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Abstract—We show that the duality between channel capacity probability of decoding error approaching zero, and the rate dis-
and data compression is retained when state information is tortion function is the minimum rate needed to describe a source
available to the sender, to the receiver, to both, or to neither. We under a distortion constraint.

present a unified theory for eight special cases of channel capacity In thi look at f bl in datat ..
and rate distortion with state information, which also extends nthis paper, we look at four problems in aata transmission in

existing results to arbitrary pairs of independent and identi- the presence of state information and four problems in data com-
cally distributed (i.i.d.) correlated state information (S;, S») pression with state information. These data transmission and

available at the sender and at the receiver, respectively. In par- Compression models have found app"cations in wireless com-

ticular, the resulting general formula for channel capacity C = nications where the fading coefficient is the state informa-
MAaXp(w, i) [L(U; S2, Y)—I(U; S1)] assumes the same form . . . . .

as the generalized Wyner—Ziv rate distortion function R(D) = tion at the sender, in capacity calculation for defective memory
Milp(wle,ey)p(2le, 02) LI(U; S1, X) — I(U; 83)]. where the defective memory cell is the state information at the

Index Terms—Channel with state information, duality, mul- encoder, .in digita! watermarking where .the.originql ?r.nage is
tiuser information theory, rate distortion with state information,  the state information at the sender, and in high-definition tele-
Shannon theory, writing on dirty paper. vision (HDTV) systems where the noisy analog version of the
TV signal is the state information at the decoder.

The eight problems in data transmission and data compres-
sion with state information will be seen to have similar answers

HANNON [16] remarked in his landmark paper on rate diswith two odd exceptions. However, by putting all eight answers

ortion: in a common form, we exhibit the duality between channel ca-

“There is a curious and provocative duality between the pacity and rate distortion theory in the presence of state informa-
properties of a source with a distortion measure and thosdion. In the process, we are led to a single more general theorem
of a channel. This duality is enhanced if we consider chan-covering capacity and data compression with different state in-
nels in which there is a cost associated with the different formation at the source and at the destination. Surprisingly, it
input letters ... It can be shown readily that this [capacity turns out that the unifying formula is the odd exception, which
cost] function is concave downward. Solving this problem can be traced back to the Wyner—Ziv formula for rate distor-
corresponds, in a sense, to finding a source that is right fortion with state information at the receiver and to the counterpart
the channel and the desired cost ... In a somewhat dualGelfand—Pinsker capacity formula for channels with state infor-
way, evaluating the rate distortion function for a source ... mation at the sender.
the solution leads to a function which is convex downward.

Solving this problem corresponds to finding a channelthat ||, A CLASS OF CHANNELS WITH STATE INFORMATION

is just right for the source and allowed distortion level.” . .
) g Recall that for a chann€lX’, p(y|z), YV} without state in-

Thus, the two fundamental limits of data communication and : h oR i hisvable if th X ;
data compression are dual. Channel capacity is the maxim nRatlon, the raF - Is achievable I there '2 a sequence o
e > n) codes with encodek™: {1, 2, ... 2""} — A" and

data transmission rate across a communication channel withcﬁ N R
ecodeV: V" — {1, 2, ..., 2™}, such that

I. INTRODUCTION
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Fig. 1. Channels with state information. Four special casesC(a) Ml p(uje)p(s|u.e) L(U; X) — I(U S)]. (d) Rig = ming sy I(X; X)
max,y I(X;Y). (b)) Cii = max,e)s [(X; Y]S). (€) Cio
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It is particularly interesting to observe that an auxiliary
random variabld/ is needed to express capacity when state
and Pinsker [11], and Heegard and El Gamal [10]. The statdormation is available only to the sender. The implications
S™=(51,85s,...,5,) isavailable noncausally. Fig. 1 shows thavill be discussed in the following sections, and the odd form
four special cases of channels with noncausal state informatioh.(4) will be shown to be the fundamental form. We will

As the first case, we denote I8, the channel capacity whenalso show that all four channel capacities look like (4) and are
neither the sender nor the receiver knows the state informat&imple corollaries of Theorem 1 in Section VI.

S™. As in the rest of the paper, the first subscript un@eand

R denotes the availability of state information to the sender,and  1ll. RATE DISTORTIONWITH STATE INFORMATION

the second subscript the availability of state information to the
receiver. When state information is not available to either the
sender or the receiver, the channel capacity is the same ast}
capacity for the channel without state information. Therefore

We now turn to rate distortion theory. L&{Xy, Si)} i.i.d.
x, s) be a sequence of independent drawings of jointly dis-
ted random variableX andS. We are given a distortion
measurel(z, ). We wish to describg X} } at rateR bits per
_ . symbol and reconstrugtX; } with distortionD. The sequence
Coo =max I(X; V). 1 . . - .
0o I;l(x( (X Y) (@) {X1} is encoded in blocks of length into a binary stream of

imilar] he ch | , h rate R, which will in turn be decoded as a sequeridg, } in the
Similarly, we denote byCy, the channel capacity w enreproductlon alphabet. The average distortion is
both the sender and the receiver know the state information,

where the encoder mapd/, S™) to X™ and the decoder maps D= 1 ZE[d(Xk 01

n n nRk i
", s™Mto{l, 2, ..., 2**}. Here the channel capacity is —

Cy1 = max I(X; Y|S). @) Wg say that raté? is achievable at distortion levé) if there
p(=]s) exists a sequence ¢2"%, n) codes

This is achieved by finding the channel capacity for each state A — {1, 2, Z"R}
and using the corresponding capacity-achieving code on the X" {1, 2. Q"R}

subsequence of times where the stgtéakes on a given value.

We denote by’ the capacity when only the receiver know§UCh thaterd(X™, Xn( (Xn))) = D.‘ The rate disto_rtior_1 fun(?-
_ While the mutual information to be maximized is stillio" R(D) is the infimum of the achievable rates with distortion

Conditioned on staté, we only maximize ovep(z), rather D. Fig. 2 shows the four special cases of rate distortion with

than p(z|s), since state information is no longer available tét"’_‘lfﬁ information. hieve distortomill be d db
the sender. The channel capacity was proved in [10] to be € rate necessary to achieve distortiomill be denoted by
Roo(D), or simply R, if state informationS™ is available to

Co1 = max I(X; Y|S). (3) neitherthe encoder nor the decoder. This is the same problem as
p(z) the standard rate distortion problem without state information,

As the fourth case, we denote by, the capacity when only and the rate distortion function is given by

the sender knows™. Thus, the encoding of a messagé € Roo(D) = min I(X; X) (5)
2"f js given by X (W, S™) and the decoding b (Y™). The r(@lz)
capacity has been established by Gelfand and Pinsker [11] toMfeere the minimum is over aﬁ(whﬁ) such that

Cio= max [[(U;Y) — I(U; S)]. @) Zp p(&[z)d(x, &) < D.

p(u,zls)
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When the stat&s™ is available to both the encoder and the X (transmitted symbol— X (estimation (15)
decoder, we denote the rate-distortion functionfy . Here,
a (2" n) code consists of an encoding mapA™ x S(statg « 5(statg (16)
s — {1,2,...,2*"} and a reconstruction map U(auxiliary) < U(auxiliary). (17)
X {1,2,..., 2" 8 — A" Thus, bothi(-) and o _ _
X(-) depend on the stat6”. In this case, both the mutual The duality is evident. In particular, the supremum of achiev-

information to be minimized and the probability distribution ofP1€ data rates for a channel with state information at the en-
¥ are now conditioned of. Thus coder has a formula dual to the infimum of data rates describing

] . a source with state information at the decoder. Note that the roles
Ru(D) = pg;llgns) I(X; X|S) (6)  of the sender and the receiver in channel capacity are opposite
’ to those of the encoder and the decoder in rate distortion, which
is seen by exchanging the first and the second subscrigt of
> plx, s)p(Ele, s)d(z, #) < D. andR.
@, &, s There is one particularly interesting symmetry betwén
We denote by, the rate distortion when only the encodeBndC1o in terms of the distribution over which the minimiza-
knows the state information. It was shown by Berger [1] that tion and the maximization is taken. Consider the rate distortion
. o function Ry, (D). We can first minimize over the probability
Ryo(D) = pGol) (&5 X) ) distributionpgu|)a:) and then minimize over deterministic func-
tions f(w, s) = &. Symmetrically, for the channel capacity,,
we can restrict the maximization @f{u, z|s) to a maximiza-
> p(@)p(dlz)d(z, &) < D. tion overp(u|s), followed by a maximization over determin-
, & istic functionsf(u, s) = x. In both problems, restricting the
Finally, let Ry, be the rate-distortion function with state in-extremization to deterministic functions incurs no loss of gener-
formation S™ at the decoder, as shown in Fig. 2(c). This is ality. This algebraic simplification of th€, and Ry; formulas
much more difficult problem. Wyner and Ziv [19] proved thds dual.

where the minimum is taken over al{¢|x, s) such that

where the minimum is taken over al{z|z) such that

rate distortion function to be We pause here to comment on the meaning of duality. There
Roi(D) = min I(U; X) — I(U; S)] (8) are twp common nptions of duality: complementarity and iso-
p(ulz)p(@|u,s) morphism. The notion of good and bad is an example of com-
where the minimum is over afl(u|z)p(z|w, s) such that plementarity, and the notion of inductance and capacitance is an
. . example of isomorphism. Nicely enough, these two definitions
Z Pz, s)p(ul2)p(ilu, s)d(w, &) < D of duality are complementary and are themselves dual.
Tos Like duality in optimization theory, the information-theoretic
and[¢f| < [X] + 1. duality relationships we consider in this paper include both com-

Comparing Fig. 1 with Fig. 2, it is evident that the setupgjementarity and isomorphism. The roles of the encoder and the
of the channel capacity and rate-distortion problems are dugécoder are complementary. The minimization of the mutual
We will show that all results reviewed in this section are simpigformation quantity in the rate distortion problem, which is a
corollaries of a general result on rate distortion with state infognnyex function, is complementary to the maximization of the

mation proved in Theorem 2 in Section VI. mutual information quantity in the channel capacity problem,
which is a concave function. Furthermore, complementing the

IV. DUALITY BETWEEN RATE DISTORTION AND encoder—decoder pair and the maximization—minimization pair
CHANNEL CAPACITY makes the channel capacity formula isomorphic to the rate-dis-

We first investigate the dua“ty and equiva|ence re|ati0n5hil_tj§,rti0n function. Such duallty relationShipS are maintained when
of these channel capacity and rate distortion problems witfate random variables and auxiliary random variables are in-
state information. With the following transformation it is easgluded in the models. These complementary and isomorphic du-
to verify that (1), (2), and (4) are dual to (5), (6), and (8)@lity relationships are further illuminated through the unification
respectively. The left column corresponds to channel capadifySection VI of the eight special cases considered so far.
and the right column to rate distortion.

Transformation: Correspondence between channel capaci- V. RELATED WORK
ties in Fig. 1 and rate distortions in Fig. 2: We now give a brief nonexhaustive review of related work on
C < R(D) (9) state information and duality.
o L The duality betweerC;y and Ro; has been noted by sev-

maximization«— minimization (10) eral researchers. It was pointed out by the authors in [4]-[6] in

Coo < Roo (11) the study of communication over an unreliable channel. Duality
for the Gaussian case was also pointed out in Chou, Pradhan,
Cu < Ryx (12) and Ramchandran [7] for distributed data compression and the

associated coding methods. In digital watermarking schemes,
both the Gaussian and binary cases of the duality betwggn
Y (received symbol— X (source (14) and Ro; were presented in [2], together with the associated

C1o < Rop (13)
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Fig. 3. Channel capacity with two-sided state information, wiiéfe;, S, ;) are i.i.d.~p(s1, s2): C = max ) [I(U; S2, Y) = I(U; S1)].

plu,zlsy

coding methods. The geometric interpretation of this dualitimating the state. The sender, knowing the state information,
in the Gaussian case was developed in [17]. For channels wiin choose between maximizing the throughput of the intended
two-sided state information, Caire and Shamai [3] showed theessage and helping the receiver estimate the channel state with
optimal coding method when state information at the sender ifee smallest estimation error.

deterministic function of the state information at the receiver. In

this paper, we show that there are duality relationships among VI. CHANNEL CAPACITY AND RATE DISTORTION WITH

all eight special cases of channel capacity and rate distortion TwO-SIDED STATE INFORMATION

with ;tate informgtion. These specia! cases are then unified ir'1to].he results forCoo, Cro, Coy, Cha, and correspondingly
two-sided state. information generalizations of the VVyner—Z%OO’ Rio, Ror, Riy, assume different forms. We wish to
and Gelfand—Pinsker formulas.

) . ) ut these results in a common framework. Despite the less
We note that there is a different model of channel with st raightforward form ofC;, and Ro;, we proceed to show

information proposed by Shannon [15]. Shannon studied digat 1 the other cases can best be expressed in that form.
crete memoryless channels in which only causal state informgy s the Gelfand—Pinsker and the Wyner—Ziv formulas are the
tion'is available, i.e., the input symbdl, (W, 5%) attime< de-  ¢,nqamental forms of channel capacity and rate distortion with
pends only on thg p.ast and present states, and not on the_ fulizge information, rather than the orphans. We also consider a
Si1- The capacity i8” = max [(X(-); Y'), where the maxi- ganerajization where the sender and the receiver have correlated
mization is over all distributions on functions(-): S — & but different state information.

The capacity for the Gaussian version of Shannon’s channekyqt consider channel capacity. We assume that the channel is
is not known, though coding schemes have been proposeq,ifnedded in some environment with state informasipravail-

[9]. This model is not expected to be dual to the rate-distortialp|a 1o the sender, correlated state informafigravailable to
problem, since there is an intrinsic noncausality in encoding agl, yaceiver, and a memoryless channel with transition proba-
decoding of blocksX™ in the rate-distortion problem. There'bility plylz, s1, s2) that depends on the inp and the state

fore, only the noncausal version of channel capacity with sta{gl S,) of the environment. We assume thdh ;, So ;) are
9 . . .t

information corresponds naturally to rate distortion with state ~p(s1, $2),i = 1, 2, .... The outpu™ has conditional
information. - distribution
From a coding viewpoint, the random binning proofs4f, n
and Ry, are also dual to each other and they resemble trellis- p(" =", 51, s5) = [ [ pwiles, 514, 52,0)-
coded modulation and coset codes. In fact, shifted lattice codes i=1

or coset codes can be viewed as practical ways to implement ¢ encoder X™(W, St),W € 2", and the decoder
random binning and sphere covering ideas. Lattice codes w&fdY ", S%) defining a(2"*,n) code are shown in Fig. 3. The
used for channels with state information atthe encoder in [9], afulting probability of error i€’ = Pr{W (Y™, 53) # W},
for rate distortion with state information at the decoder in [21)vhere W' is drawn according to a uniform distribution over

The increase and the decrease of channel capacity and rate'dis2: -+ +» 2"%}. A rate R is achievable if there exists a
tortion when state information is available have also been studiégauence of2"*, ») codes withP" — 0. The capacityC' is
The duality in the difference€yy — Coo andRo; — Roo was (€ supremum of the achievable rates.

shown in [5] for the Gaussian case. The rate loss in the Wyner-Thegrem 1: The memoryless channely|z, s1. s») With
Ziv problem was shown to be bounded by a constant in [20]. state informatior(S;, ;, Ss,;) i.i.d. ~p(s1, s2), with S avail-

An input cost function can be introduced to make channgble to the sender arf}® available to the receiver, has capacity
capacity with state information more closely resemble rate
distortion with state information. Examples for point-to-point C¢= i) [[(U; 52, Y) = I(U; 51)]- (18)
channels without state information can be found in [14].
Models with input cost have not been studied for channels with
state information. For rate distortion with state information, a Corollary 1: The four capacitie€yg, Co1, Cro, C11 With
state-information-dependent distortion measure was studitdte information, given in (1)-(4), are special cases of The-
in [13]. In particular, the asymmetry betweéhy; # Cye and orem 1.
Ryp = Rogp can be resolved by introducing a state-dependent Proof:
distortion measure. Case 1: No state informatiori; = ¢, S = ¢. Here,
The general problem of the tradeoff between state estim@-, Y) =Y, I(U; S;) = 0, and Theorem 1 reduces to
tion and channel capacity was developed in [18], where the re- ) ]
ceiver balances two objectives: decoding the message and es- ¢= p(g}gf;) (U 82, Y) = I(U; Su) (19)

Proof: Section VII contains the proof.
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ST = (S.87) —=5y

Xxn i() WX, S ——= X() = X"(i,5%)

Fig. 4. Rate distortion with two-sided state information, wheXe, S, ;, Sz, ;) areii.d.~ p(z, s1,s2): R(D)= el H%iI(IA‘ )
pulz,s1)p(8 | u,s9

[I(U; Sy, X)—I(U; S5)].

= max I(U;Y) (20) = max I(X; Y]S) (35)
p(u,x) p(z|s)

= m(a§( I(X;Y) (21) =Cn (36)
p(z

where we have used the fact that under the allowed distribution
p(s)p(uls)p(z|u, $)ply|z, s), U — X — Y forms a Markov
where we use the fact that under the allowed distributiarhain conditioned o®'. Therefore, by the conditional data pro-
p(s)p(wp(z|lw)plylz, s), U — X — Y forms a Markov cessing inequality
chain. Therefore, by the data processing inequality max I(U; Y|S) < max I(X; Y|S)

max I(U;Y) <max I(X;Y) p(uzls) r(zls)
p(u,z p(z) with equality iff U = X, and equation (35) follows.

= Coo (22)

with equality iff 7 = X, and equation (21) follows.
Case 2: State information at the receivér:= ¢, S = S.
Here,I(U; S1) = 0, and Theorem 1 reduces to

We now find the rate distortion function for the general
problem depicted in Fig. 4, where A" x Sf' — nki
X:2nB x S — xn

ety 13 52 ¥) = LT3 8] #3) Bd(X", X"(i(X", 57), §5)) = D
= max I(U; S,Y) (24) and(Sy,;, S2,;) i.i.d. ~ p(s1, s2). Let R(D) be the minimum

pue) achievable rate with distortiof.
- If%?;() (U3 5) + L3 Y|9)] (25) Theorem 2: For a bounded distortion measutée, ) and
_ : (XZ, 5171‘, 5271‘) i.i.d. ~ p(l’, S1, 82), WhereX, 51, S, are fi-
oS I{U; Y]$) (26)  hite sets, letS7 be available to the encoder asg to the de-
— max I(X; Y|S) 27) coder. The rate distortion function is

P(@) R(D) = min  [[(U; S1, X) - I(U; S2)]  (37)
= Co (28) p(ulz,s1)p(&|u,s2)

. where the minimization is under the distortion constraint
where we have used the fact thaandsS are independent under

the allowed distribution(s)p(w)p(z|w)p(y|x, s). Also, under > d(x, &)ple, s1, s2)p(ulz, s1)p(Elu, s2) < D.

the allowed distributionl/ — X — Y forms a Markov chain  =,u,51, 52,4

conditioned ort'. Therefore, by the conditional data processing  proof: Section VIII contains the proof.

inequality,max,, .y I(U; Y|S) < max, ) I(X; Y]S), with i ) _

equality iff U = X, and (27) follows. Corollary 2: The four rate distortion functiongioo(D),
Case 3: (The Gelfand—Pinsker formula) State information &p1 (L), £10(D), R11(D) with state information, given in

the senderS; = S, Sy = ¢. Here(S», Y) = Y, and Theorem (5)—(8), are special cases of Theorem 2.

_ . . R(D) = i I(U; S, X)—-I(U; S
O= max [I(U: S5, Y) = 1(U: 1) (29) D)= o ity U3 10 X) = LU 52)
= max [[(U;Y)—-I(U; S)] (30) under the distortion constraid(X™, X") < D in each of
p(u,7]s) the four cases.
= Cho. (31) Case 1: No state informatiors; = ¢, So = ¢. Here,

. i (51, X)=X andI(U; S3)=0, and Theorem 2 reduces to
Case 4: State information at the sender and the recélyet:

S, S5 = S, and Theorem 1 reduces to R(D) = Dl SH;;I(lﬂu . )[I(U; S1, X)—I(U; S2)]  (38)
C'= max [I(U; S2, V) — I(U; 51)] (32) = min  I(U; X) (39)
pluszls1) p(ulz)p(z|u)
= max [[(U;S,Y)—I(U; S 33 . o
péﬁfﬁi)[ ( ) 1 S) (33) = mmin (X;X) (40)

= p(Iil,?zﬁ) L(U; $)+ I(U; Y|S) - I(U; )] (34) = Roo(D) (41)
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where we have used the fact that, under the allowed minimiziagere we have used the fact that under the allowed minimizing

distribution p(z, u, ) = p(x)p(ulz)p(E|w), X — U — X

distributionp(z|s)p(ulz, s)p(&|u, s), X — U — X forms a

forms a Markov chain. Therefore, by the data processing iMarkov chain conditioned of. Therefore, by the conditional

equality

min  I(U; X) > min I(X; X)

r(u.z|z) r(&lz)

with equality iff 7 = X, and equation (40) follows.

Case 2: (The Wyner—Ziv formula) State information at the

receiver.S; = ¢, Sy = S. Here,(S1, X) = X, and Theorem
2 reduces to

R(D) = min [L(U; Sy, X) — I(U; S3)]  (42)
plule,s1)p(Elu,sz)
= min [I(U; X) = I(U; 5)] (43)
= Ro1 (D). (44)

Case 3: State information at the sendg&r.= S, Sy = ¢.

Here,I(U; S2) = 0, and Theorem 2 reduces to
R(D) = min [L(U; 51, X)—I(U; 52)] (45)

p(ul|z,s1)p(E|u,s2)

= min I(U; 5, X 46
p(ulz,5)p([u) ( ) (40)

= min  [I(U; X)+ I(U; S|X)] 47)
plulz,s)p(&w)

> min U, X 48

T plulz,s)p(Elu) ( ) (“48)

= min I(X; X) (49)
p(&|z,s)

= min I(X; X) (50)
p(&|=)

where (48) is due tal(U; S|X) > 0 and (49) is due

to the data-processing inequality on the Markov chain

X — U — X with equality iff U = X. Equation
(50) holds because letting(z|z, s) = p(z|z) does not
change the functionals/(X; X) and Ed(X, X). Since

U = X andp(&|x, s) = p(&|z), we havel(U; S|X) = 0 and

data processing inequality
I(U; X|S) > min I(X; X|S)

p(@|z,s)

min
p(u,@|z,s)
with equality iff U = X, and (56) follows. This concludes the
proof.

The general results in Theorems 1 and 2 are dual and assume
the form of the Gelfand—Pinsker and Wyner—Ziv formulas, re-
spectively. In particular, the roles ¢f, and.S; in channel ca-
pacity and rate distortion are dual. The corresponding Corol-
larys 1 and 2 yield the eight special cases. Notice that the ap-
parent asymmetry betwe&ry; andR; is resolved in this uni-
fication.

VIl. PROOF OFTHEOREM 1

The proof in this section closely follows the proof in [11].

We must prove that the capacity of a discrete memoryless
channep(y|z, s1, s2) with two-sided state information is given
by

C = max [I(U; S, Y)—1(U; 51)].

p(u,x|s1)
We prove this under the condition that the alphatéts |S: |,
|S1], |V are finite.

We first give some remarks about how to achieve capacity.
The main idea is to transfer the information conveying role
of the channel inputX™ to some fictitious inputl/™, so
that the channel behaves like a discrete memoryless channel
U — (Y, S2) with

p(u™)p(st, 83, & [w")p(y”™|a™, T, s5)
n

= [Ip(wi)p(sy,ir 52,0, milui)p(yilei, s,i, 52,4)-
=1

The capacity of this new channel KU; Y, S2). This can
be achieved in the sense thait!(V:Y:52) U"(4)’'s can be

inequality (48) is achieved with equality. Therefore, we havéistinguished by the receivél™, S3'). But there is a cost for

the desired reduction

R(D) = ;&ilg) I(X; X) (51)
=Ryo(D). (52)

Case 4: State information at the sender and the recedyet:
S, Se = 5. Theorem 2 reduces to

R(D) = min

p(ulz,s1)p(@|u,s2)

(L(U; 8, X) = I(U; 9)]

[L(U; Sy, X) = I(U; S2)] - (53)

(54)

min
p(ulz,s)p(d|u,s)

min
p(ulz,s)p(@|u,s)

[L(U; S)+ 1(U; X|S)— I(U; 9)]

(55)

= min I(X;X|S) (56)
p(&|z,s)

=Ry (D) (57)

setting up such a dependence; only a fracBioR’(V; %) of the
possible codeword&™ (i) are jointly typical with.S7. Thus,
only 2nI(U3 Y, S2)—nl(Us51) distinguishable codeword&™ (i)

are available for transmission, those with the required empirical
joint distribution on(U™, X™, S7).

Here, the transmission sequend€” is chosen so that
(U™(%), X™, ST is strongly jointly typical. Any randomly
drawn X" ~ TT7_, p(z;lu;(4), s1,;) will do, but at capacity,
this conditional distribution will be degenerate, and there will
be only a negligible number (actualy*<) of such condition-
ally typical X™. Thus, X™ will turn out to be a function of
(U™(%), ST), designed to makéU"(¢), X™, S7) typical and
to make the channel operate as a discrete memoryless channel
from U™ to (Y™, SB).

We prove Theorem 1 in two parts. First, we show that

C= (malx )[I(U; S2, Y) = I(U; S51)]
p(u,x|sq
is achievable.
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Let p(u, z|s;) be chosen to yield?. We are given that with (Y™, S&) has probability at most—"/(V;Y> S2)+7< _Since
(S1,i, S2,4) are iidep(s1, s2), the encoder producesthere are onln/(V:¥.52)=2nc _ 1 otherU™ (i) sequences, we
X™(W, S7), and the decoder produced (Y™, S¥). The have

channel is memoryless
PI‘{Eg} < anI(U;Y, 52)+n€2nI(U;Y, So)—2ne

p(yn|xn7 Srllv Sg) = Hp(yi|817i7 52,4, 'Tl)
i which tends to zero as — oc.
Now consider 2", n) code with encoder This shows that all three error events are of arbitrarily small
n "R " . probability. By the union bound on these three probabilities of
A2, 2T S - A error, the average probability of erré* tends to zero. This
and decoder concludes the proof of achievability.
P We now prove the converse. We wish to show thgt— 0
. n n nR s
WYt x Sy =412, 277 implies R < C. This is equivalent to showing that there

The average probability of errd??* is defined to be exists a distribution p(sy, s2)p(w, z|s1)p(y|s1, s2, ) on
LM (U, 51, 52, X, Y), with specified p(s1, s2)p(y|s1, s2, ),
no_ L iy qn W — 4 such that
P = 7 ZE=1 Pr{W (Y™, §3) # i|W =i} u

The encoding and decoding strategy is as follows. First, gen- IU; 82, Y) = I{U; 51) 2 R = 6(F)
n(I(U;Y, S2)—2¢) i i
erate2 2 i.i.d. sequences wheres(P,) = — P, log P.— (1— P.)log(1— P.)+ P, log |V|.
Un(3), i € 2nUU3Y, S2)=2¢) First, define two auxiliary random variables as follows. Let

according to distributiod];"_, p(w;). Next, distribute these se-;, _ i—-1 qi—1 an - n
quences at random inwﬂé—if)(birzs. itis the bin index: that *' (W Y™™, 85 Stiga) and Vi = (W 51 i),
we wish to send. This is accomplished by sending &fiy:)
in bin m. For encoding, given the statg’ and the message
m € {1, ..., 2"} look in binm for a sequencé™ (i) such
that the (U™ (%), S7') pair is jointly typical. Send the associ-
ated jointly typical X™. The decoder receives™ according

fori=1,2,...,n.
Thus,

U =(Vi, Y71 S5 1)

to the distribution] [}, p(vi|z1, 51,1, s2,1), and observesy. Vici =(Vi, S14)
The decoder looks for the unique sequed&& k) such that

(U™(k), Y™, S%) is strongly jointly typical and let$V be the Vi=U

index of the bin containing thi& (k). V., =W.

There are three sources of potential error. Eebe the event
that, givenST and the message index, there is no jointly \We will need the following.
typical (I/"(¢), ST) in bin m. Note that because for a fixed
p(uls1), the capacityC' is a convex function of the distribu-
tion p(x|u, s1), we canassume thafz|u, s;) is a deterministic i i i el il
function f, thatisp(z|u, s;) takes values or 1 only. Therefore, RAGRE 52)4+1I(Vi’ S1) (Vi Y70, 557
we assume that = f(u, s;) if and only if p(z|u, s;) = 1. = I(Viess S17) + 11U Yi, S2,4)
Without loss of generality, we assume that message 1 is trans-  — I(U;; S1.;) = I(Y"™ ;).
mitted. LetE> be the event thgi/™ (1), Y™, S¥) is not jointly
typical, andE5 be the event thatU™(k), Y™, 57) is jointly
typical for somek # 1. The decoder will either decode incor-
rectly or declare an error in events and 3.

We first analyze the probability of’;. The probability
that a pair(L/™, S7') is strongly jointly typical is greater than i1 (@
(1 — €)2-"IWsS)=ne for 5, sufficiently large. There are atotal ~ £(Y"7 5 ¥i) 20 ‘
of 271V, So)=2nc n(jys, and 271UV, S)=nI(UsS)=dne  [(Vi_y; Y=L §i7Y) = I[(Vi_y; Si7) + I(Us; Vi, So5)
bins. Thus, the expected number of jointly typical codewords
in a given bin is greater thafi — ¢)2™¢. Consequently, by a
standard argumenBr(FE;) — 0 asn — co.

For the probability( of}EQ, we note by the Markov lemma z:["(Ui? Yi; 82,0) = I(Us S1,4)]

Lemma 1:

We postpone the proof of this lemma until after finishing the
proof of the main theorem. Using the above lemma, we have the
following inequalities:

)] S .
I(Us; Sy1,0) 2 I(Vi; Y, S5) — I(Vi; SY)

n

that if (U™, X", ST) is strongly jointly typical, then =t ©

(U™, X7, 87,57, Y") wil be strongly jointly typical >I(W; Y™, S5 — I(W; S7)

with high probability. This shows thdtr{ Z>| F{} also goes to

0 asn — oo. where inequality(a) follows from nonnegativity of mutual in-

The third source of potential error is that some othé&ris  formation, inequalityb) follows from Lemma 1, and inequality
jointly typical with (Y™, S%). But aU™ being jointly typical (c) follows from summing ovef = 2 ton. Then, lettingR; =
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(U Y:, Se 4) — I(U;; 81,5), we have the following chain of ~ We now alternately attach positive and negative signs to the
equalities: six equalities above and add them

I(Vi; YU, S3) = I(Vis SU) 4+ I(Vig; Si71)
— IV ;YL SN 4+ (U S10) — I(Us Y, Sa4)
@ = I(Vi; YT, S 1 IV Y3, Sa iYL, S57Y)

Z Ry > I(W; Y™, 53) — I(W; ST)
im1

= [V Y 55) —I(Vi; S1,0) — I(Vis STYS14)

© HW) - HW[Y™, 5) +I(Vis S1S1a) = I(S1,i Y, S57)

) n on —I(V; Y S§_1|51,i) + (YL Sé_l; S1,i)
=nR— H(W|Y s SQ) “FI(VZ‘; Sl,i|Yi_l, Sé_l) _ I(yi—l’ Sé_l; Y;, 5271‘)
(é)n(R—é(Pe)) — I(V;; Yy, So |V, SiT Y,

where equality(d) follows from independence d¥ and S7, After cancellation and using the fabtY*~*; 52 ;[Y;) = 0,
equality(e) follows from the definition of mutual information, We obtain
equality(f) follows from the specified uniform distribution over i i ; i1l i
w, and(e)quality(g) follows from Fano’s inequality and our LV Y, 855) + (Vi S) + (Vi Y LSy
definition of §(F,). — I(Vie1; Si7H + 1(Us Yi, Sa,4) — I(Us; Sh,4)
Now choosing:* to be the first index: such thatR;, = =I(Y'7L V).
maxi < <, f1;, We have
This proves the lemma and therefore concludes the converse.
Ry > R—§(P.).

Therefore, we have shown that VIl PROOF OFTHEOREM2

The proof in this section closely follows the proof in [19].
I(Ui+; Yir, S2,6+) = I(Ui=; S1,60) 2 R— 6(F) We prove Theorem 2 in two parts. We assume finite alphabets

for the distributionp(u;-, yi-, s1.i-, s2.:-) induced by the 0% 51, S2, X, U. First, we show that
code. Note that(P.) — 0 asP. — 0. This concludes the R(D) = min I(U; 8y, X) — I(U; S5)]
converse except for the proof of Lemma 1. Y ’

We now prove Lemma 1. We follow the argument in [11]. ) . .
P g [ ]IS achievable. Givep(s;, s2, ), prescribe

p(ulz,s1)p(&|u,s2)

Since
I(A; B) — I(A; B|C) = I(A; C) — I(A; C|B) p(ulz, s1) and p(&fu, s2).
we have the following equalities: This provides the joint distributiop(z, s1, s2, u, £) and a dis-
‘ ‘ tortion D = Ed(X, X).
I(Vi; Sy [V, S8 — I(Vis S14) The overall idea is as follows. If we can arrange a coding
= I(Vi; Y73, S57Y8L,0) — I(Vis Y7L, 537 i), X"() so that (U", ¢, §, X", X*) appears to be
I(Vi; Y71, 8070 — [(Vi; YL, SEY Sy ) distributed i.i.d. according t@(si, sz, ), then 2nt¥54, =1

il il U'™'s will suffice to “cover” A™ x Si'. Knowledge ofl/" and
= 1(Vis S1,4) = 1(Vi; SLaY'™, 53 70). S% will then allow the reconstructioX™ to achieve distortion

The following inequalities follow directly from information- £ = Fd(X, X). The receiver has alist @f’”(b;;((’bj_qg )DOSSib'e
theoretic identities, definitions df; and V;, and the fact that U"(s)'s, which he reduces by a factor af ">/ by his

(514, S3.;) are iid. knowledge ofSy and by another factor af~"# by observing
’ ’ o ‘ ‘ the index of one of the"” random bins into which th&™()’s
I(Vi; Y0, S8 =I(V; YL, si7h) have been placed. Letting > I(U; X, S1) — I(U; S2)

+I(Vi; Vi, So V7L, 8571 provides enough bins so thaf”(%) is identified uniquely.

I(Vi; 81 =1(Vi; Sy.5) + I(Vi; $i72S10) Thus,U™ is known at the decoder and distortibhis achieved.

1V Siclig (S . gi-1 We first generate codewords as follows. Lél; =
5 ST S1) +1(S,a S10) I(U; X, S1)+e. Generate™ i.i.d. codewordd/™ according

I(Vi1; Si_l) ( )

I(Vis ST7Y510) to [[;—, p(w;) and index thend/™(j), j € 2"F1. Let
(
(

I(Viea; YITU S57H = I(Vi, 81,55 Y71, 8570
I(Sy, ;YL sa7h)
+I(Vi; Y7, 8574815 Randomly assign the indexes of the codewords to org® &f
I(U;; 8y3) =1(Y"™Y, §i71: 8, ) bins using a uniform Q|st'r|but|on over the }ndlces of the bins.
(Vi 81 Vi s LetB(z) be the set of indices assigned to bin _ _
ST 12 Given a source sequenc&™ and state information
I(U3; Y3, S2,5) =1(Y'™4, 8571 Vi, S24) 57, the encoder looks for an index. € 2"% such that
+I(Vi; Yi, So oY1, S571). (U™(m), X", S7) is strongly jointly typical. If there is no such

R=1(U; X, 51) — I(U; S2) + 3e.
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U™, mis set to0. The encoder then sends the indesuch that Proof: Let (U/y, Xl) and (U, XQ) be random variables
m € B(i). with distributions achieving the minimum rate for distortions
The decoder, given state informatigiy and bin indexi, D; and D, respectively. Let) be a random variable that is
looks for aU(k) such thatk € B(i) and (U™(k), S3) is independent of/;, U, X; and Xy, where) assumes valug
strongly jointly typical. If there is such &, the decoder selectswith probability A and value2 with probabilityl — A. Now con-
anyX" such tha{l/™(k), S%, X") is strongly jointly typical. sider the rate distortion problem with as the distortion con-
If there is no suclk, or more than one sudh the decoder sets straint. Because of the linearity of the distortion in the distribu-
X" to be an arbitrary sequence and incurs maximal distortiction p(s1, s2, x)plulz, s1, Q)p(Z|u, s2, ¢)p(q), we have
The probability of this error is exponentially small with block

We now argue that all the error events are of vanishing propet (7 = (¢, Us). We have
ability. First, by the law of large numbers, for sufficiently large
n, the probability tha{ X", S7, S3) is not strongly jointly typ-  R(D) = min (L(U; X, 51)—1(U; S2)]
ical is exponentially small. plule,opEse) -

If (X™, ST) is strongly jointly typical, then the probability <I(U; X, 51)—1(U; 52)

that there is nan such tha{ X™, S7*, U™(m)) is strongly typ- =H(X, S1)—H(X, S1|U)—H(Sy)+H(S2|)
ical is exponentially small provided tha&t, > I(U; X, S;). = H(X, S1)—\H(X, S1|U1)—(1-NH(X, S1|Us)
This follows from the standard rate distortion argument that — H(S2)+AH (S| U1 ) +(1 — AYH(Ss|Us)

2781 randomU™’s “cover” X" x St

By the Markov lemma on typicality, given that =AU X, 51)=1(Uy; 52)]

(X™, 57, U™(m)) is strongly jointly typical, the proba- +F(A-N[L(Us; X, S1)—I(Us; S9)]

bility that (X™,ST,U™(m),S%) is strongly jointly typical = AR(D1)+(1 — N)R(D>).

is nearlyl and thus the probability tha/™(m), S¥) is not

strongly jointly typical is exponentially small. Therefore B(D) < AR(D1) + (1 — A)R(D>). This proves the

Furthermore, the probability that there is anoth&r(k) in ~ convexity of R(D). _
the same bin that is strongly jointly typical wis§ is bounded We now start the proof of the converse. We assume as given

by the number of codewords in the bin times the probability dfat (Xi, S1,4, S2,;) are i.id. ~p(z, s, s2). We are given
joint typicality some rateR encoding functioni: &A™ x S} — 2"F and a

decoding functionX™: S x 2"% — A", LetT =i(X", 87),
and letX™ = X™(S%, T). The resulting distortion is

%zn: d(X;, X)] :

=1

gn(R1—R)g—n(I(U; S2)—¢)

which tends to zero becausg — R < I(U; S2) —e.
This shows that all the error events have asymptotiD=FEd(X", X"(i(X", 1), S}))=E
cally zero probability. Since index is decoded correctly,
(X7, 55,Um(k)) is strongly jointly typical. Since both \yg wish to show that if this code has distortiéh then
(X™, 87,88 and (U™(k),S7,X™) are strongly jointly
typical, (X™,S3,U™(k)) is also strongly jointly typical. R > R(D)= min [I(U; Sy, X) — I(U; S9)].
Therefore, the empirical joint distribution is close to the p(ulm.or)p(Blu-o2)
original distribution p(z, s1, s2)p(u|z, s1), and (X", X™) DefineU; = (T, S5+, 55 ;4,) and
will have a joint distribution that is close to the minimum R R R
distortion-achieving distribution. Thusgd(X™, X™) will be X = Xi(53, T) = Xi(Ui, S2,i).
< D. This concludes the achie\_/ability part of the proof. Note thatX; is a function of (U, So.4) since (S3, T) —
We now prove the converse in Theorem 2. Let the encodua&’ Ss.,). We apply standard information theoretic inequali-

;322:22 EZLX/:” ‘;}Sil 57{217’ 2’ 7 '2',132;}2_}; %‘S tc\?edrfgggi?og ties to obtain the following chain of inequalities:
show that nlk > H(T)
Bla(x", X(s5,ix", s1))| <D > H(T|S3)
implies ZI(an’ 13 T15%)
R> R(D) =Y I(X;, 514 TIS5, X771 817

1

=

= min U 5, X)) - I(U; So).
p(ul|z,s1)p(E|u,s2), Fd(X,X)<D

H(X;, Sy4|Sy, X1, 5i71)

[
NIE

We first prove a lemma on the convexity Bf D). 1

— H(X;, S1.4|T, Sy, §;71, X*=1)

«.
Il

Lemma 2:
R(D) = min ) [I(U; S1, X)—I(U; S9)] @ Z H(X;, 51,i]52,:)
p(ulz,s1)p(&lu,sz2), BA(X, X)<D i=1
is a convex function oD. — H(X;, S14|T, Sy, Si7t, Xi°1)
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> > H(X;, S1,ilS2,:) — H(Xi, S14|T, S3)

=" H(X;, 51,1|82,:) — H(X:, S1,4|Us, Sa,4)

I
=
S
»
=
=
s
2
2

>nR(D)

where equalitya) follows from the fact tha{.X;, Sy ;) is inde-
pendent of past and futu(é, ;, S»_;, X,) givenS, ;, equality
(b) follows from the fact that’; — (X;, S1,;) — Sz ,; forms
a Markov chain, since

n

p(z", 57, s5) = Hp(ﬂfi, 81,is 52,)

=1

and, thusS._; is dependent off” only through(X;, S1 ;). In-

equality (c) follows from the convexity ofR(D) and Jensen’s

inequality.

Therefore,R > R(D), whereR(D) is as defined in The-

orem 2. This concludes the converse.

IX. CONCLUSION

The known Special CaSﬁs)(), 001, 010, Cu1 andRoo, Ry,

Ry, Ry1 of channel capacity and rate distortion with state in-[13]
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