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Abstract— To incorporate the superiority of both stochastic 

and robust approaches, a data-driven stochastic optimization is 

employed to solve the security-constrained unit commitment 

model. This approach makes the most use of the historical data to 

generate a set of possible probability distributions for wind power 

outputs and then it optimizes the unit commitment under the 

worst-case probability distribution. However, this model suffers 

from huge computational burden, as a large number of scenarios 

are considered. To tackle this issue, a duality-free decomposition 

method is proposed in this paper. This approach does not require 

doing duality, which can save a large set of dual variables and 

constraints, and therefore reduces the computational burden. In 

addition, the inner max-min problem has a special mathematical 

structure, where the scenarios have the similar constraint. Thus, 

the max-min problem can be decomposed into independent 

sub-problems to be solved in parallel, which further improves the 

computational efficiency. A numerical study on an IEEE 118-bus 

system with practical data of a wind power system has 

demonstrated the effectiveness of the proposal. 

Index Terms—Data-driven stochastic optimization; 

duality-free decomposition; security-constrained unit 

commitment; distributionally robust optimization 

NOMENCLATURE 

    Hourly periods, running from 1 to  =| |. 

    Transmission lines, running from 1 to  =| |. 

    Buses, running from 1 to  =| |. 

    Wind units, running from 1 to  =| |. 

    Thermal units, running from 1 to  =| |. 

    Wind power scenarios, running from 1 to  =| |. 

     Startup segments, running from 1 (hottest) to 

  =|  | (coldest). 
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Ψ Confidence set for uncertain probability 

distribution of wind power. 

 ( )  ( ) Transmission lines subset starting from bus   or 

ending at bus  . 

 ( )  ( ) Thermal or wind units subset located at bus  . 

     Power output of thermal unit   at period   under 

scenario   [MW]. 

     Forecasted power output of wind unit   at period 

  under scenario   [MW]. 

    
     Load shedding imposed on bus   at period   

under scenario   [MW]. 

      Power flow on transmission line   at period   
under scenario   [MW]. 

          Phase angle of bus   and bus   at period   under 

scenario   [rad]. 

     Spinning reserve provided by thermal unit   at 

period   under scenario   [MW]. 

    Commitment status that is equal to 1 if thermal 

unit   is online at period  . 

    Startup status that is equal to 1 if thermal unit   

starts up at period  . 

    Shutdown status that is equal to 1 if thermal unit 

  shuts down at period  . 

     Startup type   of thermal unit  , which is equal 

to 1 at the period   where the unit starts up and 

has been offline within ,   
         

  ) hours. 

   Probability of wind power scenario  . 

  
  Probability of wind power scenario   from data 

  
     

   No-load cost and shutdown cost of thermal unit 

  [$]. 

     Load shedding cost [$/MWh]. 

   
   Startup cost of thermal unit   when the unit 

starts up and has been offline within 

,   
         

  ) hours [$]. 

    Load demand located at bus   at period   [MW]. 

   
    Capacity of transmission line   [MW]. 

    Reactance of transmission line from bus   to bus 

  [per unit]. 

   Spinning reserve requirement at period   [MW]. 

        Minimum uptime and minimum downtime of 

thermal unit   [h]. 

  
      

    Maximum and minimum power output of 

thermal unit   [MW]. 

        Startup capability and shutdown capability of 

thermal unit   [MW]. 

        Ramp-up rate and ramp-down rate of thermal 
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unit   [MW/h]. 

 Pre-designed confidence level. 

 Controllable parameter for confidence set. 

Ns The Number of scenarios. 

K The Number of historical data. 

I. INTRODUCTION 

ecurity constrained unit commitment (SCUC) is one of the 

important functions for scheduling generators in day-ahead 

power system operation [1]-[3]. It determines the on/off status 

of all dispatchable units over a given number of horizons while 

satisfying all the physical constraints of generators and the 

power network. However, with a high penetration of wind 

power into the power grid, many challenging issues arise [4]. 

The wind power output is highly stochastic and volatile, which 

hinders their efficient and secure large-scale deployment and 

challenges the SCUC of power systems. Thus, the uncertainty 

of the wind power output should be considered in the SCUC 

scheduling problem. With this, many studies have been done in 

the literature [5-21]. They can be categorized into three groups: 

1) interval constrained unit commitment (ISCUC) [5-6], 2) 

stochastic security-constrained unit commitment (SSCUC) 

[7-14], and 3) robust security-constrained unit commitment 

(RSCUC) [15-21]. 

SSCUC models generate several wind power scenarios 

associated with various probabilities to describe uncertainties. 

These models minimize the expected total cost while satisfying 

all operational constraints under all the scenarios [7]. In 

contrast, the RSCUC models are immune against the wind 

power uncertainties within a predefined uncertainty set [15]. 

These models essentially minimize the total cost under the 

worst-case scenario. The computational burden of the RSCUC 

models mainly depends on the definition of their uncertainty 

sets [20]. It should be noted that both the SSCUC and RSCUC 

models can be cast as a two-stage optimization problem. The 

first-stage decisions find the optimal unit commitment that 

cannot be changed once they are optimized before the true wind 

power realization; the second-stage decisions are adjusted to 

the realization of the wind power generation, which provides 

the recourse for the system. The difference of the two models is 

that the RSCUC expects to find the solution that can fully 

guarantee the feasibility for any possible realization within the 

uncertainty set, while the SSCUC only protects the system 

under the selected scenarios. 

Nevertheless, compared with the SSCUC models, the 

RSCUC models may give relatively conservative solutions. 

Recently, the concept of uncertainty budget has been proposed 

to reduce over-conservative decisions. Several methods to 

construct the proper uncertainty sets based on historical data 

were introduced in [22] to reduce the conservativeness while 

maintaining the robustness of the solutions. In addition, [23] 

introduced a risk-constrained robust unit commitment model, 

where the uncertainty set was divided into several 

probability-blocks with respect to the data sets. A multistage 

adaptive robust unit commitment model was set up in [24], 

where dynamic uncertainty sets were utilized to capture the 

temporal and spatial correlations of renewable energy as well as 

the sequential nature of the dispatch process. Furthermore, a 

two-stage min-max regret robust unit commitment was 

established in [25] to reduce the conservativeness, where the 

maximum regret in the robust optimization framework was 

considered. Moreover, adjustable uncertainty sets according to 

different system-risk levels were adopted to achieve the 

operational flexibility for day-head unit commitment [26]. 

Then, a novel unified stochastic and robust unit commitment 

model was proposed in [27] to reduce the expected cost by 

adjusting the weights in the objective function. 

Compared with the RSCUC models, although the SSCUC 

models can avoid the conservative total cost, the system 

security cannot be sufficiently guaranteed. Therefore, many 

efforts were devoted into the chance-constrained 

security-constrained unit commitment (CSCUC) [28-30]. The 

CSCUC model ensures the feasibility for the constraints with 

stochastic variables in a certain probability. Since the chance 

constraints generally lead to the non-convexity, the CSCUC 

problem is usually solved by means of a sample-average 

approximation approach [28]. Only certain CSCUC models can 

be equivalently transformed into deterministic SCUC models 

[29], which leads to the notion of risk-averse SCUC models that 

include the operational risk. In general, the risk exposure of the 

power system is considered in the objective function or in the 

constraints of the SCUC model. Typically, the considered risk 

includes the loss-of-load and the wind curtailment [30]. The 

risk-averse SCUC model allows a tradeoff between the 

expected dispatch costs and the operational risks caused by 

uncertainties [31]. Recently, several risk measures have been 

applied to SCUC models, such as the mean-variance [32], 

shortfall probability [33], and conditional value-at-risk (CVaR) 

[31, 34]. 

Generally, stochastic programming methods cannot cover all 

possible realizations of uncertainties. A particular probability 

distribution of random parameters is usually assumed, which 

may be biased in practice. Although the robust optimization can 

take all realizations into consideration and protect the system 

against a pre-defined uncertainty set, it gives a more 

conservative solution than the stochastic approach. The 

chance-constrained framework is usually reformulated as a 

large-scale mixed integer programming model, depending on 

the number of scenarios considered in the model, which 

increases the computational burden. Also, as one of the 

stochastic approaches, it shares the same disadvantages with 

the SUC—it is not possible to enumerate all the scenarios and 

the solution depends on the assumed distribution in the model. 

To achieve a more reasonable unit commitment with the 

superiority of stochastic and robust optimization models, the 

data-driven framework can be adopted to find a more suitable 

solution. It should be robust but less conservative. Based on the 

historical data, a series of possible probability distribution of 

wind power can be constructed. This model takes advantage of 

data information and considers the worst-case distribution of 

the uncertainties. When comparing with the case considering 

the worst-case scenario in the robust optimization approach, the 

S 
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data-driven model yields less conservativeness. It aims to find 

an optimal solution under the worst probability distribution, 

known as “distributionally robust optimization” or “data-driven 

optimization” [35]-[38]. Recently, this approach is also used to 

solve the UC problem [39], [40]. More importantly, it does not 

require probabilistic distribution assumption. Instead, it allows 

an ambiguous distribution within the confidence set. This leads 

to a more robust solution compared with the stochastic 

optimization. 

However, the model in [39] has difficulties in solving 

large-scale problems. More specifically, due to the “max-min” 

duality, it is difficult to find the worst-case scenario. Clearly, a 

larger number of scenarios will lead to a more precise optimal 

solution, while increasing the complexity and computational 

burden. In that case, the problem becomes intractable or even 

unsolvable. In the prior-art work, the decomposition method 

has been proposed to tackle this issue [41], [42]. For instance, 

in [41], the augmented Lagrangian relaxation method was 

employed to decompose the large-scale problem into several 

small sub-problems (one for each scenario). However, this is 

only applicable to single-level stochastic programming models. 

In this paper, the proposed data-driven distributionally robust 

optimization is essentially a “min-max-min” tri-level model to 

efficiently solve the above issues. To our best knowledge, how 

to decompose the tri-level optimization model has not been 

addressed yet in the literature. 

The main contributions of this paper are summarized as: 

(i)  A data-driven stochastic SCUC model is set up using the 

practical data that incorporates the superiority of stochastic 

and robust optimization models. Meanwhile, the practical 

wind speed is analyzed under four seasons during one year, 

which facilitates the stochastic SCUC model. 

(ii) A novel decomposition approach is proposed to solve the 

tri-level data-driven stochastic unit commitment model. 

This approach does not require dualization, which can save 

a large set of dual variables and constraints and thus reduce 

the computational burden. Additionally, due to its special 

structure, the inner max-min problem can be decomposed 

into independent sub-problems and then solved in parallel, 

which further improves the computational efficiency. 

The rest of the paper is organized as follows: Section II 

investigates the modeling of wind power generation scenarios. 

In Section III, a data-driven stochastic security-constrained unit 

commitment (SCUCU) model is set up considering the 

uncertain probability distribution of wind power. A duality-free 

based Bender’s decomposition algorithm is then proposed to 

solve the data-driven stochastic SCUC model in Section IV. In 

Section V, numerical results and comparisons on a standard 

IEEE 118-bus system demonstrate the effectiveness of the 

proposed model and method. Finally, conclusions are drawn in 

Section VI. 

II. WIND POWER SCENARIO GENERATION 

Wind power generation scenarios are usually generated with 

Monte Carlo simulations using a predefined wind power 

distribution. However, in order to describe a precise wind 

power distribution, wind speed characteristics should be 

analyzed according to the wind farm historical data. In this 

paper, the wind speed is characterized by four seasons in a year. 

Taking one real-field wind farm in China as an example, where 

the wind speed data in the past 10 years is utilized:  

Fig. 1 depicts the wind speed in one day (24 hours) and one 

month (720 hours). It can be observed that the wind speed is 

stochastic and volatile. However, the wind speed is relatively 

periodic and the daily wind speed distribution over a long 

period is similar.  
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Time (h)  
     (a)                                                    (b) 

Fig. 1.   Wind speed distribution in the wind farm located in Northwest 

China for: (a) one day and (b) one month. 

For one day, Fig. 2 shows the wind speed distribution at 

00:00 AM and 12:00 PM. It can be observed that the wind 

speed distribution has a “double-peak” nature, where the peak 

values are near 0 m/s and 5 m/s, respectively. The number of 

scenarios becomes smaller with the increase in wind speed. 

Meanwhile, a comparison of Fig. 2(a) and (b) implies that the 

average wind speed at 12:00 PM is higher than that at 00:00 

AM. Moreover, the number of scenarios with high wind speeds 

(more than 18 m/s) is larger at 12:00 PM than that at 00:00 AM. 

As a result, the wind speed modeling should consider the daily 

time-series characteristics. 

Wind speed (m/s) Wind speed (m/s)
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(a)                                                     (b)  

Fig. 2.   Wind speed distribution of the wind farm in one day at: (a) 

00:00 AM and (b) 12:00 PM. 

However, for one year, Fig. 3 depicts the distribution of wind 

speeds, which shows that the high wind speed condition is more 

frequent in spring and winter than that in summer and autumn. 

In spring, the peak wind speed is around 7.5 m/s and there are 

several scenarios with the wind speed higher than 12.5 m/s; in 

summer, the peak is around 5 m/s and the number of scenarios 

with the wind speed higher than 10 m/s is small. The statistics 

from historical data suggest that four seasons have different 

wind speed characteristics. As a consequence, daily time-series 

characteristics should be modeled separately. 

Based on the historical data, the daily wind power density 

can be estimated through various prior-art probabilistic forecast 

approaches. Meanwhile, in [43], a method that can generate 
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statistical scenarios of the wind power generation considering 

spatial-temporal interdependence was introduced, and it is also 

used in this paper. Then, 1000 wind power scenarios are set up 

at the beginning according to the estimated probability density 

function describing the uncertainty in forecasts. Furthermore, 

the scenario generation technique is based on building joint 

predictive densities from the marginal ones. The interdependent 

structure of wind power generation through time and space is 

modeled by the covariance matrix of the multivariate Gaussian 

distribution. Finally, it is known that a large number of 

scenarios are required to fully characterize the wind power 

uncertainty. However, increasing the number of scenarios 

makes the stochastic SCUC modelling become computationally 

intractable. To retain the tractability and maintain the statistical 

information, the probability distance-based scenario-reduction 

technique [44] is employed in this paper.  
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(a) Summer                               (b) Autumn 

Fig. 3.   Wind speed distribution of the wind farm in a year.  

III. DATA-DRIVEN STOCHASTIC SCUC MODEL 

A. General Stochastic SCUC Model 

In this section, the general stochastic SCUC model is set up 

in a tight and compact MILP formulation [39]. It was discussed 

in [39] that the tight and compact formulation could improve 

the computational efficiency of stochastic UC models, since a 

smaller searching space and a faster searching process for the 

branch-and-cut algorithm are enabled. 

The stochastic SCUC optimization problem aims to 

minimize the expected operational cost over a given number of 

time horizons while satisfying various physical constraints. 

Specifically, the objective function should include: (i) the fixed 

production cost; (ii) startup cost; (iii) shutdown cost; (iv) 

production cost; and (v) loss-of-load cost, such that 
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In the above formulation, constraints (2) and (3) are startup 

cost constraints. They choose the suitable startup-type variable 

     that activates the corresponding startup cost    
   in the 

objective function of (1). Constraints (4) and (5) are the 

minimum uptime and downtime constraints. Constraint (6) is a 

logical constraint guaranteeing  that     and     have proper 

values at the startup and shutdown time. Constraints (7), (8) and 

(9) are to meet the power balance and network transmission 

security requirements. Constraint (10) describes the load 

shedding. Constraints (11), (12) and (13) refer to the ramping 

limitation and spinning reserve requirement. Constraints (14), 

(15) and (16) denote the minimum and maximum generation 

limitations. 

B. Proposed Data-driven Stochastic SCUC Model 

It should be noted that the probability distribution of wind 

power is important to generate scenarios. However, the 

uncertainties should be considered in the system modeling. In 

this way, the unknown probability distribution of wind power 

follows any possible probability distribution within a 

pre-defined confidence set built up upon the historical data.  
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Fig. 4.   Uncertain probability distribution functions. 

As shown in Fig. 4, the possible probability distributions are 

fully covered by the confidence set. Here, we consider that the 

pre-defined confidence set Ψ is convex, which can facilitate the 

computation. In the prior-art research, two methods were 

reported to construct the confidence set. One is based on the 

first- and second-order moments (e.g., mean and variance). The 

other is to utilize the density information (e.g., norm-1 and 

norm-inf). In this paper, the latter is adopted for illustration and 

the two confidence sets can be expressed as  

   *  |‖     
 ‖   +

 {  | ∑|     
 |

   

  }               (   ) 

   *  |‖     
 ‖   +

 {  |    
   

|     
 |   }                (   ) 

It has been studied in [39] that the estimated probability 

distribution will approach the true probability distribution if 

more historical data can be obtained. For a pre-designed 

confidence level  and the controllable parameter for the 

confidence set   can be calculated as 

    
  
  
  
   
   

          
 

  
  
   
   

                (  ) 

For each given probability distribution, the stochastic SCUC 

model can be solved by (1)-(16). The confidence set actually 

gives a series of estimated probability distributions of wind 

power that will give a series of stochastic SCUC solutions. In 

order to protect the system against all the possible stochastic 

SCUC solutions resulted from the uncertain probability 

distribution of wind power. A data-driven stochastic SCUC 

model aims to find the optimal solution under the worst-case 

probability distribution, such that 

   
                

∑∑(  
      ∑    

      
    

   
     ) 

      

  

         
    

   
          

    
∑   ∑(∑  (    )  ∑        

    

   

 

   

)

      

(  ) 

s.t.  (2)-(16)                                   (20) 

The above proposed data-driven stochastic SCUC model can 

be essentially cast as a two-stage optimization problem. Here, 

the first-stage optimizes the unit commitment, while the 

second-stage optimization is to find the worst-case operational 

cost and the load loss under different probability distributions 

of wind power.  

IV. DUALITY-FREE DECOMPOSITION METHOD 

The data-driven stochastic unit commitment model proposed 

in this paper can be solved by the Bender’s decomposition 

method or the standard column-and-constraint generation 

method [20], [23], [45]-[46], which is implemented in a master 

sub-problem framework. That is, the sub-problem aims to find 

the critical scenario of the uncertain set that provides an upper 

bound. Then, new variables and constraints are added to the 

master problem to obtain a lower bound. The master problem 

and sub-problem are solved iteratively and the method stops 

until the gap between the upper and lower bounds is smaller 

than a pre-set convergence tolerance. 

A. Sub-problems 

For a given set of specific first-stage variables in the k-th 

iteration as (   
     

      
     

 ), we can establish a second-stage 

bi-level “max-min” model from (19)-(20) to find the worst-case 

scenario, yielding 
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The sub-problem is a “max-min” bi-level problem and we 

can dualize the inner “min” model to obtain its equivalent “max” 

model based on the strong duality theory. Then, the bi-level 

model can be reformulated as a single “max” linear 

programming model. However, the dual problem is actually a 

large-scale optimization model, especially when the number of 

scenarios is large. It may significantly affect the computational 

performance and online applications. 

Fortunately, it has been found that the second-stage bi-level 

“max-min” model has a special structure and thus it can be 

decomposed into several small sub-problems without the 

duality information. Since the feasible region enclosed by the 

second-stage variables is disjoint with the confidence set Ψ, the 

summation operator “” and “min” operator can be exchanged. 

Thus, the second-stage “max-min” problem can be formulated 

as 
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 Furthermore, let       
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s.t.   (7)-(16)                                     (36) 

If there are Ns scenarios, the lower-level model of the bi-level 

problem can be decomposed into Ns independent optimization 

models. Especially, the feasible region Ψ for the upper level and 

the feasible region for the lower level are absolutely disjoint, 

resulting in a decoupled strategy.  

For each scenario, it gives a linear programming model as 

   
      

          
     

              

∑(∑  (    )  ∑        
    

   

 

   

) (  )

   

 

s.t.   (7)-(16)                                     (38) 

When the optimal solution (  
       

       
  ) is obtained, 

it gives 

   
    

∑    
                                      

   

(  ) 

Thus, the original bi-level model can be solved by Ns+1 

small linear programming models, where Ns models described 

in (4) can be handled in parallel. The proposed method does not 

need to dualize the inner model when solving the bi-level 

sub-problem, and thus it is referred to as a duality-free 

decomposition method. A simple example for the “max-min”  

sub-problem is shown in Appendix to verify the proposed 

duality-free decomposition method. 

B. Master Problem 

When the sub-problem is solved, an optimal value 

 (    
       

             
      

       
  )  and the worst-case 

probability (  
       

       
  ) are obtained. In fact, this 

gives an upper bound for the original model. Then, a set of extra 

variables (    
        

              
       

        
   )  and associated 

constraints are generated and added into the master problem by 

fixing the optimal probability (  
       

       
  ) from the 

above model in (32)-(33). 

If the sub-problem is feasible, we can create variables 

(    
        

              
       

        
   ) and assign the following 

constraints to the master problem with the fixed optimal 

probability at the k-th iteration (  
       

       
  ), which are 

called “optimality cuts”. 
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       (  
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where   is a dummy continuous variable. 

If the sub-problem is infeasible, it is possible to create 

variables (    
        

              
       

        
   ) and assign the 

following constraints to the master problem with the fixed 

optimal probability at the k-th iteration (  
       

       
  ), 

which is called “feasibility cuts”. 

∑     
   

   ( )

 ∑     
   ( )

 (        
        )

 ∑      
   

   ( )

 ∑      
   

   ( )

           (  ) 

(42)-(50)                                     (52) 

The master problem aims to relax the original optimization 

model and provide a lower bound. Mathematically, it is a 

standard mixed integer liner program (MILP) model that can be 

easily dealt with by the standard commercial solvers.  

Finally, for a given gap , the complete procedure of the 

duality-free decomposition method for the data-driven 

stochastic unit commitment problem can be described as 

Step 1:  Let LB = , UB = +, K = 0; 

Step 2:  Solve the master problem model: 

   ∑∑(  
      ∑    

      
    

   
     )       (  )

      

 

s.t.     (3)-(7)                                               (54) 

     (40)-(50)           k=1,…,K                   (55) 

Solve the above model and derive the optimal solution 

(    
     

      
     

          
       

             
      

       
      

    
       

             
      

       
  ) as well as the optimal 

objective value    . Then, update the lower bound as 

LB=   ; 

Step 3: Fix (   
     

      
     

 ) and solve the sub-problem 

model in parallel by (37)-(39), respectively. If the 

sub-problem is feasible, let the optimal objective value 

be    ; otherwise set      . Furthermore, update the 

upper bound as UB = min{UB,  ∑ ∑ (  
     

        

∑    
      

 
       

     
 )    }; 

Step 4: If (UBLB)<, return (   
     

      
     

 ) and stop. 

Otherwise, add the cuts as 

(a) If the sub-problem in Step 3 is feasible, obtain the 

optimal probability (  
       

       
  ). Create variables 

(    
        

              
       

        
   ) and assign the 

constraints (40)-(50) to the master problem; 

(b) If the sub-problem in Step 3 is infeasible, create 

variables (    
        

              
       

        
   ) and add the 

constraints (51)-(52) to the master problem; 

Step 5: Update K=K+1 and go back to Step 2. 
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V. NUMERICAL ANALYSIS 

In this section, three unit commitment models with wind 

power generation uncertainties are designed and compared with 

the proposed data-driven stochastic SCUC model (DSSCUC): 

 WSSCUC: It is a worst-case stochastic SCUC model. 

Solve the general stochastic SCUC model (1)-(16) and fix 

the first-stage decision variables. Then, we randomly 

generate 1000 different probabilities from the confidence 

set and solve the second-stage problem for each given 

probability. Then, choose the solution with the maximum 

objective value is served as the worst-case scenario for the 

stochastic approaches. 

 RSCUC: It is a two-stage robust SCUC model. Using the 

historical data, we can give the uncertainty set of robust 

optimization with respect to central limit theorem. 

 SSCUC: It is a two-stage stochastic SCUC model.  

The computation is carried on a computer with an Intel® 

Core™ i7 Duo Processor (2.4 GHz) and 4-GB RAM in 

MATLAB by the CPLEX 12.6 commercial solver. It should be 

noted that the series of sub-problems in the proposed method 

have independent mathematical structures, enabling the parallel 

computation. Due to the lack of hard-ware platform of 

high-performance computing, we use the “for” loop to simulate 

the parallel computation and take the worst computing time of 

the sub-problems as the parallel computational time. 

A. Test on the IEEE 118-bus System 

At first, the proposed duality-free decomposition based 

DSSCUC is studied on the IEEE 118-bus test system including 

54 generators and 186 transmission lines [47]. The spinning 

reserve requirement is equal to 5% of the load demand. The 

cost of load shedding is $3500/MWh. Five 300-MW wind 

farms are located at bus #10, #25, #26, #37, and #38. Here, the 

historical wind data from the real-life wind farms in 

Northwestern China is used, as shown in Figs. 1-3.  

The comparison of the three methods is presented in Table I 

with Ns = 5. It is obvious that the RSCUC model optimizes the 

solution that is immune against all the possible realizations, 

which leads to the highest optimal total cost. The SSCUC 

method considers the probability of scenarios, which therefore 

yields the lowest optimal total cost. In contrast, the proposed 

DSSCUC model using either     or    is greater than the 

SSCUC, while smaller than the WSSCUC approach. When   is 

large enough, the solution will tend to that of the RSUCU 

model. On the contrary, when   is small, the solution will 

approach that of the SSUCU model. The DSSCUC model is 

between RSCUC and SSCUC. As a result,   can be considered 

as a budget parameter that can control the size of uncertainty 

sets and further a trade-off between the robust and stochastic 

optimization can be made. With the increase of , the 

uncertainty set becomes larger and the optimal solution is more 

conservative.  

Moreover, the worst-case total cost from the stochastic 

approach is computed by the WSSCUC model considering 

uncertain probability distribution of about 9.5%~17.2% larger 

than the traditional two-stage SCUC model. It is obvious that a 

larger confidence level  will enlarge the confidence set (i.e.,   

becomes large), and the worst-case solution will thus become 

larger. The results suggest that the traditional SSCUC model 

suffers from the uncertain probability distribution of wind 

power. However, the proposed DSSCUC model takes into 

account the uncertainty from the statistics, so the solution will 

be benefited. 

Finally, the stochastic SCUC models including the SSCUC, 

WSSCUC and DSSCUC models are always better than the 

robust SCUC model. This is because the robust optimization 

neglects the probability of scenarios and the probability of the 

worst-case scenario may be very small in practice. Thus, the 

extreme worst case will sacrifice much cost (about 24%) to 

protect the system from the worst case with small probabilities. 

In the framework of the two-stage stochastic optimization, the 

expected total cost is optimized which gives the optimal 

solution under the given probability distribution.  

Table I. Performance of Different SCUC Models. 

 

Total cost/106$ 

DSSCUC 
RSCUC SSCUC WSSCUC 

1 inf 

0.5 1.5167 1.5035 

1.8453 1.4871 

1.6288 

0.6 1.5331 1.5201 1.6391 

0.7 1.5502 1.5496 1.6536 

0.8 1.5795 1.5732 1.6712 

0.9 1.6111 1.5943 1.6934 

0.95 1.6348 1.6132 1.7158 

0.99 1.6584 1.6380 1.7433 

In order to investigate the influence of the load demand and 

wind power output on the solution decision, we consider four 

seasons to study where a typical day is selected in each season. 

In spring, the wind power is high and the load demand is low. In 

summer, the wind power is low and the load demand is high. In 

autumn, both the wind power and load demand are low. In 

winter, both the wind power and load demand are high. The 

solutions are presented in Table II. Observations show that the 

total cost in spring is the lowest and the solution in summer is 

the highest. More importantly, the gap between DSSCUC and 

other methods is small when the wind power output is low, 

whereas it is large in the case of a high penetration of wind 

power.  

Furthermore, the proposed duality-free decomposition 

method (PM) and the traditional Benders decomposition 

method (TM) in [39] were explicitly compared considering 

scenarios and the results can be found in Table III. It can be 

observed that for the same Ns, the PM and TM generate the 

same objective value (obj.). In contrast, the PM preforms an 

order of magnitude faster than the TM. This is because the PM 

needs 2-4 iterations for convergence, whereas the TM needs 

9-15 iterations. Moreover, the PM yields a decomposition 

structure for the second-stage problem that can be handled in 

parallel, which can significantly reduce the computational time, 

especially for the problem with a large number of scenarios. 

Table II. Impact of Seasons on Different SCUC Models. 

Seasons 

Total cost/10
6
$ 

DSSCUC 
RSCUC SSCUC WSSCUC 

1 inf 

Spring 1.6348 1.6132 1.8453 1.4871 1.7158 

Summer 2.4045 2.3895 2.5101 2.3347 2.4690 

Autumn 2.0832 2.0787 2.1576 2.0333 2.1112 
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Winter 1.8355 1.7911 2.3982 1.5798 2.1351 

Table III. Comparison of the traditional and proposed methods. 

Ns 

D-1 D-inf 

Obj. (106$) Time (min) Obj. (106$) Time (min) 

TM PM TM PM TM PM TM PM 

5 1.63 1.63 36 4 1.61 1.61 34 5 

10 1.58 1.58 44 4 1.55 1.55 43 5 

15 1.56 1.56 53 4 1.51 1.51 57 6 

20 1.55 1.55 75 5 1.50 1.50 81 9 

25 1.54 1.54 90 6 1.49 1.49 103 11 

Moreover, the comparison of computational performance 

among the three approaches is shown in Table IV. The SSCUC 

is a standard MILP that can be directly handled by CPLEX. 

However, the computational time increases significantly with a 

large number of scenarios. This is because the SSCUC model 

contains Ns sets of decision variables and constraints. The 

RSUCU approach needs 7 iterations while the challenge is in 

the inner bi-level “max-min” problem, where a large-scale 

MILP is performed by the use of duality. In addition, the 

computational time of the SSUCU will increase significantly 

when the number of scenarios is increased. Among the three 

methods, the proposed DSSCUC model consumes the least 

computational time due to the duality-free decomposition 

method, where the second-stage “max-min” problem is 

decomposed into several small-scale linear programs that are 

handled in parallel. It should be noted that the increase of Ns 

will increase its computational time. The reason is that the 

master problem will become larger with a large number of 

scenarios.  

Table IV.  Comparison of computational efficiency by three methods 

on 118-bus test system (min). 

Ns 
DSSCUC 

RSCUC SSCUC 
D-inf D-1 

5 4 5 

10 

12 

10 4 5 19 

15 4 6 29 

20 5 9 47 

25 6 11 78 

B. Test on the Practical Hainan Power Grid in China 

To verify the proposed method on a large-scale test system, 

the Hainan power grid in China is used, which is depicted in Fig. 

5. This power grid contains 82 generators with the total 

capacity being 5300 MW, 7 wind farms with the total capacity 

being 800 MW, and the load demand is 4200 MW.  The 

transmission network is operated on two voltage levels, i.e., 

220 kV and 500 kV, where there are 34 high-voltage 

substations and 404 transmission corridors.  

The per unit values of the forecasted load demand and wind 

power generation over 24 hours are shown in Fig. 6, which are 

defined by P
t
/P

0
. Here, P

t
 is the value at the time period t and P

0
 

is the value at 1:00 AM. We consider the true wind power 

follows a multivariate normal distribution with the variance 

equivalent to 1/3 of the forecasted value. Furthermore, 1000 

samples are generated as the set of the historical data. The 

sensitivity analysis of parameters on the four models is 

presented in Table V. For each group, we consider four points 

for comparison. The results reveal that with the increase of the 

number of scenarios Ns and confidence level  and with the 

decrease of the number of historical data K, the total cost will 

become larger since the uncertainty set becomes larger. Thus, it 

is suggested that for a given confidence level and the number of 

scenarios, more historical data can narrow the region of the 

uncertainty set and reduce the conservativeness. Similarly, for a 

given number of scenarios and historical data, improving the 

confidence level indicates that the system requires higher 

estimation precision for the possible probability distributions. 

In that case, the confidence set and the uncertainty set become 

larger. Moreover, it can be observed in Fig. 7 that the gap 

between WSSCUC and DSSCUC will become smaller if  and 

K are increased while decreasing Ns. 
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Fig. 5.   Layout of the Hainan power grid in China. 

  
Fig. 6.  Load demand and wind generation over 24 hours 

 

Finally, the computational performance among the three 

approaches on the Hainan power grid is shown in Table VI. The 

comparison demonstrates that the simulation results in Table 

IV are similar to those in Table VI. The computational time 

increases significantly with a large number of scenarios. As for 

the MILP problem, the computational time mainly depends on 
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the number of variables and constraints. If Ns = 25, the 

traditional method cannot find the optimal solution within 1000 

minutes. If Ns = 50, the number of variables is more than one 

million and the number of constraints are more than five 

millions. Hence, the traditional method for the DSSCUC 

cannot be solved due to the limited memory space. In contrast, 

the proposed duality-free decomposition based method can still 

handle the DSSCUC and the computational speed is improved 

up to two orders of magnitudes, since the large-scale problem is 

decomposed into several small-scale sub-problems. 

 
Fig. 7.  Gap between WSSCUC and DSSCUC. 

Table V.  Sensitivity analysis of parameters 

 
(K=1000 

Ns=10) 

Total cost/108$ 

DSSCUC 
RSCUC SSCUC WSSCUC 

1 inf 

0.5 3.5629 3.5432 

4.5158 3.2494 

3.6783 

0.90 3.6649 3.6513 3.7130 

0.95 3.7031 3.6943 3.7271 

0.99 3.7806 3.7745 3.7932 

K 

( =0.95 

Ns=10) 

Total cost/108$ 

DSSCUC 
RSCUC SSCUC WSSCUC 

1 inf 

1000 3.7031 3.6619 

4.5158 3.2494 

3.7321 

3000 3.4313 3.4106 3.4465 

6000 3.3586 3.3417 3.3663 

10000 3.2989 3.2833 3.3056 

Ns 

( =0.95 

K=1000) 

Total cost/108$ 

DSSCUC 
RSCUC SSCUC WSSCUC 

1 inf 

5 3.4854 3.341 

4.5158 3.2494 

3.4933 

10 3.7031 3.562 3.7603 

25 4.0515 3.918 4.1345 

50 4.3054 4.195 4.3942 

Table VI.  Comparison of computational efficiency by three methods 

on Hainan power grid in China (min). 

Ns 
DSCUC 

RSCUC SSCUC 
TM PM 

5 92 12 

78 

34 

10 342 12 78 

25 >1000 13 375 

50 out of memory 13 >1000 

100 out of memory 15 out of memory 

CONCLUSIONS 

To address the uncertain probability distribution of wind 

power resultant from the historical data, a data-driven 

stochastic security-constrained unit commitment was set up to 

optimize the unit commitment under the worst probability 

distribution in this paper. Furthermore, a novel duality-free 

decomposition method was proposed for the data-driven 

stochastic security-constrained unit commitment. The key point 

is that the second-stage sub-problem has a special structure that 

can be decomposed into several parallel sub-problems without 

the duality information. However, it is required by the 

traditional Bender’s decomposition method. Numerical results 

have shown that the proposed method performs better than the 

Benders decomposition method especially for the problem with 

a large number of scenarios. 

APPENDIX 

A Simple Example for the Sub-problem 

 In order to verify the proposed duality-free decomposition 

method, we set up a simple example with two variables (x1, x2) 

under three scenarios to show the detail numerical results. The 

bi-level sub-problem is formulated as 

     
1 21 2 3

1 1 2 2 3 3

1 2 1 1 2 2 1 2 3
,, ,

max min 2 3 2 3 2 3
x xp p p

x x p x x p x x p     (A1) 

1 1 2 2 3 3

1 2 1 2 1 2

1 1 2 2 3 3

1 2 1 2 1 2

. . 1, 2, 3

, , , , , 0

s t x x x x x x

x x x x x x

     


              (A2) 

1 2 3

1 2 3

[0.1,0.3], [0.4,0.7], [0.2,0.6],

1

p p p

p p p

  

  
           (A3) 

Traditional method dualizes the inner “min” model to obtain 

its equivalent “max” model based on the strong duality theory. 

Then, the bi-level model can be reformulated as a single “max” 

linear programming model, such that 

1 2 3 1 2 3

1 2 3
, , , , ,

max 2 3
p p p   

                                 (A4) 

1 1 1 1 2 2 2 2 3 3 3 3. . 2 , 3 , 2 , 3 , 2 , 3s t p p p p p p          

                      (A5) 

1 2 3

1 2 3

[0.1,0.3], [0.4,0.7], [0.2,0.6],

1

p p p

p p p

  

  
           (A6) 

where λ1, λ2 and λ3 are multipliers to the constraints (A2). It can 

be found that the above optimization model is a simple linear 

problem that can be solved to the global optimal solution with 

(p1=0.1, p2=0.4, p3=0.5, λ1=0.2, λ2=0.8, λ3=1.0) and the optimal 

objective value is 4.8. 

 For the proposed duality-free decomposition method, we can 

solve three small models by (37)-(38) in parallel, such that 

1 1
1 2

1 1

1 2
,

min 2 3
x x

x x                                   (A7-a) 

1 1 1 1

1 2 1 2. . 1, , 0s t x x x x                         (A7-b) 

The global optimal solution is  1 1

1 21, 0x x   and the 

optimal objective value is h1=2. 

2 2
1 2

2 2

1 2
,

min 2 3
x x

x x                                   (A8-a) 

2 2 2 2

1 2 1 2. . 2, , 0s t x x x x                         (A8-b) 

1 2 3 4
0

0.02

0.04

0.06

0.08

0.1

0.12

Data Number

G
a
p
 W

S
S

C
U

C
 a

n
d
 D

S
S

C
U

C
 (

1
0

8
$
)

 

 

Under different 

Under different K

Under different N
s



1949-3029 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSTE.2018.2825361, IEEE
Transactions on Sustainable Energy

 10 

The global optimal solution is  2 2

1 22, 0x x   and the 

optimal objective value is h2=4. 

3 3
1 2

3 3

1 2
,

min 2 3
x x

x x                                   (A9-a) 

3 3 3 3

1 2 1 2. . 3, , 0s t x x x x                         (A9-b) 

The global optimal solution is  3 3

1 23, 0x x   and the 

optimal objective value is h3=6. 

Furthermore, we solve another small linear program by (39), 

using the information from (A7)-(A9), such that 

1 2 3

1 1 2 2 3 3
, ,

max
p p p

h p h p h p                           (A10-a) 

1 2 3

1 2 3

. . [0.1,0.3], [0.4,0.7], [0.2,0.6],

1

s t p p p

p p p

  

  
   (A10-b) 

 The optimal solution of the above model is (p1=0.1, p2=0.4, 

p3=0.5) and the optimal objective value is 4.8, which is the 

same as the traditional method. 

 It can be concluded that the optimal solution and optimal 

objective value by the proposed method is absolutely the same 

as those by the traditional method, which verifies the 

effectiveness of the proposed method. Moreover, it can be 

observed that the models (A7), (A8) and (A9) are independent 

that can be solved in parallel. Besides, the proposed model only 

needs to solve 4 small linear programs comparing to the 

traditional method that needs to solve one large-scale 

optimization model. 
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