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between such functions as u and ü (the representative function agree-

ing with m on p¡ and approaching u in the norm) the proof runs as

follows:

From (23), there is, for any e>0, a 50 such that, for §<S0,

\\w— 5ä_1M|| <£ where we write Au = w, Sw = u. On multiplying

w' = (w — SPu) by Ss one has, from (24) ||Säw —m|| =||Sjh/|| 5SM'||w'||

< M'e which gives (25) and the scheme is convergent.

As in Part I, the converse follows from the Principle of Uniform

Boundedness.
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DUALITY IN HOMOGENEOUS PROGRAMMING1

E. EISENBERG

The problem of maximizing a concave function subject to linear

constraints does not have a dual, as is the case in linear programming,

in which primal optimizing variables do not appear. As a special case

of our principal result it will follow that such a dual does indeed

exist whenever the objective function is also homogeneous.

In the linear case we are given an mXn matrix A and vectors

a G £", b G £m.2 The feasibility sets X and Y are defined by:

X = Rir\{x\xA^a), F = £^P\{y|,4y^&}. Since x^aif and only

if x^ly^ay for all y<E.R+ (and similarly for Ay^b), we may write:

X = Rlr\{x\xAy^^(y)    all y G Ri]

F = £+ Pi {y I xAy ^ <*»(*)    all x G i£}
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2 Rm denotes the set of all real m-tuples. If u, uG-R"1 then w¿v means that the

inequality holds for each component. In particular, R™ = RmC\ {x\x~^(}}. If M is a

pXq matrix and N is a qXt matrix then MN represents the usual matrix product.

To simplify notation, the same symbol is used for both a column vector and its

transpose; the meaning will, in any case, be clear from the context.
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where ^-(y) =ay and 0(x) =6x.

A fundamental theorem of linear programming (see, e.g., [3; 2])

states that if X and Y are both nonempty then

(2) max <j>{x), min yp{y) exist and are equal.
xex »er

We propose to demonstrate that (2) holds for another class of triples

{A,cp,xP).

Assumption Ai. Let 0: R+—»i?, \[/: R+-+R be positively homogene-

ous,3 continuous, concave and convex respectively.

Let us first show that Ai does not guarantee that (2) holds when

X and Y are nonempty. If m = 2, n = 1 and

-Cl-
0(x)=0(£, ij)=£i;/(£+'7) (0(0) =0), yp{y)=y then Ai is satisfied and

X = R\r\{{$, iî)|rjglj, F = i?+n{y|y^l} are nonempty. Thus

minvey \p{y) = 1, but if 77^1 then 0(£, 17) <1, although supl6x 0(x) = 1,

hence max,er 0(x) does not exist.

The situation just illustrated cannot occur if the following holds:

Assumption A2.

(i) If xGR+, xA ^0, 0(x) ^0 then x = 0.
(ii)  If xGRn+, Ay-=0,t{y) =0 then y = 0.

One sees immediately that (i) is violated in the preceding example,

for let x = (l, 0) then xA=0 and 0(x) =0.

Before proving our main result, that if Ai and A2 hold then so does

(2), we require the following lemma which specializes to homogeneous

functions the well-known fact that a concave function is the infimum

of its supports. The proof is presented here for the sake of complete-

ness.

Lemma. Let <f> be as in assumption Ai, consider

T = Rm H {f I tx = 0(x) all x G R+},

then T is nonempty, and 0(x) =inft6r tx, for all xGR+-

Proof. Let C= {(x, X) | xG7i+, X ̂ 0(x)} then C is a closed convex

cone. Now if XoGR+, e>0, then (x0, e+0(xo))GC, whence (see [2,

Theorem l]) there exist tGRm and aGR such that tXo — a[e+<f>{x0)]

<0^ix-aXall {x,\)GC.

3 A function/: C—*R*, where CGRP ¡s a cone, is positively homogeneous providing

/(Xar) =\f(x) for all xG C and \GR+-
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It then follows that a>0, so that (dividing by a) we may assume

a=l, but then t£T. Reiterating, if x0GR+, e>0 then 3tGT such

that:

tXo — €  —  0(xo)   á  tXo

giving the desired result. We are now able to prove:

Theorem 1. If assumptions Ai and A2 hold then (2) holds.

Proof. Let

S = Rnr\{s\sy^*{y)    allyGiC},

T = Rmn {t\ tx = 0(x)    allxGiC}.

Then 5 and T are convex sets; now consider the system of inequal-

ities:

x G iC y G l&, s G S, t G T,

s — xA > 0,

(4) -t + Ay> 0,

0(x) - My) > 0.

If (4) has a solution x, y, s, t then

^(y) < 0(x) — tx — xAy = sy g ^(y)

which is a contradiction. Thus (see [l, Theorem l]) there exist

xo G R+, yo G 7£", X G R+, not all zero and such that {s — xA)y<>

+xo(¿y-í)+X[0(x)-vKy)]áO for all xGR+, yGR\, sGS, tGT.
From the homogeneity and continuity of 0 and ^ it then follows that:

xAy0 è X0(x) all x G R+,

(5) xoAy = M{y) all y G R¿,

syo ^ tx0 all j G 5, f G T.

The last condition together with our lemma imply:

Myo) = <K*o).

Now if X = 0 then either xo^O or yo^O and .dyo^O, x0A =0. Sup-

pose xo^O, then by A2 (i) we have 0(xo) <0, whence ^(yo) <0 and

yoj^O, contradicting A2 (ii). Thus X>0 and, dividing all inequalities

by X, we may assume X=l. This tells us that x0GA", y0GF and

0(xo)^xo¿yo^iKyo)^0(xo). So that if xGX, yG Y then
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<b(x) g xAy0 á iKyo) = <t>(xo),

\//(y) ^ xo^y ^ <j>(xo) = rp(yo)

proving the theorem.

In case <b and ^ are linear-homogeneous then it is true that

maxxex<j>(x) exists if and only if minyer^(y) exists, in which case

they are equal. As above, this statement is not true under assump-

tion Ai; however, we show:

Theorem 2. (I) 7/ Ai and A2 (ii) hold and max,ej <j>(x) exists then

minyeY\p(y) exists and the two are equal.

(II) If Ai and A2 (i) hold and min„ey \p(y) exists then maxxex <t>(x)

exists and the two are equal.

We prove (I), the proof of (II) is similar. Suppose that XoG-X^ and

4>(xo) = maxjgx <b(x) then the system:

m

xGR+,sES

(6) s - xA > 0,

cb(x) - cb(x0) > 0,

has no solution. Thus (see [l, Theorem l]) there exist yoG£+, XG£+,

not both zero and such that

syo - xAy0 + X[</>(x) - 0(xo)] ^ 0        for all x G R^, * G S.

From the homogeneity of <¡> and our lemma it then follows that

x^4yo ̂  \<b(x) for all x G R+,

yp(yo) á X0(xo).

Now if X = 0 then yo^O and Ayo^O, \[/(y0)^0 contradicting A2(ii).

It may then be assumed that X>0 and, in fact, that X= 1 (replacing

yo by Xyo). Thus, from (7), yoG Y and for any y^ Y we have:

Hyo) á 4>(xo) Ú XoAy ̂  i(y),

i.e.,

<Ky0) = min \p(y) = <¡>(xo).
ver

It should be remarked that if Ai holds then (i) and (ii) of assumption

A2 are equivalent to (i)' and (ii)' respectively of:

Assumption A'2.

(i)'  3yoG£+3x^yo>0(x) all xG£+, x^O.

(ii)' 3x0eR+3xoAy<t(y) all yGR+, y^08.
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These in turn are equivalent to the familiar conditions that X, Y

have nonempty interiors. To see, for instance, that (i) and (i)' are

equivalent it suffices to show that (i) implies (i)' since the implication

in the other direction is trivial. Assuming (i)' false, the system

(8) yeiCteT,
Ay - t > 0

has no solution, whence (see [l, Theorem l]) there is an xG£+, X9*0,

and such that xAy^tx for all y<E.R+ and t(~T. Thus x^l ^0 and

(using our lemma) <p(x)^0, contradicting (i). To return to our re-

mark about maximizing a concave homogeneous and continuous

function <f>: £+—»£, subject to the inequalities x^O and x^4 ^0, the

dual is then: minimize ay subject to yG Y. Conditions (i) and (ii)'

become:

x G £+, x 7a 0, xA ^ 0, (¡>(x) ̂  0 has no solution; and

x G R+, xA < a has a solution; respectively.

Also, since y<E.Y providing y^O and Ay^t for some support / of <f>,

we may characterize F by means of the gradient of <b.
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