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DUALITY OF CO-POISSON HOPF ALGEBRAS

Sei-Qwon Oh and Hyung-Min Park

Abstract. Let A be a co-Poisson Hopf algebra with Poisson co-bracket
δ. Here it is shown that the Hopf dual A◦ is a Poisson Hopf algebra with

Poisson bracket {f, g}(x) = ⟨δ(x), f ⊗ g⟩ for any f, g ∈ A◦ and x ∈ A if
A is an almost normalizing extension over the ground field. Moreover we
get, as a corollary, the fact that the Hopf dual of the universal enveloping

algebra U(g) for a finite dimensional Lie bialgebra g is a Poisson Hopf
algebra.

Let G be a Lie group with Lie algebra g. Then its coordinate ring O(G) is
a Hopf algebra and can be replaced by the Hopf dual U(g)◦ of the universal
enveloping algebra U(g). In fact, it is well-known that U(g)◦ is equal to O(G)
if G is connected and simply connected. Moreover it is convenient to work on
U(g)◦ instead of O(G) since U(g)◦ has a natural grading. For instance, see [3,
Chapter 2] and [2].

Recall that a Lie group G is said to be a Poisson Lie group if its coordinate
ring O(G) is a Poisson Hopf algebra. If G is a Poisson Lie group, then its Lie
algebra g becomes a finite dimensional Lie bialgebra with a co-bracket δ and
the universal enveloping algebra U(g) is a co-Poisson Hopf algebra with Poisson
co-bracket extended naturally from δ (See [1, §6.2]). Thus its Hopf dual U(g)◦

would be a Poisson Hopf algebra with Poisson bracket induced by δ. At this
moment, we would show the fact {f, g} ∈ U(g)◦ for all f, g ∈ U(g)◦.

Let A be a co-Poisson Hopf algebra. Since the concept of a co-Poisson
Hopf algebra is a dual concept of Poisson Hopf algebra, the Hopf dual A◦ of
A is anticipated a Poisson Hopf algebra. Here we give a complete proof that
the Hopf dual A◦ is a Poisson Hopf algebra in the case that A is an almost
normalizing extension over the ground field and we get, as a corollary, the fact
that U(g)◦ is a Poisson Hopf algebra if g is a finite dimensional Lie bialgebra.

Assume throughout that k denotes a field of characteristic zero and all vector
spaces are over k.
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Recall the definition of co-Poisson Hopf algebra. Let A = (A, ι, µ, ϵ,∆, S)
be a Hopf algebra over k. Let τ be the flip on A ⊗ A, that is, τ is a k-linear
map defined by

τ : A⊗A −→ A⊗A, x⊗ y 7→ y ⊗ x,

and set

τ12 = τ ⊗ 1, τ23 = 1⊗ τ.

A Hopf algebra A is said to be a co-Poisson Hopf algebra if there exists a skew-
symmetric k-linear map δ : A −→ A⊗A, called a Poisson co-bracket, satisfying
the following conditions:

(i) (co-Jacobi identity)

(δ ⊗ 1) ◦ δ + τ12 ◦ τ23 ◦ (δ ⊗ 1) ◦ δ + τ23 ◦ τ12 ◦ (δ ⊗ 1) ◦ δ = 0.

(ii) (co-Leibniz rule)

(∆⊗ id) ◦ δ = (id⊗ δ) ◦∆+ τ23 ◦ (δ ⊗ id) ◦∆.

(iii) (∆-derivation)

δ(ab) = δ(a)∆(b) + ∆(a)δ(b)

for all a, b ∈ A.

Definition 1 ([4, 1.6.10]). An algebra R over k is said to be an almost nor-
malizing extension over k if R is a finitely generated k-algebra with generators
x1, . . . , xn satisfying the condition

xixj − xjxi ∈
n∑

ℓ=1

kxℓ + k

for all i, j.

Lemma 2. Let R be an almost normalizing extension of k with generators
x1, . . . , xn. Then R is spanned by all standard monomials

xr1
1 xr2

2 · · ·xrn
n , ri = 0, 1, . . .

together with the unity 1.

Proof. This follows immediately from induction on the degree of monomials.
□

Note that the Hopf dual A◦ of a Hopf algebra A consists of

A◦ = {f ∈ A∗ | f(I) = 0 for some cofinite ideal I of A},

where A∗ is the dual vector space of A.
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Theorem 3. Let A be a co-Poisson Hopf algebra with Poisson co-bracket δ.
If A is an almost normalizing extension over k, then the Hopf dual A◦ is a
Poisson Hopf algebra with Poisson bracket

(1) {f, g}(x) = ⟨δ(x), f ⊗ g⟩, x ∈ A

for any f, g ∈ A◦, where ⟨·, ·⟩ is the natural pairing between the vector space
A⊗A and its dual vector space.

Proof. Step 1. The Poisson bracket (1) is well-defined. That is, {f, g} ∈ A◦

for every f, g ∈ A◦: There exist cofinite ideals I, J of A such that f(I) =
0 and g(J) = 0. Since the canonical map A/(I ∩ J) −→ A/I × A/J is a
monomorphism, the ideal I ∩ J is also cofinite. Set

K = (I ∩ J)⊗A+A⊗ (I ∩ J).

Note that ⟨K, f ⊗ g⟩ = 0. The canonical map from [A/(I ∩ J)] ⊗ [A/(I ∩ J)]
into (A⊗A)/K is surjective and thus (A⊗A)/K is finite dimensional.

Note that A is spanned by the standard monomials

xr1
1 xr2

2 · · ·xrn
n , ri = 0, 1, . . .

together with the unity 1 by Lemma 2. For each i = 1, 2, . . . , n, the set of
cosets

{δ(xk
i ) +K | k = 1, 2, . . .}

is linearly dependent since (A ⊗ A)/K is finite dimensional and thus there
exists a nonzero polynomial h ∈ k[x] such that δ(h(xi)) ∈ K, where x is an
indeterminate. Consider the set

S = {0 ̸= h ∈ k[x] | δ(h(xi)) ∈ K}.
Note that S is an infinite set since K is an ideal and S is not empty. For
instance, if h ∈ S, then hk ∈ S for all positive integer k by the ∆-derivation of
δ. Since S is an infinite set and (A ⊗ A)/K is finite dimensional, there exists
a nonzero polynomial hi ∈ S such that ∆(hi(xi)) ∈ K. That is,

δ(hi(xi)) ∈ K, ∆(hi(xi)) ∈ K.

Let si = deg(hi) and let L be the ideal of A generated by

h1(x1), h2(x2), . . . , hn(xn).

For any standard monomial X = xr1
1 xr2

2 · · ·xrn
n , there exist polynomials q1, . . .,

qn, t1, . . ., tn of k[x] such that

(2) xri
i = qi(xi)hi(xi) + ti(xi), deg(ti) < si

for i = 1, 2, . . . , n. Replacing each factor xri
i in X by the right hand of the

equation (2), we have the fact that X is congruent to a k-linear combination
of finite standard monomials

xp1

1 xp2

2 · · ·xpn
n , pi < si for i = 1, 2, . . . , n

modulo L. Thus A/L is finite dimensional and hence L is a cofinite ideal.
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Note that every element of L is a sum of elements of the form ahi(xi)b,
where a, b ∈ A and i = 1, . . . , n. For every element ahi(xi)b, we have

δ(ahi(xi)b) = δ(a)∆(hi(xi))∆(b) + ∆(a)δ(hi(xi))∆(b)

+ ∆(a)∆(hi(xi))δ(b) ∈ K.

Hence {f, g}(L) = ⟨δ(L), f ⊗ g⟩ = 0 and thus {f, g} ∈ A◦.

Step 2. For every f, g ∈ A◦, {f, g} = −{g, f}: Since τ ◦ δ = −δ, we have
immediately that

{f, g}(x) = ⟨δ(x), f ⊗ g⟩ = ⟨τ ◦ δ(x), g ⊗ f⟩
= −⟨δ(x), g ⊗ f⟩ = −{g, f}(x)

for all x ∈ A. Thus we have {f, g} = −{g, f}.
Step 3. The equation (1) satisfies the Leibniz rule: Since

{fg, h}(x) = ⟨(∆⊗ 1) ◦ δ(x), f ⊗ g ⊗ h⟩
and

(f{g, h}+ {f, h}g)(x)
= ⟨(1⊗ δ) ◦∆(x), f ⊗ g ⊗ h⟩+ ⟨τ23 ◦ (δ ⊗ 1) ◦∆(x), f ⊗ g ⊗ h⟩

for x ∈ A and f, g, h ∈ A◦, it is enough to show that

(3) (∆⊗ 1) ◦ δ = (1⊗ δ) ◦∆+ τ23 ◦ (δ ⊗ 1) ◦∆.

But the equation (3) is just the co-Leibniz rule of δ.

Step 4. The equation (1) satisfies the Jacobi identity: Observe that

{{f, g}, h}(x) = ⟨(δ ⊗ 1) ◦ δ(x), f ⊗ g ⊗ h⟩,
{{g, h}, f}(x) = ⟨τ12 ◦ τ23 ◦ (δ ⊗ 1) ◦ δ(x), f ⊗ g ⊗ h⟩,
{{h, f}, g}(x) = ⟨τ23 ◦ τ12 ◦ (δ ⊗ 1) ◦ δ(x), f ⊗ g ⊗ h⟩

for x ∈ A and f, g, h ∈ A◦. Hence (1) satisfies the Jacobi identity if and only
if δ satisfies

(4) (δ ⊗ 1) ◦ δ + τ12 ◦ τ23 ◦ (δ ⊗ 1) ◦ δ + τ23 ◦ τ12 ◦ (δ ⊗ 1) ◦ δ = 0.

But the equation (4) is the co-Jacobi identity of δ. Hence (1) satisfies the
Jacobi identity.

Step 5. ∆({f, g}) = {∆(f),∆(g)} for all f, g,∈ A◦: For any x, y ∈ A,

∆({f, g})(x⊗ y) = {f, g}(xy) = ⟨δ(xy), f ⊗ g⟩
= ⟨δ(x)∆(y), f ⊗ g⟩+ ⟨∆(x)δ(y), f ⊗ g⟩

=
∑

⟨δ(x), f ′ ⊗ g′⟩⟨∆(y), f ′′ ⊗ g′′⟩

+
∑

⟨∆(x), f ′ ⊗ g′⟩⟨δ(y), f ′′ ⊗ g′′⟩

= {f ′, g′}(x)(f ′′g′′)(y) + (f ′g′)(x)({f ′′, g′′})(y)
= {∆(f),∆(g)}(x⊗ y),
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where ∆(f) =
∑

f ′ ⊗ f ′′,∆(g) = g′ ⊗ g′′. Thus we have

∆({f, g}) = {∆(f),∆(g)}
for f, g ∈ A◦. This completes the proof of Theorem 3. □

Refer to [1, 1.3] for the definition of Lie bialgebra. Let (g, δ) be a Lie
bialgebra, U(g) the universal enveloping algebra of g and ∆ the comultiplication
of U(g). The cobracket δ is extended uniquely to a ∆-derivation δ. That is,

δ : U(g) −→ U(g)⊗ U(g)

is a k-linear map such that δ|g = δ and δ(xy) = δ(x)∆(y) + ∆(x)δ(y) for all
x, y ∈ U(g). Then, by [1, Proposition 6.2.3], U(g) is a co-Poisson Hopf algebra
with Poisson co-bracket δ.

Corollary 4. Let (g, δ) be a finite dimensional Lie bialgebra. Then the Hopf
dual U(g)◦ of the universal enveloping algebra U(g) is a Poisson Hopf algebra
with Poisson bracket

{f, g}(x) = ⟨δ(x), f ⊗ g⟩, x ∈ U(g)

for f, g ∈ U(g)◦.

Proof. Let {x1, . . . , xn} be a basis of g. Then U(g) is an almost normalizing ex-
tension over k with generators x1, . . . , xn. Thus the result follows immediately
from Theorem 3. □
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