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ABSTRACT

Some duality problems in expected utility theory, raised by the introduction

of non—additive probabilities, are examined. Characterization of the

probability measures, for which these problems do not arise, leads to an

argument in favor of addivity.

•



INTRODUCTION

For various reasons and in different contexts, expected utility theory

was recently extended in some ways to include non—additive probability

measures. This was done explicitly by Schmeidler (1982, 1984a and 1984b) and

Gilboa (1985), and implicitly by Quiggin (1982), Yaari (1984) and others.

Although all these models are generalizations of the traditional ones

(with Yaari's being an exception), and the conclusions of the former resemble

those of the latter, non—additive probabilities pose a few new questions and

allow some intriguing anomalies.

One of those is the fact that utility maximizing and disutility

minimizing are not necessarily the same phenomenon. That is to say, an

individual having a utility u and subjective probability measure v who

maximizes 'tidy may behave differently from another individual, with the very

same u and v, who minimizes f(—u)dv.

Another problem is the definition of the integration operation itself.

In all the models under discussion, it is defined in one way, but it may also

be defined in a symmetric way, inducing a different preference order.

Similarly, every set of axioms of the above models has a dual set of axioms,

equally reasonable, which leads to the dual—integral theory rather than the

original one. It is not clear why, if at all, the latter should be preferred

to the former.

Yet another problem is that any non—additive measure has a natural "dual"

measure, and the integral—defined preference order again fails to exhibit

invariance with respect to these two measures, while we have no convincing

reason to prefer one of them to the other.
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This paper studies these problems. In Section 2 their scope is examined,

and it is shown that only two (rather than eight) different preference

relations are induced by the pairs of utilities, measures and integrals.

Section 3 is devoted to the characterization of preference relations which are

immune to the discussed anomalies. Section 4 uses this characterization to

raise an argument in favor of additivity.

1. PRELIMINARIES

The framework we will use is the following:

S — a nonempty set of states of nature, subsets of which are called events.

X — a nonempty set of consequences.

F = {f: S 4 X} — the set of acts.

> c: FxF—apreference order over the acts.

A real function over X is called a utility .

A set function v gS [0,1] which satisfies:

(i) E c F .> v(E) < v(F)

(ii) v(4) . 0 ; v(S) . 1

is called a measure.

For any measure v, .the dual measure V is defined by V(A) = 1_v(AC) for

A c S. It is easily seen that is indeed a measure on S and that U . v.

A measure v is called symmetric iff v =V, i.e. v(A) + v(Ac) . 1 for

all ACS.

The integration operation that is usually used is the Choquet integral,

defined in Choquet (1955) and further discussed in schmeidler (1984b). Here
%



2

it will be called the upper Choquet integral, and it is defined as follows:

Let w be a real function over S, and v a measure on S. The upper

integral of w w.r.t. (with respect to) v is

CO

,*
w v= S v(w > t)dt S [ — v(w > t)]dt

0

(The integrals on the right hand side are Riemann's). Similarly, the lower

(Choquet) integral of w w.r.t. v is

0
*wdv = S [1—v (w < t)]dt — f v (w < t)dt

0 -s°

A measure v is said to be locally convex valued iff for all

ACBCS and ac[0,1] there is an event C such that AcCcB and

v(C) = av(A) + (1-a)v(B).
,•••

In this context, Gilboa (1985) provides an axiomatization of > for which

there are a bounded utility u and a locally convex valued measure v such

that

f > g <.> i*u(f)dv > f*u(g)dv V f,g e F.

This axiomatization also assures the uniqueness of v and of u (up to a

positive linear transformation). For brevity's sake we will not repeat the

axioms here. However, when the need arises we will refer to them by their

original names which are (for historical reasons) Pl, P2*, p3*, P5*, P6*,

P6**, P7*. (f),*i is a variant of Savage's Pi. [See Savage (1954)].)



3

2. The equivalence of dualities

We need a few lemmas:

Lemma 1: Let w and v be a real function and a measure on S, respectively.

Then

* 
wdi = f wdv.

Proof: Since v is monotone, v(w > t is a monotone function of t.

Therefore

{t / v(w > t) < v(w > t)} is countable, whence the

inequalities in the definitions of the Choquet integrals may be

strict:

Co 0

fkwocli7 . V(w > t)dt — f [1 — V(w > t)]dt
0

Co 0
. S [1 — v(w < t)]dt — S v(w < t)dt = 1*wdv.II

0 _co

Lemma 2: Let w : S [0,1] and let v be a measure on S.

Then *wdv . 1 — S(1—w)dv.

Proof: All that is needed is the following calculation:

1 1

f wdv v(w > t)cit = j v(w > 1—t)cit

0 -- 0 --

1

. 1 —5 [1 — v(1 — w < t)]dt . 1 — 1 — w)dv.

0
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Now let there be given a bounded utility u and a measure v on S. Suppose

w.l.o.g. (without loss of generality) that sup u = 1 and inf u = 0. We

define eight preference orders on F as follows:

1* 1*

2-1

_4> 1_3

u maximizers

1* 1*

(—u) minimizers

(e.g.: f >1 g <.> f*u(f)dv > u(g)dv ;

f > g <.> f* —u(f)di < —u(g)d etc.)
—8

Theorem 1: In the above conditions, all the preference orders with odd

indices are the same, and so are all those with even indices...

Proof: Lemma 1 proves that

26 =

By Lemma 2,

>n = > 
•

—.6 —4 ' 26 = 
28 ;

f*u(f)dv > f u(g)dv <.> f(1—u(f))dv < f*(1—u(g))dv

— whence 24 =2. and similarly

is complete.//

= > , and the proof_6 
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3. Characterization of symmetric measures

The previous section leads to

Lemma 3: Let there be given a bounded utility u and a locally convex valued

measure v on S.

The following statements are equivalent:

(i) v is symmetric;

(ii) the maximization of f*udv and the minimization of f*(—u)dv are

equivalent;

(iii)the maximization of f*udv is equivalent to that of f*udv.

Proof: (ii) means that for all f, g c F,

f*u(f)dv > f*u(g)dv <.> f*(—u)(f)dv < f*(—u)(g)dv,

or >1 . 26. Similarly, (iii) means >1 . 22, whence

(ii) and (iii) are equivalent.

Now, if (i) holds, i.e. V= v, then 21 . 24, and (ii) follows.

Conversely, if (ii) holds, and consequently >1 . 24, v must

equal V by the uniqueness of the measure under these

conditions.//

This lemma shows that a preference order which is invariant w.r.t. one of the

dualities is invariant w.r.t. the other two as well. However, we would like

to have a characterization of these preference orders in terms of the

primitives of the model. To this end we must introduce some new definitions

and notations.
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For f c F, x c X, A C S, f / is the act h e F satisfying h(s)

f(s)seAc ; h(s) .x seA. f,geF are comonotonic iff there do not

exist s, t e S such that f(s) > f(t) and g(s) < g(t). For A 4 B cIS

and CcDcS we write (A,B) > 1 (C,D) iff the following is true:

There are f, g e F, x, y e X, y > x, such that

(i) f / )13( A and f / A

g •/  and g /

f / LA(s

are comonotonic, and so are

> y} . A ; {s / g / x (s) > y} C ;
D—C

(iii)f / g / 
but f / >g 

/ 'LC*

The meaning of (A,B) > 1 (C,D) is that the transition from A to B is

"bigger" (or more weighty) than that from C to D. Axiom P2* assures

that > isaweak order on {(A,B) /AcBcS}.

We may now formulate

Lemma 4: Let > satisfy P1—P7*, and let u and v be the utility and

measure attached to it, respectively. Then v is symmetric iff

for all A C 6, C c D.

(*) (A,B) > 1 (C,D) <=> (BcAc

Proof: We observe, first of all, that, given an integral representation of

on F, (A,B) > 1 (C,D) iff

v(B) — v(A) > v(D) — v(C).

Similarly, (BC, Ac) >1 (Dc, ̂c iff
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v(Ac) — v(BC) > v(Cc) — v(Dc) or V(B) — V(A) > V(D) —

Hence it is evident that if v = V, (*) holds. To prove the

converse, assume (*) to be true. Taking A . C =4), one gets

v(B) > v(D) iff ii(B) > V-(D), whence there is a strictly increasing

: [0,1] [0,1] with *(0) . 0, *(1) . 1, such that

V(.)= 9(v(.)). Furthermore, since v is locally convex valued, for

any B with V(B) > 0 there is an event A c B satisfying v(A).1/2v(B).

Letting D = A, C =4), we have V(A) . 1/2 V(6), whence 1p is

additive over the dyadic rationals and consequently V= v.//

The two preceding lemmas are summarized in

Theorem 2: Suppose > satisfies P1—P7*, and u and v are the associated

utility and measure, respectively. Then the following statements

are equivalent:

(i) for all A c B, C c D, (A,B) > 1 (C,D) <=> (Bc,Ac)

>,(Dc,cc);

(ii)v is symmetric;

(iii)the maximization of f* u dv is equivalent to that of

f*udv;

(iv)the maximization of f* udv is equivalent to the minimization

of f*(—u)dv.

Before concluding this section we should mention and characterize another

property the measure may possess.

In Lemma 4 we have, in fact, proved that two locally convex valued measures

1 
and v

2 
are equal iff



vi(B)—vi(A) > vi(D)—vi(C) <=> v2(6)—v2(A) > v (D)—v2(C)

for all A c B and Cc D.

However, a weaker property of two measures is sometimes of interest: v

agrees with v2 iff vi(A) > vi(B) <=> v2(A) > v2(B) V A,B c S.

In this context we would like to know when is it true that v agrees with

1

v. (We will henceforth call such a measure semi—symmetric.) Again we need an

order on events. This time we define A >*6 iff (4),A) > 1(,6). Obviously

A >* B iff v(A) > v(B).

For V one may also define

A >* B iff (Ac,S) > 1 (Bc,S),

and A >* B iff ii(A) > V(B), or, equivalently,

A
c 
*< BC.

Therefore the following is obvious:

Observation v is semi—symmetric iff

A >* B <=> A >* B A,B c S._ _

Another characterization is given by

Theorem 3: If P1—P7* hold, and v is the measure induced by >, the

following are equivalent:

If {s / f(s) < x} ,̂*{s / g(s) x} for all x c X, then

f g ;

(ii) If {s / f(s) > x} (1%1* {s / g(s) > x} for all x e X, then f

(iii) v is semi—symmetric.
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Proof: First suppose (i) holds. Evidently, A " * B iff Ac o*Bc,

which is equivalent to A ni* B. In light of the monotonicity

of both v and V, (iii) is proved.

Now assume (iii). Let f, g e F satisfy the condition of (i),

whence- v(f < x) = v(g < x) for all x e X. By the semi—symmetry,

< x) = (g < x) or v(f > x) = v(g > x) for all x e X, and

hence f*u(f)dv = f*u(g)dv where u is the utility for ›.

The proof that *) is equivalent to (iii) is (totally)

symmetric.//

4. An argument for additivity

The previous section, which provides an axiomatic characterization of

symmetric measures, may be interpreted as a normative argument for symmetry.

That is to say, it is "more rational" to compute expectation w.r.t. a

symmetric measure than w.r.t. a non—symmetric one.

In this section we proceed to raise another rationality argument for

additivity. We will consider the concept of conditional probability measure,

and eventually we will see that, given a symmetric measure, one may define for

it a conditional measure satisfying some traditional conditions only if the

original measure is additive.

So we begin with

Definition: Suppose v is a measure on S. Denote N . {A ctS / v(A) = 0}.

A two—argument set function w : 2S x (2S — N) .+ [0,1] is

called a conditional probability measure for v iff the following

conditions are satisfied:
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i) For all A e 2S , w(. / A) restricted to 2
A 

is

a measure on A;

(ii) If v(A) . 1, then w(. / A) . v(.);

(iii) For all A e 2
s 

N, B, C S,

w(B / A) > w(C / A) <=> v(B n A) > v(C A A);

For all Al, A2 c 2 — N, Ai (A A2 .

and all B c S, if (B / Ai) > w(B / A2),

then w(B / Al) > w(B / A1 u A2) >w / A2).

Note that all these conditions are satisfied by w(B / A) . P(Ail 0/P(B) in

case P is additive. However, (i)—(iv) are supposed to be justified on

intuitive grounds as well: (i) simply states that, when informed that A

has occurred, w enables the decision maker to use the same decision rules as

before. (ii) and (iii) connect the conditional measure and the original one:

(iii) is a qualitative condition, stating that, given A, B is more likely

than C iff B n A was originally considered more likely than Cfl A. (ii)

is a quantitative condition, fixing w(. / A) at v(.) for the events A

which are certain.

The last condition means that taking a partition of A (into A ,and A2),

one may not find conditional probabilities (w(B / A1), w(B / A2)) which

are all above or all below the original one MB / A)). Of course, the

additivity argument will eventually emerge out of this condition.

Besides formulating axiomatic conditions on a conditional measure, one would like

to have an algorithm for computing w(. / .), given v(.). In view of (iii), it

is evident that should w(. / *) be a conditional measure for v, there must

exist 
A1 

strictlystrictly monotone functions from the unit interval into

Ac2 
itself, such that
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w(B / A) . fA(v(A 6) / v(A)).

Of special interest is the case where f
A 

is the identity function for all

A. For this case we have

Theorem 4: Let v be a symmetric locally convex valued measure. Then w(A /

E v(A n 6)0(3) is a conditional measure for v iff v is

additive.

Proof: If v is indeed additive, w is the usual conditional measure,

and it surely satisfies (i)—(iv).

Suppose, then, that w is a conditional measure for v, and let

A
1 

A
2 

A.

First suppose that v(A1) = 0.

Consider w(A / v(Aol fq.) / v(4.) .

v(A2)/v(q).

But v is symmetric, so that v(q). 1, hence, by (ii), w(A /

v(A), and we have shown that w(A / 

whence v(A) = v(A1) + v(A2).

Since the case v(A
2
) = 0 is dealt with symmetrically, assume

v(A1), v(A2) > 0.

We would like to prove the existence of an event B such that

13, BC e 2S — N; B(1 A . Al; Bc t1 A . A2; w(Al / .

w(A2 / BC).

Suppose such an event was found. By (iii), w(A / . w(A ll NB) .

w(Al / 0 and w(A / BC) = w(A2/Bc). Using (iv), w(A / B)

w(A / BC) = w(A / S) = v(A). Now write:
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v(A) = v(A)v(B) + v(A)(1 v(B))

v(A)v(B) + v(A)v(BC)

w(A / B)v(B) + w(A / Bc)v(Bc)

v(A (1 + v(A n BC) = V(A1) v(A 2).

so v is additive.

To find the required B, let a = v(A1); s = v(Ain Ac), so

that 1 > B > a >0.

a
Note that 11L- < whence there is a number

— I-8 111

a 1-8
[a,B] such that 12i-, or -17. v is locally convex

valued, so that there is an event 6, Al c B c: yi A
c
, such that

v(B) = y (and v(BC) . 1 - y). It is easily seen that

w(Al / B) _
v(A1)

v(B)

a 1-B
v(A )

2 
c

v(Bc) "1'2 / B 
),

and B is indeed the event we are looking for, so the proof is

complete.//
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