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1. Introduction 

This paper deals with the following nonlinear program 

(P) Inf {r(x)Ix~K} (1.1) 

where the objective function r is defined as the maximum of p ratios, i.e. 

r(x) = Max fi(x) 
l~ i<pgi (x ) .  (1.21 

This is a generalization of a fractional programming problem (p = 1) which has 
been investigated quite actively in the last two decades [21 ]. In [20] many of the 
results in fractional programming are reviewed and extended. An extensive 
bibliography is given in [22]. 

An early application of generalized fractional programming (p > 1) is von 
Neumann's model of an expanding economy [25]. Here the functions f,, g~ are linear 
and K is the nonnegative orthant. 
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Generalized fractional programs are also encountered in discrete rational 
approximation where the Chebychev norm is used [2]. 

Furthermore,  generalized fractional programs arise in goal programming where 
a decision maker wishes to bring several ratios as close as possible to certain 
predetermined values [13]. The individual goal functions are usually ratios of 
economic and /o r  technical terms such as revenue, cost, profit, time, amounts, etc. 
More details on the applications of fractional programming are given in [20, 21]. 
A goal program involving ratios gives rise to a generalized fractional program if 
the Chebychev norm is used, as discussed in [4]. Charnes and Cooper [4] stress 
that this norm has a natural appeal for problems of equity or equality. This is 
demonstrated,  for example, by Vogt's development of an 'Equal Employment  
Opportunity Index' [24] and by the problem of allocating state funds to educational 
institutions as discussed by Charnes, Cox and Lane [5]. 

Problem (1.1), (1.2) is also encountered in multicriteria programming where 
several ratios are to be optimized simultaneously and the overall objective is to 
minimize (maximize) the largest (smallest) of these ratios. An application of multi- 
criteria fractional programming is discussed by Ashton and Atkins in [1]. The 
authors consider ratios that are used in financial planning such as liquidity, return 
on capital, earnings cover, dividend cover and earnings per share. 

Let us now return to the model (1.1), (1.2). If K is a convex set, f, and -g,  are 
convex functions, and either r is nonnegative and gi positive, or gi is affine and 
positive, then the objective function r(x)  is strictly quasiconvex since it is the 
maximum of strictly quasiconvex functions. Therefore a local minimum of problem 
(1.1) is global [14]. 

If only one ratio appears in (1.2), then a convex-concave fractional program 
(1.1) can be reduced to a convex program [18]. This is achieved by a generalization 
of a variable transformation introduced in linear fractional programming by Charnes 
and Cooper [3]. By reducing (1.1) to a convex program, duality results can be 
obtained for convex-concave fractional programs [17, 18, 19]. Unfortunately gen- 
eralized fractional programs (p > 1) do not seem to be convex transformable in 
general, and therefore access to convex duality does not exist. 

The first duality results for generalized fractional programs (p > 1) were given 
by J. von Neumann [25] in his paper on an expanding economy. He considers the 
linear case of (1.1) where fi, gi are linear and K is the nonnegative orthant. A 
treatment of this model using recent quasiconvex duality results can be found in 
Crouzeix [6, 7] who also investigated the case where K is a compact and convex 
set, f~ are convex and nonnegative and g, are concave and positive. Among other 
authors who have studied generalized fractional programs we mention Rubinshtein 
[16] who examined a special linear fractional program using a geometric concept 
of duality, Gol'stein [10] who examined the case where K is compact and convex, 
f~ are convex and nonnegative and gi are affine using saddle-point results, Passy 
and Keslassy [15] who investigated certain fractional programs using duality results 
based on a generalization of Legendre's transformation, and Flachs [9] who 
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developed a saddle point duality based on properties of quasiconvex functions 
~p(x, t) which are monotone  in t. Very recently Jagannathan and Schaible [12] 

obtained duality relations for (1.1) using Farkas '  Lemma.  
This paper  is concerned with the special case where K is a polyhedral set, f, and 

gi are affine and gi are positive on K. The derivation of a dual program in Section 
2 is similar to the one used by Crouzeix [7] for generalized fractional programs. 
Here the compactness assumption on K is replaced by the linear structure of the 
program. Notice that this polyhedral structure has been also used by Flachs [9] 
who derives duality results for similar programs in a different way. In Section 3, 
we introduce an associated parametric program. Since no compactness assumption 

is required, the optimal value v(P) of program (P) is not necessarily finite, and the 
primal and the dual programs have not necessarily optimal solutions. When v(P) 

is finite, we show in Section 4 that the dual, in contrast to the primal, has always 
optimal solutions. Conditions to have optimal solutions for the primal are also 
given. Then complementary  slackness is analyzed. Infiniteness of v (P) is studied in 
Section 5. Finally a special case is considered in Section 6. 

Throughout  the paper,  A and B are two p x n matrices, C is a m x n matrix, a 
and/3 are two p-dimensional vectors, and y is an m-dimensional  vector. For two 
vectors x, y of the same dimension (x, y) denotes their scalar product. We denote 
by a~ (respectively b~.) the row i of A (respectively B) and by a i (respectively b.i) 
the column j of A (respectively B). We are concerned with the minimization problem 

(P) 

where 

and 

v(P) = Inf{r(x ) lx ~ K} 

K : {x ~ ~" I x / > 0 ,  C r  ~ -/} 

(as., x) ~-ai 
r(x) = Max 

under the assumptions 
(Hi) (Feasibility assumption): there exists s ~> 0 such that Cs >7 y, and 
(H2) (Positivity assumption): Bx +fl > 0  for all x >10 such that Cx <~y. 

In some parts of the paper  (H2) will be replaced by the stronger assumption 
(H3) (Strong positivity assumption): bii >10 for all i and / and/3; > 0  for all i. 

2. Derivation of a dual problem 

Due to the positivity assumption, an equivalent formulation of (P) is as follows: 

(P) v (P) - In f {A[Ax  +c~<~A(Bx + f l ) , x ~ K } .  
x,A 
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As in [7], we introduce the following two functions 

[ Inf{AlAx+c~+u~<A(Bx+/3)}  i f x c g ,  
~o(x, u) = ~ t+oo otherwise, 

and 

h(u)= Inf q~(x, u). 
x 

Then a quasiconcave dual program is given as follows: 

v (D) = Sup {A [~ (u*) < 0} 
, k , u * r  CI 

(D) 

where 

G(u*)  = Sup{(u, u*)l,p(x, u ) ~  a}. 
x,u 

345 

But S~(f) = (-~>~, S~(f). Thus 

S~(g) = f~ Proj[S,.(f)]. 

Hence 

and 

L e m m a  2.1. Let the function f: gU • ~q -~ ~, and define the function g: ~r__,(~, 

g (x) = Inf{f(x, y)}. 
Y 

Then ]br the level sets of g we have S~ (g) = [-'1 ~ >~ Proj R'[S, 0")]. 

Proof. Let lx~ <~2 .  Then 

{xt there exists a v 4 N'~ such that f(x, y ) <~ tx ~} c {-rig (x) ~ tx i} 

{xlg(x)<~lXi}c{xlthere exists a y c R  ~ such that f(x, y)~<tx2}. 

Proj[S.,(/)] c S.~ (g) c P r o j [ S . ~ ( f ) ] .  
R'  R '  

[] 

There  is no duality gap, i.e. v ( P ) =  v(D) if h is quasiconvex and lower semi- 

continuous at 0 as shown by Crouzeix [6, 7]. 
It follows from the positivity assumption that the level sets SA(q~) = 

{(x, u)]q~(x, u)<~A} of function r are polyhedral. Indeed it can easily be seen that 

S~(~)={(x,  u ) l A x  +a +u <~A(Bx +/3),x >~0, Cx <~ y}. 

The next lemma indicates an important  relationship between the level sets of h 

and those of ~. 
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We now return to our problem. Since S, ( r  is a polyhedral convex set, 
ProjR.[S,(g,)] is also a polyhedral convex set. Hence ProjR.[S,(r is closed and 
convex. Applying Lemma 2.1 to ~ and h, it follows that S,  (h) = (-'1,, >~ Proj R~ [S, (r 
is closed and convex. Thus h is quasiconvex and lower semicontinuous, and hence 
there is no duality gap, i.e. v (P)= v(D). 

Now, we are left to study the functions ~,. 

(,(u*)= sup[(u, u*)IAx + a  +u <~h (Bx +~) ,  x >10, Cx <~ y]. 
x, t l  

It follows from the feasibility assumption that .~x(u*)>-oo for all A and u*. 
Furthermore,  it is easy to see that, for all A, gA(u*)=+oo if u* has a negative 
component. Hence 

(D) v(D)= Sup / Sup{A I<ea(u*) < 0}} . 

Let u * ~> 0, u* r 0, and assume that _& (u*) is finite. The program defining ~a (u*) 
is linear and has at least one optimal solution (s t~). Let/x >A. Then 

~.(u*) ~<a, u*)+ (u - a  )<Bx +#,  u*>, 

thus .~,, (u *) > s~x (u *). Hence it follows that, for u */> 0, 

Sup{a I ~:~ (u*) < 0} = Sup{a I (~ (u *) ~< 0}. 
A A 

Now it is easily seen that, for u*>~ 0, 

#, (u *) = {A/3 - rt, u *) + Sup{{(aB s - A'Clu *, x)lx 1> 0, Ca" <- y} 
.x 

and by linear programming duality 

t:~ lu *) = <,~t~ - ~, u*> + ,,!nto{<V, w*> I <AB i._ AT) , ,  <~ CTw ,}. 

When ~,(u*) is finite the infimum is reached, and ~x(u*)~<0 if and only if there 
exists a w*~>0 such that (&8-or, u*)+(% w*)<~O and (ABT-A'r)u*-C'rw*-<-O. 
Coming back to the definition of (D), we obtain the dual program 

(I)) v ( I ) )=  Sup {A](A/3-~,u*)+(y,  W * ) ~ O , ( A B T - - A T ) u * - - c T w * < ~ O ,  

u*~O, w*~>0, u * # 0 }  

with v (P) = v (D) = v (D) under assumptions H1 and H2. 
For the single ratio problem (p = 1) the dual (I7)) was introduced in [18] in a 

different approach. 
To investigate the relationship between (P) and (I)) a related parametric program 

is analyzed. 
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3. An associated parameterie problem 

Let us consider the following problem 

(Pa) F ( A ) = I n f { ( O , x ) + t l ( A x + a ) - A ( B x + [ 3 ) ~ t e ,  Cx<~%x>~O} 
x , t  

where e = [1, 1 . . . . .  1]x~ N ~ Notice that H2 implies that F is nonincreasing. In the 

next theorem, properties of the function F are derived. For the special case of one 
ratio (p = 1) F was investigated in [8, 11] for a compact feasible region. 

Theorem 3.1. I[ assumptions H1 and H2 hold, then 
(i) F(A) < +oo for all A ~ N; 

(ii) i f  F(a ) > -o0, then A'> A implies that F(A') < F(A); 
(iii) v(P) = Sup{A [F(A ) > 0} = Inf{A IF(,~ ) <0}; 
(iv) F (A) =  0 if  and only if A = v(P) and (P) has an optimal solution; then the 

optimal solutions (xx, A = v (P)) of (Px) generate the optimal solutions of (P); 
(v) F is upper semicontinuous on R, and A = v (P) implies that F(A)~> 0; further- 

more, i f  the set {x] Cx <~ y, x >~ 0} is compact, then F is finite and continuous on R.  

Proof. (i) The result follows immediately from assumption H1. 
(if) Since F(A ) > -o0 there exists an optimal solution (xA, t~) of the linear program 

(PA). Hence 

(Ax~ + ~ ) - A ( B x ~  +f l )~tAe,  Cx~ <~ y,x~ ~O. (3.1) 

Fur thermore tA = F(A ). Obviously (3.1) can be written as 

(Axx +o~)-A'(Bxx +/3)+ (A'-A)(BxA +r 

Referring to assumption H2, (Bx~ +/3 )>  0, and then there exists 8 > 0 such that 

(A'-A)(Bx~ +~)  >~6e. 

Therefore  

(Ax~ + a ) - A '(Bx~ + r <~ (tA - 8 )e. 

Since (xx, tx - 8 )  is a feasible solution of (Px,) 

F(A ' )~<t~-6  = F ( A ) - 6  <F(A) .  

(iii) First let us show that 

F(A)~<0 implies A~v(P) .  (3.2) 

If F(A ) ~< 0, then there exists a pair (xx, tx ) such that 

(Ax~ +ce) -A(BxA +~)<~tAe, Cx~<~ y,x~ ~O, ta<~O. 
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Therefore  ( A x ,  + ~ ) <~ A (BxA + fl),  and thus (xA, A ) is a feasible solution of (P). Hence  

v ( P ) < A .  
Now let us show that 

A > v ( P )  implies F ( A ) < 0 .  

If A > v (P) ,  then there exists a pair (x~,, A '), A > A' > v (P) ,  such that 

(Ax~,+c~)<~A'(Bx~.+fi) ,  Cx~.<~ y,x~,>~O. 

(3.3) 

Since (Bxa ,+~)  > 0 by Ha, 

(Ax~,+ o~ ) <~ A '(Bxa,+ fl ) <~ A (BxA,+ ~ ). 

Then the pair xx, and t = 0 is a feasible solution of (PA), and hence F(A ) <~ 0. Notice 

that the same a rgument  can be used to show that F(A ') ~< 0. Now assume F(A ) - 0. 

The  monotonic i ty  of F implies that F(A ')/> 0, and thus F(A ') = 0. However  F(A ) = 0 
together  with F(A ') = 0 contradict  (ii). Thus F(A ) < 0. 

Finally, (3.3) and the converse of (3.2) imply that  

v (P) = Sup{A IF(A) > 0} = Inf{A IF(A) < 0}. 

(iv) Assume that F ( A ) = 0 .  Then f rom (3.2) and (3.3) it follows that A = v(P). 
Also, the linear p rogram (PA) has an optimal solution (xA, t~) where tA = 0. Thus  x~ 

is a feasible solution of (P) which is optimal since A = v (P). 

Conversely,  assume that A = v(P) and that (P) has an optimal solution 2. Then  

the pair (,f, t~) where t~ = 0 is a feasible solution of (PA). Hence  F(A ) ~< 0. 
If F(A ) < 0, then there exists a pair (xA, tA ) where tA < 0 such that 

(AxA +o~) - i t (Bx~  +fl)<~tae, Cxa<~ y ,x~ ~O.  

Since (Bx ,  + / 3 ) > 0  and tA < 0  there exists a scalar 6 < 0  such that 6(BxA + f l )> tae .  

Hence  

(AxA + a ) <~ (A + 6)(Bxx + fl ) 

and the pair (x~, A + 6) is a feasible solution of (P). Thus  v (P) ~< A + 6 < A, a contradic-  
tion. Therefore  F(A ) = 0. 

(v) Obviously an equivalent  formulat ion for  (Px) is 

Clearly the function Max ~_~p{(Ax + ~ )i - A  (Bx + t3)~} is cont inuous  in (x, A ). There -  
fore F is upper semicont inuous in A and cont inuous  if {x = Cx ~ -/, x >~ 0} is compact .  

Fur thermore ,  since F is upper  semicontinuous,  liii) implies that F ( A ) ~ 0  for 

A Iv(P)..IZ1 
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From the duality theory of linear programming, it follows that the dual of (PA) 
takes the form 

(Da) F (A) =  Sup{-A(u* ,[J)+(u* ,c~)- (w*,y) l  
u*,w* 

2tBXu*<~AVu*+C-rw*,(e, u * )=  1, w*~>0, u* >~0}. 

Fur thermore  if F ( , ~ ) > - o o  then (Da) has at least one optimal solution. 

4. v (P) finite 

Let  us now study the relationship between (P) and (13) when v (P) is finite. 

4.1. Existence of optimal solutions 

Theorem 4.1. I f  assumptions H~ and H2 hold, then v ( P ) > - o o  implies that (13) has 
an optimal solution. 

Proof. According to part (v) in Theorem 3.1, F(A)~>0 for A = v(P). Since F(A) is 
finite the linear program (D~) has an optimal solution. This is also an optimal 
solution for (/~) since F(A) >/0, and A = v (P) is the optimal value of (13). [] 

Theorem 4.2. If assumptions H1 and H2 hold, then the primal problem (P) has an 
optimal solution if and only if for all optimal solutions (v (P), u*, w*) o[ (13) one has 

v (P)(u*, /3)  = (u*, o~)- (w*, ,/). 

Proof. Assume that (P) has an optimal solution. Then in view of part (iv) of 
Theorem 3.1, F(A) = 0 ifA = v(P). Hence, for all optimal solutions (u*, w*) of (D~), 

- v  (P)<u*,/3) + (u*, ~ ) - ( w * ,  ~,) = 0. 

But an optimal solution of (DA) corresponds to an optimal solution of (13), and vice 
versa. 

Conversely, if the property holds for all optimal solutions of (13), then F(A ) = 0. 
Hence, referring to part (iv) of Theorem 3.1, (P) has an optimal solution. [] 

This theorem determines a necessary and sufficient condition for the existence 
of a solution for primal (P). Note that the condition involves all the solutions for 
the dual (I3). 

4.2. Complementary slackness 

In this section complementarity between variables in one problem (Primal or 
Dual) and associated constraints in the other (Dual or Primal) is derived. This 
information might be useful to determine a solution of the Primal (Dual) whenever 
a solution for the Dual (Primal) is known. 
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Assume that v ( P ) > - ~ ,  2 is a solution for the Primal (P), and (t~*, ~*)  is a 
solution for the Dual (I3). Then  the following relations are verified 

C2 - 3' <~ 0, (4.1) 

A 2  + c~ - v (P)B2 - v (P)fl ~< 0, (4.2) 

v (P)(~7*,/3)- (ti*, a )  + (if,*, y) ~<0, (4.3) 

v (p)BTi~* - A rft * - cTk?; * ~<~ O ,  (4.4) 

s t>0, tT* ~> 0, tT* # 0 ,  ~*  ~> (). 

Af ter  multiplying (4.1) by ~* ,  (4.2) by t~*, and (4.4) by 2, one  obtains 

( c T I ~  *, 3~) -- (~,~'*, "}/) ~< 0, (4 .5)  

(A'r~*, 2) + (t~*, ~ ) - v (P)(B TtT*, 2) -- V (P)(ff*,/3) ~< 0, (4.6) 

v (P)(B Tti *, 2) -- (ATe7*, 2) -- ( c T ~  *, 2) ~< 0. (4.7) 

Consider  the sum of (4.3), (4.6) and (4.7): 

- -  ( c T t ~  *, X) n t- (1~ *, "y) ~< 0 .  (4.8) 

Thus (4.8) and (4.5) imply that equali ty holds, i.e. 

- (CXvb  *, 2)+O-v*, 3') = 0. (4.9) 

From this we see that 

if v~* > 0  then ( C 2 - y ) i  =l). 

Fu r the rmore  the construct ion of (4.8) shows that in view of (4.9) equali ty holds in 
(4.3), (4.6) and (4.7). In part icular  we have 

(AT~ *, 2) + (tT*, a ) - v ( P ) ( B X ~  *, 2 ) -  v (P)(~*,/3) = 0 (4.10) 

and 

v (P)(BTt~*, 2 ) -  (AT/j *, 2) - - (cTI& ' *, 2 )  = 0. (4.1 1) 

5. v(P) infinite 

Now condit ions in terms of the matrices A, B, C are derived for v (P) to be infinite. 

L e m m a  5.1. A s s u m e  that assumptions H1 and Ha hold. Then v (P )=  -oo  i f  and  

only if  for all scalar z > 0  there exists a vector y e ~", y >1 O, such that Cy ~ O, 

A y  + ~cBy < 0 and  B y  >~ O. 

Proof. Let us first derive the result when Hi and H3 hold. Refer r ing  to the definition 
of (I7)), it follows that v(P) = -oo  if and only if for all u*>~0, u * r  w*>~0 there  
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exists an index 1 <~/'~<n such that (u*, b i ) = 0  and (u*, a . i ) + ( w * ,  c . i )<O.  This is 

equivalent  to requiring that, for all u* >~ 0, u* # 0, w* ~> 0 and for all scalars ~- > 0, 

the vector  

A T u  * + r B T u  * + C T w  * 

is not  nonnegat ive.  Hence vfP) = - ~  if and only if for all u*>~0, w*>~0 and for 

all ~- > 0 

u * # 0  implies A T u * + ~ - B T u * + C T w  * is no tnonnega t i ve ,  (5. l) 

or, equivalently,  

Let  e = [1, 1 . . . . .  1] 're R". Now (5.2) is true if and only if 0 is the optimal value 

for the p rob lem 

Max (e, u*) 

s.t. - A T u * - T B I u * - C T w * < ~ O ,  (5.3) 

u* ~> 0, w*>~0. 

Then,  f rom a duality result in linear p rogramming,  it follows that  v(P) = - ~  if and 
only if the dual of (5.3) has an optimal solution with value 0, i.e. if and only if for 
all 7 > 0 there exists a vector  y �9 I~", y/> 0, such that 

Cy<~0,  A y + r B y < ~ - e < O .  

Also, By ~> 0 is a consequence  of H3. 
Now let us extend this result to cases where assumption H2 replaces H3. If H2 

holds, then there exists a scalar k > 0 such that 

B x  + ~ > ~ k e  f o r a l l x ~ > 0  and Cx<-'y.  

Let  us in t roduce the new variable 

r = Bx  + t3 - ke. 

Then  (P) can be written as 

Inf{AIAx +c~ <~,~ (r + ke) ,  Cx <~ % B x  - r  = ke - ~ ,  r ~ O , x  ~>0}. 
A,x,r 

Now define the matrices 

= [A, 0], 

= [0, i ] ,  

d =  B, 
B, 

a p  x (n + p )  matrix, 

a p x (n + p) matrix, 

- , an (m + 2 p ) x ( n  + p l  matrix, 
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and the vectors ~ l =  [xr,  rT], ~ = a, ~ = ke and 

[ '1 ~ = k e - f l  ~11~ m~2p 

L-ke +~J 

Then (P) can be formulated  as 

Inf{,~ tA~ + a  ~< A (/~sc +/~), d~  <~'~, ~: ~> 0}. 
h.x,r 

Now /~ and /~ satisfy assumption H.z. Hence using the first part  of the proof,  it 
f o l l o w s t h a t v ( P ) =  ~ if and only if for all scalar r > 0 there exists a vector  H e ~ ~+~', 
H / >  0, such that C'H <~ 0 and fi, H + r /~H < 0. Now, let H x = [yX S x] where y ~ ~ 

and s ~ ~P. Then the condition reduces to the following one:  for all scalar r > 0 
there exists vectors y c R", s e R ~, y >~ 0, s/> 0 such that 

Cy<~O, B y = s ,  A y + r s < 0 .  

Hence  the condit ion reduces to Cy ~< 0, A y  + rBy < 0 and B y / >  0. []  

Now, this result is used to determine necessary or sufficient condit ions to 

have v (P) = - ~ .  

Theorem 5.2. Assume that assumptions H, and Hz hold. 
(i) I f  v (P) = - ~ ,  then there exists a vector y E R", y >1 O, y # O, such that Cy <~ O, 

By = O, and A y  <~0. 
(ii) I f  there exists a vector y e ~", y >~ O, y # 0 such that Cy <~ O, By = 0 and A y < O, 

then v (P) = - ~ .  

Proof. (i) Assume that v ( P ) = - ~ .  F rom L e m m a  5.1 it follows that for all r > 0  

there exists a vector  y c R", depending  on r, such that y >~ 0, y # 0, Cy ~< 0 and 

A y  + ~-By < 0. Since these systems are homogeneous ,  y can be assumed to belong 

to the set 

F = { z e E ~ ] z > - O a n d  ~ z i = a } .  
/=1 

Now, let us consider a sequence {rk} converging to +oo, and denote  by {yk} the 
corresponding sequence in F such that Cy k ~< 0, A y  k + zkBy k < 0 and By k >~ 0. Since 

F is compact ,  there exists a vector  37 ~ F  and a subsequence  {zki} converging to 

+co such that {yk~} converges to #. Clearly {Cy k'} converges to C f, {Ay L} to 
A)7, {By k,} to Bf ,  and B)7 ~>0. It follows that Cg  ~< 0, A)7 ~< 0 and B)7 = 0. 

(ii) Trivially, if such a vector exists, then it satisfies the condit ion in L e m m a  

5.1. []  

The  condit ions in part  (i) of T h e o r e m  5.2 are necessary but not sufficient to have 

v (P) = -oo.  Indeed,  consider the following example  where  m = 0, n = p = 1, a ,  = 0, 
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/3t = 1, A and B are a 1 x 1 nul matrix. Then v(P)=0 whereas the conditions are 
satisfied. 

Also, the conditions in part (ii) of Theorem 5.2 are sufficient but not necessary 
to have v ( P ) = - c o .  Indeed, consider the following example where m = 0, n = 3, 
p = 2 ,  

A = [  ~_ -10 ~] and B = [ ~  0 1 0 1 1  ' 

Clearly the conditions in part (ii) of Theorem 5.2 are not satisfied. But on the other 
hand 

Ay +~-By = r - y 2  +~'y3]. 
t - -y  1-4- Ty2 d 

and taking y ~ = 1, y3 = 0, and ya = 1/2z for T > 0, the conditions of Lemma 5.1 are 
satisfied, and so v (P)= -oo. 

It is worth noticing the similarity of this result to the alternative theorems 
analyzing the existence of solutions to systems of linear inequalities (see 
Mangasarian [14]). 

For the single ratio problem (p = 1) the duality relations in section 4 and 5 were 
derived by Schaible in [17, 18, 20]. 

6. A special case 

Now, assume that H1 holds and that H2 is replaced by H3. Obviously, H3 implies 
H2. 

Then an equivalent formulation for problem (17)) is as follows: 

] (D) sup / Min / ~ ,  ~-~ , Min / ~ 
u*~0,w*~0 t l~i~n 

with the convention that 

P = { + c o  ifp ~>0, 
0 -co  ifp <0 .  

Hence under condition H3 the dual of (P) is again a generalized linear fractional 
programming problem. This version of the dual in case p = 1 was introduced by 
Tammer in [23] (see also [20]). 

In Section 4.2 complementary slackness results were derived. Under the assump- 
tion H3 eqs. (4.10) and (4.11) then imply: if 4" > 0  then 

T - T 
< a k , , X ) + ~  k . [ ( a i . , x ) + ~ , ]  

c~'(P) (b~.,Y)+j3k ~i-~,,t(bz.,s 
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and if .ft > 0, then 

(a*,a ,)+(~*,c.t) {(a*,a.i)+Or,'*,c.p~ 
v(P):  (t/*, b.,) -Min,, ~ j .  

R e f e r e n c e s  

[1] D.J. Ashton and D.R, Atkins, ~'Multicriteria programming for financial planning", Journal of the 
Operational Research Society 30 11979) 259-270. 

[2] I. Barrodale, "Best rational approximation and strict quasi-convexity", SIAM Journal of Numerical 
Analysis 10 11973) 8-12. 

[3] A. Charnes and W.W. Cooper, "Programming with linear fractional functionals", Naval Research 
Logistics Quarterly 9 11962) 181-186. 

[4] A. Charnes and W.W. Cooper, "'Goal programming and multi-objective optimization (Part I)", 
European Journal of Operational Research 1 (1977) 39-54. 

[5] A. Charnes, L. Cox and M. Lane, "'A Note on the redesigning of a rate structure for allocation 
of state funds to educational institutions", Working Paper 70-49 of Project GUM, University of 
Texas at Austin (Austin, Texas, 1970). 

[6] J.P. Crouzeix, "'Contributions h l'4tude des fonctions quasiconvexes", Doctoral Thesis, Universit4 
de Clermont (Clermont, France, 1977). 

[7] J.P. Crouzeix, "A duality framework in quasiconvex programming", in: S. Schaible and W.T. 
Ziemba, eds., Generalized Concavity in Optimization and Economics (Academic Press, New York, 
1981) pp. 207-225. 

[8] W. Dinkelbach, "On nonlinear fractional programming", Management Science 13 (1967) 492 -498. 
[9] J. Flachs, "Global saddle-point duality for quasi-concave programs, II", Mathematical Program- 

ming 24 11982) 326-345. 
[10] E.G. Gol'stein, Theory of convex programming, Translations of mathematical monographs 36 

(American Mathematical Society, Providence, Rhode Island, 1972). 
[11] R. Jagannathan, "On some properties of programming problems in parametric form pertaining 

to fractional programming", Management Science 12 (1966) 609-615. 
[12] R. Jagannathan and S. Schaible, "Duality in generalized fractional programming via Farkas 

Lemma", Journal of Optimization Theory and Applications, to appear. 
[13] J.S.H. Kornbluth, "A survey of goal programming", OMEGA 1 11973) 193-2/)5, 
[14] O.L. Mangasarian, Nonlinear programming (McGraw-Hill, New York, 1969i. 
[151 LL Passy and A. Keslassy, "Pseudo duality and duality for explicitly quasiconvcx functions", 

Mimeograph Series No. 249. Faculty of Industrial Engineering and Management. Technion IHaifa, 
Israel, 1979). 

[16] G.S. Rubinshtein, "Duality in mathematical programming and some problems of convex analysis", 
(English translation) Russian mathematical surveys 25 11970) 171-200. 

[17] S. Schaible, "Fractional programming: transformations, duality and algorithmic aspects", Technical 
Report 73-9, Department of Operations Research, Stanford University (Stanford, CA, 1973). 

[18] S. Schaible, "'Fractional programming I, Duality", Management Science 22 11976) 858-867. 
[19] S. Schaible, "Duality in fractional programming: a unified approach", Operations Research 24 

11976) 452-461. 
[20] S. Schaible, Analyse und Anwendungen yon Quotientenprogrammen (Hain-Verlag, Meisenheim, 

1978). 
[21] S. Schaible, "A survey of fractional programming", in: S. Schaible and W.T. Ziemba, eds., 

Generalized concavity in optimization and economics (Academic Press, New York, 19811 pp. 
417-440. 

[22] S. Sehaible, "'Bibliography in fractional programming", Zeitschrift fi~r Operations Research 26 (7) 
11982). 

[23] E.C. Tammer, "Dualitiitstheorie fiir hyperbolisehe und stilckweise-lineare konvexe Optimierungs- 
probleme", Mathematische Operationenforschung und Statistik 5 11974) 93-I08. 

[24] R. Vogt, "A corporate strategy for realizing equal employment opportunity", Behavioral and 
Social Accounting, to appear. 

[25] J. yon Neumann, "A model of general economic equilibrium", Review of Economic Studies 13 
11945) I-9.  


