

j

N + 1
� −

i�2 + j�
�N + 1��N + 3��TLTR �5.6�

and

yi,i = 3�
1 −
i

N + 3
�
1 −

i

N + 1
� −

1

�N + 1��N + 3��TL
2 + 3� i�2 + i�

�N + 1��N + 3�
−

1

�N + 1��N + 3��TR
2

+ 3�1 − 
1 −
i

N + 3
�
1 −

i

N + 1
� −

i�2 + i� − 2

�N + 1��N + 3��TLTR. �5.7�

Comparing this with Eq. �5.1� we can read of the expressions for the absorption probabilities.
For example, for i� j

P̂ij�X� = 0,Y� = 0� = 
1 −
i

N + 3
�
1 −

j

N + 1
� . �5.8�

Remark that this probability is larger than in the case of independent random walkers where the
expression would be �1− �i /N+1���1− �j /N+1��. This means that due to the attractive interaction
of the walkers, they have a �small� preference to be absorbed at the same site. This effect is,
however, negligible �of order 1 /N� as N→�.

Finally, we compute the covariance

ci,j = TL,TR
�xi

2xj
2� − TL,TR

�xi
2�TL,TR

�xj
2�

and we obtain

ci,j =
2i�N + 1 − j�

�N + 3��N + 1�2 �TR − TL�2, �5.9�

ci,i =
�2N2 + 8N + 3�TL

2 + 6TLTR − 3TR
2

�N + 1��N + 3�
+ i

2�TR − TL���3 + 2N�TL + 3TR�
�N + 1��N + 3�

+ i2 2N�TR − TL�2

�N + 1�2�N + 3�
.

�5.10�

Remark 2: Notice that the covariance ci,j manifests the presence of long-range correlations
which are believed to be typical for nonequilibrium steady states.19 The fact that the covariance is
positive is due to the attractive character of the interaction between the dual walkers. This has to
be contrasted with the case of the SEP model where the covariance is negative and the interaction
between walkers is repulsive.

We notice that in ci,j appears Green’s function of the simple �continuous time� random walk
Xt,

G�i, j� =
2i�N + 1 − j�

�N + 1�
, �5.11�

i.e., the expected total time spent at i starting at j before being absorbed at 0 or N+1. Moreover,
for 0��1��2�1,

lim
N→�

NcN�1,N�2
= 2�TR − TL�2�1�1 − �2� . �5.12�

From Eq. �5.12�, in the spirit of Ref. 14, one expects that in the limit N→� the random distribu-
tions
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Y�
N
ª

1
�N

	
i=1

N

�xi
2 − T��
�� − i/N�

converge jointly to a Gaussian random field with covariance

C��1,�2� = 2�TL − TR�2�1�1 − �2� + 2T2��1�
��1 − �2� ,

where

T��� = lim
N→�

T��N� = �1 − ��TL + �TR, �5.13�

with ��N� denoting the integer part of �N.

VI. LOCAL EQUILIBRIUM

From the computation of the stationary two point correlation, we infer, in particular, that for
�� �0,1�,

lim
N→�

TL,TR
�x��N�

4 � = 3T2��� =
1

�2�T���
� x4e−x2/2T���dx ,

while for each i�N , i�0,

lim
N→�

TL,TR
�x��N�

2 x��N�+i
2 � = T2��� = 
 1

�2�T���
� x2e−x2/2T���dx�2

,

where T� is defined in Eq. �5.13�.
This suggests that “around each macroscopic point �,” which we associate with the mi-

cropoint ��N�, there is a Gaussian “local equilibrium” distribution with variance T���. More
precisely we give the following definition cf. Ref. 11.

Definition 1: Let TL and TR be fixed and let �� �0,1�. We say that local equilibrium holds if
for all n�N, for all k1 , . . . ,kn�N, and for all i1 , . . . , in� �1, . . . ,N� fixed, we have

lim
N→�

� D
	
l=1

n

kl
��N�+il
,x�TL,TR

�dx� = 
l=1

n � x2kl

�2kl − 1�!!
�T����dx� = �T����	l=1

n kl, �6.1�

where �T��� denotes the measure of a centered Gaussian variable with variance T���.
This is equivalent with the requirement that

lim
N→�

���N��TL,TR
� = G�T���� , �6.2�

where ���N� denotes spatial shift, G��� denotes the product measure on RN with marginals that are
normally distributed with mean zero and variance �2, and where the limit is in the sense that
expectations of polynomials of type D�� ,x� converge to the corresponding expectations in the
Gaussian measure.

The following lemma shows that factorization of the absorption probabilities is sufficient for
local equilibrium.

Lemma 1: Let TL and TR be fixed and let �� �0,1�. Suppose that for all n�N, for all
k1 , . . . ,kn�N, for all i1 , . . . , in� �1, . . . ,N� fixed, and for all K, L�N with K+L=	l=1

n kl,

lim
N→�

P̂	l=1
n kl
��N�+il

����� = K
0 + L
N+1� , �6.3�

= lim
N→�

P̂��N��X��� = 0�KP̂��N��X��� = N + 1�L, �6.4�
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then local equilibrium holds.
Proof: Combination of Eq. �3.9� with Eq. �6.4� gives

lim
N→�

� D
	
l=1

n

kl
��N�+il
,x�TL,TR

�dx�

= 	
K,M:K+M=k1+¯+kn

lim
N→�

P̂��N��X��� = 0�MP̂��N��X��� = N + 1�KTL
MTR

K

= lim
N→�

�P̂��N��X��� = 0�TL + P̂��N��X��� = N + 1�TR�k1+¯+kn

= lim
N→�

T��N�
k1+¯+kn = T���k1+¯+kn. �6.5�

�

In order to see heuristically why the factorization property for the absorption probabilities
holds, it suffices to see that if we start n dual random walkers X1�t� , . . . ,Xn�t� from initial positions
��N�+ il, l=1, . . . ,n then we can couple them with n independent random walkers X1��t� , . . . ,Xn��t�
started at the same initial positions such that for all ��0 and for all l� �1, . . . ,n�,

Xl�t� − Xl��t� � ��t , �6.6�

with probability close to 1 for t large enough. Indeed, if dual walker l is absorbed at 0, then this
happens at a time of the order N2, and then, for large N, Eq. �6.6� tells that the corresponding
independent walker is at distance less than �N from 0 at that time. Therefore, the probability that
this independent walker is absorbed at N+1 is at most �N / �N+1���. So the probability �in the
coupling� that dual walker Xl and corresponding independent walker Xl� are absorbed at different
points is less than �. Therefore, if we have the coupling with property �6.6�, we have for all
�1 , . . . ,�n� �0,N+1�,

lim
N→�

�P̂�X1��� = �1, . . . ,Xn��� = �l� − P��X1���� = �1, . . . ,Xn���� = �l�� = 0,

where P̂ refers to the probability measure on path space for dual walkers starting at positions
��N�+ i1 , . . . , ��N�+ in, and P� refers to the probability for independent walkers starting at positions
��N�+ i1 , . . . , ��N�+ in.

To see that such a coupling exists, we observe that in the dual process there is only interaction
of the walkers when they are at neighboring positions. In that case they jump with higher rate
�than independent walkers� to the same position. The coupling then consists in letting the inde-
pendent walkers and the dual walkers perform the same jumps and having extra jumps for the dual
walkers �which are not performed by the independent walkers� when they are at neighboring
positions. The total time that dual walkers are at neighboring positions in the time interval �0, t� is
less than t�1/2�+
 with probability close to 1. So the difference between the position of the inde-
pendent walker and the dual walker is a sum of the order of t�1/2�+
 independent increments taking
values ±1, which is bounded by �t�1/2�+
��1/2�+
� t�1/2�−
� with high probability.

A similar idea of coupling has been implemented in the context of the simple SEP, see Ref. 5.
For the full proof of the factorization property along these lines we, however, refer to future work.

VII. THE ENERGY-DIFFUSION MODEL AND THE SYMMETRIC EXCLUSION PROCESS
FAMILY: BOSONS VERSUS FERMIONS

In this section we shall see the formal relation between the SEP family and the energy-
diffusion model. This can help as a guide to see the similarities in methods for treating both cases.

We shall first consider a generalization of the energy-diffusion model to the case in which
there are m momenta per site, and kinetic energy is exchanged between any two momenta in
neighboring sites. The generator is again Eq. �2.1�, with now
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L1 = 	
�=1

m �TL
�2

�x1,�
2 − x1,�

�

�x1,�
� , �7.1�

LN = 	
�=1

m �TR
�2

�xN,�
2 − xN,�

�

�xN,�
� , �7.2�

Li,i+1 =
1

m
	

�,�=1

m 
xi,�
�

�xi+1,�
− xi+1,�

�

�xi,�
�2

. �7.3�

The factor 1 /m multiplying Li,i+1 is rather arbitrary, it sets the time scale. We wish to show the
connection of this family of models �labeled by m� with the �partial� exclusion process, with
maximal occupancy n, and in which the jumping rate is proportional both to the number of
particles on the departure configuration and to the number of holes �n minus the number of
particles� in the arrival configuration. The evolution operator of this process can be written as the
Hamiltonian H of the spin j=n /2 ferromagnet18

H = − LSEP
* , �7.4�

with

LSEP
* =

1

j
	

i

�Ji
+Ji+1

− + Ji
−Ji+1

+ + 2Ji
oJi+1

o − 2j2� + ��J1
− − J1

o − j� + ��J1
+ + J1

o − j�

+ 
�JL
− − JL

o − j� + ��JL
+ + JL

o − j� . �7.5�

The factor 1 / j is analogous to the factor 1 /m in Eq. �7.3�. The operators Ji
+ ,Ji

− ,Ji
o act on the

Hilbert space corresponding to 0�r�n particles per site � i�r�i as follows:

Ji
+�r�i = �2j − r��r�i,

Ji
−�r�i = r�r�i,

Ji
o�r�i = �r − j��r�i. �7.6�

They satisfy the commutation relations of the SU�2� algebra:

�Ji
o,Ji

±� = ± Ji
±, �Ji

−,Ji
+� = − 2Ji

o, �7.7�

and they can be transformed to the conventional SU�2� matrices by a similarity transformation.
Representations are labeled by the squared angular momentum operator

J2�jM� = j�j + 1��jM� , �7.8�

with j=n /2, so that the ordinary SEP �with �0, 1� occupation� corresponds to a representation of
spin 1/2.

Going back to the generalized model defined above, we can rewrite the generator of the
energy diffusion process as the Hamiltonian H=−L* with

L* =
4

m
	

i

Ki

+Ki+1
− + Ki

−Ki+1
+ − 2Ki

oKi+1
o +

m2

8
� + 2
T1K1

+ − K1
o −

m

4
� + 2
TLKL

+ − KL
o −

m

4
� ,

�7.9�

where we have defined, in each site,
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Ki
+ =

1

2	
�

xi,�
2 ,

Ki
− =

1

2	
�

�2

�xi,�
2 ,

Ki
o =

1

4	
�
� �

�xi,�
xi,� + xi,�

�

�xi,�
� . �7.10�

These satisfy the SU�1,1� relations

�Ki
o,Ki

±� = ± Ki
±, �Ki

−,Ki
+� = 2Ki

o �7.11�

�note the sign difference with respect to SU�2��. Representations are labeled in a manner analo-
gous to SU�2�:

Ki
2�kM� = �Ki

o�2 −
1

2
�Ki

+Ki
− + Ki

−Ki
+��kM� = k�k − 1��kM� ,

Ki
o�kM� = m�kM� . �7.12�

To identify which is the representation �i.e., the value of k�, we check the value of Ki
2 as applied

to the constant �which is the zero eigenvalue eigenvector of L*�:

Ki
−�1� = 0, Ki

o�1� = k�1� =
m

4
�1�, Ki

2�1� = k�k − 1��1� =
m

4

m

4
− 1��1� . �7.13�

Hence k=m /4, and, in particular, k=1/4 for the process with one velocity per site.
Consider the coherent-state representation of vectors and operators �cf. Refs. 16, 12, and 13�:

��zi� = �zi��� with �zi� = ezi
*Ki

+
�0� ,

��zi� = �zi��� with �zi� = ezi
*Ji

+
�0� �7.14�

�where �0� is the state annihilated by Ji
− or Ki

−�. The group operators act on such states as

�zi�Ki
+��� = �zi

2 �

�zi
+ 2kzi��zi��� ,

�zi�Ki
−��� =

�

�zi
�zi��� ,

�zi�Ki
o��� = �zi

�

�zi
+ k��zi��� , �7.15�

and

�zi�Ji
+��� = �− zi

2 �

�zi
+ 2jzi��zi��� ,

�zi�Ji
−��� =

�

�zi
�zi��� ,
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�zi�Ji
o��� = �zi

�

�zi
− j��zi��� . �7.16�

Now, writing the generator of the energy diffusion model and the SEP models in these
representations, it is easy to check that models with k=m /4 of one class formally map into models
with −j=−n /2 of the other class, albeit with somewhat different boundary terms.

Another way to see the relation between these two families of models is to note that we can
rewrite the generator L of the energy transport model with even m in terms of m /2 bosons ai� and
m /2 bosons bi� in each site

ai�aj�
† − aj�

† ai� = 
ij
��, bi�bj�
† − bj�

† bi� = 
ij
�� �7.17�

�all other commutators vanish� and writing

Ki
+ = 	

�

ai�
† bi�

† , Ki
− = 	

�

bi�ai�,

Ki
o =

1

2	
�

�ai�
† ai� + bi�

† bi�� + r . �7.18�

We can similarly write the generalized SEP with allowed occupancy n with n fermions ai� and n
fermions bi� in each site

ai�aj�
† + aj�

† ai� = 
ij
��, bi�bj�
† + bj�

† bi� = 
ij
�� �7.19�

�all other anti-commutators vanish� and writing

Ji
+ = 	

�

ai�
† bi�

† , Ji
− = 	

�

bi�ai�,

Ji
o =

1

2	
�

�ai�
† ai� + bi�

† bi�� − n . �7.20�

Hence, SEP and energy diffusion models are essentially fermionic and bosonic counterparts of
the same models. This is perhaps not surprising, in view of the fact that Poisson processes �as the
SEP� are related to Fermions, just as Gaussian processes are related to bosons.7,2

VIII. ASYMMETRIC GENERALIZATIONS

In this last section we briefly indicate how to introduce asymmetry in our model without
breaking the bulk energy conservation law. This is in the spirit of introducing a bias to move in a
preferred direction in the simple SEP.

Consider as the first example two neighboring sites with momenta x ,y. Going back to Eq.
�2.6�, we may add to the diffusion term a bias:

Adrift = 
x
�

�y
− y

�

�x
�2

+ E�x,y�
x
�

�y
− y

�

�x
� , �8.1�

and its obvious generalization to a chain then becomes the asymmetric analog of the bulk part of
Eq. �2.1�,

	
i

Li,i+1
drift = 	

i

xi

�

�xi+1
− xi+1

�

�xi
�2

+ E�xi,xi+1�
xi
�

�xi+1
− xi+1

�

�xi
� . �8.2�

033301-14 Giardinà, Kurchan, and Redig J. Math. Phys. 48, 033301 �2007�

Downloaded 18 Aug 2008 to 131.155.151.52. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



A possible choice for the drift function E�x ,y� is E�x ,y�=Exy. This form of the drift has the
advantage of being a product of two K operators in Eq. �7.10�, which is also the case if one goes
from the symmetric to the asymmetric exclusion process �in the quantum spin chain language�.
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