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We consider the following parallel machine scheduling prob-
lem. Each of n independent jobs has to be scheduled on one of
m unrelated parallel machines. The processing of job J; on
machine M, requires an uninterrupted period of positive length
p;;- The objective Is to find an assignment of jobs to machines
80 as to minimize the maximum job completion time. The
objective of this paper is to design practical algorithms for this
A#2-hard problem. We present an optimization algorithm and an
approximation algorithm that are both based on surrogate re-
laxation and duality. The optimization algorithm solves quite
large problems within reasonable time limits. The approxima-
tion algorithm is based upon a novel concept for iterative local
search, in which the search direction is guided by surrogate
multtipliers.

We consider the following machine scheduling problem.
There are m parallel machines available for processing a set
of n independent jobs # = {],,..., ],}. Each of these ma-
chines can handle at most one job at a time. The processing
of job J, (j=1,...,n) on machine M; (i=1,...,m) re-
quires an uninterrupted period of positive length p,. We
may assume that these processing times are integral. Each
job has to be scheduled on one of the machines. A schedule
is an assignment of each of the jobs to exactly one machine.
The length of the schedule, also referred to as the makespan,
is the maximum job completion time; by definition, the
makespan is also equal to the maximum machine comple-
tion time. The objective is to find a schedule of minimum
length.

This problem has many applications. It arises in com-
puter system scheduling, where the machines are proces-
sors of a distributed computing environment with varying
capabilities across the tasks. It also arises in scheduling
flexible manufacturing systems. For instance, a cluster of
parallel machines may form a single or bottleneck stage in
the production process. The problem also occurs in the
context of machine load balancing, where machines have to
be equipped with the appropriate tools for the jobs as-
signed to them. If production follows a cyclic pattern, and
if the system set-up time (the time to load the machine with

the appropriate tools) is costly relative to production time,
then an obvious objective is to minimize the cycle time;
note that cycle time minimization is equivalent to through-
put maximization. Berrada and Steckel?! consider such a
problem with limited capacities of the tool magazines of
the machines.

In case p;; = p, for each ], and M,, the machines are said
to be identical. If p,, = p,/s,, where s, denotes the speed of
M;, then the machines are uniform. In the general case, the
machines are unrelated. Following the notation
of Graham, Lawler, Lenstra, and Rinnooy Kan/'! we re-
fer to these problems as PlIC,,., QllCr.x, and RIIC,.,,.
respectively.

Since the problem is already .#%-hard in case of two
identical machines, no polynomial-time algorithm for
RIICyax exists unless &2 =#. The traditional dilemma is
then to balance solution quality with running time. An
optimal solution may only be found at the expense of an
exponential amount of computation time; a polynomial-
time algorithm cannot be guaranteed to produce an opti-
mal solution.

Two attempts have been made to solve the RIIC,,,
problem to optimality. Stern® presents a branch-and-
bound algorithm; Horowitz and Sahnil’®! develop a dy-
namic programming procedure. In either case, no computa-
tional results are reported.

Much research effort has been invested in the develop-
ment of approximation algorithms with a guaranteed accu-
racy. An approximation algorithm that asymptotically never
delivers a schedule length of more than p times the opti-
mal length is referred to as a p-approximation algorithm;
such an approximation algorithm is said to have perfor-
mance guarantee p. Ibarra and Kim?” and Davis and Jaffel®)
propose various approximation algorithms with worst-case
performance ratios that increase with the number of ma-
chines. For fixed m (i.e., the number of machines is speci-
fied as part of the problem type and not of the problem
instance), Horowitz and Sahnil'”! give a fully polynomial
approximation scheme with time and space complexity
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O(nm(nm/(p — 1)™1). A polynomial approximation scheme
is a family of algorithms that contains for any p>1 a
p-approximation algorithm with a running time that is
bounded by a polynomial in the problem size; this running
time may depend on p. A family of algorithms is called a
fully polynomial approximation scheme if it contains for any
p > 1 a p-approximation algorithm for which the running
time is bounded by a polynomial in the problem size as
well asin1/(p — 1.

Potts?®*! presents a 2-approximation algorithm. Its time
requirement is polynomial only for fixed m; its space re-
quirement, however, is polynomial in m. For the 2-machine
case, Potts improves the worst-case ratio to (1 + v5)/2.
The algorithm is a two-phase procedure. In the first phase,
linear programming is used to assign at least n — m + 1
jobs; in the second phase, complete enumeration is used to
schedule the remaining jobs. Using Potts” algorithm as the
basis, Lenstra, Shmoys, and Tardos®®? present a 2-
approximation algorithm that is polynomial in m. They
also present a polynomial approximation scheme for a
fixed number of machines, requiring space bounded by a
polynomial in the problem size and log(1/(p — 1)). In
addition, they prove a notable negative result: unless % =
AP, no polynomial p-approximation algorithm exists for
any p <°/,.

Two papers consider R||C,,., from an empirical point of
view. De and Morton!®! present several hybrid list schedul-
ing algorithms and perform a large-scale computational
testing. Hariri and Potts'® propose several two-phase
heuristics that proceed in the spirit of Potts’ 2-approxima-
tion algorithm. The first phase is identical: linear program-
ming is used to schedule at least n — m + 1 jobs. The
second phase proceeds differently: a heuristic is used as a
substitute for complete enumeration to schedule the re-
maining jobs. Note that Potts’ 2-approximation algorithm
dominates such two-phase heuristics in terms of quality
but not in terms of speed. Hariri and Potts also consider
several constructive heuristics, using them in conjunction
with iterative local improvement procedures.

In spite of the considerable attention that the R||C,,,,
problem has received, there is still a lack of practical
algorithms and computational insight. We address this
issue here. We are concerned with methods that solve
RIC,,, satisfactorily from a practical standpoint. We de-
velop an optimization algorithm and an approximation
algorithm that are both based on surrogate relaxation and
duality. The optimization algorithm, of the branch-and-
bound type, solves large problems within reasonable time
limits. The approximation algorithm is based upon a novel
concept for iterative local search, where the search direction
is guided by surrogate multipliers.

The organization of this paper is as follows. In Section 1,
we formulate the RI|C_,, problem as an integer linear
program, derive the surrogate problem, and examine the
surrogate dual problem; this problem is the basis for the
optimization algorithm and for the approximation algo-
rithm. In Section 2, we present the approximation algo-
rithm and discuss the relation to Potts’ 2-approximation

algorithm (Potts®?*!). A complete description of the branch-
and-bound algorithm is given in Section 3. Some computa-
tional results are presented in Section 4. Conclusions are
given in Section 5.

1. Minimizing Makespan and fts Dual Problem

Good lower and upper bounds on the minimal schedule
length are necessary for a branch-and-bound algorithm to
be effective. We derive lower bounds from the surrogate
dual problem of R||C,,,,, obtained from a 0-1 linear pro-
gramming formulation. Analyzing the surrogate dual prob-
lem, we will show that the search for a good lower bound
can almost be integrated with the search for a good upper
bound.

Evidently, there is an optimal solution in which the jobs
are processed without delay. In addition, the ordering of
the jobs on the machines is irrelevant for the length of the
schedule. We are therefore actually looking for an assign-
ment of jobs to machines. Accordingly, we introduce as-
signment variables x, (i=1,...,m, j =1,..., n) that take
the value 1if ] is scheduled on M,, and 0 otherwise. If we
let C, denote the completion time of machine M,, then we
have C, = L., p,, x,,. The maximum value of the machine
completion times, denoted by C is then the length of
the schedule.

The RIC,,,, problem, hereafter referred to as problem
(P), is to determine values x,, that minimize

max/

Crnax (P)
subject to
n
Y p,x, <Cpa, fori=1,...,m, )
j=1
n
Yx,=1, forj=1,...,n, 2)
=1
x,IE{O,l}, fori=1,...,m,j=1,...,n. (3)

The conditions (1) ensure that the completion time of each
machine is less than or equal to the length of the schedule;
the conditions (2) guarantee that each job is assigned. The
conditions (2) and (3) ensure that each job is scheduled on
exactly one machine, thereby precluding preemption.

Any .#%-hard combinatorial optimization problem can
be seen as an “easy-to-solve” problem complicated by a
number of “‘nasty’’ side constraints. A common strategy for
lower bound computation is to relax a set of nasty con-
straints; the resulting problem will be easier to solve and
its optimal solution provides a lower bound for the original
problem. For instance, replacing the integrality constraints
(3) with the weaker conditions x,, >0 (i=1,...,m, j
1,...,n) yields the linear programming relaxation (P); this
problem is solvable in polynomial time.

Lagrangian relaxation and surrogate relaxation are more
involved techniques. The idea behind Lagrangian relax-
ation is to remove a set of nasty side constraints from the
set of constraints, and to put them into the objective func-
tion, each weighted by a given Lagrangian multiplier. This
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is what is referred to as dualizing the nasty constraints. The
resulting problem is the Lagrangian problem. The idea be-
hind surrogate relaxation is to replace a set of nasty con-
straints with a single condition that is a weighted aggrega-
tion of these constraints. The resulting problem is the
surrogate relaxation problem. In theory, the best surrogate
bound is at least as good as the best Lagrangian bound; in
practice, the former is much harder to obtain. Greenberg
and Pierskallal’® and Karwan and Rardin/?!! compare both
relaxation methods.

In our application, we identify the constraints (1) as the
nasty constraints. Due to the special structure of problem
(P), the resulting Lagrangian problem and the resulting
surrogate relaxation problem are exactly the same. In this
case, however, surrogate relaxation is easier to perform.
Introducing a vector of multipliers A = (A,...,A,) >0
with A, > O for at least one i (i = 1,..., m), we replace the
conditions (1) with

[\15

Z ’\ Z pl] lj szax' (13)
=1 1=1
or, equivalently,
m n m
max/ Z ZA Pt/ 1y Z)‘ (1b)

t=1

The surrogate relaxation problem, referred to as problem
(S,), is then to determine S(A), which is the minimum of

m n m
Z Z At pl]xl] Z )‘1 (SA)
i=1y=1 =1
subject to
m
Yox,=1, forj=1,...,n, )
i=1
x,]E{O,l}, fori=1,...,m,j=1,...,n 3)

It is a matter of writing out to verify that the Lagrangian
problem, obtained by dualizing the conditions (1), gives a
worthless lower bound unless £;2,A; = 1. The Lagrangian
objective function subsequently boils down to the surrogate
objective function; the Lagrangian problem is then exactly
the same as the surrogate relaxation problem.

We make now some observations concerning the struc-
ture, the properties, and the solution of the surrogate relax-
ation problem. In the remainder, we let v(-) denote the
optimal solution value of problem (-).

Observation 1. Problem (S,) provides a lower bound on
v(P), since any solution that satisfies (1) also satisfies (1b)
(but not necessarily vice versa). We have therefore that
S(A) < v(P) for any vector A = (Aq,..., A,) > 0 of surro-
gate multipliers with A, > 0 for at leastone i (i = 1,..., m).

Observation 2. Problem (S,) is solvable in O(nm) time by
assigning each job ], to a machine M, for which A,p,, =
min, _; . A; p;,. Ties may be settled arbitrarily.

Note that S(A) =L mmK,gm)\ P,/ Li=1A,. We refer
to A,p, as the dual processing time of ], on M, The

conditions (3) of the surrogate relaxation problem can be
replaced with the conditions x,>0 (i=1,...,m,j=
1,..., n) without affecting the optimal value S(A). Problem
(S,) is said to have the integrality property, since it can be
solved as a linear programming problem.

Observation 3. Any solution to (S,) is also a feasible solu-
tion to the primal problem (P), for any vector A =
(Ay,..., A,) = 0 of surrogate multipliers with A, > 0 for at
leastone i (i =1,..., m).

The constraints (2) and (3) enforce the assignment of
each job to exactly one machine. For a specific optimal
solution of problem (S,), let C,(A) denote the completion
time of M,. The approximate solution value is then C,, (A)
= max,; ., . ,C(A). The way we settle ties when solving
problem (S,) affects C,,,(A).

Observation 4. The objective value S(A) is a convex combi-
nation of the machine completion times. This implies that
minl <1< mcz(A) < S(A) < rnaXl <iI1g mCI(A)'

Consider the following instance of the R||C,,,, problem,
where eight jobs are to be scheduled on three machines
with the processing times given in Table L. Let A =(1,1,1)
be the vector of surrogate multipliers. The surrogate prob-
lem (S,) is solved by assigning each job to the machine
with the smallest processing time for it. The resulting
schedule is represented by the Gantt chart of Figure 1. The
initial choice A = (1,1, 1) gives an elementary lower bound:
it is the sum of the minimum processing times divided by
the number of machines. The lower bound is S(A) = 18! 3
the upper bound is C,(A) =

The best surrogate lower bound is found by solving the
surrogate dual problem, referred to as problem (D). It is
defined as

v(D) = max{S(A) | A > 0}. (D)
In the remainder, we let A* denote the vector of optimal
surrogate multipliers; furthermore, we call problem (P) the
primal problem.

Table I. Processing Time Matrix
Lo R I L s e I s
M, 6 3 10 12 11 14 8 6
M, 10 o 15 6 6 11 14 7
M, 11 9 14 14 00 10 10 9
Ml l .I] l 12 l J3 L J7 Jg
Mo [T T 05 ]
M3
0 10 - 20 30 33
Agure 1. Gantt chart for A = (1, 1,1); the dotted line indi-

cates the lower bound S(A).
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Observation 5. Since (S,) possesses the integrality prop-
erty, we have v(P) = v(D): the surrogate dual yields the
same lower bound as the linear programming relaxation
(P) (Greenberg and Pierskalla"®); Karwan and Rardin{?!)).

Observation 5 implies that (D) and A* can be found in
polynomial time by solving problem (P). Nonetheless, we
develop a so-called ascent direction algorithm to approximate
A*. In general, an ascent direction algorithm is an iterative
approximation algorithm that generates a series of mono-
tonically increasing lower bounds on the optimal solution
value of the dual problem. Ascent direction algorithms
have been shown to be successful for a wide range of
combinatorial optimization algorithms, including plant lo-
cation problems (Bilde and Krarup?!; Erlenkotter!®’; Guig-
nard and Spielberg!!”)), the traveling salesman problem
(Balas and Christofides!'); Christofides!*!), the generalized
assignment problem (Fisher, Jaikumar and Van Wassen-
hove'”), and the set covering problem (Fisher and
Kedial''!). For these applications, the gain in speed com-
pensates the loss in lower bound quality more than suffi-
ciently.

In our application, the advantage is twofold. First, the
ascent direction algorithm is fast, requiring only O(mn)
time per iteration; second, in each iteration it produces also
a feasible solution to the primal problem.

The key feature of an ascent direction algorithm is the
adjustment of only a limited number of multipliers per
iteration; if the consequences of particular multiplier ad-
justments can be evaluated, then one guaranteeing an im-
proved lower bound is chosen. An ascent direction method
is problem-specific: it exploits the special structure of the
problem and of the formulation. Guignard and
Rosenwein!'®! present an application-oriented guide for de-
signing Lagrangian ascent direction algorithms. For a dis-
cussion of a theoretical nature, refer to Van de Velde ?%

The shape of the function S:A — S(A) and the directional
derivatives are important for evaluating the consequences of
multiplier adjustments. To specify the form of S, we first
observe that there are no more than m" feasible solutions
for any problem (S,), since each of the n jobs can be
assigned to no more than m machines. Let X be the set
containing these solutions. Hence, X can be represented as
X ={xD,. .., x%} where K < m". Problem (D) is then
equivalent to the following problem: maximize

z
subject to

n
Z<AAXR [ YA,

1=1

m
A=0 and Y A,>0,

1=1

for k=1,...,K,

where A represents the processing time matrix. Hence, the
function S:A — S(A) is the lower envelope of a finite set of
functions of the type A — AAx® /L™ | A; it implies that S
is continuous in A and everywhere differentiable except at
all A where (S,) has multiple optimal solutions. We call

such A the points of non-differentiability. We have depicted

S
MxNysma,
,/”'/<
- 7
L‘\ — - ~a
| “/i‘*\'»»\:\\\\_ MxBVsm N,
“ v -~ \\\ T
\
7 ki

MxPsm A,
i
0 A

Fgure 2. The form of S(A).

in Figure 2 the shape of S for m =2 and K =3 with A,
fixed. The form of the function S is unusual; this is because
of the term YJL,A, appearing in the denominator. If the
term ¥]_; A, were absent, then the function S would be the
lower envelope of a finite set of linear functions (cf.
Fisher®)).

The directional derivative of the function S at A is defined
as

S(A + eu) — S(A)

S(A) = lim ,
€l0 €

4

for any vector u € R™. Hence, a necessary condition for A
to be optimal is that

5.1 <0, 5)

later on, we show that condition (5) is also sufficient for
optimality. If S;{A) > 0 for some 7 € R™, then 7 is called
an ascent direction of L at A: we get an improved lower
bound by moving some scalar step size A along u. In
general, it is difficult to compute directional derivatives.
However, it is easy to compute them for the primitive
vectors. A vector u = (u,...,u,) is called primitive if all
u, =0 for all i but one. Hence, there are at most 2m
different primitive directional derivatives at any A.

We show that the primitive directional derivatives re-
duce to simple expressions. For i = 1,...,m, let I}(A) be
the directional derivative at A for any primitive vector with
the ith component positive; hence, I;(A) is the derivative
for increasing A,. For i = 1,...,m, let I;7(A) be the direc-
tional derivative at A for any primitive vector with the ith
component negative; hence, [;7(A) is the derivative for
decreasing A, The first step is to rewrite definition (4) for
the primitive directional derivatives; accordingly, we get

S(A + ey — S(A)

forall ueR™;

IF(A) = lim ,
€l0 €
and
S(A — ee) — S(A
17(A) = lim ¢ ),
€l €
where ¢!) is the ith unity vector, for i = 1,..., m. Note that

I7(2) is undefined for any A with A, = 0.
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The second step is to simplify the above expressions.

First, recall that any problem (S,) may have multiple opti-
mal solutions; let X» be the set containing them. Second,
for any h (h=1,...,m), a sufficiently small step size
A > 0 exists to ensure that some x(h)*e XV is also
optimal for problem (S, .,m) for any € with 0 < e < A};
this can easily be proven in a constructive way. Hence,
such an x(h)* must be an optimal solution to problem (S,)
with as few as possible jobs assigned to M,,. To get such an
x(h)*, each job I, with A, p,; minimal and with A, p,
Ay py, for some M # M, is not assigned to M,; all other
ties are settled arbltrarlly Let C;(A) be the completion
time of M, for such an x(h)™*; let %/ (A) denote the set of
jobs on M, for such an x(h)*. Similarly, for any h (h =
1,...,m), a sufficiently small step size A; > 0 exists to
ensure that some x(h)~€ X is also optimal for problem
(Sy- o) for any € with 0 < € < A;. Such an x(h)~ must
be an optimal solution to problem (S,) with as many as
possible jobs assigned to M,. To get such an x(h)~, each ],
with A, p,, minimal is assigned to M,; all other ties are
settled arbitrarily. Let C;; (A) be the completion time of M,
for such an x(k)~; let #,7 (1) denote the set of jobs on M,
for such an x(h)~.

For a specific x(h)*, we have then that C,(A + ee'®) =
C(A) for each i(i=1,...,m) for 0 < e < A}, and that

C{A) = CF(A).
Hence, for 0 < € < A}, we have
eC;H(A) + T AC (A
S+ ety = S ELACOY
€+ Zﬁl’\t
€GP () + (ZLAC(A)/ETA)E A,
- €+ X7 A
_ €C () + S(MILL A
- €+ Z:rf—-l 1

This gives that

m
S(A + ee™) — S(A) = €[C/(A) — S(A)]/(e + Y )\,).
=1
Using this, we obtain for the primitive directional deriva-
tive that

() =[G (W) - s(V)] Z Ay
i=1
In a similar fashlon, we get that
L) =[S() - Cr(V]] XA
=1

If C/(a) > S(A), then machine M, is overloaded. For a
sufficiently small € > 0, ensuring that some optimal solu-
tion for problem (S,) remains optimal for problem (S, | ..»),
we have then that S(A + ee™) > S(A). In other words,
increasing A, is an ascent direction: we will obtain an
improved surrogate objective value by moving along this
direction. If C; (1) < S(A), then machine M, is called un-
derloaded: decreasing A, is an ascent direction. Later on, we

show how to compute an appropriate step size to move by
along an ascent direction.

Now we show that the shape of S between the points of
non-differentiability is immaterial. Suppose A is not a point
of non-differentiability. For h = 1,..., m, let A, > 0 be the
step size for decreasing A, to reach the nearest point of
non-differentiability; such a A, always exists, because any
A with A, =0 is a point of non-differentiability. For h =
1,...,m, let Mh)™=(A,..., A, —Ap,..., A,). Using the
derivation of the primitive directional derivatives, we have

S(AM(h) - )—S(A)—Ah[S(A)—Ch(A)]/ —At+ Z)t)

Since S(A) is a convex combination of the machine comple-
tion times C,(1),...,C,(A), we have S(A(h)7) = S(]A) for at
least one h. Hence, for problem (D), we can restrict our-
selves to the optimization over all A > 0 corresponding to
points of non-differentiability; the form of S between these
points does not matter. The function S can therefore be
treated as if it were the lower envelope of a finite set of
linear functions, implying that a local optimum for prob-
lem (D) is also a global optimum. This means that condi-
tion (5) is also sufficient for optimality.

If we find an ascent direction, then we travel along this
direction to the nearest point where the associated primi-
tive directional derivative changes. The required step size
is easily determined. Suppose I;7(A) > 0: M, is overloaded.
Increasing A, makes M, less attractive to schedule jobs on.
Eventually, we reach the first point where some ], cur-
rently scheduled on M, can equally well be scheduled on
some other machine M,; moving on beyond this point, we
enforce the removal of ], from M, The step size A to reach
this point is the smallest positive value for which (A, +
A)p,, = Ay p,, for some ], on M, and some M, (M, # M,);
hence, it is computed as

A= —a+ min1<x<m,i*h,],e,f,;*(,\)'\zpy]/phr

Accordingly, we get A =(A;,..., A, + 4,..., A,); the in-
crement to the objective value is S(A) — S(A) = A[C;(A) —
S(V]/(A + 3™ ,A,) > 0. Furthermore, we move ], from
M, to M,, and examine whether increasing 2, is also an
ascent direction.

Now, suppose I;(A) > 0: M, is underloaded. Decreas-
ing A, makes M, more attractive. Eventually, we reach the
first point where some ], on M, (M, # M,) can equally
well be scheduled on M,; moving on beyond this point
will force J, to go to M,. The required step size A is the
smallest positive value for which (A, — A)p,, = A, p,,, for
some ], scheduled on some M,; it is computed as

A=AX, - minl(i(m i*th ]}ef—/,,‘(A)’\x pz;/ph/'
Accordingly, we get A = (Ay,..., A, — A, ..., A,), and the
increment to the objective value is S(A) — S(A) = A[S(A) -
Cr (WI/(=A + 1A > 0; we move ], to M,, and exam-
ine whether decreasing A, is also an ascent direction.

If the ascent direction method is started in some A > 0,
then the ascent direction can never reach a boundary point
where A, = 0 for some i (i = 1,..., m). Also, we must have
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A* > 0, since there exists an ascent direction, which may be
non-primitive, for any vector with multipliers equal to
zero. Termination of the ascent direction method happens
therefore at some A where all primitive directional deriva-
tives exist. At such a A, we have

I}/(A)<0, and I7(AQ) <0, for i=1,...,m,

or equivalently,

Y op,<
IR AN

JOKED) p,, for i=1,...,m.

1,47 (D

We call these the termination conditions. Comparing them
with condition (5), we see that they are necessary but not
sufficient for optimality; hence, termination may occur hav-
ing A # A*, i.e., before finding the optimal vector of surro-
gate multipliers.

The identification of the ascent direction and the compu-
tation of the step size can be implemented in different
ways. We have freedom concerning the choice of the initial
vector, and, for each iteration, the choice of the ascent
direction. The vector A depends on these choices. Since
A* >0 foreach i (i =1,..., m), we best start with a posi-
tive vector. Moreover, since the surrogate multipliers are
normalized values, we can fix one multiplier a priori with-
out running the risk of missing the optimum. The choice of
the ascent direction affects the upper bounds that we get as
by products: for machine load balancing, it may be better
to choose the direction of steepest ascent. Nonetheless, we
give below a stepwise description of a rudimentary ver-
sion, stripped from most of such considerations.

Ascent Direction Algorithm for Problem (D)
Step 0. For h = 1,...,m, set A, « 1. Solve problem (S,),
settling ties arbitrarily. Determine S(A).
Step 1. For h = 1,..., m, do the following:
(a) While C;f(A) > S(A), compute

A= _Ah + mln1<1<m,néh,/,e],,*()«))‘z pzj/phj'

set A, < A + A, and update S(A) and C; (A).
(b) While o (A) < S(A), compute
A=XA —min; ,_, . h,,,e/~,;77(A)’\: P:,/Ph,:
set A, — A, — A, and update S(A) and C;; ().
Step 2. Stop if no ascent direction was identified; other-
wise, go to Step 1.

Let us reconsider our example and the solution of (S,) with

=(1,1,1). Machine M, is overloaded The step size to
remove some job from M, is A =Y; 1ncreasmg A by Y4
allows us to move J; to M, We get A=(",1,1), a
schedule with makespan 27, and S(A) = 19.1 (see Figure 3;
the dotted line indicates the virtual capacity of the ma-
chines).

Machine M, remains overloaded; we increase /\1 to %/,
and subsequently move |, to M;. We get A = %, 1,1), a
schedule with makespan 20, and $(A) = 19.3 (see Figure 4).
Since all processing times are integral, the optimal

M [T 5] I | I,
My | Jo [ Js T Js |
M; i
0 10 20 27 30

Agure 8. Gantt chart for A = (7/,1,1).

I e e

My [T T 75 [ Js )
M, Te [ 77
10 20 30

Agure 4.  Gantt chart for A = (%/,, 1,1).

makespan is integral as well. Hence, we have found
an optimal primal solution. However, an ascent dlrectxon
still exists: M, is underloaded. If we decrease A, by Y,,,
then Js goes to M,. We obtain A = (%/,,'%,,,1) and S(A) =

19* /139- At this point, no primitive ascent direction exists
anymore the ascent direction method is terminated at

= / 4 10/11/1)

The vector A is not optimal for the surrogate dual prob-
lem, ie, A # A*. For A*, we have that v(P) = S(A*) (Ob-
servation 5), and that the complementary slackness condi-
tions hold. These conditions can be shown to imply that for
each j(j =1,..., n) we have that

* = : *
x:] >0= Al Pz, - mlnl(ksm)‘kpk/'

Considering Figure 4, we are allowed to split only J, over
M; and M, and |, over M; and M,, if we want a solution
that satisfies the complementary slackness relations. How-
ever, a solution with the desired value can then never be
obtained.

We now discuss Potts’ 2-approximation algorithm and
its relation to the ascent direction algorithm. For an arbi-

trary number of machines, the first phase of Potts’ algo-
rithm is to solve the linear programming relaxation (P). The
solution of (P) shows at least n — m + 1 jobs each assigned
to exactly one machine, and at most m — 1 jobs split over
two or more machines. The jobs assigned to exactly one
machine are retained as a partial schedule. The split ]obs
are assigned so as to minimize the makespan, given the
partial schedule. Since v(P) < v(P), the length of the partial
schedule is no more than v(P). The scheduling of the split
jobs proceeds by complete enumeration; this adds at most
v(P) to the length of the partial schedule. Hence, the result-
ing schedule has a makespan at most twice the optimal
makespan. Since (P) is solvable in polynomial time and
complete enumeration for at most m — 1 split jobs requires
O(m™) time, the procedure is polynomial for fixed m.

Consider now an optimal solution of problem (S, ). Since

A is the vector upon termination of the ascent direction
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method, we have

Y <S(A) <
IR

Exploiting these termination conditions, we point out a
2-approximation algorithm that proceeds entirely in the
spirit of Potts’ 2-approximation algorithm. In the first phase,
we assign each ], € £(2) to M,, thus obtaining a partial
schedule with length no more than v(P). The remaining
jobs, contained in the set ,# — U™, #*(}), have ties con-
cerning their minimal dual processmg times. In the second
phase, we assign these jobs by complete enumeration so as
to minimize the makespan, given the partial schedule; this
adds at most v(P) to the length of the partial schedule.
Hence, the resulting schedule has makespan no more than
2 u(P).

In fact, we get also a schedule with worst-case ratio 2
with fewer jobs to assign in the second phase as follows.
Let £°(0) ¢ (M) - £" (M) (i = 1,..., m) be mutually dis-
joint subsets of jobs such that

)y

[ ATON VS A ¢Y]

hence, #°(2) contains only jobs with ties concerning their
minimal dual processing time. In the first phase, we assign
each ] €47 (A) U £%Q) to M,; in the second phase, we
assign the remaining jobs. The sets .#°(}) should be chosen
s0 as to minimize the number of jobs left for the second
phase. In general, we cannot bound the number of jobs to
be assigned in the second phase by a polynomial in m.
However, if A = A*, then this procedure is exactly Potts’
2-approximation algorithm; since the complementary slack-
ness relations holds for A = A*, we can choose the sets
%) in such a way that no more than m — 1 jobs remain
for the second phase.

For the special case m = 2, we have v(P) = S(A). Since
the surrogate multipliers represent normalized values, only
m — 1 multipliers need to be involved to find A*. For the
case m = 2, only one multiplier is involved; the termina-
tion conditions at A are then sufficient for optimality. For
m = 2, problem (P) is solvable in O(n) time (Gonzalez,
Lawler, and Sahnil’®). Moreover, there is at most one split
job. Considering the ascent direction algorithm, we ob-
serve that the best solution value generated by Potts’
2-approximation algorithm concurs with the best upper
bound found when solving problem (D) by use of the
ascent direction procedure.

X

&5 3N

Py

P,y < S(A), foreachi=1,...,m;

2. Duality-Based Heuristic S8earch

The principle of Potts’ 2-approximation algorithm and
specifically the termination conditions of the ascent direc-
tion algorithm give rise to the idea that a near-optimal
solution for the surrogate dual problem induces a near-
optimal solution for the primal problem. In this respect, we
need a scheme that generates a series of promising surro-
gate multipliers. The example suggests that the ascent
direction method, perhaps with some minor adjustments, is
such a scheme. The ascent direction method, however, is

too restrictive for our purpose. Computational experiments
show that is usually terminated after only a small number
of iterations. We need a scheme that allows us to browse
quickly through many near-optimal solutions for problem
(D). The approximate algorithm differs therefore from the
ascent direction method on two counts.

First, the machine with the largest overload is always
selected for multiplier adjustment. From a primal point of
view, this is an obvious choice: one of the jobs on this
machine must be removed in order to reduce the machine
completion time that induces the current makespan. Sec-
ond, we make the step size larger than necessary to enforce
such a removal: this avoids early termination. Specifically,
we move to the second point where the primitive direc-
tional derivative changes. Let machine M, be the machine
with the largest overload in the solution of problem (S,);
hence, we have C,,, (A) < C;(A). Then we compute

A= —h, + min2 A/ Prys

I<igm, &4 (D)
where min2 denotes the second minimum of these values.
Ifweput A =(Ay,..., A, + A, ..., A,), then we enforce the
move of some [, from M, to some M,, and that another
job on M, can equally well be scheduled on some other
machine. Nonetheless, this second job is kept on M,. The
next step is to compute the new makespan C,,,,(}), and the
machine with the largest overload; this machine is deter-
mined by computing max; _, . ,,C;'(A). We have no guar-
antee that the rescheduling of J, induces an improved
schedule we can have either C,,,,.(3) < (X or Cppp )

Cmax(A). The latter occurs if C ()\) Co(A) + poi >

max( A). Hence, the approximation algorlthm is equipped
with a mechanism that accepts deteriorations of the
makespan. We repeat this process for the machine with the
largest load, and store the best solution on the way. We put
an upper bound on the number of iterations, since this
procedure does not have any convergence properties. Be-
low we give a stepwise description of the algorithm; max-
iter is a prespecified maximum number of iterations and
UB is the currently best solution value.

max

Approximation Algorithm

Step 0. Put A « (1,...,1), t « 1. Solve (S,), settling ties
arbitrarily. Let UB « C,, (A), and store the schedule.

Step 1. Determine M, with the largest overload:
CH(A) = Cr(A) foreach i (i = 1,..., m). Compute A, and
identify ajob ], and a machine M, such that A p.,/puc =
m1n1<1<m i#0, ] € 7,,()\)’\ pl}/Ph} PUt fet+1

Step 2. Put A« (A, ..., A, +4,...,4,) CA) «
CilA) = prier Cg(A) & CoX) + pgy. I Cmax()\) < UB, then
UB « C.,(A), and store the schedule. If t < maxiter, then
go to Step 1; if not, then stop.

We call the approximation algorithm described above the
duality-based approximation algorithm, and the particular
strategy employed as duality-based heuristic search. For the
example, the approximation algorithm goes through the
same steps as described in Section 1.

Many heuristic search strategies are applicable to the
parallel machine scheduling problem. Most of them have in
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common that they adjust the current schedule somewhat to
try to improve on its value. Let o be some arbitrary
schedule and let gy, be the schedule obtained from o by
swapping ], and ], (j + k). We define the so-called single
pairwise interchange neighborhood for o as the set N, con-
taining the schedules o forall j=1,...,n -1, k=j+
1,..., n. Suppose M, is such that C,{o) = C_,,(a), where
Ci(o) and C,,,,(o) denote the completion time of M, and
the maximum machine completion time in o, respectively.
Let (], J;) be a pair of jobs such that ], is scheduled on M,
and J, on some other machine M, (g # ) for which we
have

Ce +pg, — Pex < C, and C, — Py + Pux < Ci-

If we interchange J, and ], that is, we put J, on M, and J,
on M,, then we reduce the makespan. In other words, we
have identified a schedule o, € N, with C,,.(0,) <
Crnax( ). This process is repeated and terminates when no
further improvement is found. Iterative local improvement
procedures are based upon these concepts. The main danger
is to get trapped in a poor local optimum. We may circum-
vent this pitfall by using multiple schedules as starting
points, which may lead us to multiple locally optimal
solutions. Hopefully, one of them is a good approximate
solution.

More sophisticated techniques to avoid early entrapment
have been developed, among which simulated annealing
and tabu search take prominent places. Simulated annealing
(see e.g. Van Laarhoven and Aarts??’1) leaves the possibility
open to travel from one local optimum to another. This is
achieved by accepting deteriorations of the objective value
with a probability that is a decreasing function of the
running time. Tabu search (Glover!'”! de Werra and
Hertz!") is much similar to simulated annealing, but pro-
vides a deterministic mechanism to accept deteriorations.
The willingness to accept deteriorations unconditionally
distinguishes the duality-based search technique from sim-
ulated annealing, tabu search, and general iterative local
improvement schemes.

Anticipating on the implementation and the evaluation
of the duality-based approximation algorithm in Section 4,
however, we will consider two versions of the algorithm.
On the one hand, we evaluate the duality-based algorithm
on its own; on the other hand, we evaluate the algorithm in
conjunction with the iterative local improvement procedure
we described. We only submitted the best solution to the
improvement procedure. The duality-based algorithm in
conjunction with the iterative local improvement procedure
produces very good results. Apparently, the duality-based
approximation algorithm finds an attractive initial solution
for the iterative local improvement procedure.

3. The Branch-and-Bound Algorithm

The first step in the branch-and-bound algorithm is to run
the ascent direction method to approximate the optimal
solution of problem (D). Upon termination, we have the
vector A =(A,,...,1,) of surrogate multipliers. On the
way, we store the best primal solution. We also use the

duality-based approximation algorithm and the construc-
tive heuristics presented by De and Morton,[! Ibarra and
Kim,? and Davis and Jaffe®! to find approximate solu-
tions for problem (P). The implementation of these algo-
rithms is described in Section 4. The vector A plays an
important role in the truncation of the search tree.

3.1. Initial Reductions

The size of an instance may be reduced by a simple
reduction test, which is common in linear programming. It
can be conducted for any vector of surrogate multipliers,
but success is most likely for A* and vectors close to it.

Theorem 1. If for a given wvector of multipliers A =
(Ay,.... Ay,), we have some |, and M, for which

m
(Avpic = min Ap,)/ A > UB-5(¥) -1,
Igigsm =1

“where UB is a given upper bound on v(P), then x,, = 0 in any

schedule with C, ., < UB, if such a schedule exists.

Proof. Suppose there is a schedule with makespan less
than UB, and yet with ], scheduled on M,. Solving the
surrogate relaxation problem (S,) under the additional con-
straint x,, = 1 gives the lower bound LB with

nt
LA

=1

n
+ ), min Ap,
]=1ls1<m

Y min A, p,])

j=1 /¢kl<1<m

LB = (’\h Pk +

= |:(/\h Puk — lg}i:lm )‘1 plk)

m
YA >UuB-1,

=1

which is a contradiction. m

8.2. The 8sarch Tree

A node at level k of the search tree corresponds to a partial
schedule with a specific assignment of [, ..., J;. Each node
at level k (k=1,...,n — 1) has at most m descendant
nodes: one node for the assignment of job [, to each
machine M,, for i =1,..., m. The jobs and the machines
will be reindexed in compliance with the branching rule we
propose in the next subsection. The algorithm we use is of
the “depth-first” type. We employ an active node search: at
each level, we consider only one node to branch from,
thereby adding some job to the partial schedule. The nodes
are branched from in order of increasing indices of the
associated machines. We backtrack if we reach the bottom
of the tree or if we can discard the active node.

8.3. Branching Rule

The dual processing times A,p, (i=1,...,m, j=1,...,n)
also serve to structure the search tree. We define Y, =
min2,_, . A p, — min ., A, p,, where min2 denotes
the second minimum. In view of Theorem 3, a large value

v, suggests that there exists an optimal solution with J,
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scheduled on the machine with minimum dual processing
time for it; we call this machine the favorite machine for | )
We like to structure the search tree in such a way that we
first explore the configurations with jobs with large v,
assigned to their favorite machines. This is achieved by
reindexing the jobs in order of nonincreasing values v, and
by reindexing the machines at each level k (k=1,...,n —
1) in order of nondecreasing values A, P (=1, m)
We note that the first complete schedule encountered in the
tree is an optimal solution for the surrogate problem (5;).

Such a structure of the search tree has two advantages.
First, for the optimal solution and good approximate solu-
tions of the primal problem, most jobs are expected to have
been assigned to their favorite machines. Second, if we find
an improved upper bound, then most of the additional
variable reductions are associated with the nodes of the
still unexplored part of the search tree.

3.4. Discarding Nodes

Here, we describe in detail the various rules to discard
nodes. Computational experiments show, surprisingly
enough, that even a quick ascent direction method is not
worthwhile to be run in each node of the tree. We use
therefore the vector A = (Xl, e, 7\,,,) throughout the search
tree. The reduction test and the following rules depend on
A. The vector A* may therefore be more effective; it may be
worthwhile to use a linear programming algorithm in the
root of the tree to obtain A*. On the other hand, if 2 is close
to A*, then the additional effect will be negligible. Suppose
the values z,, (i =1,...,m, j = 1,..., k) record the current
partial schedule at level k of the tree. That is, z,; = 1 if J;
has been assigned to M;, and z,, = 0 otherwise. Let S(a, kﬁ
denote the optimal solution of problem (S;) subject to
X, =z, fori=1,...,m, j=1,..., k Then we have

S(A, k) = S(A)

k m m
+ Z (2 (Atpt;_ min Aipij)zij) Z’\x'
j=1\i=1 =1

Igism

Note that S(A, k) > S(A). A node at level k that assigns J,
to machine M, can be discarded if

m
('\hl’hk - minla:x(mAipik)/Z A; > UB
i=1

-S(A,k—-1) - 1.
(F1)

This test requires constant time per node. In addition, the
node can be discarded if

k-1
Y PuyZn; + Pax > UB = 1. (F2)
1=1

The third test tries to establish whether the current partial
schedule is dominated by another partial schedule for the
same k jobs. Suppose we have some job [, 1 <l <k—1)

that is currently scheduled on M; for which

P> P and  py < Py (F3)
Interchanging J, and ], reduces the load of both M, and
M. The current partial schedule can then be discarded,
since there is at least one optimal schedule with no such
pair of jobs.

Conditions similar to (F2) apply to each job ], (j =k +
1,...,n). In case there is a job J, (k + 1 <! < n) for which

k
Y p,z,+ps>UB~1, foreach M, i=1,...,m,
=1
(F4)

we discard the node, too. Similarly, if the condition (F4)
applies to some ], (k+ 1 <1< n) for all machines M,
(i=1,...,m) but one, we can assign J, to this machine.
Subsequently, we can possibly carry out additional assign-
ments; these, in turn, enhance the likelihood that the node
is closed on account of (F1), (F2), (F3), or (F4).

In addition, we try to identify a machine M, (1 € h < m)
for which

I
Y Puyzn, * P> UB—1, foreachJ,l=k+1,...,n
=1

In this case, M, is ignored for the assignment of any
remaining job. Therefore, we discard the node if

o

n
py min

APz, +
h A ]=k+11<1<m,t¢h

JE#E
m —
Y A >UB-1.

1=1,i+h

4. Gomputational Experiments

Both algorithms have been coded in the computer language
C; the experiments were conducted on a Compaq-386,/20
Personal Computer.

The algorithms were tested on a broad range of instances
with n and m varying from 20 to 200 and from 2 to 20,
respectively, giving rise to 80 combinations altogether. The
processing times were generated from the uniform distri-
bution [10, 100]. For each combination of n and m we
considered 10 instances.

4.1. The Branch-and-Bound Algorithm

For the branch-and-bound algorithm we put an upper
bound of 100,000 nodes; computation for any instance was
discontinued at this limit. In Table II, we present for each
combination the number of unsolved problems. An empty
cell indicates that the branch-and-bound algorithm was not
run; considering adjacent cells or initial computations, we
expected that most of the instances would remain un-
solved. Table III shows the average number of nodes ex-
plored. The average for a particular combination of n and
m is computed by aggregating the number of nodes for
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each of the instances and dividing the sum by 10, the total
number of instances for each combination. Unresolved
instances contribute therefore 10,000 nodes each to the
average number of nodes. Table IV presents the average
computation time for the branch-and-bound algorithm,
including the running time for the heuristics and the
duality-based approximation algorithm. The time spent on
unsolved instances is included, too. The average computa-
tion time for a particular combination is computed in a
similar fashion as the average number of nodes.

From a practical point of view, the instances with a few
machines are easy. The effort required to solve a problem

seems to increase more with the number of machines than
with the number of jobs. Surprising exceptions are the
instances with m > 12 and n < 40. Note that the 100,000-
node limit for the branch-and-bound algorithm is arbitrary:
it induces distinct time limits across the instances. For
example, instances with m = 20 and # = 50 and 60 require
about 10,000 nodes on the average; however, they require
about 5 minutes of running time. Nonetheless, one can
easily form some idea about the instances that are within
reach of, say, one minute of computation time.

Significant deviations from the averages occur. For the
combination n =30 and m = 15, for example, a single
instance accounts for the remarkably large number of nodes
and large running time. It is also conceivable that the

Table Il. Number of Unsolved Problems Out of 10 performance of the algorithm is enhanced by fine-tuning
for Each Cell the algorithm to particular instances. For large values of n
and m, for example, it may be worthwhile to use the ascent
m direction method in each node of the tree after all. Even
n 2 3 4 5 6 8 10 12 15 20 then, however, such instances are not solvable within rea-
sonable time limits.
20 0 0 0 O 0 0 0 0 0 0
000 0 0 0 0 0 0 0 4.2. The Duaiity-Based Approximation Algorithm
4 0 0 0 0 0 1 2 0 0 0 Implementing the duality-based approximation algorithm,
5 0 0 0 0 1 5 — = — 0 we have put maxiter = nm. Note that cycling may occur.
60 0 0 0 0 1 - - — — 1 This happens, for instance, if J, can be scheduled on both
g 0 0 0 2 — - - - - — M, and M,. If J, is scheduled on M,, then M, has the
0w o 00 38 — — = = — - largest overload; if | ; is scheduled on M,, then M, has the
200 01 0 — — — — — — - largest overload. In such a situation, J, would oscillate
Table III. Average Number of Nodes; in Case of Unsolved Problems, It Is a Lower Bound on the Average
Number of Nodes
m
n 2 3 4 5 6 8 10 12 15 20
20 16 46 68 203 180 75 33 37 11 0
30 31 90 340 752 434 1,440 784 145 4,784 64
40 37 170 615 4,488 10,149 6,786 23,936 3,800 192 342
50 59 171 1,188 6,133 26,022 98,202 — — — 5,848
60 68 358 1,127 12,715 37,942 — — — — 20,669
80 85 1,232 3,386 37,110 — — — — — —
100 132 2,503 5,198 58,116 — — — — — —
200 330 22,245 14,274 — — — — — — —
Table IV. Average Computation Time in Seconds; the Time Spent on Unsolved Instances Is Included, Too
m
2 3 4 5 6 8 10 12 15 20
20 1 1 1 1 1 1 1 1 1 1
30 1 1 1 2 2 9 6 2 43 2
40 1 1 2 12 39 39 214 63 3 10
50 1 1 3 16 57 285 — — — 204
60 1 1 3 33 105 — — — —_ 373
80 1 3 8 96 — — — — — —
100 1 6 12 87 — — — —_ — —
200 3 40 52 — — —_ — — — —_
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between M; and M,. The procedure is discontinued upon
detection of this phenomenon.

The duality-based approximation algorithm was com-
pared with the constructive heuristics of De and Morton,®!
Ibarra and Kim,?% Davis and Jaffe,®! and with our version
of Potts’ 2-approximation algorithm [Potts®®*! (see Section
1)]; the latter is easy to embed in the branch-and-bound
algorithm. We have evaluated neither Potts’ original ver-
sion, nor the 2-approximation algorithm presented by
Lenstra, Shmoys, and Tardos,”?! nor the two-phase heuris-
tics presented by Hariri and Potts.'®] All these algorithms
proceed in the same spirit; none is expected to outperform
the others significantly in practice. In the remainder, when
referring to Potts’ 2-approximation algorithm, we are actu-
ally referring to our version of it. Recall that the versions
are identical for m = 2. The constructive heuristics display
a very erroneous behavior. For instance, the De and Morton
heuristic, taking the best result from 10 underlying heuris-
tics, produces solutions with an average deviation from the
best solution of 27%. We have therefore treated the con-
structive heuristics as a single algorithm by considering
only the best schedule.

In Table V, we present the average relative deviation for
the best schedule generated by the constructive heuristics
from the optimal solution, or if this is not available, from
the best known solution. In the latter case, brackets have
been placed around the figures. Table VI shows the same
information for the duality-based approximation algorithm.

As a whole, the duality-based approximation algorithm
performs much better than the constructive heuristics,
which behave poorly. This certainly applies to instances
with a larger number of machines. The performance of the
constructive heuristics is easily improved by submitting
them to an iterative local improvement scheme. Therefore,
the schedules generated by the constructive heuristics
should merely be seen as initial solutions that serve as
input for some iterative local improvement procedure.

Each schedule generated by the constructive heuristics
was therefore subsequently submitted to the iterative local
improvement procedure we described in Section 2. In con-
trast, only the best schedule generated by the duality-based
approximation algorithm was submitted to the improve-
ment procedure.

In Tables VII, VIII and IX, we present the results for the
constructive heuristics, Potts’” 2-approximation algorithm,
and the duality-based approximation algorithm after local
improvement, respectively. The sign “*'* behind an entry in
these tables indicates that the corresponding algorithm has
the best average performance for the associated instances.
Table VII exhibits that the iterative local improvement
technique is effective for the constructive heuristics in case
of few machines or jobs. However, its effectiveness deterio-
rates with an increasing number of machines. Only two
machines at a time are involved in the job interchanges. For
large m, it is more difficult to find an attractive local
neighborhood, even in case of multiple start solutions.

Table V. Average Relative Deviation for the Constructive Heuristics

m
n 2 3 4 5 6 8 10 12 15 20
20 2.9 8.0 6.8 12.8 19.0 20.3 7.6 22,6 8.9 5.4
30 22 6.3 8.2 18.0 18.8 25.5 22.5 23.1 14.6 13.0
40 3.0 6.5 10.8 14.6 133 (27.5) 274 25.6 28.6 19.0
50 20 7.2 12.0 121 (19.3) (23.4) 17.2) (18.4) (14.7) 32.8
60 14 6.0 103 10.5 (15.9) (14.6) (17.2) (15.4) (16.9) (42.5)
80 1.8 4.6 8.4 (111D (13.4) (11.4) (16.9) (17.5) (24.7) (20.5)
100 2.8 3.3 7.2 9.7) (111 (15.0) (19.8) (18.3) (19.8) (21.2)
200 0.7 (2.4) 39 (4.2) (5.0 (8.2) (15.5) 17.0) (15.5) (24.5)
Table VI. Average Relative Deviation for the Duality-Based Approximation Algorithm
m
n 2 3 4 5 6 8 10 12 15 20
20 4.2 54 6.6 10.5 11.3 16.4 15.2 14.6 74 3.0
30 15 49 6.0 9.8 8.9 14.7 16.7 21.0 14.0 15.2
40 1.9 42 3.5 9.0 8.3 (10.0) (19.0) 14.4 135 19.3
50 1.6 33 49 74 (6.5) (8.3) 4.1 (1.9) (2.5) 18.1
60 1.2 1.1 4.1 5.5 (5.0) 4.0) (1.8) (1.0) (1.8) (24.3)
80 1.4 2.3 29 (3.5) (2.4 1.9 2.1) (2.8 2.7) 4.5)
100 2.3 2.3 24 (3.6) (1.8) 2.2) (1.9) (1.9) 0.8 14)
200 0.4 (1.5) 1.1 (1.1 (1.2) (1.8) (3.3 (1.3) (3.3) (0.6)

Copyright © 2001 All Rights Reserved



Scheduling Unrelated Parallel Machines

Generally, the running time, which seems to be increasing
with 7, is modest: instances up to n = 100 require only one
or two seconds; approximately 10 seconds of computation
time are required for instances with n = 200. Because the
job interchanges affect only two machines at a time,
the number of machines hardly seems to play a role in the
computation time.

Potts’ 2-approximation algorithm was embedded in a
branch-and-bound algorithm that differs on two points
from the branch-and-bound algorithm described in Sec-
tion 3. First, we omitted the dominance rule (F3); second,
we initially put UB = ». The condition (F3) is useful for

finding an optimal solution, but might eliminate good
approximate solutions. That is why Potts’ 2-approximation
algorithm sometimes took more time than the optimization
algorithm. Occasionally, more than m — 1 jobs remained
for the second phase. It is surprising that the final solution
was rarely improved by the local improvement procedure,
although it was applied to all jobs. The computational
effort for the algorithm was modest and seemed to increase
more with the number of machines than with the number
of jobs. For instances up to m =12, it was one or two
seconds; for instances with m =15 and m = 20, it was
about 15 to 20 seconds. Instances with n = 20 and m = 20

Table VIL. Average Relative Deviation for the Constructive Heuristics after Iterative Local Improvement

m
n 2 3 4 5 6 8 10 12 15 20
20 0.0* 1.0* 3.0* 71 8.3* 10.4 4.9* 11.1 1.9* 5.1
30 0.1* 1.2* 3.1* 4.4* 7.6 13.3* 15.0 17.4* 11.0 92
40 0.2* 1.3 1.7* 3.8* 7.9 (13.6) (154) 17.8 222 14.7*
50 0.3* 1.1* 2.7 52 (7.8) (11.6) (5.0) 6.9) 7.0) 20.4
60 0.2* 1.0 3.1 3.8 (5.9 4.8) (2.5) (7.4) (10.6) (32.8)
80 0.1* 0.9 23 (2.8) 19 (1.9) 4.7) (6.7) (12.5) 124

100 2.5 0.7 19 2.9 1.7) 2.1 (6.1) (6.1) (6.1) (10.6)

200 0.2 (0.6) 1.1 0.8 (1.3) (1.8) (3.5) 4.1) (3.5) 8.7)

Table VIII. Average Relative Deviation for Potts’ 2-Approximation Algorithm after Iterative Local Improvement

m
n 2 3 4 5 6 8 10 12 15 20
20 17 3.0 5.4 9.1 11.0 8.9* 10.8 14.2 4.8 —
30 0.2 2.7 4.6 79 6.9 13.4 12.7* 22.0 10.4* 3.7*
40 0.4 2.1 2.8 53 8.7 (13.6) (17.6) 19.5 20.6 15.1
50 0.4 1.6 33 5.6 (7.6) (11.8) (8.6) 6.6) 6.2) 21.6
60 0.3 2.6 2.8 5.1 (6.7) 1.9 3.1 (10.1) 4.2) (37.0)
80 0.1* 19 22 (5.7) 4.0 (3.4) 9.5) (7.2) (10.3) (12.4)
100 2.3* 1.7 19 (4.4) (N (2.6) (3.9 39 9.3) (10.6)
200 0.1* 0.8) 1.0 1.7 24) 3.9 (5.0 (6.3 (5.0 (14.7)
Table IX. Average Relative Deviation for the Duality-Based Approximation Algorithm after Iterative
Local Improvement
m
n 2 3 4 5 6 8 10 12 15 20
20 1.7 1.0* 5.4 5.4% 9.8 14.5 14.0 10.8* 7.4 3.0*
30 0.2 2.6 39 5.2 6.7* 142 15.0 19.7 11.3 14.8
40 04 1.0* 2.8 5.2 4.4* (9.3)* (15.2)* 13.9* 12.0* 16.4
50 0.4 1.5 2.3* 4.1* (4.2)* 7.2)* 1.3)* 0.0 a.2)* 17.0*
60 0.3 0.5* 2.0* 2.7 (3.5)* 1.0)* 0.8)* (0.8)* 0.9)* (22.8)*
80 0.1* 0.7* 1.0* (1.9)* 1.8)* 0.6)* (0.6)* 2.2)* a.e* (4.5)*
100 2.3* 0.6* 1.1* (2.2)* (0.8)* (0.9)* 0.7)* 0.7)* (0.3)* 0.7)*
200 0.1* 0.5)* 0.7* 0.3)* (0.1)* 0.8)* (1.D* (0.4)* 1.2)* (0.0
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Table X. Number of Times (Out of 10) That the
Duality-Based Approximation Algorithm
Performed at Least as Well as the
Other Approximation Algorithms

m
n 2 3 4 5 6 8 10 12 15 20
20 1 7 5 7 4 4 3 6 7 9
30 7 4 4 4 7 6 4 7 4 4
40 5 6 3 3 8 9 4 7 9 5
5 7 4 5 7 7 6 6 10 8 9
60 4 8 7 6 8 4 5 9 8 9
8 2 5 7 6 9 6 8 6 9 7
100 9 4 5 6 5 6 8 8 9 9
20 6 7 6 7 9 7 8 8 8 10

were not run; for these instances, Potts’ algorithm requires
explicit enumeration of almost the entire state space.

As can be seen from the number of ‘*"’ signs in Table IX,
the duality-based approximation algorithm has the best
performance on the average. Note that the entries for m = 2
are identical for the duality-based algorithm and Potts’
algorithm. In spite of their close relation, the duality-based
approximation algorithm performs considerably better than
Potts’ algorithm.

Table X presents the number of times (out of 10) that the
duality-based approximation algorithm produced the best
or equally best solution. The algorithm performs remark-
ably well if m and n are large; apparently, these instances
are beyond the reach of the iterative local improvement
procedure and Potts’ 2-approximation algorithm. In a sense,
the duality-based approximation algorithm and the branch-
and-bound algorithm are supplementary: the latter is effec-
tive for instances for which the former performs not so well
as the other approximation algorithms. The running time is
about a factor of two more than the running time of the
constructive heuristics and Potts’ approximation algorithm,
but it is comparable or less in the extreme combinations
with n = 200 or m = 20.

5. Conclusions

The R||C,,, problem is a practical scheduling problem for
which we have proposed an optimization algorithm and an
approximation algorithm. The optimization algorithm, of
the branch-and-bound type, solves large instances to opti-
mality within reasonable time limits. The approximation
algorithm is based upon a simple and intuitively appealing
idea for local search: heuristic duality-based search in con-
junction with iterative local improvement. For instances
that are beyond the reach of an optimization algorithm, it
produces very good results.
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