
LBL-30747

UCB-PTH-91/21

May 1991

Duality in Gauged WZW Models
∗

Elias B. Kiritsis

Department of Physics†, University of California

and

Theoretical Physics Group

Lawrence Berkeley Laboratory

Berkeley, CA 94720

Abstract

All anomaly free subgroups of the internal symmetries of a WZW
model are classified. It is shown that the gauging of an axial or vector
U(1) subgroup provides Conformal Field Theories with target mani-
folds that are dual. Some implications are discussed

Published in Mod. Phys. Lett. A6 (1991) 2871.

∗This work was supported in part by the Director, Office of Energy Research, Office of
High Energy and Nuclear Physics, Division of High Energy Physics of the U.S. Depart-
ment of Energy under Contract DE-AC03-76SF00098 and in part by the National Science
Foundation under grant PHY85-15857.

†e-mail addresses: KIRITSIS@LBL.bitnet, CSA::KIRITSIS, THEORY::KIRITSIS,
KIRITSIS@CSA3.LBL.Gov



Coset models constitute a class of CFT’s that attracted considerable at-

tention in recent years. The first examples were constructed long ago, [1],

while a more organized effort was initiated in [2] and put forth in full gen-

erality in [3]. The models are rational CFT’s and general methods exist for

their exact solution, [4, 5]. There is a Langrangian description of these mod-

els as gauged, [6] WZW models, [7]. However, the Langrangian description

was hardly used to study the target geometry of the coset models, with some

notable exceptions, [8, 9]

The WZW model (with group G) plays a central role in CFT. All known

conformal field theories can be obtained by decomposition of its Hilbert space.

Its internal symmetry is the chiral GL⊗GR. Its world sheet symmetry is 2-d

diffeomorphism and Weyl invariance. If one gauges a discrete subgroup of the

internal symmetry group, orbifolds are obtained, [10]. By gauging a vector

subgroup of the internal symmetry group, the coset CFT’s are obtained, [6].

In general one can gauge an appropriate subgroup of its symmetries which

contains internal symmetry transformations together with some worldsheet

symmetries, [11]. In this way one obtains a Langrangian description of the

generic affine Virasoro constructions, [12].

Another important concept, special to CFT is that of duality, [13]. It is an

important symmetry of CFT and string theory. We call two target manifolds

dual to each other if they give rise to the same CFT. In general, duality acts

not just on the metric of the target manifold but also on other background

fields. The simplest paradigm of such a symmetry is the equivalence of the

theories of a free scalar field compactified on a torus with radii R and 1/R.

Such duality was observed recently in non-trivial 2-d backgrounds [14] which

mimic the 4-d black hole geometry, [15, 9]. A type of duality (also known as

mirror symmetry in this case) appears in N=2 superconformal field theories

and can be very useful in solving these theories and obtain supersymmetric

string vacua.

The purpose of this note is to study the existence and consequences of

duality in a class of gauged WZW models at criticality. The first question
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that we will address concerns the classification of possible anomaly-free sub-

groups of the internal symmetry of the WZW theory, that can subsequently

be gauged to obtain a conformally invariant field theory. The answer to this

question is the following: in the case where the subgroup is semi-simple then

it can be gauged iff it is a vector subgroup. If there are U(1) factors in the

subgroup, then such U(1)’s can be axial or vector, while the semi-simple part

has to be vector.

We will consequently focus on models where a U(1)A or a U(1)V is gauged.

We will show that the two conformal theories obtained this way are dual to

its other in the above-mentioned sense. We will also discuss some explicit

examples and consequences.

The WZW action‡ for a simple group G is

I(g) =
k

16π
INS(g) +

ik

24π
ΓWZ(g) (1)

INS(g) =
∫

d2xTr[UµUν ] , ΓWZ(g) =
∫

B
∂B=S2

d3yεµνρTr[UµUνUρ] (2)

with Uµ = g−1∂µg, Ũµ = ∂µgg−1. The WZ term is normalized by 1
48π2

∫
S3

Tr[U∧
U ∧ U ] ∈ Z. The model has a GL ⊗GR invariance corresponding to left and

right group transformations of g with constant group elements. Since the

model is critical this invariance is promoted to a local invariance giving rise

to the usual current algebra, [7]. The conserved currents are

g → gh : Jµ
R =

k

8π
P µν
− Uν , P µν

− ≡ δµν − iεµν (3)

g → hg : Jµ
L =

k

8π
P µν

+ Ũν , P µν
+ ≡ δµν + iεµν (4)

‡We confine ourselves to a worldsheet with the topology of S2. The worldsheet met-
ric is taken to be gµν = ρδµν . The generalization to higher genus Riemann surfaces is
similar with the additional subtlety of taking care of Gribov problems associated to non-
contractible loops on the surface.
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A vector transformation is g → hgh−1 while an axial transformation is g →
hgh.

The WZW action satisfies the Polyakov-Wiegman decomposition formula

I(gh) = I(g) + I(h)− k

8π

∫
d2xP µν

+ Tr[Uµ(g)Ũν(h)] (5)

By gauging a vector subgroup of the GL ⊗GR symmetry one can obtain

a Langrangian description of the coset models. One question we are going to

investigate here is which subgroups can be gauged? We will introduce two

gauge fields and try to gauge an arbitrary subgroup of the GL ⊗ GR of the

theory. Thus we start from the action

S0(g, A,B) = I(g) +
∫

Tr[AµJ
µ
R + BµJ

µ
L]−

∫
P µν
− Tr[Aµg

−1Bνg] (6)

where we added the last term for further convenience. Under the general

GL ⊗GR gauge transformation g → h1gh2,

Aµ → Ah2
µ = h−1

2 Aµh2 + Uµ(h2) , Bµ → Bh1
µ = h1Bµh

−1
1 + Ũµ(h1) (7)

S0(h1gh2, A
h2 , Bh1)− S0(g, A, B) =

ik

24π
[ΓWZ(h1) + ΓWZ(h2)]+

+
k

16π

∫
d2xTr[Uµ(h1)U

µ(h1)+Uµ(h2)U
µ(h2)+2P µν

+ (Ũµ(h2)Aν +Uν(h1)Bµ)]

(8)

¿From (8) it is obvious that the variation contains non-local contributions

due to the WZ terms which cannot be canceled by adding local functionals

of the gauge fields. Thus the gauged subgroup must be such that ΓWZ(h1)+

ΓWZ(h2) = 0. The solution to the previous equation is h1 = Λ1h, h2 = Λ2h
−1,

where h belongs to an arbitrary subgroup H and Λ1,2 are elements of some

(not necessarily the same) U(1)n subgroup of G that commutes with H. Since

we know the answer for the vector gauging we will assume that h=1. Then

δS0 =
k

16π

∫
d2xTr[Uµ(Λ1)U

µ(Λ1)+Uµ(Λ2)U
µ(Λ2)+2P µν

+ (Uµ(Λ2)Aν+Uν(Λ1)Bµ)]

(9)
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The only way to cancel the terms in (9) linear in the gauge fields is to take

Λ1 = λ1λ2, Λ2 = λ1λ
−1
2 . Thus the most general gauge group is a vector one

plus an axial one in the case of U(1)′s. We have then,

SV (g, A) = I(g) +
k

8π

∫
d2xTr[(Jµ

R − Jµ
L)Aµ + P µν

+ AµgAνg
−1 − AµA

µ] (10)

SA(g, A) = I(g) +
k

8π

∫
d2xTr[(Jµ

R + Jµ
L)Aµ − P µν

+ AµgAνg
−1 − AµA

µ] (11)

We should mention at this point that the results above hold off-criticality.

The WZW model still has the GL⊗GR symmetry and one can gauge it. The

anomaly-free subgroups are the same as in the critical case. Gauged WZW

models off-criticality are candidates for off-critical integrable perturbations

of coset CFT’s§

When the gauged subgroup H is U(1), the natural question is what is

the relation between the axial and the vector gauged WZW model? CFT

results tell us that there is a single G/U(1) coset for every distinct (group

theoretically) embedding of U(1) in G. The simple duality R → 1/R of the

toroidal theory can be implemented in the Hilbert space by changing the

sign of (only) the left-handed current. Thus the naive expectation is that the

axially-gauged WZW model is dual to the vectorially-gauged WZW model.

However, the two actions (10,11) differ by more than a flip in the sign of the

left current. Despite all these contradicting signals, we will show below that

the naive expectation is true: the axial and the vector theories are dual.

In order to do this we will need to derive a basic “duality transformation

formula” on a free compact scalar field coupled to an external current, (see

for example, [16]). Consider the field φ ∈ [0, 2π) and the partition function

ZR =

2π∫

0

[Rdφ] exp[−R2

4π

∫
∂µφ∂µφ +

∫
∂µφJµ] (12)

§Results in this direction will be reported elsewere.
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where Jµ is independent of φ. We will perform a duality transformation by

using the formula

e−ab2 =
1

2
√

πa

+∞∫

−∞
dxe−

x2

4a
+ibx (13)

We obtain

ZR =

2π∫

0

[Rdφ]
∫

[
dBµ

R2
] exp[− π

R2

∫
BµB

µ + i
∫

Bµ(∂µφ− 2π

R2
Jµ)+

π

R2

∫
JµJ

µ]

(14)

By changing variables to Bµ = εµνA
ν and doing the integral over φ we obtain

ZR =
∫

[dAµ]
2π

R
δ(F (A)) exp[− π

R2

∫
A2

µ −
2πi

R2

∫
εµνJµAν +

π

R2

∫
J2

µ] (15)

where F (A) = εµν∂µAν . The original theory was invariant under translations

of φ by a constant. This implies that
∫
S2

F (A) = 0. We will now solve the

δ-function constraint by Aµ = 1
2π

∂µφ (the Jacobian for this is trivial).

ZR =

2π∫

0

[
dφ

R
] exp[− 1

4πR2

∫
∂µφ∂µφ− i

R2

∫
εµνJµ∂νφ +

π

R2

∫
JµJ

µ] (16)

For Jµ = 0 (16) gives the usual R → 1/R duality of the free scalar field

theory.

Let us now consider a simple group G and choose a U(1) subgroup element

Qφ = exp[iφT0], T0 is the generator of the U(1) normalized as Tr[T 2
0 ] = 1.

Parametrize G 3 g = Qφh. Using (5) we can evaluate the WZW action

I(g) = I(h) +
k

16π

∫
∂µφ∂µφ− ik

8π

∫
P µν

+ ∂µφŨ0
ν (h) (17)

where Ũ0
µ ≡ Tr[T0Ũµ(h)]. The left-handed and right-handed U(1) currents

are given by

Jµ
R =

k

2π
P µν
− (iM∂νφ + U0

ν ) , Jµ
L =

k

8π
P µν

+ (i∂νφ + Ũ0
ν ) (18)
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where M ≡ Tr[T0hT0h
−1]. The partition function is

ZG =
∫ [

dg

U(1)

] 2π∫

0

[dφ]

[
k

4

]dimG/2

exp[−I(g)] (19)

where [dg/U(1)] is the Haar measure restricted in the coset. By applying

(16) we can obtain its dual form

ZG =
∫ [

dg

U(1)

] 2π∫

0

[dφ]

[
k

4

] (dimG−2)
2

exp[−Idual(g)] (20)

with

Idual(g) = I(h) +
1

πk

∫
(∂µφ)2 − i

2π

∫
P µν

+ ∂µφŨ0
ν (21)

The left and right U(1) currents in the dual theory are given by

J̃µ
R =

k

2π
P µν
− (

4i

k
M∂νφ + U0

ν ) , J̃µ
L =

k

8π
P µν

+ (
4i

k
∂νφ + Ũ0

ν ) (22)

Consider now the vector U(1) gauged action

SV = I(g)+
ik

8π

∫
Aµ(P µν

− (iM∂νφ+U0
ν )−P µν

+ (i∂νφ+Ũ0
ν ))+

k

8π

∫
(1+M)AµA

µ

(23)

Applying (16) to (23) we obtain

2π∫

0

[dφ]

[
k

4

]dimG/2

e−SV =

2π∫

0

[dφ]

[
k

4

] dimG−2
2

e−Sdual
V (24)

where

Sdual
V = Idual(g) +

ik

8π

∫
Aµ(J̃µ

R + J̃µ
L) +

k

8π

∫
(1 + M)AµA

µ (25)

Inspection on (25) shows that this is the axially gauged dual theory. This

proves our previous claim: The U(1) vector-gauged WZW model is dual to

the axially-gauged one.
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We will illustrate the above by considering as an explicit example the case

G = SU(2), H = U(1) which represents the Zk parafermionic CFT. We will

parametrize g by the Euler angles

g = exp(i
α

2
σ3) exp(i

β

2
σ1) exp(i

γ

2
σ3) (26)

where α ∈ [0, 2π), γ ∈ [0, 2π), β ∈ D ≡ [0, π] ∪ [2π, 3π]. The Haar measure

is,
∫

dΩ = 1
16π2

∫
D

sin βdβ
2π∫
0

dα
2π∫
0

dγ, normalized so that the group volume is

one.

ISU(2) =
k

16π

∫
[∂µα∂µα + ∂µβ∂µβ + ∂µγ∂µγ + 2 cos βP µν

+ ∂µα∂νγ] (27)

with k ∈ Z. When we gauge the axial U(1) generated by σ3 we obtain

SA = ISU(2) +
ik

8π

∫
Aµ(P µν

− Uν + P µν
+ Ũν) +

∫
AµA

µ(1 + cos β) (28)

with Uµ = −i(∂mγ + cos β∂µα), Ũµ = −i(∂µα + cos β∂µγ). The gauge trans-

formations are α → α + ε, β → β, γ → γ + ε, Aµ → Aµ − ∂µε. We choose

the gauge fixing condition α + γ = 2π which has a trivial FP determinant.¶

Performing the integral over the gauge field we obtain

ZA
SU(2)/U(1) =

∫

D

[sin βdβ]

2π∫

0

[dα]det

[ −2π2

k(1 + cos β)

]
e−Sg.f.

A (29)

with

Sg.f.
A =

k

16π

∫
[∂µβ∂µβ + 4 tan2 β

2
∂µα∂µα] (30)

We can regulate the logarithm of the determinant using e−
∇2

m2 where m is a

regulator mass. The short distance expansion of the heat kernel is

〈x|e−∇
2

m2 |x >=
m2

4π
+

R(2)

12π
+O(m2) (31)

¶In gauged WZW models any two admissible “unitary gauge” fixings (that is a gauge
fixing that does not involve the gauge field) generate target manifold metrics that are
related by a reparametrization. The ratio of the FP determinants when regulated corrects
the dilaton field in such a way that it provides the correct volume form on the target
manifold when combined with the measure.
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where R(2) is the 2-d scalar curvature. We can easily compute (see for ex-

ample the second ref. [13]) by throwing away the singular piece as m2 →∞,

that

det

[ −2π2

k(1 + cos β)

]

reg

= exp[− 1

8π

∫
d2x

√
gR(2) log(1 + cos β) + constant]

(32)

which provides the correct dilaton field (to one-loop order). Notice that

the zero mode part of the dilaton field combined with the measure provides

the correct volume element for the spacetime metric in (30). Both the metric

G(1)
αα = 4 tan2 β

2
and the dilaton Φ(1) = 1

2
log(1+cos β) can in principle receive

corrections at higher loop order. However they always have to provide the

correct volume element of the manifold. This gives the following relation

between the exact metric Gαα and the exact dilaton Φ

Φ(β) = log

(
sin β√
Gαα

)
(33)

If instead we compute the vector-gauged effective action we obtain

G̃αα = 4 cot2 β

2
, Φ̃ =

1

2
log(1− cos β) (34)

in accordance with the general argument. However it easy to see that here

the dual metric is related by a reparametrization (β → π−β) to the original

one, so the model is self-dual.

The spacetime described by the metric in (30) looks like two “bells” stuck

together. Its scalar curvature is given by

R = − 2

1 + cos β
(35)

which has a singularity along the common rim of the “bells”. This is pre-

cisely where the quadratic term of the gauge field vanishes. The model has

a Z2 symmetry that interchanges the two “bells”. If one mods out by that

symmetry one obtains the SO(3)/U(1) theory. This can be easily seen since
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the SO(3) manifold is obtained from the SU(2) one , in the parametrization

(26) by restricting β ∈ [0, π]. The SO(3)/U(1) theory is unitary only when

k ∈ 2Z. There is a continuous vector U(1) symmetry generated by constant

shifts of the field α. This is identified with the U(1) symmetry responsible

for the conservation of the magnetic quantum number of the parafermionic

primary fields in CFT. The Zk symmetry of the parafermion model corre-

sponds to α → α+ 2π
k

. Orbifoldizing by a discrete subgroup of that symmetry

leaves the model invariant. One could also gauge this symmetry. Then after

integrating out the gauge fields the resulting determinant cancels the con-

tributions of the dilaton and the measure and one is left with a Z2 orbifold

of the scalar field β at a radius R =
√

k. The same procedure aplied to the

SO(3)/U(1) coset leads to a toroidal theory with R =
√

k/4.

Let us also examine the case of SL(2, R)/U(1) that has attracted some

attention recently, [9, 14, 17]. We will parametrize an element g of SL(2,R)

as

g = ei φ
2
σ2e

r
2
σ1ei ψ

2
σ2 (36)

where r ∈ [0, +∞), φ ∈ [−2π, 2π], ψ ∈ [0, 2π). The WZW action is

ISL(2,R) =
k

32π

∫
[∂µφ∂µφ + ∂µψ∂µψ + ∂µr∂

µr + 2coshrP µν
+ ∂µφ∂νψ] (37)

and the Haar measure on SL(2, R) is sinhrdrdφdψ. We gauge the axial U(1)

generated by σ2, we gauge fix, φ + ψ = 2π and following the same procedure

as in SU(2) we obtain

ZA
SL(2,R)/U(1) =

+∞∫

0

[sinhrdr]

2π∫

0

[dφ]det

[
4π2

k(1 + coshr)

]
e−Sg.f.

A (38)

with

Sg.f.
A =

k

32π

∫
[∂µr∂

µr + 4tanh2 r

2
∂µφ∂µφ] (39)

The determinant, via regularization gives the dilaton term exp[− 1
4π

∫
R(2)Φ]

with Φ = 1
2
log(1 + coshr).
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Gauging the vector subgroup we obtain the inverse metric G̃φφ = 4coth2 r
2

and dilaton Φ̃ = 1
2
log(1−coshr). In this case the dual manifolds are different,

and the statement of duality non-trivial. As in the SU(2) case there is a U(1)

symmetry in the model which when gauged will give rise to a 1-d non-compact

Z2 orbifold (the real line, moded out by x → −x).

The duality transformations we have discussed can also be applied off-

criticality. In that case we do not expect an equivalence of the two theories,

but a correspondence that permutes the operator content of the theories. It

is obvious from the above that such duality transformations should exist for

integrable perturbations of G/U(1) coset models.

To summarize, we have investigated the anomaly free subgroups of the

WZW theory. Any such subgroup has to be vector unless it is a U(1) in

which case it can be either vector or axial vector. We then showed that the

vector or axial gauging of a U(1) subgroup produces dual theories. It would

be interesting to apply these results to the case of N = 2 superconformal

models, in order to shed some light into the spacetime picture of mirror

symmetry.
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NOTE ADDED

After the completion of this work we have received ref. [18] which partially

overlaps with our present treatment.
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