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Abstract Self-dual MDS and NMDS codes over finite fields are linear codes with

significant combinatorial and cryptographic applications. In this paper, firstly, we

investigate the duality properties of generalized twisted Reed-Solomon (abbreviated

GTRS) codes in some special cases. In what follows, a new systematic approach is

proposed to draw Hermitian self-dual (+)-GTRS codes. The necessary and sufficient

conditions of a Hermitian self-dual (+)-GTRS code are presented. With this method,

several classes of Hermitian self-dual MDS and NMDS codes are constructed.

Keywords Hermitian self-dual · generalized twisted Reed-Solomon codes · MDS

codes · NMDS codes

1 Introduction

Maximum distance separable (MDS) codes are optimal because they attain the max-

imal achievable minimum distance d = n − k + 1 of length n and dimension k, which

have the largest error-correcting capability for given a code rate. The most famous

family of MDS codes is (extended) generalized Reed-Solomon (for short GRS and

EGRS) codes. There are, of course, other non-Reed-Solomon type MDS codes [1].
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Near MDS (i.e. NMDS) codes are introduced in [2] by slightly weakening the re-

strictive conditions in the definition of MDS codes, which are closely connected to

interesting objects in finite geometry and have applications in combinatorics [2,3]

and secret sharing scheme [4]. Similarly, because of their special algebraic structure,

self-dual codes are another family of linear codes worth studying, and have important

applications in cryptographic protocols [5,6]. For those reasons, constructing (Her-

mitian) self-dual MDS and NMDS codes is thus becoming a significant research topic

in the theory of classical error-correcting codes. Analogous with the construction of

(Hermitian) self-dual MDS codes, it is also challenging to determine the existence of

a (Hermitian) self-dual NMDS code.

In recent years, researchers are trying to use different techniques to focus on in-

vestigating Euclidean and Hermitian self-dual MDS codes, especially for Euclidean

case, via building-up construction method [7,8], and constacyclic codes [9,10], Glynn

codes [11], rational function fields [12]. Especially recently, many Euclidean self-

dual MDS codes have been presented by utilizing GRS codes [13,14,15,16,17]. In

[8], Gulliver et al. also construct Euclidean self-dual NMDS codes of length n = q−1

(q is power of odd prime) derived from Reed-Solomon (i.e. RS) codes. In [18], some

self-dual NMDS codes with length n ≤ 16 were constructed over some small prime

fields. Jin and Kan [19] make use of properties of elliptic curves to construct some

self-dual NMDS codes. Consequently, constructing self-dual NMDS codes remains

an open problem for a large range of parameters. As far as we know, however, there

are few research results on Hermitian self-dual MDS and NMDS codes, for a few

results, see [20,21].

In 2017, enlighten by the construction of twisted Gabidulin codes [22] in rank

metric, Beelen et al. [23] introduce a new family of linear evaluation codes in Ham-

ming metric: twisted Reed-Solomon (i.e. TRS) codes. The idea of TRS codes is based

on RS codes, by adding further monomials, so called “twist”, and selecting the evalu-

ation points appropriately. Afterwards, Beelen et al. [24] also propose the generaliza-

tion of the single-twist Reed-Solomon codes in [23] to the multi-twist composition.

TRS codes are also shown to be largely distinct from GRS codes, which have much

larger Schur squares dimension than a GRS code with the same parameters. Mean-

while, a subfamily of TRS codes are proposed as an alternative to Goppa codes for the

McEliece cryptosystem [24,25], which is a public-key cryptosystem and one of the

candidates for post-quantum cryptography, resulting in a potential reduction of key

sizes. We call the extension of TRS codes by generalized TRS (i.e. GTRS) codes.

For other recent studies on GTRS codes, please refer to [26,27,28]. In general, TRS

codes are not MDS, nevertheless certain subclasses may be MDS or NMDS which

are constructed by a suitable choice of the evaluation points and twist coefficients.

What’s more famous is that (+)-twisted Reed-Solomon codes [23], which is called

(+)-TRS codes for simplicity. In [26], Huang et al. represent the form of check ma-

trix of (+)-GTRS codes.

In this paper, we firstly prove that GTRS codes are also closed under Euclidean

duality if we choose evaluation points which form a multiplicative group. In the fol-

lowing, we present the necessary and sufficient conditions of a (+)-GTRS code is Her-

mitian self-dual and give a new efficient construction method for self-dual (+)-GTRS
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codes with respect to the Hermitian inner product. By applying the new method, we

draw several classes of Hermitian self-dual MDS and NMDS codes, respectively.

The remainder of this paper is organized as follows. Basic notations and results

about GTRS codes and NMDS codes are provided in Section II. The main contri-

butions are presented in Section III. Some final remarks and hints for future works

conclude the paper in Section IV.

2 Preliminaries

In this section, we recall some definitions and basic theory of Hermitian self-dual

codes, GTRS codes, and NMDS codes.

2.1 Hermitian self-dual codes

Let q be a prime power and Fq be the finite field with q elements. Assume that n and

q are coprime, that is gcd(n, q) = 1,Fq∗ = Fq\{0}. Let Fn
q denote the vector space of

all n-tuples over the finite field Fq. If C is a k-dimensional subspace of Fn
q, then C will

be called an [n, k] linear code over Fq. The linear code C has qk codewords.

Let x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ F
n
q2 , here we review that the Eu-

clidean inner product of vectors x, y is

〈x, y〉E =

n
∑

i=1

xiyi. (1)

The Euclidean dual code of C is defined as

C⊥E = {x | x ∈ Fn
q2 , 〈x, y〉E = 0, for all y ∈ C}. (2)

It is always useful to consider another inner product, called the Hermitian inner

product.

〈x, y〉H =

n
∑

i=1

xiy
q

i
. (3)

Analogous to (2), we can define the Hermitian dual of C as follows by using this

inner product.

C⊥H = {x | x ∈ Fn
q2 , 〈x, y〉H = 0, for all y ∈ C}. (4)

Namely, C⊥H is the orthogonal subspace to C, with respect to the Hermitian inner

product. We also have Hermitian self-orthogonality and Hermitian self-duality. If

C ⊆ C⊥H , then C⊥H is Hermitian self-orthogonal. Particularly, if C⊥H = C, then C is

Hermitian self-dual.
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2.2 GTRS codes and NMDS codes

The GTRS codes are formally defined as follows, for more details we refer to [23,

24].

Definition 1 Let n, k, ℓ ∈ N be positive integers, where k < n, ℓ ≤ n − k. Choose

a twist vector t = (t1, t2, . . . , tℓ) ∈ {1, . . . , n − k}ℓ such that the ti(1 ≤ i ≤ ℓ) are

distinct, and a hook vector h = (h1, h2, . . . , hℓ) ∈ {0, . . . , k − 1}ℓ such that the hi(1 ≤

i ≤ ℓ) are also distinct. Set η = (η1, η2, . . . , ηℓ) ∈ (F∗q)ℓ. The set of [k, t, h, η]-twisted

polynomials over Fq is defined by

Pk,n[t, h, η] =



















f =

k−1
∑

i=0

fix
i +

ℓ
∑

j=1

η j fh j
xk−1+t j : fi ∈ Fq



















. (5)

Definition 2 Let α = (α1, α2, . . . , αn) ∈ Fn
q be pairwise distinct, v = (v1, v2, . . . , vn) ∈

(F∗q)n and 1 ≤ k ≤ n. Let t, h, η andPk,n[t, h, η] be defined as above. The [α, v, t, h, η]

-GTRS code of length n and dimension k is defined by

GTRS k,n[α, v, t, h, η] := {[v1 f (α1), v2 f (α2), . . . , vn f (αn)] : f ∈ Pk,n[t, h, η]}. (6)

The elements α1, α2, . . . , αn are called the code locators (evaluation points) of

GTRS k,n [α, v, t, h, η], and the elements v1, v2, . . . , vn are called the column multi-

pliers. The set of twisted polynomials Pk,n[t, h, η] ⊆ Fq[x] forms a k-dimensional

Fq-linear subspace, so a GTRS code is linear code.

Let us recall the definition of NMDS codes as follows.

Definition 3 ([2]) A linear code with parameters of the form [n, k, n− k] is said to be

almost MDS (i.e. AMDS). Particularly, An AMDS code is an NMDS code if the dual

code is also an AMDS code.

3 Main Results

3.1 Euclidean dual of GTRS codes

It is known that the dual code of a GRS code is also a GRS code. In contrast to

GRS codes, GTRS also do not generally seem to be closed under duality. However,

if we choose evaluation points which form a multiplicative group, this yields to the

following results.

Firstly, denote the reversal matrix Jk ∈ F
k×k
q by the square matrix

Jk =

























1

. .
.

1

























. (7)
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We denote by Vn(α) the n × n Vandermonde matrix over α, and Λ is the diagonal

matrix diag (v1, v2, . . . , vn) , where

Vn(α) =



































1 1 . . . 1

α1 α2 . . . αn

...
...
. . .

...

αn−1
1
αn−1

2
. . . αn−1

n



































. (8)

Theorem 1 Let C be an [n, k] linear code with a generator matrix of the form

G =
[

I | L
]

· (Vn(α)Λ), (9)

where I ∈ F
k×k
q is the identity matrix, L ∈ F

k×(n−k)
q , and the entries of α ∈ F

n
q are

distinct and form a multiplicative group. Then the Euclidean dual code C⊥E has gen-

erator matrix with the form

H = [I | Jn−k(−L
T )Jk] · Vn(α) diag(α/n)Λ−1. (10)

Proof Since the entries of α form a multiplicative group, we have αn
i
= 1, 1 ≤ i ≤ n

and by [24], we obtain

(VT )−1 = J · V · diag(α/n). (11)

Since H has rank n − k so left is to show G · HT = 0. Note that

G · HT

= [I | L](VΛ) · ([I | Jn−k(−L
T )Jk] · V diag(α/n)Λ−1)T

= [I | L](VΛ) · (Jn−k[−L
T | I]Jn · V diag(α/n)Λ−1)T

= [I | L](VΛ) · (Jn−k[−L
T | I](V−1)TΛ−1)T

= [I | L][
−L

I
]Jn−k

= 0.

So it is a parity-check matrix of C, and thus, a generator matrix of the dual code.

Theorem 1 implies the following duality statement for GTRS codes with evalua-

tion points forming a multiplicative group, analogy to TRS codes in [24].

Theorem 2 Let n, k,α, v, t, h, η be chosen as in Definition 2 such that the entries of

α form a multiplicative subgroup of F∗q. Then GTRS k,n[α, v, t, h, η]⊥E twisted code is

equivalent to a GTRS n−k,n[α, v−1, k − h, n − k − t,−η] -twisted code.

Proof By definition, we claim that a generator matrix of GTRS k,n[α, v, t, h, η] is

given by G = [I | L] · (VΛ), where the entries of L ∈ F
k×(n−k)
q are of the form

Li j =

{

ηµ, if (i, j) =
(

hµ + 1, tµ
)

,

0, else
(12)
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With the analysis as Theorem 1, a parity check matrix for GTRS k,n[α, v, t, h, η]

is:

H = [I | Jn−k(−L
T )Jk] · Vn(α) diag(α/n)Λ−1. (13)

Hence it is equivalent to a code C′ generated by
[

I | −Jn−k L
T

Jk

]

· Vn(α)Λ−1. As

we already know, the entries of −Jn−k LT Jk are of the form

(−Jn−k L
T

Jk)i, j =

{

−ηµ, (i, j) =
(

n − k − tµ + 1, k − hµ
)

,

0, else.
(14)

In other words, a twist xhµ+ηµx
k−1+tµ becomes the twist xn−k−tµ+

(

−ηµ
)

xn−k−1+(k−hµ)

in the dual code. Therefore the code C′ is a [k− h, n− k− t,−η] -twisted code, which

proves the claim.

3.2 (+) -generalized twisted Reed-Solomon codes

Taking l = 1, (t, h) = (1, k − 1) in Definition 2, Beelen et al. obtain a family code

as the (+)-twisted Reed-Solomon codes by employing additive subgroups of Fq. We

denote generalization of the class twisted code as GTRS k,n[α, v, 1, k − 1, η].

Lemma 1 ([23]) Let k ≤ n ≤ q, α = (α1, α2, . . . , αn) ∈ F
n
q be pairwise distinct, v =

(v1, v2, . . . , vn) ∈ (F∗q)n, and η ∈ F∗q. Then the generalized twisted code GTRS k,n[α, v, 1,

k − 1, η] is MDS if and only if

η
∑

i∈I

αi , −1, ∀ I ⊆ {1, . . . , n} s.t. |I| = k. (15)

Next, we present the sufficient and necessary conditions that (+)-GTRS code is

an NMDS code. It is easy to conclude from the proof process of Lemma 1, so we

omit the details.

Lemma 2 Let k, n,α, v, η be chosen as above. Then GTRS k,n[α, v, 1, k−1, η] is NMDS

if and only if

η
∑

i∈I

αi = −1, ∃ I ⊆ {1, . . . , n} s.t. |I| = k. (16)

Remark 1 It can be drawn that the code GTRS k,n[α, v, 1, k − 1, η] is MDS if −η−1

cannot be represented as the sum of any k evaluation points. Furthermore, ∀ η ∈ F∗q,

GTRS k,n[α, v, 1, k − 1, η] is either MDS or NMDS.

3.3 Hermitian self-dual (+)-GTRS codes

From now on, we always assume that ω is a primitive element of Fq2 , that is F∗
q2 =

〈ω〉, and label the elements of Fq as Fq =
{

a1, a2, . . . , aq

}

.
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Meanwhile, we also always denote u = (u1, u2, . . . , un), where

ui :=
∏

1≤ j≤n, j,i

(

αi − α j

)−1
, 1 ≤ i ≤ n, (17)

and

a =

n
∑

i=1

αi. (18)

Next according to the check matrix of GTRS k,n[α, v, 1, k−1, η] in [26], we present

the following lemma.

Lemma 3 Let k ≤ n ≤ q2, α = (α1, α2, . . . , αn) ∈ F
n
q2 be pairwise distinct, v =

(v1, v2, . . . , vn) ∈ (F∗
q2 )n, and η ∈ F∗

q2 . Then the Euclidean dual of twisted code GTRS k,n

[α, v, 1, k − 1, η](η , −a−1) is represented as follows.

GTRS
⊥E

k,n
[α, v, 1, k − 1, η]

= GTRS n−k,n[α, uv
−1, 1, n − k − 1,−

η

1 + aη
].

Remark 2 In Theorem 2, suppose that α form a multiplicative subgroup of Fq2 , then

a =
∑n

i=1 αi = 0, and set l = 1, (t, h) = (1, k − 1), then GTRS
⊥E

k,n
[α, v, 1, k − 1, η] =

GTRS n−k,n [α, uv−1, 1, n− k − 1,−η]. Thus the result of Lemma 3 is a special case of

Theorem 2 and vice versa.

According to Lemma 3, we obtain the corollary as follows.

Corollary 3 Let 1 be all-one word of length n. Then the Euclidean dual code of

GTRS k,n[α, 1, 1, k − 1, η](η , −a−1) is

GTRS
⊥E

k,n
[α, 1, 1, k − 1, η]

= GTRS n−k,n[α, u, 1, n − k − 1,−
η

1 + aη
]

= {(u1g(α1), . . . , ung(αn))|g(x) ∈ Fq2 [x]},

where g(x) =
∑n−k−2

i=0 gix
i + gn−k−1(xn−k−1 −

η

1+aη
xn−k), gi ∈ Fq2 , 0 ≤ i ≤ n − k − 1 with

gn−k−1 , 0.

In the following, we show that the necessary and sufficient conditions for (+)-

GTRS codes being Hermitian self-dual.

Theorem 4 Keep the above notations, let n = 2k, then GTRS k,n[α, v, 1, k − 1, η](η ,

−a−1) over Fq2 is Hermitian self-dual if and only if there exists a polynomial g(x) =
∑k−2

i=0 gix
i + gk−1(xk−1 −

η

1+aη
xk), gi ∈ Fq2 , 0 ≤ i ≤ k − 1 with gk−1 , 0 such that

v
q+1

i
f q(αi) = uig(αi), 1 ≤ i ≤ n. (19)
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Proof Note that GTRS k,n[α, v, 1, k−1, η] has a generator matrix given by Gk(α, v, η).

Clearly, we have Gk(α, v, η) = Gk(α, 1, η)Λ, where

Gk(α, 1, η) =













































1 1 · · · 1

α1 α2 · · · αn

...
...

. . .
...

αk−2
1

αk−2
2

· · · αk−2
n

αk−1
1
+ ηαk

1
αk−1

2
+ ηαk

2
· · · αk−1

n + ηαk
n













































,

and Λ is the diagonal matrix diag (v1, v2, . . . , vn). It follows that GTRS n
2
,n[α, v, 1, k −

1, η] over Fq2 is Hermitian self-dual if and only if for any codeword c = (v1 f (α1),

v2 f (α2), . . . , vn f (αn)) of GTRS n
2
,n[α, v, 1, k − 1, η],

cq ·G n
2
(α, v, η)T

= cq · (G n
2
(α, 1, η)Λ)T

= (v
q+1

1
f q(α1), . . . , v

q+1
n f q(αn)) ·G n

2
(α, 1, η)T

= 0

⇔ (v
q+1

1
f q(α1), . . . , v

q+1
n f q(αn)) ∈ GTRS

⊥E
n
2
,n

[α, 1, 1, k − 1, η].

Recall that the Euclidean dual of GTRS n
2
,n[α, 1, 1, k − 1, η] is GTRS n

2
,n[α, u, 1, k −

1,−
η

1+aη
], now the desired result follows immediately from Corollary 3.

3.4 Hermitian self-dual MDS and NMDS codes

In this section, we mainly present our contribution to construct several classes of

Hermitian self-dual MDS and NMDS codes. To do that, we consider the Hermitian

self-dual (+)-GTRS codes in Theorem 4. We first give the following basic lemmas

from [30].

Lemma 4 If ω is a primitive element of Fq2 , then there exists a ξ ∈ Fq2 such that

ωq + ω = ξq+1, that is ωq + ω ∈ Fq.

Proof Since (ωq + ω)q = ωq2

+ ωq = ω + ωq, that is (ωq + ω)q−1 = 1, then it is a

straight-forward fact that ωq + ω ∈ Fq.

Lemma 5 The equation ζq + ζq−1 + 1 = 0 with regard to ζ has q distinct nonzero

roots over the finite field Fq2 .

Next, we present our discussions according to two classes different values of code

locators α.

(I) Fix β ∈ Fq2\Fq. ∀ 1 ≤ l ≤ q, set

Al = alβ + Fq := {alβ + x : x ∈ Fq}. (20)

In general, here we always set β = ω.
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Theorem 5 Let q be a prime power, n = 2k, n ≤ q, α = (α1, α2, . . . , αn) ∈ An
l
, where

α1, α2, . . . , αn are distinct elements. If a = 0 and q = 2s are not met at the same

time, then there exists a vector v = (v1, v2, . . . , vn) ∈ (F∗
q2 )n, and η ∈ F

∗

q2 such that

GTRS n
2
,n[α, v, 1, k− 1, η] is an

[

n, n
2
, n

2
+ 1
]

Hermitian self-dual GTRS code over Fq2 .

Proof As can be seen, |Al| = q. Let α = (α1, α2, . . . , αn) ∈ An
l
, then it is a straight-

forward fact that

ui =
∏

1≤ j≤n, j,i

(

xi − x j

)−1
. (21)

It is obvious that ui ∈ F
∗
q, thus there exists vi ∈ F

∗

q2 such that v
q+1

i
= ui. Set

v = (v1, v2, . . . , vn).

Let ωq + ω = ξq+1, then

α
q

i
= (alω + xi)

q

= a
q

l
ωq + x

q

i

= al(ξ
q+1 − ω) + xi

= (alω + xi) + (ξq+1 − 2ω)al

= αi + (ξq+1 − 2ω)al.

For all f (x) ∈ Fq2 [x] with form f (x) =
∑k−2

i=0 fi x
i + fk−1(xk−1 + ηxk), fk−1 , 0, we will

discuss it in two ways.

(1) In the case of a = 0 and q , 2s, set ηq = −η, and h(x) =
∑k−2

i=0 f
q

i
xi+ f

q

k−1
(xk−1−

ηxk). By α
q

i
= αi + (ξq+1 − 2ω)al, therefore

f q(αi) =

k−2
∑

j=0

f
q

j
(α

q

i
) j + f

q

k−1
((α

q

i
)k−1 + ηq(α

q

i
)k)

= h(αi + (ξq+1 − 2ω)al).

Set g(x) = h(x + (ξq+1 − 2ω)al), then there exists g(x) =
∑k−2

i=0 gix
i + gk−1(xk−1 −

ηxk) ∈ Fq2[x] with gk−1 , 0 such that f q(αi) = g(αi), 1 ≤ i ≤ n. Therefore, there exists

a g(x) such that v
q+1

i
f q(αi) = uig(αi), 1 ≤ i ≤ n. By Theorem 4, GTRS n

2
,n[α, v, 1, k −

1, η] is a Hermitian self-dual GTRS code.

(2) In the case of a , 0, set ηq = µη, µ ∈ Fq2 and h(x) =
∑k−2

i=0 f
q

i
xi + f

q

k−1
(xk−1 +

µηxk). By α
q

i
= αi + (ξq+1 − 2ω)al, therefore f q(αi) = h(αi + (ξq+1 − 2ω)al).

Set g(x) = h(x+(ξq+1−2ω)al), to make g(x) has form g(x) =
∑k−2

i=0 gix
i+gk−1(xk−1−

η

1+aη
xk) ∈ Fq2 [x] with gk−1 , 0, by analyzing the coefficient of xk−1 and xk on both

sides, then
µη

k(ξq+1 − 2ω)alµη + 1
= −

η

1 + aη
. (22)

Combining with ηq = µη and Equation (22), then

[k(ξq+1 − 2ω)al + a]ηq + ηq−1 + 1 = 0. (23)

It is easy to prove that A , k(ξq+1−2ω)al+a =
∑n

i=1 xi+kξq+1al ∈ Fq. Setting ζ =

Aη transforms Equation (23) to ζq+ζq−1+Aq−1 = 0, that is ζq+ζq−1+1 = 0. By Lemma
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5, Equation (23) has q distinct nonzero roots in Fq2 . Then there exists a g(x) such that

f q(αi) = g(αi), 1 ≤ i ≤ n. Therefore, there exists a g(x) such that v
q+1

i
f q(αi) =

uig(αi), 1 ≤ i ≤ n. By Theorem 4, GTRS n
2
,n[α, v, 1, k − 1, η] is a Hermitian self-dual

GTRS code, which proves the claim.

(II) Let βm = ω
m, 1 ≤ m ≤ q, ∀1 ≤ l ≤ q, denote

Al,m = al + Fq · βm := {al + βmx : x ∈ Fq}. (24)

Theorem 6 Let q be a prime power, n = 2k, n ≤ q, α = (α1, α2, . . . , αn) ∈ An
l,m

with α1, α2, . . . , αn distinct elements. If a = 0 and q = 2s are not met at the same

time, then there exists a vector v = (v1, v2, . . . , vn) ∈ (F∗
q2 )n, and η ∈ F

∗

q2 such that

GTRS n
2
,n[α, v, 1, k− 1, η] is an

[

n, n
2
, n

2
+ 1
]

Hermitian self-dual GTRS code over Fq2 .

Proof As can be seen, |Al,m| = q. Let α = (α1, α2, . . . , αn) ∈ An
l,m

, then it can be shown

that

ui = β
−(n−1)
m

∏

1≤ j≤n, j,i

(

xi − x j

)−1
. (25)

Let λ = βn−1
m = ωm(n−1) ∈ F

∗

q2 , thus there exists vi ∈ F
∗

q2 such that v
q+1

i
= λui.

It turns out that α
q

i
= β

q−1
m αi + (1 − β

q−1
m )al. For all f (x) ∈ Fq2 [x] with form f (x) =

∑k−2
i=0 fi x

i + fk−1(xk−1 + ηxk), fk−1 , 0, set h(x) =
∑k−2

i=0 f
q

i
xi + f

q

k−1
(xk−1 + µηxk), and

ηq = µη. By α
q

i
= β

q−1
m αi + (1 − β

q−1
m )al, then

f q(αi) =

k−2
∑

j=0

f
q

j
(α

q

i
) j + f

q

k−1
((α

q

i
)k−1 + ηq(α

q

i
)k)

= h(β
q−1
m αi + (1 − β

q−1
m )al).

Set g(x) = λh(β
q−1
m x + (1 − β

q−1
m )al), we also consider the following two cases.

(1) In the case of a = 0 and q , 2s, to make g(x) has the form g(x) =
∑k−2

i=0 gix
i +

gk−1(xk−1 − ηxk) ∈ Fq2 [x] with gk−1 , 0, then by considering the coefficient of xk−1

and xk on both sides, then

λµη(β
q−1
m )k = −λη(β

q−1
m )k−1. (26)

that is

µβ
q−1
m = −1. (27)

Combining with ηq = µη and Equation (27), then

ηq−1 = −β
−(q−1)
m . (28)

Obviously, Equation (28) has q − 1 distinct nonzero roots in Fq2 .

(2) In the case of a , 0, to make g(x) has form g(x) =
∑k−2

i=0 gix
i + gk−1(xk−1 −

η

1+aη
xk) ∈ Fq2 [x] with gk−1 , 0, by analyzing the coefficient of xk−1 and xk on both

sides, then

µηβ
q−1
m

1 + kµη(1 − β
q−1
m )al

= −
η

1 + aη
. (29)
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Table 1 Some Hermitian self-dual GTRS 3,6[α, v, 1, 2, η] with parameters [6, 3, 4] or [6, 3, 3] over F72 .

Class a Para. α v η

(I) a = 0 [6, 3, 4] (1, 2, 3, 4, 5, 6) (ω4, 1, ω11, 3, ω9, ω) {ω4, ω12, ω20, ω28, ω36, ω44}

(I) a , 0 [6, 3, 4] (ω,ω2, ω5, ω11, ω31, ω36) (ω2, ω5, ω6, ω10, ω, ω3) {ω17, ω23, ω27, ω38, 5, ω45}

(I) a , 0 [6, 3, 3] (ω,ω2, ω5, ω11, ω31, ω36) (ω2, ω5, ω6, ω10, ω, ω3) {ω26}

(II) a = 0 [6, 3, 4] (ω4, ω28, ω20, ω44, ω12, ω36) (ω,ω10, ω3, 1, ω2, ω11) {1, 2, 3, 4, 5, 6}

(II) a , 0 [6, 3, 4] (ω,ω25, 0, ω17, ω41, ω9) (ω2, 1, ω5, ω3, ω4, ω) {3, ω14, ω17, ω18, ω29, ω36}

(II) a , 0 [6, 3, 3] (ω,ω25, 0, ω17, ω41, ω9) (ω2, 1, ω5, ω3, ω4, ω) {ω31}

Combining with ηq = µη and Equation (29), then

[k(1 − β
q−1
m )al + aβ

q−1
m ]ηq + β

q−1
m η

q−1 + 1 = 0. (30)

Denoting B ,
k(1−β

q−1
m )al+aβ

q−1
m

β
q−1
m

, and setting ζ = Bη transforms Equation (30) to

ζq + ζq−1 + (Bβ−1
m )q−1 = 0, it is easy to know Bβ−1

m ∈ Fq, that is ζq + ζq−1 + 1 = 0. By

Lemma 5, Equation (30) has q distinct nonzero roots in Fq2 .

From the above discussions, it follows that there exists a g(x) such that f q(αi) =

λ−1g(αi), 1 ≤ i ≤ n. Therefore, there exists a g(x) such that v
q+1

i
f q(αi) = uig(αi), 1 ≤

i ≤ n. By Theorem 4, the conclusion is established.

Remark 3 In the light of Theorem 2.5 in [26], suppose that a = 0, then GTRS n
2
,n[α, v,

1, k−1, η] can not be a Euclidean self-dual MDS code, however, it can be a Hermitian

self-dual MDS code.

Building on Theorems 5 and 6, and by Lemmas 1 and 2, we derive two striking

conclusions.

Corollary 7 In Theorems 5 and 6, if a = 0, then a Hermitian self-dual GTRS code

GTRS n
2
,n[α, v, 1, k − 1, η] is a MDS code over Fq2 .

Corollary 8 In Theorems 5 and 6, if aη + 2 = 0, then a Hermitian self-dual GTRS

code GTRS n
2
,n[α, v, 1, k − 1, η] is NMDS. Otherwise, GTRS n

2
,n[α, v, 1, k − 1, η] is a

MDS code over Fq2 .

Example 1 To be more precise, let q = 7, we present some examples of Hermitian

self-dual GTRS codes GTRS 3,6[α, v, 1, 2, η] over F72 in Table 1.

Remark 4 As a potential application in McEliece cryptosystem, GTRS codes play an

important role in reducing the public key size for a given security level. In addition,

according to [31], some choices of the system parameters can avoid the mentioned

attack, e.g. using codes with rate R ≃ 1
2
. We know a self-dual code have rate R = 1

2
.

On the other hand, people begin to construct cryptosystem by using variant codes of

original GRS and GTRS codes, It is worth noting that TRS codes are also subcodes

of GRS codes. We know the generator matrix and dimension of subfield subcodes of

GRS and GTRS codes are not guaranteed and depends on the actual choice of code
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locators a, column multipliers v and variable η [32]. Our investigation on determin-

ing Hermitian self-dual GTRS codes with pairs of (a, v, η), which are expected that

these codes and their subcodes can be used for constructing McEliece code-based

cryptosystems with resisting some more known structural attacks.

4 Conclusion and discussion

In this paper, we mainly propose a systematical approach to construct Hermitian self-

dual (+)-GTRS codes for the first time. Finally, we obtain several classes of q2-ary

Hermitian self-dual MDS and NMDS codes derived from these GTRS codes. Further,

the techniques developed in this paper can be also applied for these MDS codes in

[33] to obtain new Hermitian self-dual MDS codes. Meanwhile it is also a worthy re-

search topic to construct Hermitian self-orthogonal (especially almost self-dual) and

Hermitian LCD MDS and NMDS codes through GTRS codes applying this method.
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