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DUALITY AND POLYNOMIAL TESTING OF
TREE HOMOMORPHISMS

P. HELL, J. NEŠETŘIL, AND X. ZHU

Abstract. Let H be a fixed digraph. We consider the H-colouring problem,
i.e., the problem of deciding which digraphs G admit a homomorphism to H.
We are interested in a characterization in terms of the absence in G of certain
tree-like obstructions. Specifically, we say that H has tree duality if, for all
digraphs G, G is not homomorphic to H if and only if there is an oriented
tree which is homomorphic to G but not to H. We prove that if H has tree
duality then the H-colouring problem is polynomial. We also generalize tree
duality to bounded treewidth duality and prove a similar result. We relate
these duality concepts to the notion of the X-property studied by Gutjahr,
Welzl, and Woeginger.

We then focus on the case when H itself is an oriented tree. In fact,
we are particularly interested in those trees that have exactly one vertex of
degree three and all other vertices of degree one or two. Such trees are called
triads. We have shown in a companion paper that there exist oriented triads
H for which the H-colouring problem is NP -complete. We contrast these

with several families of oriented triads H which have tree duality, or bounded
treewidth duality, and hence polynomial H-colouring problems. If P 6= NP ,
then no oriented triad H with an NP -complete H-colouring problem can have
bounded treewidth duality; however no proof of this is known, for any oriented
triad H. We prove that none of the oriented triads H with NP -complete H-
colouring problems given in the companion paper has tree duality.

1. Introduction

A homomorphism of a digraph G to a digraph H is a mapping of the vertex sets
f : V (G) → V (H) which preserves the edges, i.e., such that xy ∈ E(G) implies
f(x)f(y) ∈ E(H). If a homomorphism of G to H exists, we say G is homomorphic
to H and write G→ H. Otherwise we write G 6→ H. A digraph G is a core if it is
not homomorphic to any of its proper subgraphs.

Let H be a fixed digraph. The H-colouring problem is the decision problem in
which we are given an arbitrary digraph G and are to decide whether or not G
is homomorphic to H. The name is due to the fact that for undirected graphs
the Kn-colouring problem simply asks whether or not G is n-colourable. It was
shown in [17] that for undirected graphs H-colouring is polynomial when H is
bipartite and NP -complete otherwise. The H-colouring problem for digraphs has
received much recent attention, [3, 5, 6, 10, 11, 14, 15, 20, 21, 22, 23, 27, 28, 35].
Unlike the situation for undirected graphs, the boundary between easy and hard
H-colouring problems for digraphs H is not understood, and it is not even known
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whether all H-colouring problems are polynomial or NP -complete. Many examples
of digraphs H with polynomial and with NP -complete H-colouring problems are
given in [3, 4, 5, 6, 10, 11, 26, 27, 28]. In a companion paper [20], we exhibit oriented
trees H with NP -complete H-colouring problems. Welzl et al. [15] were the first to
discover such an oriented tree H. Their tree has 287 vertices and maximum degree
5. The simple trees given in [20] are oriented triads, i.e., the underlying undirected
trees have one vertex of degree three and all other vertices of degree one or two.
The smallest oriented tree in this family has only 45 vertices.

Thus H-colouring problems can be hard even when H is an oriented tree. How-
ever, there are also many oriented trees H for which there is structure to the
H-colouring problem, which can be exploited to find a polynomial algorithm. The
class of digraphs homomorphic to such a “nice” oriented tree H can be character-
ized by the absence of certain simple obstructions. A typical example is the case
of oriented paths. According to [23], a digraph G is homomorphic to an oriented
path H if and only if each oriented path P homomorphic to G is also homomorphic
to H. Thus in this case the obstructions are oriented paths P homomorphic to G
but not to H. To make this obstruction point of view more explicit we restate the
characterization (for the case when H is an oriented path) as follows: A digraph G
is not homomorphic to H if and only if there exists an oriented path P which is
homomorphic to G but not to H. We shall state all our results in this “negative”
form to emphasize the obstruction point of view. Another class of digraphs with a
similar characterization theorem is the class of unbalanced cycles. An unbalanced
cycle is an oriented cycle in which the number of forward edges is different from
the number of backward edges (with respect to some fixed traversal of the cycle).
According to [22], a digraph G is not homomorphic to an unbalanced cycle H if and
only if there is an oriented cycle C homomorphic to G but not homomorphic to H.
(The result in [22] gives a more specific condition from which this characterization
easily follows.)

In this paper we are interested in digraphs (in particular oriented trees) H for
which there is a similar characterization of the class of digraphs G homomorphic to
H. Specifically, we say that H has tree duality if the following property holds for
all digraphs G: A digraph G is not homomorphic to H if and only if there exists
an oriented tree homomorphic to G but not to H. We have found tree duality to
be a surprisingly useful property. In particular, we shall prove that if H has tree
duality then the H-colouring problem is polynomial.

Observe that oriented paths H have tree duality, by the above result from [23],
and hence the H-colouring problem is polynomial for each oriented path H; this
was first proved in [15].

The class of digraphs H with polynomial H-colouring problems can be further
enlarged by generalizing tree duality to treewidth-k duality: An undirected graph
is a k-tree if it can be obtained from a k-clique by repeatedly adding a vertex
joined to k existing vertices which form a k-clique. (Thus a tree is a 1-tree.) An
undirected graph is said to have treewidth k, or to be a partial k-tree, if it is a
spanning subgraph of a k-tree. Partial k-trees have been found to admit efficient
algorithms for many hard computational problems [33]. We say that an oriented
graph has treewidth k (or is an oriented partial k-tree) if its uderlying undirected
graph has treewidth k. We say a digraph H has treewidth-k duality if the following
property holds for all digraphs G: A digraph G is not homomorphic to H if and
only if there exists an oriented partial k-tree homomorphic to G but not to H. It
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is easy to see that treewidth-1 duality is equivalent to tree duality. We say that H
has bounded treewidth duality if it has treewidth-k duality for some positive integer
k. We shall also show that if H has bounded treewidth duality then H-colouring is
polynomial. Since cycles have treewidth 2, we conclude from the above result from
[22] that unbalanced cycles H have treewidth-2 duality, and hence the H-colouring
problem is polynomial. This was first proved in [14] and independently [35], cf.
also [10].

In general, we use the word “duality” to mean a statement which relates the
non-existence of a certain homomorphism to the existence of certain other homo-
morphisms. To be precise, let C be a fixed class of digraphs. For a digraph H we
denote by (→ H)C the class of digraphs from C which are homomorphic to H. For
a class G of digraphs, we denote by (G 6→)C the class of all digraphs H ∈ C such
that no member of G is homomorphic to H. When G consists of a single graph G
we write (G 6→)C for (G 6→)C, and when C is the class of all graphs, or digraphs, we
omit the subscript C. A duality result is a statement of the form

(→ H)C = (G 6→)C.(∗)

Many known results which are considered “duality theorems” can be presented
in this format. For instance, the well known fact that an undirected graph is
bipartite if and only if it contains no odd cycles, can be written as (→ K2) =
(Codd 6→) (where Codd is the set of all odd cycles). The duality statement (→ Kn)C
= (Kn+1 6→)C says that the size of the maximum clique in G is equal to the
chromatic number of G, for every graph G ∈ C. Thus when C consists of all com-
plements of comparability graphs we obtain Dilworth’s theorem, when C consists of
all complements of bipartite graphs we obtain Konig’s theorem, and so on ([13, 7]).
Nešetřil, Pultr, and Komárek [31, 25] studied duality schemes (∗) in which C is
the class of all graphs or digraphs and G consists of a single graph or digraph G.
Häggkvist and Hell [16] studied duality schemes (∗) for the class C of graphs and
digraphs of bounded degree. Our definition of tree duality (treewidth-k duality)
is easily seen to be equivalent to the statement (→ H) = (TH 6→), where TH is
the class of all oriented trees (respectively oriented partial k-trees) which are not
homomorphic to H.

Gutjahr, Welzl and Woeginger [15] introduced the concept of extended X-
property of a digraph. Digraphs H with this property have polynomial H-colouring
problems. Many known digraphs H with polynomial H-colouring problems in fact
do have the extended X-property. However, there are also many known digraphs H
with polynomial H-colouring problems which do not have the extended X-property.
We shall show that the class of digraphs H with bounded treewidth duality (re-
spectively of balanced digraphs with tree duality) is strictly larger than the class
of digraphs (respectively balanced digraphs) with the extended X-property. More-
over, we do not know of any digraph H with polynomial H-colouring problem,
which does not have bounded treewidth duality.

In the second half of the paper we focus on oriented trees. We shall prove that
many classes of oriented trees, in particular of oriented triads, have tree duality.
We shall also describe a family of oriented triads which have treewidth-2 duality
and some members of which do not have tree duality. Therefore, all these oriented
trees H admit polynomial H-colouring algorithms. On the other hand, if P 6= NP
then no oriented tree H with NP -complete H-colouring problem can have bounded
treewidth duality. We do not have a proof of this for any oriented tree H. (For
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certain oriented cycles H, this has been proved in [32].) However, we were able
to verify that many of the oriented trees H with known NP -complete H-colouring
problems do not have tree duality.

An oriented path P in a digraph G is an ordered sequence of vertices, P =
[p0, p1, . . . , pn], such that for each i = 0, 1, . . . , n − 1 either pipi+1 or pi+1pi is an
edge of G; the former are called forward edges of P , and the latter backward edges
of P . We denote by P−1 the oriented path [pn, pn−1, . . . , p0]; note that P−1 is the
same digraph as P , only the direction of its traversal has changed (and so forward
edges have become backward edges and vice versa). The algebraic length al(P ) of
an oriented path P is the number of forward edges minus the number of backward
edges of P ; the net length nl(P ) of P is the absolute value of al(P ). An oriented
path of net length n is minimal if it contains no proper subpath of net length
n. Oriented cycles in G, and their algebraic length and net length are defined
analogously. A balanced cycle is an oriented cycle of net length zero. A digraph G
is balanced if each oriented cycle in G is balanced. If G is balanced then for any
two vertices x, y of G, all x, y-paths in G have the same algebraic length; we denote
this length by dG(x, y). Two vertices x, y of a balanced digraph G are said to be
on the same level if dG(x, y) = 0. The height ht(G) of a balanced digraph G is the
maximum net length of an oriented path in G.

2. The role of duality in polynomial homomorphism algorithms

In this section we prove that if a digraphH has tree duality, or bounded treewidth
duality, then the H-colouring problem is polynomial. Our proof builds on tech-
niques developed in [15], and is related to early work on constraint satisfaction
algorithms [29], and monadic second-order logic [1, 8]. To simplify the exposi-
tion we will concentrate on tree duality and only briefly mention the extensions to
bounded treewidth duality.

We first describe a procedure called the consistency check. Suppose that G and
H are digraphs, and (e1, e2, · · · , em) is an enumeration of the edges of G. Thus
m = |E(G)|; also let n = |V (G)| and k = |V (H)|. A labeling of G with respect to
H is a mapping l of V (G) to the family of subsets of V (H). (Thus a label l(v) of
a vertex v ∈ V (G) is a set of vertices of H; we think of l(v) as the set of “possible
images” of the vertex v.) We say that a labeling l is consistent with an edge ei = xy,
if for any r ∈ l(x) there is a s ∈ l(y) such that rs ∈ E(H), and for any s ∈ l(y)
there is an r ∈ l(x) such that rs ∈ E(H). The size of a labeling l of G is the sum
of |l(v)| over all vertices of G. The consistency check for G with respect to H is
the following computation of a labeling l∗ consistent with all edges:

In the 0-th step, we let l(v) = V (H) for all v ∈ V (G). In the j-th step, j =
1, 2, . . . ,mnk, we check if the present labeling l is consistent with the edge ei = xy
for i ≡ j (mod m). If not, we then modify the labeling l by removing from l(y)
those labels s for which there is no r ∈ l(x) with rs ∈ E(H), and removing from
l(x) those labels r for which there is no s ∈ l(y) with rs ∈ E(H). The resulting
labeling is then consistent with ei; it could however have become inconsistent with
some previously treated edges. Nevertheless, after a sequence of m steps all m edges
of G have been treated once, and either the size of the current labeling decreases,
or the labeling is consistent with every edge. Since the size of the initial labeling
is nk, we are guaranteed, after at most mnk steps, to obtain a labeling l∗ which is
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consistent with all edges; we call l∗ the standard consistent labeling of G with respect
to H, and say that the consistency check succeeds if l∗(v) 6= ∅ for all v ∈ V (G).

Consistency checking goes back to early work on constraint satisfaction problems
[29]. Its first use in homomorphism problems is due to Gutjahr et al. [15], to prove
that the H-colouring problem is polynomial for any oriented path H. It was proved
in [15], and it is also easy to see, that the standard consistent labeling l∗ is the
maximum labeling, with respect to coordinate-wise inclusion, which is consistent
with every edge; in other words, for any other labeling l of G with respect to H
which is consistent with respect to every edge of G, we have l(x) ⊆ l∗(x) for all
vertices x of G.

If G is homomorphic to H then the consistency check for G with respect to H
will succeed. Indeed for any homomorphism h : G→ H each label h(v) will remain
a member of l(v), in all steps of the consistency check. On the other hand, Lemma
2.1 below says that when G is an oriented tree the success of the consistency check
implies that G → H. This is the essence of the folklore of arc consistency in the
artificial intelligence community [29, 9]. It also follows from the fact that, for any
fixed H, the condition G → H can be expressed in monadic second-order logic
[1, 8].

Our discussion will be facilitated by arguing about rooted homomorphisms: A
rooted digraph (G, g) is a digraphG with a fixed vertex g called the root. If (G, g) and
(G′, g′) are rooted digraphs, then a rooted homomorphism f : (G, g)→ (G′, g′) is a
homomorphism f : G→ G′ such that f(g) = g′. We shall write (G, g)→ (G′, g′) if
such a homomorphism exists, and (G, g) 6→ (G′, g′) otherwise.

Lemma 2.1. Let G be an oriented tree and H any digraph, and suppose that the
consistency check for G with respect to H succeeds. Then G → H. Moreover, for
any vertex v of G and any label s of l∗(v), we have (G, v)→ (H, s).

Proof. Let v ∈ V (G) and s ∈ l∗(v). We will construct a mapping h : V (G)→ V (H)
as follows: First we set h(v) = s. For any u with vu ∈ E(G) there is a t ∈ l∗(u)
such that st ∈ E(H), because l∗ is consistent with the edge vu; we set h(u) = t.
For any w with wv ∈ E(G) there is also a z ∈ l∗(w) such that zs ∈ E(H); we
again set h(w) = z. This defines h for all neighbours of v. Similarly we can extend
the definition of h to all neighbours of neighbours of v, and so on, until we have a
mapping h of V (G) to V (H). Since G is an oriented tree, it is easy to see that such
a mapping is indeed a homomorphism h : G→ H.

Corollary 2.2. Let G and H be any digraphs, and suppose that the consistency
check for G with respect to H succeeds. If an oriented tree T satisfies T → G then
also T → H.

Moreover, for any vertex v of G and any label s ∈ l∗(v), (T, t)→ (G, v) implies
(T, t)→ (H, s), for any rooted oriented tree (T, t).

Proof. Let h : (T, t) → (G, v) be a rooted homomorphism. Let l∗1 be the standard
consistent labeling of G, and let l∗2 be the standard consistent labeling of T , both
with respect to H. It is easy to see that l∗1(h(x)) is a labeling of T with respect
to H which is consistent with respect to each edge of T . Since l∗2 is the maximum
labeling consistent with each edge of T , we must have l∗1(h(x)) ⊆ l∗2(x) for each
x ∈ V (T ). Thus s ∈ l∗1(v) ⊆ l∗2(t) and (T, t)→ (H, s) by Lemma 2.1.

Theorem 2.3. Suppose H has tree duality. Then the following three statements
are equivalent:
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1. G→ H,
2. the consistency check for G with respect to H succeeds,
3. every tree homomorphic to G is also homomorphic to H.

Proof. We have already observed that (1) implies (2) (before Lemma 2.1). Corollary
2.2 assures that (2) implies (3). Finally, (3) implies (1) since H has tree duality.

Corollary 2.4. If H has tree duality, then the H-colouring problem is polynomial.

Proof. The equivalence of the first two statements means we can use the consistency
check.

To modify our technique to treewidth-k duality we proceed as follows (assuming
again H is fixed): Instead of labeling the vertices of G with sets of vertices of
H, we shall label k-tuples of vertices of G with sets of k-tuples of vertices of H.
We say such a labeling l is consistent with a (k + 1)-element set Y ⊆ V (G), if
the following statement holds: Whenever (x1, x2, · · · , xk) is a k-tuple of elements
of Y and (r1, r2, · · · , rk) ∈ l((x1, x2, · · · , xk)), there exists a homomorphism h :
Y → H with h(xi) = ri, for i = 1, 2, · · · , k, such that (h(x′1), h(x′2), · · · , h(x′k)) ∈
l((x′1, x′2, · · · , x′k)) for all k-tuples (x′1, x′2, · · · , x′k) of elements of Y . It is easy to see
that in the case k = 1, the labeling l is consistent with a 2-element set {y1, y2} if
and only if it is consistent with the edge(s), if any, induced by {y1, y2}. We replace
the consistency check by a k-consistency check: Instead of checking at each step an
edge of G (or equivalently, a pair of vertices of G) for consistency, we will check
for consistency a (k + 1)-set of vertices of G. Similarly, instead of modifying the
current labeling to make it consistent with the chosen edge, we modify it to make
it consistent with the chosen (k + 1)-set. Thus we will obtain (in time polynomial
in |V (G)|) a labeling l∗ which is consistent with every (k + 1)-set of vertices of G.
We say that the k-consistency check succeeds if the final label l∗ of any k-tuple of
vertices of G is not the empty set.

It is again clear that if G is homomorphic to H, then the k-consistency check
will succeed. By an argument analogous to the above we also conclude that if the
k-consistency check for G succeeds, and G has treewidth k, then G is homomorphic
to H. (This also follows from [9, 8].) Finally we can prove an analogue of Corollary
2.2 and the following theorem.

Theorem 2.5. Suppose H has treewidth-k duality. Then the following three state-
ments are equivalent:

1. G→ H,
2. the k-consistency check for G with respect to H will succeed,
3. every digraph of treewidth k homomorphic to G is also homomorphic to H.

2

Corollary 2.6. If H has bounded treewidth duality, then the H-colouring problem
is polynomial. 2

We shall now prove that the second and third statement of Theorems 2.3 and
2.5 are equivalent for all digraphs, cf. Theorem 2.8. Therefore H has tree duality
(treewidth-k duality) if and only if the first and the second statements in Theorem
2.3 (respectively Theorem 2.5) are equivalent.

We begin with a lemma which is the converse of Lemma 2.2:
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Lemma 2.7. Let l∗ be the standard consistent labeling of G with respect to H. For
any vertex x of G and any vertex r of H such that r 6∈ l∗(x), there is a rooted
oriented tree (T, t) which is homomorphic to (G, v) but not to (H, s).

Proof. Suppose to the contrary that there are x ∈ V (G) and r ∈ V (H) with
r 6∈ l∗(x), such that for every rooted oriented tree (T, t) with (T, t) → (G, x),
we have (T, t) → (H, r). The vertex r was removed from l(x) at a certain step,
say at step i, in the process of computing l∗. We choose the pair x, r so that
the number i is minimum, subject to the above assumption on x and r. Assume
without loss of generality that at step i, the edge being checked is xy. Thus there
is no s in l(y) such that rs ∈ E(H), where l(y) is the label of y at step i. For each
s 6∈ l(y) at step i, there is a rooted oriented tree (Ts, ts) such that (Ts, ts)→ (G, y)
and (Ts, ts) 6→ (H, s), for otherwise we would have chosen the pair y, s instead
of the pair x, r. We take all these rooted oriented trees (Ts, ts), s 6∈ l(y) at step
i, and identify all roots ts to obtain a new tree T with a vertex t obtained from
the identification. It is clear that for any homomorphism h of T to H we have
h(t) ∈ l(y). Let (T ′, t′) be the rooted oriented tree obtained from T by adding a
new vertex t′ and a new edge t′t. It is easy to see that (T ′, t′) → (G, x), which
implies that (T ′, t′) → (H, r) by our assumption. Thus there is a homomorphism
h′ of T ′ to H such that h′(t′) = r. Let s = h′(t). Then rs ∈ E(H) and s ∈ l(y),
where l(y) is the label of y at step i. This contradicts the assumption that there is
no s ∈ l(y) with rs ∈ E(H).

Combining Lemma 2.1 and Lemma 2.7, we obtain the following result:

Theorem 2.8. Let l∗ be the standard consistent labeling of G with respect to H,
and let v be a vertex of G. A vertex r of H is an element of l∗(v) if and only if for
every rooted oriented tree (T, t) for which (T, t)→ (G, v), we have (T, t)→ (H, r).
2

Corollary 2.9. Tree duality of H is equivalent to the following property:
G→ H if and only if the consistency check for G with respect to H succeeds. 2

For the standard k-consistent labeling l∗ there is an analogue to Theorem 2.8,
with the appropriate definitions of homomorphisms of digraphs with k specified
vertices. (We write (G, a1, a2, . . . , ak) → (H,x1, x2, . . . , xk) when there is a homo-
morphism f : G→ H with all f(ai) = xi.) In particular, treewidth-k duality of H
is equivalent to the property that G→ H if and only if the k-consistency check for
G with respect to H succeeds.

Finally, we make another observation on the standard consistent labeling for
balanced digraphs; this property will be needed in the next section. The proof is
straightforward and will be omitted.

Lemma 2.10. Suppose H is a balanced digraph. If G is a digraph such that every
tree homomorphic to G is also homomorphic to H, then G is also balanced and
ht(G) ≤ ht(H). Moreover,

(i) if ht(G) < ht(H) then there is a subgraph H ′ of H of height ht(H ′) = ht(G)
such that every tree homomorphic to G is also homomorphic to H ′, and

(ii) if ht(G) = ht(H) then for any x ∈ V (G), all vertices of l∗(x) are on the
same level. 2
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3. Duality and the extended X-property

In [15] the authors define another property of digraphs which guarantees the
existence of polynomial homomorphism algorithms. They call their property the
extended X-property, read ‘X underbar property’. (There is also a more special
property simply called the X-property.) This property implies the existence of
many (but not all) known polynomial homomorphism algorithms, including that
for oriented paths. We prove in this section that the class of digraphs with bounded
treewidth duality (in fact with treewidth-2 duality) strictly contains the class of
digraphs with the extended X-property, cf. Theorem 3.1. Moreover, we do not
know of any polynomial homomorphism algorithm which is not also implied by
bounded treewidth duality. For balanced digraphs, even the class of digraphs with
tree duality strictly contains the class of digraphs with the extended X-property,
cf. Theorem 3.2. (This is not so for unbalanced digraphs.) We also construct in
this section several families of oriented trees that have the extended X-property,
and hence tree duality.

Let H be a digraph and let v1, v2, · · · , vn be an enumeration of the vertices of
H. Two edges vivj and vkvl are crossing if i < k and j > l, or i > k and j < l.
The X-pair of two crossing edges vivj and vkvl is the ordered pair of vertices vpvq
where p = min{i, k} and q = min{j, l}. Let Cm denote the directed cycle with
m edges. A digraph H has the extended X-property if there is a homomorphism
h : H → Cm, for some positive integer m, and an enumeration v1, v2, · · · , vn of
the vertices of H, such that for any two crossing edges vivj and vkvl of H with
h(vi) = h(vk), we have that the X-pair of vivj and vkvl is an edge of H. It is easy
to see that a balanced digraph H has the extended X-property if and only if there
is an enumeration v1, v2, · · · , vn of the vertices of H such that for any two crossing
edges vivj and vkvl of H with vi and vk on the same level, we have that the X-pair
of vivj and vkvl is an edge of H.

Theorem 3.1. Any digraph H which has the extended X-property also has tree-
width-2 duality.

Proof. Let v0, v1, . . . , vn be an enumeration of the vertices of H, and h a homomor-
phism of H to Cm, from the definition of the extended X-property. We shall show
that G→ H for any digraph G for which the 2-consistency check (with respect to
H) succeeds. We may assume that the underlying graph of G is connected. Let
l∗ be the standard 2-consistent labeling of G with respect to H. Let a be a fixed
vertex of G. It follows from the 2-consistency of l∗ that there exists a vertex x of
H with the following property: For each vertex b of G there is a vertex y in H such
that (x, y) ∈ l∗((a, b)). Let f(b) be the first such vertex y in the above enumeration.
Then we claim that f is a homomorphism of G toH. Suppose bb′ is an edge of G and
f(b) = y, f(b′) = y′. Since l∗ is consistent, there exist vertices z, z′ in H such that
(x, z) ∈ l∗((a, b)), (z, y′) ∈ l∗((b, b′)), and (x, z′) ∈ l∗((a, b′)), (y, z′) ∈ l∗((b, b′)). By
the minimality of y, y′ we conclude that zy′, yz′ are two crossing edges. We now
show that h(y) = h(z): Let P be any oriented path (say, of algebraic length l)
joining a and b. Since (P, a, b) → (G, a, b), we also have (P, a, b) → (H,x, y) (this
follows from (x, y) ∈ l∗((a, b)) and the analogue of Theorem 2.8). The image of P
in H under this homomorphism is an oriented walk joining x and y, of algebraic
length l. Similarly, there is in H an oriented walk of algebraic length l+1 joining x
and y′ (which is the image of the concatenation of P and the edge bb′). This implies
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that H contains an oriented walk of algebraic length l joining x and z, since zy′ is
an edge of H. Therefore z and y have the same image under any homomorphism
of H to a directed cycle. Thus h(y) = h(z) and the X-pair of zy′, yz′, namely yy′,
is an edge of H.

We note that in the above theorem we cannot replace treewidth-2 duality with
tree duality. Directed cycles have the extended X-property and do not have tree
duality (every oriented tree is homomorphic to a directed cycle). On the other hand
we prove:

Theorem 3.2. Any balanced digraph (and hence any oriented tree) H which has
the extended X-property also has tree duality.

Proof. Suppose that there exist balanced digraphs that have the extended X-
property but do not have tree duality, and let H be such a digraph with the smallest
number of vertices. Let v1, v2, · · · , vn be an enumeration of the vertices of H from
the equivalent definition of the extended X-property for balanced digraphs. Let G
be a digraph which is not homomorphic to H and such that every oriented tree
homomorphic to G is also homomorphic to H. By Lemma 2.7, the standard con-
sistent labeling l∗ of G with respect to H satisfies l∗(x) 6= ∅ for all x ∈ V (G). By
Lemma 2.10, G is balanced and ht(G) ≤ ht(H). Moreover, if ht(G) < ht(H) then
there is a subgraph H ′ of H with ht(H ′) = ht(G) such that every oriented tree
homomorphic to G is also homomorphic to H ′. Since H ′ also has the extended
X-property, we know that H ′ has tree duality by the minimality of H. Thus G is
homomorphic to H ′, and hence to H, contrary to our assumption.

Thus we may assume that ht(G) = ht(H). Let h(x) be the first element of l∗(x)
in the enumeration v1, v2, · · · , vn. We now show that h is a homomorphism of G to
H, contrary to our assumption. Suppose xy is an edge ofG and h(x) = vi, h(y) = vl.
We shall show that vivl is an edge of H. Since l∗ is consistent with the edge xy,
there is vj ∈ l∗(y) and vk ∈ l∗(x) such that vivj , vkvl are edges of H. If i = k or
j = l then h(x)h(y) is an edge of H and we are done. Otherwise by the definition
of f , i < k and j > l, i.e., they are crossing edges. Since dH(vi, vk) = 0 by Lemma
2.10, and H has the extended X-property, the X-pair of these two edges, which is
vivl, must be an edge of H.

In the rest of this section we present some families of oriented trees that have
the extended X-property, and hence tree duality. We recursively define the class T
of rooted oriented trees as follows:
• Suppose P is an oriented path with one end-vertex v; if all other vertices u

of P have dP (v, u) 6= 0, then (P, v) ∈ T .
• Let V (T ) = {v1, v2, . . . , vn}. Suppose that (T, v) ∈ T and (Ti, ui) ∈ T , for

each i = 1, 2, . . . , n. Let T ′ be the oriented tree obtained from the disjoint
union of T and Ti by identifying the vertex vi of T with the vertex ui of Ti,
for each i = 1, 2, · · · , n. (We call this operation planting.) If all other vertices
u of T ′ have dT (v, u) 6= 0, then (T ′, v) ∈ T .

Theorem 3.3. Every rooted oriented tree (T, v) from the class T has the extended
X-property with respect to some enumeration of T starting at the root v.

Proof. We prove this theorem by induction on the number of vertices of T . If
|V (T )| = 1 then the theorem is obviously true. Now suppose that the theorem is
true for any (T ′, v′) ∈ T with at most n− 1 vertices, and suppose that (T, v) ∈ T
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has n vertices. If T is an oriented path and v is an end vertex of T , then we take the
natural enumeration of the oriented path starting at the end vertex v. It was proved
in [15], and is also easy to see, that T has the extended X-property with respect
to this enumeration. (In fact, it has the more restrictive X-property [15].) Now
suppose that (T, v) is obtained from some (T0, v) ∈ T by planting at each vertex vi of
T0 a rooted tree (Ti, ui) ∈ T . Clearly we can assume that T0 and each Ti has at most
n − 1 vertices. Thus by the induction hypothesis, (T0, v), and each of the planted
trees (Ti, ui), has a required enumeration. Without loss of generality, we assume
that the enumeration of T0 is v = v1, v2, . . . , vm. Then the enumeration of (T, v) is
the concatenation of the enumerations of (T1, u1), (T2, u2), . . . , (Tm, um). Assume
that this enumeration is w1, w2, · · · , wn. It starts at the root v = w1 = v1 = u1.
To see that T has the extended X-property with respect to this enumeration, we
take two crossing edges wiwj and wkwl such that wi and wk are on the same level.
Without loss of generality, we assume that i < k and j > l. If these two edges
belong to one of the trees (Tq, uq), then the X-pair of (wi, wj) and (wk, wl) is an
edge of Tq and hence an edge of T . Suppose wiwj and wkwl belong to different
subtrees, say wiwj is an edge of Tp, wkwl is an edge of Tq. Consider the case that
p < q. (The case p > q can be treated similarly.) Since i < k and j > l, we
must have p = 0, and Tq must be the tree planted at wi = vq. By assumption
dTq (vq, u) 6= 0 for all other vertices of Tq. Hence dT (wi, wk) 6= 0, contrary to the
assumption that wi and wk are on the same level. Therefore the tree T has the
extended X-property with respect to this enumeration.

Corollary 3.4. Let T be an oriented tree with vertices v1, v2, · · · , vn. Suppose that
T has the extended X-property and that (Ti, ui), i = 1, 2, . . . , n, are elements of T .
Then the tree T ′ obtained from T by planting at each vi the rooted oriented tree
(Ti, ui) also has the extended X-property.

Proof. Suppose T has the extended X-property with respect to the enumeration
v1, v2, · · · , vn. By Theorem 3.3, each of the trees (Ti, ui) has the extended X-
property with respect to an enumeration starting at ui. We take the concatenation
of the enumerations of (T1, u1), (T2, u2), · · · , (Tn, un), and obtain an enumeration
of the vertices of T ′. The same argument as in the proof of Theorem 3.3 shows that
T ′ has the extended X-property with respect to this enumeration.

We close this section with another family of oriented trees which have the ex-
tended X-property. It is a family of oriented triads. Formally, T is an oriented triad
if the underlying undirected tree of T has exactly one vertex v of degree three and
all other vertices of degree one or two. We view T as consisting of three oriented
paths W1,W2, and W3 starting at the unique vertex v of degree three and ending
at vertices z1, z2, z3.

Theorem 3.5. Let T be an oriented triad with paths W1,W2,W3, meeting at v as
above. Suppose there exists a vertex t on the path W1, such that the path joining v
and t is minimal, and such that no vertex of W2 is on the same level as t. Then T
has the extended X-property.

Proof. We again give an enumeration a1, a2, . . . , al of the vertices of T , from the
equivalent definition of the extended X-property for balanced digraphs. Let u be
the first vertex after v on W2, and w the first vertex after t on the path from t to
z1. We enumerate the vertices of T as follows: First enumerate the vertices of W3
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from z3 to v, then enumerate the vertices of W1 from v up to t, then enumerate
the vertices of W2 from u to z2, and finally enumerate the vertices of W1 from w
to z1. We now verify that T has the extended X-property with respect to this
enumeration. Let aiaj and akal be a pair of crossing edges with ai and ak on the
same level. We assume that i < k and j > l. From the enumeration of the vertices
of T it is easy to see that either ak = w, al = t and aiaj is an edge of W2, or
ai = v, aj = u and akal is an edge of the path joining v and t. In the former case ai
would be a vertex on W2 on the same level as t contradicting our assumption. In
the latter case, ak and v would be on the same level, contradicting the minimality
of the path joining v and t.

4. Special triads

Oriented triads are the “simplest” oriented trees other than oriented paths. As
we have remarked above theH-colouring problem for any oriented pathH is polyno-
mial [15, 23]. However, there exist oriented triadsH withNP -completeH-colouring
problems, Theorem 4.1. (The smallest oriented triad to which this theorem applies
has 45 vertices.) In order to state our results in the simplest possible form (although
some of the results hold more generally) we concentrate in this section on a partic-
ular class of oriented triads. We say that the oriented triad T is a special triad if
there exist minimal oriented paths P1, P2, . . . , P6 of the same algebraic length (say
al(Pi) = n, for all i = 1, 2, . . . , 6), such that W1 is the concatenation of P1 and
P−1

4 , W2 is the concatenation of P2 and P−1
5 , and W3 is the concatenation of P3

and P−1
6 . We denote by ti the vertex of Wi which is common to Pi and P−1

i+3.

Theorem 4.1. [20] Let T be a special triad. Suppose that
• for any i, j ∈ {1, 2, 3}, there is a minimal oriented path Pij of net length
n which is homomorphic to Pi and Pj, but not homomorphic to Pk for any
k = 1, 2, . . . , 6, k 6= i, j, and
• for any i ∈ {1, 2, 3}, there is a minimal oriented path P ∗i of net length n such

that P ∗i is homomorphic to Pi, P4, P5 and P6, but not homomorphic to Pk for
any k = 1, 2, 3, k 6= i.

Then the T -colouring problem is NP -complete.

Here we contrast these with several classes of special triads H which have poly-
nomial H-colouring problems. (Some of these are strikingly similar to the above
triads with NP -complete problems.) We construct special triads which have tree
duality, and show that no special triad has the extended X-property. We also
construct special triads which have treewidth-2 duality, some of which do not have
tree duality. (We do not know if there exist oriented trees—or any digraphs—which
have bounded treewidth duality but do not have treewidth-2 duality.)

First we observe that no special triad has the extended X-property. Suppose,
to the contrary, that there is a special triad T , with vertices named as in Figure
1, which has the extended X-property. Let a1, a2, · · · , al be an enumeration of the
vertices of T from the equivalent definition of the extended X-property for balanced
digraphs. Then there are two vertices from z1, z2, z3 which both precede v or both
follow v in the enumeration. Without loss of generality, let both z1 and z2 precede
v. We write a ≤ b if a = b or a precedes b in the above enumeration. Since v, z1 are
on the same level and T has the extended X-property with respect to the above
enumeration, we conclude that x ≤ y for any x and y on the same level for which
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x is adjacent to z1 and y is adjacent to v. Similarly, we conclude that x ≤ y for
any x and y on the same level for which x is adjacent to z2 and y is adjacent to
v. Repeating this argument, we see that x ≤ y for any vertex x ∈ P1 ∪ P2 and any
vertex y ∈ P4 ∪ P5, such that x, y are on the same level. This implies that t1 ≤ t2
and t2 ≤ t1, which is a contradiction. Our next theorem gives a family of special
triads with tree duality.

Theorem 4.2. Suppose that T is a special triad. If P1 → P2 then T has tree
duality.

Proof. Suppose that the theorem is not true and that T is a special triad which
satisfies the condition of the theorem but does not have tree duality. Let G be a
digraph such that every tree homomorphic to G is also homomorphic to T , and yet
G is not homomorphic to T . By Lemma 2.10, G is balanced and ht(G) ≤ ht(T ). If
the height ht(G) of G is smaller than the height of T , then there is a subtree T ′ of T
such that any tree homomorphic to G is also homomorphic to T ′. It is easy to verify
that any proper subtree T ′ of T satisfies the condition of Corollary 3.4 and hence
has tree duality. Therefore G is homomorphic to T ′, and hence homomorphic to T ,
which is a contradiction. Thus ht(G) = ht(T ). In this case we shall also construct
a homomorphism of G to T , and so obtain a final contradiction.

We denote by v1, v2, v3 the vertices of P1, P2, P3 respectively, which are adjacent
to v (the unique vertex of T with degree three).

Lemma 4.3. Suppose that xy is an edge of G. If v ∈ l∗(x), v2 6∈ l∗(y) and
v3 6∈ l∗(y), then l∗(x) ∩ V (W2) = {v}.

Proof. Since v ∈ l∗(x), and the only other vertex in W2 on the same level as v is
z2, we have l∗(x) ∩ V (W2) ⊆ {v, z2}. We shall prove that z2 6∈ l∗(x). Suppose to
the contrary that z2 ∈ l∗(x).

Since v2 6∈ l∗(y) and v3 6∈ l∗(y), there is a rooted oriented tree (T ′, b) such
that (T ′, b) → (G, y) and (T ′, b) is not homomorphic to either (T, v2) or (T, v3).
Add to T ′ a vertex a and the edge ab, to obtain another rooted oriented tree
(T ′′, a). Obviously (T ′′, a)→ (G, x). Since v ∈ l∗(x), there is a homomorphism f :
(T ′′, a)→ (T, v). Now f(b) is adjacent to v, and f(b) 6= v2, v3. Therefore f(b) = v1.
Since z2 ∈ l∗(x), there is a homomorphism f ′ : (T ′′, a)→ (T, z2). We shall define a
new homomorphism f ′′ by combining f and f ′ so that f ′′(b) = v2, which will then
contradict the assumption that (T ′, b) is not homomorphic to (T, v2).

For any vertex z of T ′′, let Pz be the path of T ′′ connecting z and a. Let X be
the set of vertices z such that Pz is a minimal path of algebraic length n. Let Y be
the set of vertices z such that al(Pz) = 0 and Pz contains no other vertex s with
al(Ps) = 0 or n. Let k be a homomorphism of P1 to P2. It is easily verified that the
homomorphisms k ◦f and f ′ agree on the set X, and the homomorphisms k ◦f and
f agree on the set Y . For example, if z ∈ X then f(Pz) must be a minimal path of
algebraic length n. This implies that f(Pz) = P1, because f(b) = v1 (b ∈ Pz) and
P1 is the unique minimal path of T containing v1. Therefore f(z) = t1 and hence
k(f(z)) = t2. Similarly f ′(Pz) is a minimal path of algebraic length n containing
z2. Thus f ′(Pz) = P5 and f ′(z) = t2. Analogously, we can show that for each
z ∈ Y , k(f(z)) = f(z) = v.

Let A be the component of T ′′ \ (X ∪ Y ) which contains a (and hence b), let B
be the set of vertices z such that Pz contains a vertex of X, and let C be the set
of vertices z such that Pz contains a vertex of Y . Then {A,B,C} is a partition
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of the vertex set of T . Since the homomorphisms k ◦ f and f ′ agree on X, and
the homomorphisms k ◦ f and f agree on Y , the mapping f ′′ : T ′′ → T defined by
f ′′(z) = k(f(z)) for z ∈ A, f ′′(z) = f ′(z) for z ∈ B, and f ′′(z) = f(z) for z ∈ C, is
a homomorphism of T ′′ to T . It is easily seen from the definition that f(b) = v2.
This contradicts the assumption that (T ′′, b) 6→ (T, v2).

Continuing with the proof of Theorem 4.2, we proceed to construct a homomor-
phism of G to T . First we define an enumeration a1, a2, . . . , al of the vertices of
T : First enumerate the vertices of W3 from z3 to t3, then the vertices of W2 from
v to z2, and finally the vertices of W1 from v1 to z1. Suppose that v = ak and
v1 = ar. We let f(x) be the first element of l∗(x) in the enumeration a1, a2, . . . , al.
We now show that f is a homomorphism. Let xy be an edge of G and suppose
that f(x) = ai and f(y) = aj . Since l∗ is consistent, there is an aq ∈ l∗(y) such
that aiaq is an edge of T , and an ap ∈ l∗(x) such that apaj is an edge of T . If
p = i or j = q then we are done. Otherwise we have i < p and j < q. From the
enumeration of the vertices of T we see that this is possible only if one of the edges
aiaq and apaj is the edge vv1 and the other is an edge of W2 \ {v}. This implies, in
particular, that v ∈ l∗(x) and (l∗(x)∩V (W2)) \ {v} 6= ∅. By Lemma 4.3, v2 ∈ l∗(y)
or v3 ∈ l∗(y). However v3 and v2 precede any vertex of W2\{v} in the enumeration,
and in particular precede aj , which is the first element of l∗(y). Therefore v2 = aj
and hence aiaj is an edge of T . 2

Let T be a special triad; we say that q : {4, 5, 6} → {1, 2, 3} is a compatible
mapping of T , if Pi → Pq(i) for i = 1, 2, 3. We show below (Theorem 4.4) that a
special triad which admits a compatible mapping has treewidth-2 duality. We first
point out that there are special triads which admit a compatible mapping, yet do
not have tree duality. Let P1, P2, P3 be minimal oriented paths of algebraic length n
such that there is no homomorphism from Pi to Pj for any i 6= j, and suppose that
there exist oriented paths P12, P13, P23 with each Pij homomorphic to Pi and Pj
but to no other Pk. Such paths P1, P2, P3 are easily constructed, when n ≥ 4. Let T
be the special triad with P1, P2, P3, P4 = P2, P5 = P3, P6 = P1. Clearly, T is a core
and admits a compatible mapping. We now argue that T does not have tree duality.
Let P be the oriented path obtained by concatenating P−1

13 , P3, P
−1
12 , P1, P

−1
23 , and

P2. Let C be the oriented cycle obtained from P by identifying the two end vertices
of P . Then the resulting oriented cycle C is easily seen to not be homomorphic to
T , yet every oriented tree homomorphic to C is also homomorphic to T .

Theorem 4.4 was first proved (for the special case described above where P4 =
P2, P5 = P3, P6 = P1) by T. Feder, personal communication.

Theorem 4.4. Every special triad which admits a compatible mapping has tree-
width-2 duality.

Proof. The proof is based on a technique of Feder and Vardi [11], which uses the ex-
istence of a certain homomorphism g to prove that if the 2-consistency check for G
with respect to T succeeds, then there is a homomorphism of G to T . This implies
in particular that if each oriented partial 2-tree homomorphic to G is also homo-
morphic to T , then (the 2-consistency check for G with respect to T succeeds and)
G→ T . Thus the existence of such a homomorphism g is stronger than treewidth-2
duality; we refer the reader to [11] for other interesting applications of this concept.
Specifically, let T ∗ be the digraph with vertices (x, y, z) ∈ V (T ) × V (T ) × V (T )
such that x, y, z are on the same level in T , and in which (x, y, z)(x′, y′, z′) is an
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edge exactly when xx′, yy′, zz′ are edges in T . Suppose there is a homomorphism
g : T ∗ → T such that g(x, y, z) = a if at least two of x, y, z are equal to a. We
now claim that if the 2-consistency check for G with respect to T succeeds then
G→ T . Note that the success of the 2-consistency check implies that G is balanced,
of height at most ht(T ). By using Lemma 2.10, we only need to consider the case
ht(G) = ht(T ). This implies, by Lemma 2.10, that for a pair (x, x′) of vertices of
G, if (y1, y

′
1), (y2, y

′
2) ∈ l∗((x, x′)) then y1, y2 are on the same level, and y′1, y

′
2 are

also on the same level.
First we show that for any pair (x, x′) of vertices of G, if (y1, y

′
1), (y2, y

′
2),

(y3, y
′
3) ∈ l∗((x, x′)), and if we let g = g(y1, y2, y3), g′ = g(y′1, y′2, y′3), then (g, g′) ∈

l∗((x, x′)). By the analogue of Corollary 2.9, it suffices to show that for any partial
2-tree F and any two specified vertices t, t′, with (F, t, t′)→ (G, x, x′), we also have
(F, t, t′) → (T, g, g′). Let (F, t, t′) be a partial 2-tree with two specified vertices
such that (F, t, t′) → (G, x, x′). Since (y1, y

′
1), (y2, y

′
2), (y3, y

′
3) ∈ l∗((x, x′)), there

exist homomorphisms h1 : (F, t, t′) → (T, y1, y
′
1), h2 : (F, t, t′) → (T, y2, y

′
2), and

h3 : (F, t, t′)→ (T, y3, y
′
3). If h : F → T is defined as h(v) = g(h1(v), h2(v), h3(v)),

then it is easily seen that h is a homomorphism of (F, t, t′) to (T, g, g′).
We say that a homomorphism h of an induced subgraph of G to T is safe if

(h(u), h(v)) ∈ l∗((u, v)) for all vertices u, v of the subgraph. We now prove, by
induction on k, that for every set X = {x1, x2, . . . , xk} of vertices of G, every safe
homomorphism h of the subgraph of G induced by X to T , and every x ∈ V (G)−X,
there is a safe homomorphism of the subgraph of G induced by X ∪ x to T which
extends h. By the consistency of l∗, this is true if k ≤ 2. Assume now that
k ≥ 3. Let hi, i = 1, 2, 3, be safe extensions of h restricted to X − xi from X − xi
to (X − xi) ∪ x (which exist by the induction hypothesis). Then we claim that
extending h from X to X ∪ x by setting h(x) = g(h1(x), h2(x), h3(x)) yields a safe
homomorphism to T . According to the definition of a 2-consistent labeling, it will
be enough to verify that for any xi, (h(x), h(xi)) ∈ l∗((x, xi)) (this will also imply
that h preserves edges). At least two of the three homomorphisms h1, h2, h3 are
defined on both x and xi. Without loss of generality, assume that this is so for
h1, h2. Then we have (h1(x), h(xi)) ∈ l∗((x, xi)) and (h2(x), h(xi)) ∈ l∗((x, xi)).
Let z be any vertex of T such that (h3(x), z) ∈ l∗((x, xi)) (such a vertex exists as
l∗ is consistent). Since g(h1(x), h2(x), h3(x)) = h(x) and g(h(xi), h(xi), z) = h(xi),
we have (h(x), h(xi)) ∈ l∗((x, xi)), by the previous paragraph. It is easy to see that
the 2-consistency of l∗ implies that h is a homomorphism.

It remains to show that such a homomorphism g : T ∗ → T exists. For each
j = 4, 5, 6, there is a homomorphism φj : Pj → Pq(j). Without loss of generality,
we can assume that either q(4), q(5), q(6) are all distinct or at least two of them
equal 1. Let φ be the mapping of V (T ) to V (T ) defined as φ(r) = φj(r), if r ∈ Pj
with j ∈ {4, 5, 6}, and φ(r) = r otherwise. We now define the mapping g(x, y, z)
as follows: If all three vertices x, y, z, lie on one path of T , then g(x, y, z) is the
middle vertex of the three. (This means in particular that g(x, y, z) = a if two of
x, y, z are equal to a.) If each of the three vertices x, y, z lies on a different path
from the paths P1, P2, P3, then g(x, y, z) is that vertex from x, y, z which lies on P1.
For all the other triples x, y, z, it is easy to see that the triple φ(x), φ(y), φ(z) must
fall into one of the two cases above; we define g(x, y, z) = g(φ(x), φ(y), φ(z)). It
is a routine (although tedious) exercise to check that g is indeed a homomorphism
T ∗ → T .
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In view of Theorem 2.5, the special triads H from Theorem 4.1 cannot have
bounded treewidth duality, unless P = NP . It would be interesting to supply a
proof of this, without using the assumption that P 6= NP . The next result is a
first step in this direction.

Theorem 4.5. Let T be any special triad from Theorem 4.1. Then T does not
have tree duality.

Proof. Let G be the digraph depicted in Figure 2, where the paths P ∗i , Pij are
defined as in Theorem 4.1. We claim that G is not homomorphic to T , yet every
tree homomorphic to G is homomorphic to T .

Assume first that there is a homomorphism h : G→ T . It is easy to see that for
i = 2, 4, 6, h(xi) is equal to either v or uj for some j ∈ {1, 2, 3}. At most one of
h(x2), h(x4), h(x6) can be equal to v. (If, say h(x2) = h(x4) = v, then h(x3) would
have to be equal to both t2 and t3.) Thus without loss of generality assume that
h(x2) = ui and h(x4) = uj , for some i, j ∈ {1, 2, 3}. If i 6= j or if i = j = 1 then
again we obtain a contradiction with the value of h(x3). If i = j = 2, then the value
h(x5) yields a contradiction; and if i = j = 3, then there is a similar contradiction
for h(x1). Therefore G is not homomorphic to T .

We now show that every tree homomorphic to G is also homomorphic to T . Let
X be the tree obtained from G by spliting x6 into two vertices x′6 and x′′6 . Take
infinitely many copies of X, say X1, X2, X3, · · · , and identify the vertex x′6 of each
Xi with the vertex x′′6 of Xi+1, obtaining an infinite tree T ′. It is a routine excercise
to verify that T ′ → T (the consecutive vertices corresponding to x6 alternately map
to u1 and v, the consecutive vertices corresponding to x1 alternately map to t1 and
t2, etc.), and every (finite) tree homomorphic to G is homomorphic to T ′.

To conclude, we restate some of the open problems suggested by this research.
1. Are there oriented trees T which do not have bounded treewidth duality and

for which the T -colouring problem is polynomial ? (We do not know any
digraph with this property.)

2. Are there oriented trees T such that the T -colouring problem is neither poly-
nomial nor NP -complete ? (We again do not know this even for arbitrary
digraphs. The answer is known to be negative for undirected graphs [17] and
oriented cycles [10]; cf. also [11]. On the other hand, the class NP must
contain such problems, unless P = NP [26].)

3. Are there oriented trees T which have bounded treewidth duality but do not
have treewidth-2 duality ? (Again, we do not know any digraph with this
property.)

4. Prove that T does not have bounded treewidth duality for at least some
oriented tree T . (There are known digraphs with this property; in particular,
it is shown in [32] that some oriented cycles do not have bounded treewidth
duality. Our Theorem 4.5 shows oriented trees which do not have tree duality.)

Recent developments. In [11] the authors use another machinery for solving ho-
momorphism problems in polynomial time, by using “datalog programs”. Problems
which can be solved this way are termed “of bounded width”. We were informed
by T. Feder that H has bounded treewidth duality if and only if the H-colouring
problem is of bounded width. Thus the class of H-colouring problems solvable in
polynomial time is the same for the two techniques. Another recent approach that
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for Theorem 4.5

can be used to solve H-colouring problems in polynomial time uses semidefinite
programming [12]. It was recently shown in [2] that if H has tree duality then the
H-colouring problem can also be solved by this method (and a natural generaliza-
tion of the method solves the H-colouring problems for digraphs H with bounded
treewidth duality).
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2. R. Bač́ik and S. Mahajan, Semidefinite programming and its applications to NP problems,

manuscript, 1995.
3. J. Bang-Jansen and P. Hell, The effect of two cycles on the complexity of colourings by directed

graphs, Discrete Applied Math. 26 (1990), 1-23. MR 91c:05072
4. J. Bang-Jansen, P. Hell and G. MacGillivray, The complexity of colourings by semicomplete

digraphs, SIAM J. Discrete Math. 1 (1988), 281-289. MR 89e:05095
5. J. Bang-Jensen, P. Hell and G. MacGillivray, On the complexity of colouring by superdigraphs

of bipartite graphs, Discrete Math. 109 (1992), 27 - 44. MR 93m:68051
6. J. Bang-Jensen, P. Hell and G. MacGillivray, Hereditarily hard colouring problems, Discrete

Math. 138 (1995), 75–92.
7. J.A. Bondy and U.S.R. Murty, Graph theory with applications, American Elsevier, New

York, 1976. MR 54:117
8. B. Courcelle, The monadic second-order logic of graphs, I: Recognizable sets of finite graphs,

Information and Computation 85 (1990), 12 - 75. MR 91g:05107
9. R. Dechter, From local to global consistency, Artificial Intelligence 55 (1992), 87 - 107. MR

93d:68017
10. T. Feder, Classification of homomorphisms to oriented cycles (draft), manuscript, 1994.
11. T. Feder and M. Y. Vardi, Monotone monadic SNP and constraint satisfaction, 25th Annual

ACM Syposium on Theory of Computing, 1993, 612-622.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DUALITY AND POLYNOMIAL TESTING OF TREE HOMOMORPHISMS 1297

12. U. Feige and L. Lovász, Two-prover one-round proof systems: Their power and their problems,
24th Annual ACM Syposium on Theory of Computing, 1992, 733-744.

13. M. C. Golumbic, Algorithmic graph theory and perfect graphs, Academic Press, New
York, 1980. MR 81e:68081

14. W. Gutjahr, Graph colourings, Ph. D. Thesis, Free University Berlin, 1991.
15. W. Gutjahr, E. Welzl and G. Woeginger, Polynomial graph colourings, Discrete Appl. Math.

35 (1992), 29-46.
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